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ABSTRACT 

 
Comparison of Value-Added Models for School Ranking and Classification: A Monte 

Carlo Study. (December 2006) 

Zhongmiao Wang, B.S., Beijing Normal University; 

M.S., Beijing Normal University 

Co-Chairs of Advisory Committee:    Dr. B. Thompson 
                                                             Dr. V. L. Willson 

 
 
 

 A “Value-Added” definition of school effectiveness calls for the evaluation of 

schools based on the unique contribution of schools to individual student academic 

growth. The estimates of value-added school effectiveness are usually used for ranking 

and classifying schools. The current simulation study examined and compared the 

validity of school effectiveness estimates in four statistical models for school ranking 

and classification. The simulation study was conducted under two sample size conditions 

and the situations typical in school effectiveness research. The Conditional Cross-

Classified Model (CCCM) was used to simulate data. The findings indicated that the 

gain score model adjusting for students’ test scores at the end of kindergarten (i. e., prior 

entering to an elementary school) (Gain_kindergarten) could validly rank and classify 

schools. Other models, including the gain score model adjusting for students’ test scores 

at the end of Grade 4 (i. e., one year before estimating the school effectiveness in Grade 

5) (Gain_grade4), the Unconditional Cross-Classified Model (UCCM), and the Layered 

Mixed Effect Model (LMEM), could not validly rank or classify schools. The failure of 
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the UCCM model in school ranking and classification indicated that ignoring covariates 

would distort school rankings and classifications if no other analytical remedies were 

applied. The failure of the LMEM model in school ranking and classification indicated 

that estimation of correlations among repeated measures could not alleviate the damage 

caused by the omitted covariates. The failure of the Gain_grade4 model cautioned 

against adjustment using the test scores of the previous year. The success of the 

Gain_kindergarten model indicated that under some circumstances, it was possible to 

achieve valid school rankings and classifications with only two time points of data. 
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CHAPTER I 

INTRODUCTION 
 

“Value-Added” Models (VAM) of school effectiveness are different statistical 

models that estimate value-added school effectiveness. The current study compared the 

performance of different VAM in school ranking and classification.  These models use 

student achievement test scores to judge the quality of schools, which reflect the popular 

practice of school accountability around the United States. The new federal education 

law, No Child Left Behind Act, calls for more emphasis on student academic 

achievement, and has motivated many states to design their accountability systems to 

evaluate schools based on their contributions to students’ academic achievement.   

The VAM investigated in the current study reflect the latest thinking about 

school effectiveness. The recent development in the definition of school effectiveness 

emphasizes three points. One is that school effectiveness should reflect the unique effect 

of school education on individual student achievement. The second is that school 

effectiveness should reflect the impact of schools on students’ achievement growth over 

time, but not achievement status at a single time point (Teddlie & Reynolds, 2000). The 

third is that school effectiveness should reflect the impact of schools on individual 

students, but not on the aggregate level of all the students.   

 

_____________ 

This dissertation follows the style of Educational and Psychological Measurement. 
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The definition of value-added school effectiveness combines the three points, which can 

be defined as the unique effect of each school on individual students’ achievement 

growth over time (Doran, 2003; Mayer, 1997; Rowan, Correnti, & Miller, 2002). 

Although students’ achievement can be presented in different areas, such as academic 

achievement, personality maturity, arts achievement, most of the current school 

accountability systems emphasize student academic achievement, and hold schools 

accountable for students’ scores on academic achievement tests. Thus, value-added 

school effectiveness usually focuses on school unique contribution to individual 

students’ growth in academic achievement. 

In terms of the unique contribution of schools, Raudenbush and Willms (1995) 

defined two types of school effectiveness: Type A and Type B. Type A effect is the 

effect of both school context and school practice on student achievement. Type B effect 

is the effect of only school practice on student achievement. School context variables are 

school characteristics that are out of control of a school, such as school location, school 

demographic composition, and aggregated student characteristics, for example, the 

school mean intake test score, the Socio Economic Status (SES) of student body. School 

practice variables describe some instruction and administration policies that can be 

controlled by a school (Raudenbush & Willms, 1995). The Type B school effect is of 

greatest interest to school administrators and policy makers because this effect addresses 

how much impact educational intervention programs or policies have on student learning, 

and it puts schools under evaluation for what they can control. 

In common practice of value-added assessment of schools, the policy makers use 

school effectiveness estimates for two purposes. One is to rank schools; and the other is 
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to identify exceptional schools either for providing special aid or for accumulating 

successful experience. Of greatest concern is whether a statistical model can provide 

valid estimates of value-added school effectiveness to fulfill the two purposes. The 

current study investigated the validity of estimates of value-added school effectiveness 

in different statistical models for school ranking and classification. 

The three points in the value-added definition of school effectiveness and the 

concepts of the Type A effect and Type B effect imply some methodology requirements 

in estimating value-added school effectiveness. The first point requires adjustments for 

the factors that are out of control of schools; the second point requires modeling of 

students’ achievement growth; and the third point requires the use of multilevel models. 

Different Value-Added Models respond to the three requirements with different 

strategies. By comparing these models, we can determine which strategy works well in 

satisfying a certain requirement, and which strategy does not perform as intended. 

Questions about unique effect of school practice on student learning imply 

adjustment for covariates. The randomized experimental design is the best research 

method that can adjust for the covariates and answer questions about causal effect 

(Braun, 2005; Raudenbush, 2005; Rubin, 2004, Rubin, Stuart & Zanutto, 2004). The best 

estimate of Type B school effect results from a nested random block experimental design. 

Let us imagine that the practice in each school is a treatment. First, J schools having 

identical context are assigned to different treatment levels that vary in terms of practice. 

Next, blocks of J students of identical background and aptitude are assigned to the J 

schools. The average performance of the J students in the same block represents the 

average effectiveness of the J schools’ practice. The discrepancy between a student’s 
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performance and the average performance of the J students in the same block is the Type 

B effect (Raudenbush & Willms, 1995). 

However, the random assignment of students to schools and schools to different 

kinds of practice is almost impossible in education. Without the benefit of random 

assignment, researchers try to use statistical models to isolate the school practice effect 

from the effect of other confounding variables. In concept, the confounding variables 

that need to be controlled in estimating Type B school effectiveness include student 

background variables and school context variables. However, because of 

multicollinearity among the student background variables and the school context 

variables, specification of these covariates in statistical models may still result in biased 

estimates of value-added school effectiveness (Teddlie & Reynolds, 2000), and invalid 

school rankings and classifications. Furthermore, selection and measurement of the 

covariates in education also present many problems. 

Considering the problems of specifying covariates in the models, researchers try 

to use other strategies to adjust for the effects of the covariates without specifying them 

in the models. Sanders and his research team in University of Tennessee claimed that the 

influence of other exogenous factors can be filtered out without directly measuring and 

specifying these factors (Sanders, 2000; Sanders, Saxon, & Horn, 1997). Sanders said: 

“By taking advantage of longitudinal data, each student serves as his/her own control. In 

other words, each student can be regarded as a blocking factor. By blocking for each 

student, many of the exogenous influences most often cited as influencing academic 

progress - educational attainment of parents, socioeconomic level, race, and so on – 
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could be partitioned without having direct measures of each one” (Sanders, Saxon, & 

Horn, 1997, P.138). 

This claim aroused intensive enthusiasm among school effectiveness researchers. 

Some research supported this idea (Casteel, 1994; Cook, 1985; Mclean & Sanders, 1984); 

while, some research did not support this idea (Tekwe et al., 2004); and some research 

found that this idea was valid under certain circumstances (Ballou, Sanders, & Wright, 

2004; McCaffrey, Lockwood, Koretz, Louis & Hamilton, 2004).  One intention of the 

current study was to examine this strategy of adjusting for the covariates without 

specifying the covariates in the model. In order to fulfill this intention, the author 

compared the school rankings and classifications based on the Layered Mixed Effect 

Model (LMEM) that adopts this strategy with the known true school rankings and 

classifications in the simulated data. 

Covariates Modeled 

In order to simplify the study, not all the associated covariates found in literature 

were considered. The current study included one student level covariate and one school 

level covariate. As far as the student level covariate, results of previous research 

indicated that student prior attainment explains most of the total variance in student 

achievement outcome. Because of multicollinearity between prior attainment and other 

student background variables, adjustment using only prior attainment achieved similar 

total variance reduction as adjustment using all the student background information. 

Thomas and Mortimore (1996) found that when prior attainment was accounted for, the 

total variance reduced 58%, which was similar to that (63%) in the refined model in 
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which all student background variables, including gender, ethnicity, parent education, 

Socio Economic Status, were adjusted. This result was consistent with other research 

(Cuttance, 1992; Gray, Jesson, & Sime, 1990; Goldstein et al., 1993; Sammons, Nuttall, 

Cuttance, & Thomas, 1995; Scheerens, 1992; Willms, 1992). Furthermore, when student 

prior attainment was accounted for, the difference between the schools with the highest 

and the lowest means reduced 70.6%, and the variance accounted for by school level 

factors reduced from 14% to 10%. These figures were similar to those in the refined 

model. Thus, the adjustment with other student background variables beyond prior 

attainment just marginally refined the results. Thus, based on the literature review, the 

simulation model that was used to generate student test scores in the current study 

adjusted for student prior attainment at the student level. 

As far as the school context variable, previous studies suggested controlling for 

the effect of student body Socio Economic Status (SES). Thomas and Mortimore (1996) 

investigated the impact of SES of student body. They found that once student SES was 

adjusted at the student level, the impact of SES of student body could not be detected at 

the school level. However, if SES of individual student was not adjusted for at the 

student level, even if their prior attainment was adjusted, the SES of student body still 

had statistically significant impact on student achievement. In analysis of a school 

district data, Darandari (2004) found that the SES of student body was the proxy of other 

school context variables. Once SES was adjusted, other school context variables rarely 

had statistically significant effects on student achievement. Adjustment of student body 

SES also reflects the common practice in school effectiveness research (Cuttance, 1992; 

Fitz-Gibbon, 1997; Goldstein, 1997, 1984; Tedllier & Reynolds, 2000; Thomas, 
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Sammons & Mortimore, 1997; Willms, 1986; Raudenbush & Willms, 1995). Thus, 

besides adjusting for student prior attainment at the student level, the correct model in 

the current study also adjusted for the SES of student body at the school level. 

An interesting question about adjustment for prior attainment is which prior 

attainment should be used. The common practice is to adjust for test scores from the 

previous year, such as adjusting Grade 4 test scores when estimating Grade 5 school 

effectiveness. The practice is especially common in the research on elementary schools. 

This is because most states administer achievement tests from Grade 3. There typically 

are no tests for children at the end of kindergarten or at the beginning of Grade 1, which 

can be the points of entry to elementary schools. However, Sammons (1996) found that 

the use of baseline attainment or achievement data collected after a period of years in the 

same school was likely to lead to a reduction in the estimate of school effect. Cuttance 

(1985) also cautioned against the use of prior achievement as a control when prior scores 

are proximal to the point at which the school effects are measured. Preece (1989) 

commented on the potential problem of partialling out school effects in such cases. 

Sammons (1996) recommended adjustment using the test scores collected at the point of 

entry to a school. The test scores at the point of entry to a school were called as intake 

test scores in the current study. One intention of the current study was to examine the 

difference of the adjustments with the two kinds of prior attainment in school rankings 

and classifications. Therefore, the author compared the performance of two kinds of gain 

score models. One gain score model adjusted for the test scores collected at the end of 

kindergarten (i. e., the point of entry to an elementary school); the other gain score 
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model adjusted for the test scores collected at the end of Grade 4 (i. e., one year before 

estimating the school effectiveness in Grade 5). 

Another question about covariates adjustment is how seriously the school 

rankings and classifications will be hurt if the covariates are ignored. Many researchers 

have indicated that ignoring important covariates at one level will bias estimates of both 

the fixed effects and the random effects at all the levels. This is because the ignored 

covariates will be included in the residuals, which will cause correlation between the 

residuals and the predictors in the model or correlation between the residuals at different 

levels. This violates the independence assumption of multilevel level modeling 

(Darandari, 2004; Raudenbush & Bryk, 2002), which will cause inaccurate and 

statistically inefficient estimates of the fixed effects and the variance components. 

Because the Empirical Bayes (EB) estimates of regression coefficients for each school is 

determined by both the fixed effects and the variance components (Raudenbush & Bryk, 

2002), thus the EB estimates of regression coefficients for each school and the 

associated residual will be biased too. However, it is still not clear whether the 

magnitude of bias is large enough to change school rankings and classifications. One 

intention of the current study was to investigate the effect of omitted covariates on 

school rankings and classifications. Therefore, the author compared the known true 

school rankings and classifications with the school rankings and classifications based on 

the Unconditional Cross-Classified Model (UCCM). 
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Longitudinal Models Versus Gain Score Models 

In terms of the second point of the definition of value-added school effectiveness, 

many researchers suggested using longitudinal design with at least three years of data 

(Hill & Rowe, 1996; Mortimore, Sammons, Stroll, Lewix, & Ecob, 1988; Raudenbush 

1989; Raudenbush & Bryk, 1989; Teddlie & Rehold, 2000). This is because school 

effectiveness is most likely to present over a long term, and the school effectiveness in 

the current year is influenced by effectiveness in the previous years (Sammons, Nuttall, 

Cuttance & Thomas 1995). On the other hand, some researchers noted the problems 

associated with longitudinal models. The biggest problem is that test scores across a 

wide span of grades may measure different knowledge and abilities, which may make 

the vertical equating of test scores across different grades invalid (Linn, 2005; Martineau, 

2006). Furthermore, datasets of test scores across several years usually have more 

missing scores than the datasets of test scores involving only two years. One purpose of 

the current study was to investigate whether a gain score model with only two years of 

test scores could achieve similar school rankings and classifications as the more 

complicated longitudinal models. Therefore, the author compared the school rankings 

and classifications based on the two kinds of gain score models with the known true 

school rankings and classifications. 

Research Questions 

In summary, comparisons of the Value-Added Models for school rankings and 

classifications were conducted to answer six questions: (1) whether a gain score model 

adjusting for the kindergarden test scores (Gain_kindergarten) could recover the known 
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true school rankings and classifications; (2) whether a gain score model adjusting for the 

Grade 4 test scores (Gain_grade4) could recover the known true school rankings and 

classifications; (3) whether the Unconditional Cross-Classified Model (UCCM) that 

ignored the covariates could recover the known true school rankings and classifications; 

(4) whether the LMEM model that estimated correlations among repeated measurements 

over time but not specified the covariates in the model could recover the true school 

rankings and classifications; (5) when a gain score model was used, whether adjustment 

using the Grade 4 test scores could achieve similar school rankings and classifications as  

the adjustment using the kindergarten test scores; (6) whether estimating the correlations 

among repeated measurements could alleviate the problem caused by omitted covariates 

in estimating school rankings and classifications? 

Simulation Design 

Monte Carlo simulation was used to answer the six research questions. CCCM 

was used to generate students’ test scores from the end of Grade 1 to the end of Grade 5. 

The test scores at the end of Grade 1 were the intercepts of students’ individual growth 

curves. In the CCCM, student test score at the end of kindergarten was the predictor of 

the intercept at the student level. Student body SES was the predictor of growth at the 

school level. The mathematical equation for the CCCM is: 

jiijtij urkinderY 000100 * +++= ββ   (Intercepts of students’ individual growth curves)   

 + timer i *)( 110 +β                   (students’ natural growth rates) 

 +         (School level effects) (∑
=

+
t

t
tjj uSES

1
01 *γ )
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 +                                  (residual at each grade)                        (1.1)             tije

where Ytij is the test score of the ith student in the jth school at time t. For Grade 1, t = 0. 

β00 is the adjusted mean score of the typical students at the end of Grade 1. The typical 

students have the grand mean level on kindergarten test scores. β00 is also the grand 

mean of the intercepts of students’ individual growth curves. β01 is the fixed effect of 

student kindergarten test score on the intercepts of the growth curves. γ01 is the fixed 

effect of student body SES. r0i is the student random effect on the intercepts of the 

growth curves. The CCCM model assumes that each student has a natural growth curve 

which exists no matter whether or not the student attends a school. The natural growth 

curve is linear. β10 is the grand mean slope of the natural growth curves. r1i is the student 

random effect on the slopes of the natural growth curves. u0j is the school random effect 

on the intercepts, which represents the school selection effect (Ponisciak & Bryk, 2005). 

utj is the value-added school effectiveness of school j at time t. The schools are ranked 

and classified based on estimates of utj. etij is the measurement residual term for student i 

in school j at time t.  

Value-added assessment with multilevel modeling has a set of requirements with 

respect to achievement tests. These requirements are that the achievement tests at each 

grade measure the same content and the test scores are vertically linked without linking 

errors.  Because the current study did not investigate measurement problems in value-

added assessment of school effectiveness, these measurement requirements were 

assumed to be satisfied in the current study. 

The simulation was conducted under two different conditions. One condition was 

the Number of Schools (NS), which had two levels: 50 and 10. The other condition was 
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the Number of Students per School (NSS), which also had two levels: 50 and 10. Thus, 

the simulation adopted a 2*2 design. The levels of the NS factor were decided partially 

based on the NCES 2003-2004 Public Elementary/Secondary Universe Survey Data and 

partially based on the typical number of schools in most school effectiveness research. 

The distribution of the number of elementary schools in a school district is extremely 

positively skewed in the United States (skewness = 31.78). Among the 13,479 school 

districts that contain regular elementary schools, 4 school districts have more than 300 

regular elementary schools, 23 school districts have 100-300 regular elementary schools, 

61 school districts have 50-100 regular elementary schools, 98 school districts have 30-

50 regular elementary schools, and 98.65% of the school districts have less than 30 

regular elementary schools. In school effectiveness research, 50 groups was a frequently 

occurring number, and 30 groups was mentioned as minimum (Mass & Hox, 2004). 

However, I used an even smaller number as the lowest level of the NS factor. This was 

done to enlarge the difference between the highest level and the lowest level of the NS 

factor, so that the influence of the NS factor would be more obvious if an effect really 

existed.  

The levels of the NSS factor were selected based on literature and capacity of the 

computer available to the author. A size of 50 was chosen because 50 should be 

sufficient on the basis of literature (Mass & Hox, 2004). Although a group size of 30 is 

common in educational research (Mass & Hox, 2004), the author used 10 as the lowest 

level of the NSS factor in order to enlarge the difference between the two levels of the 

NSS factor. In a pilot study, the author found that increasing school size led to a 

dramatic increase of computing time and convergence problem. With 50 schools and 100 
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students per school, the estimation of the UCCM and the LMEM in SAS and R could not 

achieve convergence at all. Thus, I did not use a large school size, such as 100, although 

such school sizes are common in the elementary schools around the country. 

Literature-Based Simulation Parameters 

The current study used the CCCM model to generate the data. The CCCM 

included three fixed effects and five variance components. The three fixed effects were: 

(1) the effect of the kindergarten test scores on the intercepts which are the test scores at 

the end of Grade 1 (β01), (2) the grand mean of students’ natural growth rates (β10), (3) 

the effect of student body SES (γ01). The five variance components were: (1) the 

variances of measurement errors at each grade, which were equal across years (i.e., σ2
e0= 

σ2
e1= σ2

e2= σ2
e3= σ2

e4= σ2
e), (2) the variance of student random effect on the intercepts 

(i.e., σ2
r0i), (3) the variance of school random effect on the intercepts (i.e., σ2

u0j), (4) the 

variance of student random effect on the natural growth rate (i.e., σ2
r1i ), (5) the variances 

of school value-added effectiveness at each grade, which were constant across years (i.e., 

σ2
u1j= σ2

u2j= σ2
u3j= σ2

u4j= σ2
uj) . Besides the parameter values in the CCCM model, four 

kinds of correlations that may influence the estimates of value-added school 

effectiveness were also considered. The four correlations were: (1) correlation between 

intercept and slope of student natural growth curve (i.e. rr0ir1i), (2) correlation between 

student body SES and the aggregated kindergarten test score of each school, (3) 

correlations among school value-added effectiveness over time, (4) intraclass correlation 

of student kindergarten test scores. 
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The parameter values for the fixed effects, variance components, and the 

correlations were selected to reflect the findings in school effectiveness research, so that 

the study would have greater ecological validity. Therefore, the following parameters 

were used: student kindergarten test scores explained 58% of the total variance of test 

scores at Grade 1. School selection effect explained 10% of the total variance of test 

scores at Grade 1. Student random effect explained 22% of the total variance of test 

scores at Grade 1; measurement error explained 10% of the total variance of test scores 

at Grade 1 (Bosker & Witzier, 1995; Thomas & Mortimore, 1996).  

In the current study, student kindergarten test scores were assumed to be 

standardized; and student test scores at Grade 1 were also assumed to be standardized. 

Given the variance accounted for by kindergarten test scores, the regression coefficient 

for the kindergarten test scores and the residual variances can be determined for 

generating student test scores at Grade 1. 

According to the CCCM model, test scores at later years are the sum of student 

true scores at the previous year plus achievement growth plus error. In each year, the 

overall achievement growth of a student can be divided into two parts. One is the natural 

growth. This kind of growth may happen because of natural maturity or other 

environment influence except schools. CCCM assumes this part of growth is linear. The 

other part of growth is due to school. By attending a given school, a student may gain 

more beyond his natural growth in a year. In order to generate test scores at later grades, 

we need to separate individual students’ natural growth from their growth due to school. 

Based on literature (Mortimore, et al., 1988; Raudenbush, 1989; Raudenbush & Bryke, 

1989; Rowan, Correnti & Miller, 2002), the variance of growth due to school was set at 
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1.5 times of the variance of natural growth. In the current study, the distribution of 

individual student natural growth was adopted from the study of Ponisciak and Bryke 

(2005), which had a mean of 0.63 and a variance of 0.325. Thus, the variance of growth 

due to school was 0.487 (i.e., 0.325*1.5=0.487), and the total variance of growth was 

0.812 (i.e., 0.325+0.487=0.812). The variance due to school was further divided into two 

parts. Based on the literature (Teddlie & Stringfield, 1993; Willms, 1987), 35% of the 

between school variance of growth (i.e. 0.487*0.35 = 0.1694) was explained by the 

difference in school SES. Given that school SES had a standardized normal distribution, 

and the total variance of student annual growth was 0.812, the fixed effect of school SES 

on student growth was -0.414. The effect was negative because school SES is usually 

measured by the percentage of students eligible for reduced or free lunch.     

The correlation between student random effects on the intercepts (r0i) and the 

natural growth rates (r1i) was set at -0.21. This was done by referring to the study of 

Ponisciak and Bryk (2005). The correlation between school SES and school mean 

kindergarten test score was -0.93, which was adopted from the study of Darandari (2004). 

The correlations among value-added school effectiveness over time were set at 0.6. This 

was done by referring to studies addressing stability of school effectiveness over time 

(Bosker & Scheerens, 1989; Teddlie & Reynolds, 2000; Willms, 1987). The intraclass 

correlation of kindergarten test scores was set as 0.21 in data generation. According to 

the meta-analysis of Bosker and Witzier (1995), without any adjustment, the proportion 

of between school variance to the total variance of student test scores at a single time 

point was about 0.21 in the United States.  
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Statistical Analyses 

The current study used Spearman rho2 to evaluate consistency between the 

estimated school rankings based on different VAM and the known true school rankings 

in the simulation data. The current study also calculated the effect sizes (i.e., η2) of each 

simulation condition and their interaction on the rho2.  

In order to investigate agreement of school classifications, the current study 

classified schools based on their effectiveness estimates in different models. Schools 

with effectiveness 1 SE below the mean were classified as “ineffective”; schools with 

effectiveness 1 SE above the mean were classified as “effective”; other schools were 

classified as average. The Kappa coefficient and the Kappa Z coefficient were used to 

evaluate the degree of agreement of school classifications. η2 was used to evaluate the 

effect of each simulation condition and their interaction on the agreement of school 

classifications. In addition, by using frequency analysis, the current study also explored 

the pattern of misclassifications. 

The importance of the current study was to provide guidance for model 

specification and data collection in future value-added assessment of school 

effectiveness. In particular, the current study sought to discover the methodological 

problems in common practices of the value-added assessment of schools, so that people 

may avoid or at least keep these problems in mind when using Value-Added Models to 

rank or classify schools.  
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CHAPTER II 

LITERATURE REVIEW 
 

The first section of this chapter reviews the various definitions of school 

effectiveness. In order to make the definition of value-added school effectiveness more 

clear, the definition of value-added school effectiveness is compared with other 

definitions of school effectiveness. The second part reviews commonly used statistical 

models in current practice invoking value-added assessment of schools. The models are 

the two-level Gain Score Model, the Cross Classified Model, and the Layer Mixed 

Effect Model (LMEM). The third section reviews research about covariate adjustment 

and the effect size of the commonly adjusted covariates. The forth section reviews the 

studies about the influence of number of time points of data on school effectiveness 

estimates.  

Concept of School Effectiveness and Value-Added Assessment 

Much research has found that part of student achievement difference can be 

attributed to differences in schools (Aitkin & Longford, 1986; Raudenbush & Willms, 

1995; Teddlie & Reynolds, 2000; Thomas & Mortimore, 1996; Goldstein, 1997).  Thus, 

educational researchers and policy makers advocate that schools should be held 

accountable for student academic achievement (Millman, 1997).  To fulfill the 

requirement of No Child Left Behind Act, many states have established accountability 

systems which base school evaluation on student academic achievement, such as 

Adequate Yearly Progress.  It has been a very common practice in the United States, and 
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even in the world, to use student test scores to rank schools, or to identify exceptional 

schools. However, even in the general framework of using student test scores to evaluate 

schools, there are different definitions of school effectiveness. These different 

understandings have resulted in different school effectiveness indicators and different 

statistical models to estimate these indicators. Comparison of different definitions of 

school effectiveness can help to clarify what kind of school effectiveness a certain 

statistical model aims at estimating and what the statistical model actually estimates.   

Before reviewing different definitions of school effectiveness, a framework used 

to classify these definitions is presented. The first dimension of this framework is 

whether the school effectiveness evaluates the unique effect of school practice, or 

instead reflects the combined effect of both school practice and other background 

variables, such as student prior attainment before entering a school or student body 

Socio Economic Status (SES). The second dimension is whether the school effectiveness 

indicates the school effect on individual students, or instead on the average achievement 

of all the students in a school. The third dimension is whether the school effectiveness 

indicates the school effect on achievement growth, or instead on achievement status at 

only a single time point.    

In terms of the first dimension, Raudenbush and Willms (1995) further 

discriminated Type A school effect and Type B school effect. The Type A effect isolates 

only student background effect. In contrast, The Type B effect isolates both student and 

school background effects. For policy making, estimates of Type B effect should be used 

to rank and classify schools. This is because the policy makers are more concerned about 



 19

the effect of educational interventions on students’ achievement; furthermore, they think 

that schools should be evaluated for what they can control.  

Definition 1 

One definition defined school effectiveness as the unadjusted average 

achievement of all students in a school (Teddlie & Reynolds, 2000). The indicator of 

school effectiveness based on this definition is the mean test score of all the students in a 

school, or the percentage of students who pass a critical level. Schools that have higher 

means or higher passing percentage on an achievement test have higher ranks.  

This definition ignores the effect of student and school background on student 

achievement. It also ignores the within school difference involving student achievement. 

In addition, the definition only provides a snapshot of student achievement at a single 

time point, but not any information about student achievement growth.  

The evaluation based on school unadjusted means has been criticized by many 

scholars for its unfairness (Darandari, 2004; Meyer, 1997; Goldstein, 1997). The main 

deficiency of this indicator is that it favors schools serving advantaged students who 

perform at a higher level before they enter the schools, or it favors schools serving 

students in a more wealthy community that can provide more learning resources and 

opportunities out of schools. However, schools should not be rewarded or punished for 

the factors out of their control.  

While no rigorous educational researchers would consider unadjusted school 

means as indicators of school effectiveness, some people argue that adjustment using 

covariates, as is done in some other definitions, excuses for disadvantaged students to 
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have lower achievement than advantaged students. We should have the same level of 

expectation for all the students no matter what their backgrounds are.  A neutral way to 

resolve these conflicting views is to include both adjusted and unadjusted school 

effectiveness in school accountability systems. However, many parents, informed 

government officials, and education critics often use the unadjusted mean score to 

evaluate schools without recognizing its limitations.  

Definition 2 

Another definition of school effectiveness defines school effectiveness as the 

impact of schooling on the average achievement of all the students in a school, adjusted 

for family background and/or prior achievement (Teddlie & Reynolds, 2000). This 

definition isolates school effectives from the impact of other background variables. 

However, the definition still ignores the within-school difference of student achievement, 

and bases school evaluation on student achievement outcome, instead on student 

achievement growth.     

The statistical model used to estimate school effectiveness in terms of this 

definition is the school level linear regression model with aggregated scores. This model 

is also known as mean on mean regression (Aitkin & Longford, 1986; Rauderbush & 

Willms, 1995). The model is specified as: 

jjbj eXY ++= *'βα                                                                   (2.1) 

School effectiveness estimates based on this model are the residuals of regressing 

school mean outcome on the school means of student background variables. The 
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Ordinary Least Squares (OLS) estimate of βb
’
 is calculated using the between group sum 

of squares and cross products:  
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Under the assumption that residual term has no relationship with predictor 

variables, βb
’ is an unbiased estimate of βb, which is the school level regression weight in 

a two level hierarchical model (Raudenbush & Willms, 1995). However, because the 

means in small schools have large sampling errors, and also because the variance of the 

means across the schools include both parameter variance of true school means and error 

variance, βb
’ usually has a large Standard Error (SE) (Aitkin & Longford, 1986; Ballou, 

Sanders, & Wright, 2004; Raudenbush & Willms, 1995; Raudenbush & Bryk, 2002).  

Definition 3 

The third definition defines school effectiveness as measuring the unique effect 

of each school on individual students’ achievement outcomes (Teddlie & Reynolds, 

2000). The third definition isolates school effectiveness from the effect of other 

background variables, and focuses on each individual student in a school. However, the 

school evaluation in terms of this definition is based on student achievement status at a 

single time point, but not on student achievement growth.  

Three traditional student level linear regression models aim at estimating school 

effectiveness in terms of this definition. However, no matter how perfectly the data are 

collected, because the three models use single level to model the hierarchical data, the 

three traditional regression models theoretically estimate a mixed effect of school 
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context and school practice variables, which is the Type A school effect (Raudenbush & 

Willms, 1995).   

The first student level regression model is the traditional ANCOVA model, 

which can be specified as 

ijijwjij eXY ++= *βα                                                                    (2.3) 

This model specifies a set of parallel regressions of Y on X, with each school 

having its own regression line. The parallel regressions differ only on the intercepts. The 

school effectiveness is indicated by the difference between the intercept of a school and 

the average intercept of all the schools. In this model, the OLS estimate of βw is 

calculated using within group sum of squares and cross products, which is  
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This model is the Model 2 in Aitkin and Longford’s article (1986). When there 

are no school context effects or the context effects are very small, the school 

effectiveness estimates in this model are very close to the estimates of school practice 

effectiveness in multilevel models (Aitkin & Longford, 1986; De Leeuw & Kreft, 1995). 

When school context effect is noteworthy, this model estimates the Type A school effect 

but not the Type B school effect (Raudenbush & Willms, 1995). Furthermore this model 

underestimates the standard error of βw. This is because OLS estimation assumes that the 

random errors are independent and each individual student provides a unique piece of 

information. However, because students are clustered in schools, the random errors of 

the students in a school are correlated (Goldstein, 1991; Raudenbush & Bryke, 2002). 
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Thus, the total information we actually have is less than that when the individual 

students are independent. 

The second regression model is to pool all the students’ data together and ignore 

their school statuses. The mathematical equation of this regression model is: 

ijijtij eXY ++= *βα                                                                  (2.5) 

The effectiveness estimate of school j is the aggregated residual of the students in 

school j. βt is calculated using total sum of squares and cross products: 
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Alwin (1976) showed that 
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η2 is the proportion of the total variance in Xij that lies between schools. When η2 

is zero, which means all schools have the same mean on X, or the school context effect 

is zero,  βt  is βw, and the school effect estimated in the pooled regression model is the 

Type A effect. When η2 is one, which means all the total variance in Xij is the between 

school variance, βt is βb. Thus, the school effect estimated in this model is the Type B 

effect (Raudenbush & Willms, 1995). However, in general cases, the total variance 

includes both within school variance and between school variance, and thus the school 

effect estimated in this model is a mix of Type A and Type B effect. 

The third student level regression model is an extension of the second student 

level regression model, which adds school-level predictors into student level equation. 

This model is: 
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ijjijij eWXY +++= ** 21 ββα                                              (2.8) 

In this model, β1 is the adjusted βt, and β2 overestimates the effect of school-level 

variables (Aitkin & Longford, 1986).  Actually, at the student level, school 

characteristics should have no effect because for the students in the same school, school 

characteristics are the same. Thus, the multiple R2 in this model is spuriously inflated. 

Furthermore, the sampling variance of β2 is usually large (Aitkin & Longford, 1986). 

 From the above explanation, we can see that all the single level models can not 

estimate the Type B school effect accurately and statistically efficiently. In order to 

solve the problems in single level regression models and better honor the hierarchical 

structure of school data, multilevel models should be used to estimate school 

effectiveness in terms of Definition 3.  

The multilevel models used to estimate school effectiveness in terms of 

Definition 3 usually have two levels. One is the student level; the other is the school 

level. The school effectiveness indicator is the residual associated with each school after 

taking into account the variations on other background variables. Theoretically, the 

school effectiveness estimates in the multilevel models are unbiased if the models are 

correctly specified. However, because we usually do not know which student or school 

level covariates should be added into the model, misspecification of the model often 

results in biased estimate of school effectiveness (Raudenbush & Willms, 1995).  The 

current study did not focus on the magnitude of the bias, but on validity of the estimates 

for school rankings and classifications. The logic is that even if the estimates are biased, 

the bias may be not large enough to compromise the validity of the estimates for school 

rankings and classifications.  
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Definition 4: Value-added School Effectiveness 

Compared to the above three definitions of school effectiveness, value-added 

school effectiveness is defined as measuring the unique impact of school practices on 

individual student achievement growth over time (Doran, 2003; Mayer, 1997; Teddlie & 

Reynolds, 2000).  This definition isolates the effects of both student and school 

background variables from the effect of school practice. Thus, it is actually the Type B 

effect (Raudenbush & Willms, 1995). Second, this definition emphasizes the 

achievement of each student, but not a group of students.  Third, this definition perceives 

achievement growth but not achievement outcome as the most appropriate criterion for 

assessing school effectiveness. In order to estimate school effectiveness in terms of this 

definition, we need to follow the same group of students for several years. The model is 

not like the cross-sectional studies of school effectiveness, which compare achievement 

of successive cohorts of students, such as the Adequate Yearly Progress evaluation of 

schools, and which do not invoke longitudinal measurements.  

There are three types of statistical models commonly used to estimate value-

added school effectiveness. One is the two-level hierarchical linear model with annual 

gain score as the dependent variable. The second is the Cross Classified Model. The 

third is the Layered Mixed Effect Model (LMEM or TVAAS). These three models are 

explained in the next section. 

Review of Value-Added Models to Estimate School Effectiveness 

Value-Added Models are actually different statistical models used to estimate 

value-added school effectiveness. This section reviews three kinds of Value-Added 
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Models. They are the two-level gain score model, the Cross-Classified Model, and the 

Layered Mixed Effect Model. For each model, the specification of the model, the value-

added school effectiveness indicator in the model, the application of the model in school 

accountability system, and the related research on or with the model are discussed.    

Two-level Gain Score Model  

The Hierarchical Linear Model (HLM) overcomes the problems in one-level 

linear regression models addressed previously. By incorporating variables in different 

levels in a manner that respects the hierarchical nature of data, HLM relaxes a crucial 

assumption of independence of residuals (Goldstein, 1987; Raudenbush & Bryke, 2002; 

Snijders & Bosker, 1999). HLM provides researchers the flexibility of using analysis 

units at more than one level simultaneously. Thus, HLM can decompose the total 

outcome variance into individual-level variance and group-level variance. However, the 

variance decomposition in HLM is different from that in the one-level general linear 

model, such as ANOVA, ANCOVA, and regression. In the one-level general linear 

model, the between group variance is based on observed group means which are 

influenced by random error associated with individual unit. In contrast, the group-level 

variance in HLM is the parameter variance, or in other words the variance of the true 

group means estimated without random error (Raudenbush & Bryk, 2002). Hence, 

theoretically, HLM can provide more accurate and precise estimates of coefficients, 

variance components, and residuals at the different levels. The superiority of HLM to the 

one-level general linear model makes it an attractive method for estimating school 

effectiveness.  



 27

The most often used HLM model in value-added assessment of schools is the 

two-level HLM with the difference of test scores from two successive years as the 

outcome variable. Although models with the current year achievement as outcome and 

previous achievement as one of the predictors are also used in value-added assessment of 

schools, the models with annual gain score as outcome explicitly model student 

achievement growth in a year.  

When the two-level gain score models are used in school evaluation, the first 

level is the student level, and the second level is the school level. Although classroom 

can be another level, the HLM models commonly used in school evaluation do not 

include the classroom level. The classroom level is included only when teacher 

evaluation is desired. The most general form of the two-level HLM is: 

Level 1: ijqijqjijjijjjij eXXXY +++++= *......** 22110 ββββ          (2.9)           

Level 2: 
jqsjqsjqjqqqj uWWW +++++= *......** 22110 γγγγβ            (2.10)       

Where βqj is the student-level regression coefficient, which can be (a) fixed, (b) 

non-randomly varying across schools, or (c) randomly varying across schools. γq0 is the 

adjusted mean of the coefficients across all the schools; γqs (where s=1, 2, …s) is the 

fixed effect of school-level covariates on student-level regression coefficients. When Xij 

is group-mean centered, β0j represents the annual gain of a typical student who has all 

the average characteristics of the students in school j. The school-level residual of the 

intercept, u0j, is the estimate of Type B value-added school effectiveness (Raudenbuch & 

Bryke, 2002; Raudenbush & Willms, 1995).   
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If the effects of student-level covariates are different across schools, then 

random-slopes or non-randomly varying slopes HLM need to be specified. However, in 

current practice of using a two-level gain score model to estimate school effectiveness, 

the effects of student-level covariates are usually assumed to be constant for all the 

schools; only intercepts are assumed to be different across the schools. The Empirical 

Bayes (EB) estimate of residual of the intercept of school j represents the value-added 

effectiveness of school j.  

The two-level gain score model is a special case of mixed models (Ferron, 1997; 

Goldstein, 1995a, 1995b; Raudenbush & Bryk, 2002). The variance-covariance matrix 

of between school residuals, which is the G matrix in a mixed model, has a blocking 

diagonal structure with an identical block for each school. The elements in each block 

are the variance of intercepts (i.e., τ00), the variance of the regression coefficients (i.e., 

τqq), and the covariance between the intercepts and the regression coefficients (i.e., τ0q ). 

Because the residual scores are assumed to be independently and normally distributed 

with constant variances across schools, the variance-covariance matrix of the residuals, 

which is the R matrix in a mixed model, has a diagonal structure with an identical 

diagonal element for each school (Ferron, 1997).   

Dallas ISD adopts a transformed two-level gain score model in its value-added 

school accountability system (Webster & Mendro, 1997) The statistical solution in its 

accountability system has two stages. In the first stage, residuals are obtained from 

solving a set of student-level regression equations designed to account for the effect of 

ethnicity, limited English proficiency, gender, Socio Economic Status, and their first 

order and second order interactions. The residuals are obtained on both posttest scores 
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and pretest score. In the second stage, two-level HLM is used on the residual scores 

obtained from stage 1. School background variables are used as the school-level 

predictors in the school-level regressions (Webster & Mendro, 1997). In the HLM model, 

Dallas ISD used Empirical Bayes estimates of the residuals of the schools to represent 

the value-added school effectiveness. The study of this two-stage model indicated that 

the school effectiveness estimates had only small correlations (r< 0.10) with both the 

student and the school background variables (Webster, 2005). On the other hand, the 

researchers also found that the school effectiveness estimates in the two stage model that 

adjusted for both student and school background variables highly correlated with the 

model that did not adjust for the school background variables (r > 0.9).   

Cross-Classified Model 

The HLM gain score model was criticized for its inability to account for long-

term effects and for its low reliability in measuring change. Some researchers pointed 

out that school influences can only be observed over a long period of time, because some 

abilities do not develop obviously in a short term (Teddler & Reynolds, 2002). Some 

researchers indicated that a gain score has unacceptable measurement error (Doran, 

2003). Thus, longitudinal models that include more than two years of data should be 

used to estimate school impact on student achievement growth.  

The Cross-Classified Model (CCM) has been used to estimate value-added 

school effectiveness with more than two years of data (Hill & Goldstein, 1998; 

Ponisciak & Bryk, 2005; Rowan, Correnti, & Miller, 2002). The Cross-Classified Model 

was created for the reason that a lower level unit may also belong to several higher level 
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units at the same time. For example, a student may belong to a school, and at the same 

time, also be a member of a neighborhood. If a study aims at investigating both school 

effectiveness and the neighborhood effectiveness, a Cross-Classified Model in which a 

student nested in each cell of schools by neighborhoods cross-classification is necessary 

(Goldstein, 1995b; Raudenbush & Bryk, 2002). The Cross-Classified Model can also be 

used in modeling growth longitudinally. When modeling growth, the repeated 

measurements are regarded as nesting in the cross-classification of two higher level units, 

such as the cross-classification of students by schools.  

One way to consider the longitudinal Cross-Classified Model is to perceive the 

model as the combination of two simpler models. The first simpler model is a two-level 

linear growth model, which represents the natural growth of individual students given no 

school effectiveness exists.  The first level units of this model are repeated 

measurements, and the second level units of this model are students. The second simpler 

model specifies the effectiveness of schools on student development over time. In the 

longitudinal Cross-Classified model, the value-added school effectiveness in each year is 

perceived as the deflection from a student’s expected achievement in that year given the 

student’s initial status and the natural growth rate (Ponisciak & Bryk, 2005). Thus, the 

combination of the two simpler models represents a non-linear growth trajectory. Figure 

1 presents the growth trajectory specified by a Cross-Classified Model, in which utj 

represents the value-added effectiveness of school j at time t. The model is not like the 

traditional three-level longitudinal models that specify a linear growth trajectory and 

estimate school effectiveness on average growth rate over several years. The Cross-

Classified Model specifies unique school effectiveness at each time period, and the total 
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school effectiveness over time is the sum of the unique school effectiveness at each time 

period.  

Figure 1  

Growth trajectory of a student specified by a Cross-Classified Model  

                   

Figure 1 shows that each student has a natural growth represented by the dashed 

line. This growth exists even the student does not attend any schools. It is the school 

effectiveness that drives the student away from his natural growth trend, which makes 

the student either have more development or less development in a time period. Figure 1 

represents the growth of a lucky student who attends a school that accelerates growth 

during each time period.  

Depending on whether the effects of covariates are controlled, Cross-Classified 

Model can be classified as Unconditional Cross-Classified Model (UCCM) and 

Conditional Cross-Classified Model (CCCM). The UCCM is as: 

( ) tij

t

t
tjijitij eutrurY ++++++= ∑

=1
1100000 *ββ                                        (2.11)                                   



 32

The CCCM is as: 
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                                                                                                                    (2.12) 

where 

Ytij is the test score of student i in school j at time t, 

Xij is the value of student i in school j on the student background variable X, 

Wj is the value of school j on the school background variable W, 

r0i is the random effect of student i on the intercepts of the growth trajectories,  

r1i is the random effect of student on the natural growth rate, 

u0j is the random effect of school j on the intercepts of the growth trajectories, 

β00 is the grand mean of the initial test scores of all the students, 

β01 is the fixed effect of student background variable on their initial test scores, 

β10 is the overall natural grow rate of all the students given no school effectiveness exists, 

β11 is the fixed effect of student background variable on the natural growth rate, 

γ is the fixed effect of school background variable on student development during a time 

period, and 

utj is the value-added effectiveness of school j at time t. 

Specifically, the test score of student i in school j from Grade 1 to Grade 3 is: 

Test score at Grade 1 (time = 0):   

ijiijji eurXY 00001000 * ++++= ββ                                                     (2.13)                                                   

Test score at Grade 2 (time = 1):  

=jiY1  jiij urX 000100 * +++ ββ       (Test score at Grade 1)                                               
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          iij rX 11110 * +++ ββ   (Student natural growth) 

          jj uW 11 * ++ γ  (School effect at Grade 2) 

             (Residuals at Grade2)                                                      (2.14) ie1+

Test score at Grade 3 (Time = 2):  

   jiijij urXY 0001002 * +++= ββ     (Test score at Grade1)                                                     

           2*)*( 11110 iij rX +++ ββ     (Student natural growth) 

          jjj uuW 211 **2 +++ γ       (School effect at Grade3) 

                                             (Residuals at Grade 3)                     (2.15)                      ie2+

The Cross-Classified model is also a special case of mixed model. School 

effectiveness is assumed to be independently normally distributed with constant variance 

across years (McCaffery et al., 2004). Thus, G matrix for random school effects has a 

block diagonal structure with an identical block for each school; the elements on the 

diagonal of each block are the annual variances of school effectiveness. The G matrix for 

student random effects on intercepts and slopes also has a block diagonal structure with 

an identical block for each student. The elements in each block are the variances and 

covariance of the intercepts and slopes of students’ natural growth curves. The variance-

covariance matrix of residuals of student test score in each year, R, also has a block 

diagonal structure with an identical block for each student. The elements in each block 

are the residual variances in each year, which are equal across years.  

So far, only the Chicago Public School District has used the Cross-Classified 

Model in school accountability (Ponisciak & Bryk, 2005). The model they used was a 

UCCM that did not adjust for any background variables. They used the test scores from 
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Grade 2 to Grade 8 to estimate the parameters in the model. In their model, they 

specified a linear trend for the value-added school effectiveness, so that utj= u1j + ruj*tuj. 

Here, ruj is the growth rate of the value-added school effectiveness, u1j is the value-added 

school effectiveness in Grade 3, and tuj is the time point for tracking the change of 

school effectiveness. The value-added effectiveness of schools on student development 

is observed one time point after the starting point, thus, tuj= t-1. They found the average 

value-added school effectiveness over time to be highly correlated with the average gain 

scores (r > 0.9), and highly correlated with the NCLB proficiency percentage (r > 0.8). 

However, the value-added trend had a small correlation with the trend of gain score and 

the trend of NCLB proficiency percentage (r < 0.3). They didn’t investigate the 

correlations between value-added estimates and student or school background variables.  

The CCCM has not been used in the real practice of school accountability, but 

has been used in some research. Raudenbush (1993) conducted a study that investigated 

teacher effectiveness on student achievement from Grade 1 to Grade 4, which included 

teacher’s education as a covariate at the teacher level. He found that when adding the 

teacher effect as a cross-classified random effect, the between student variance and the 

within student variance reduced, which resulted in the SEs of the parameter estimates 

being decreased also. Furthermore, he found that when adding teacher’s education, the 

between teacher variance did not reduce, and the statistical test did not indicate 

statistically significant effect of teacher’s education. He did not study the influence of 

controlling for teacher’s education on the Empirical Bayes estimate of individual 

teacher’s effectiveness.  



 35

Rowan, Correnti, and Miller (2002) used CCCM to analyze the data of 4,000 

students, 300 teachers, and 120 schools in Prospects: Congressional Mandated Survey of 

Educational Growth and Opportunity (1990 to 1994). Their CCCM model included four 

levels. The units of the four levels were repeated measurement, student, teacher, and 

school.  They found that teacher effectiveness accounted for 60% of the covariate 

adjusted reliable variance of growth rate in reading, and 52% in mathematics. School 

effectiveness accounted for 55% and 53% of the covariate adjusted reliable variance of 

growth rate in reading and math, respectively. Both the teacher effectiveness and the 

school effectiveness in CCCM were much larger than those in the two-level HLM 

models with either posttest score or annual gain score as the dependent variable. 

Furthermore, they found that only 19% of the variance of student growth rate in 

mathematics after adjustment of the covariates was reliable, and the figure for reading 

was 28%. The small reliable variance of growth rate challenged the reliability of the 

annual gain score and its usage in the two-level HLM model.  

Another important study on school or teacher effectiveness with CCCM was 

conducted by Hill and Goldstein (1998) with 59 primary schools, 365 teachers, and 

6,678 students. The CCCM model only adjusted the student level covariates. The 

statistically significant covariates included gender, non-English speaking status, parents’ 

occupation, critical events, and prior achievement.         

Layered Mixed Effect Model (LMEM) 

 LMEM was developed by Willams Sanders at the University of Tennessee in 

1980s’. In 1992, the Tennessee legislators passed the Education Improvement Act which 
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adopted a set of statistical models to evaluate effectiveness of school systems, schools, 

and teachers on student academic gains. This set of statistical models is called Tennessee 

Value-Added Assessment System (TVAAS). LMEM is the most complex model in 

TVAAS. Originally, LMEM was used to estimate teacher effectiveness, and a Simple 

Fixed Effect Model (SFEM) was used to estimate school effectiveness (Sanders, Saxon 

& Horn, 1997). Currently, some researchers and school systems also use LMEM to 

estimate school effectiveness. In the current study, the author used LMEM to estimate 

school effectiveness.  

An LMEM to estimate school effectiveness can be specified as (McCaffrey et al., 

2004; Sanders & Horn, 1994; Sanders, Saxon, & Horn, 1997; Tekwe et al., 2004): 
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where Ytij represents a test score for the ith student in the jth school at time t. µt represents 

the mean score of all the students in all the schools at time t. Stj represents the value-

added school effectiveness at time t. Ctj is the proportion of time a student spends in 

school j during the tth time period. For example, if a student attended school j for a whole 

year, Ctj equals to 1; when a student did not attend school j at all in this year, Ctj equals 

to 0, otherwise Ctj equals to a fraction of a year. h represents the total number of schools.  

The model is called layered model because the school effectiveness in the later 

years adds layers to the model for previous years (McCaffrey, et al, 2004; Sanders, 

Saxon, & Horn, 1997; Tekwe et al., 2004).  For example, there are 22 schools available 

for the students to attend 

Test Score at Grade 1 (time = 0) is: 
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Test Score at Grade 2 (time = 1) is: 
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Test Score at Grade3 (time = 2) is: 
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LMEM is also a special case of the mixed models (McLean, Sanders & Stroup, 

1991). The covariance matrix of school effectiveness (G) is assumed to have a block 

diagonal structure with an identical block for each school. Each diagonal element in each 

block is the variance of school effectiveness in a year.  Unlike UCCM, the covariance 

matrix of residuals of repeated measurements (i.e., etij) within a student, which is the R 

matrix, is unstructured, which means that the correlations among the repeated 

measurements within a student are taken into account in model specification.   

Currently, school district or statewide educational accountability systems in 

seven states have used the TVAAS as a component of their school accountability 

systems. The seven states are Tennessee, Iowa, Ohio, Pennsylvania, New York, 

Colorado, and Washington. The popularity of TVAAS even arouses enthusiasm in 

statistical software companies. SAS Inc. has set up a special department called 

Educational Value-Added Assessment System (EVAAS) to develop software and 

systems for implementing TVAAS.   
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The enthusiasm toward LMEM arises because the model has four main 

advantages. First, LMEM does not require measurement and specification of covariates. 

Second, it does not require all students included in the analysis have complete records of 

test scores. Third, LMEM can estimate school or teacher effectiveness in several subject 

areas simultaneously. Fourth, the estimable linear function of the estimates of LMEM 

parameters can produce many other meaningful values (Sanders & Horn, 1994; Sanders, 

Saxon, & Horn, 1997), such as the predicted gain of a student in a school. Actually, the 

report card does not report the Empirical Bayes estimates of school effectiveness, but 

report the average predicted gain of the students in a school.  

The claim that “the influence of other exogenous factors can be filtered out 

without directly measurement and specification of these factors” (Sanders, Saxon, & 

Horn, 1997, P. 138) arouses much excitement and also much concern about LMEM.  

Sanders et al. said that “By taking advantage of longitudinal data, each student serves as 

his/her own control. In other words, each student can be regarded as a blocking factor. 

By blocking for each student, many of the exogenous influences most often cited as 

influencing academic progress - educational attainment of parents, socioeconomic level, 

race, and so on – could be partitioned without having direct measures of each one” 

(Sanders, Saxon, & Horn, 1997, P. 138). This big advantage absorbs extensive interest in 

school effectiveness research. This is because it is almost impossible to identify, 

measure, and specify all possible exogenous factors. Even if it was possible to measure 

and specify all the exogenous factors, multicollinearity would still bias the Empirical 

Bayes estimates of the regression weights for individual schools and the associated 

school effectiveness.  However, many researchers also doubt the ability of LMEM to 
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control for unmeasured covariates. Thus, they call for empirical studies to evaluate 

LMEM. The following paragraphs review the studies either support the claim or 

diminish the claim about covariates adjustment in LMEM. 

Most of the empirical studies that support the claim were conducted by Sanders 

and his colleagues. The three pilot studies conducted in Knox County, Blount County, 

and Chattanooga City of Tennessee by Sanders and his colleagues concluded that (1) 

differences in student test score gains could be significantly explained by the differences 

in school effectiveness and teacher effectiveness (Mclean & Sanders, 1984); (2) school 

effectiveness and teacher effectiveness estimates were consistent across years (Mclean & 

Sanders, 1984); (3) teacher effect estimates were highly correlated with subjective report 

of school supervisors (Cook, 1985; Mclean & Sanders, 1984); (4) estimated student 

gains were not correlated with previous achievement levels and ability measurements 

(Cook,1985; Mclean & Sanders, 1984); and (5) school effect estimates were not 

correlated with school location and racial composition (Casteel, 1994).   

David Haville, who is a statistic professor specialized in mixed effect model 

reviewed the statistical model of TVAAS (Haville, 1995). He concluded that LMEM 

provides a very appropriate model for school and teacher evaluation. He further 

indicated that although LMEM is new for educational accountability, it has been 

successfully used in other areas. He anticipated that application of LMEM in evaluating 

individual schools and teachers will be as successful as its use in other areas.  

One study that argued against LMEM was conducted by Baker and Xu (1995) 

from the Office of Educational Accountability in Tennessee. They found that the school 

effectiveness estimates in one school with two groups of students were statistically 
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significantly different. This result happened in Scotts Hill School. In this school, some of 

the students came from Henderson County, and some came from Decatur County. 

Sanders argued that this was not because of the statistical model, but because this school 

tailored its curriculum to lower-achieving students most of whom came from Decatur 

County. 

Three empirical studies were conducted to check the claims about the issue of 

covariates adjustment in LMEM and drew a different picture from the studies conducted 

by Sanders and his colleagues. McCaffrey and his colleagues from the Rand Cooperation 

conducted a Monte Carlo study (McCaffrey, et al. 2003, 2004). They found that the 

ability of LMEM in controlling covariates effects depended on the distributions of the 

covariate variables. When a covariate variable completely randomly distributed, teacher 

effect estimates in LMEM did not correlate with the class average of the covariate 

variable. When the means of the covariate variable varied across classes, the estimated 

teacher effect in LMEM moderately correlated with the class average of the omitted 

covariate variable (r = 0.47). When the means of the omitted covariate variable varied 

across schools, the estimated teacher effect in LMEM highly correlated with the class 

average on the omitted covariate variable (r = 0.79). The LMEM used to estimate 

teacher effect in McCaffrey’s study include both teacher effect and school effect. 

However, the LMEM model used to estimate school effect in the current study and other 

related research (Tekwe et al., 2004) didn’t include teacher effect. Thus, we should not 

uncritically generalize the results of McCaffrey’s study about teacher effect estimates to 

school effect estimates.  



 41

Ballou, Sanders and Wright (2004) found that adding student-level covariate, 

such as eligible for free lunch, to the original LMEM model did not change the estimates 

of teacher effectiveness substantially; however, adding classroom level or school level 

covariates, such as percentage of students eligible for free lunch, produced a different 

picture. Specifically, student-level covariates have small coefficients, and the modified 

model resulted in the same identification of exceptional teachers as the original model. 

In contrast, there is less agreement between teacher effect estimates in the original model 

and the modified model with classroom level or school level covariates specified. Thus, 

LMEM seems to be able to control for the effect of student level covariates, but not 

classroom level or school level covariates. However, this conclusion is still doubted 

because the SE of the coefficient associated with the classroom level or school level 

covariate was large.  

Although the previous two studies focused on teacher effectiveness estimation, 

we may expect similar results when using LMEM to estimate school effectiveness.  

However, because the sample size condition is usually different between teacher 

effectiveness studies and school effectiveness studies, we can not simply make 

conclusions for school effectiveness estimation based on teacher effectiveness studies.  

The third study was conducted by Tekwe et al. (2004). They found that the 

school effectiveness estimates in LMEM were highly correlated with the school 

effectiveness estimates in the Simplest Fixed Effect Model (SFEM) in which 

effectiveness of school j is the unadjusted discrepancy from the overall mean of all the 

schools. Furthermore, the school effectiveness estimates in the LMEM were also highly 

correlated with the estimates in an unconditional two-level gain score model. Thus, they 
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concluded that specification of the correlations among repeated measurements and the 

Empirical Bayes estimation in the LMEM did not have obvious advantage over the 

simpler model in school effectiveness estimates. However, they thought their results may 

be limited because only two years of test scores were used. Thus, the current study 

investigated the ability of LMEM to control for covariate effects with three years of test 

scores.  

Covariates Adjustment and Their Effect Sizes 

This section has three parts. In the first part, the rational for covariate adjustment 

is presented. In the second part, the student and school background variables that were 

typically adjusted for in value-added assessment of schools, and the effect sizes of the 

typically adjusted covariates are reviewed. The literature review in this part provides 

information for specifying the model and setting up the parameter values to generate 

data in the current simulation study. In the third part, the studies of the effects of 

ignoring covariates are reviewed.  

Rational for Covariates Adjustment 

The definition of the Type B value-added school effectiveness requires to isolate 

school effectiveness from all the background variables that beyond the control of schools. 

Thus, evaluation of schools should not benefit the schools with more advantaged 

students or those located in a wealthier community.  

The question about unique effectiveness of school practice on student learning 

implies a causal effect inference, and randomized experimental design is the best 

research method that can answer questions about causal effect (Braun, 2005; 
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Raudenbush, 2005; Rubin, 2004). The best estimation of Type B school effect results 

from a nested random block experimental design. Let us imagine that the practice in 

each school is a treatment. First, J schools having identical contexts are assigned to 

different treatment levels that vary in terms of practice. Next, blocks of J students of 

identical background and aptitude are assigned to the J schools. The average 

performance of the J students in the same block represents the average effectiveness of 

the J schools’ practices. The discrepancy between a student’s performance and the 

average performance of the J students in the same block is the Type B effect 

(Raudenbush & Willms, 1995). 

However, random assignment is almost impossible in education. Thus, the 

ultimate goal in estimating value-added school effectiveness is to obtain a causal effect 

inference using observational data (Rosenbaum, 2002; Rubin, 2004). Without the benefit 

of random assignment, researchers tried to use statistical models to isolate school 

practice effects from the effects of other background variables. 

One way to control for the background variables is to explicitly specify 

covariates in the model. The conditional two-level gain score model and the conditional 

Cross-Classified Model adopt this method to control for the background variables. One 

question that must be answered when using this method is for which covariates 

adjustments should be made. Another question is how the school effectiveness estimates 

and the applications based on these estimates will be biased if some related covariates 

are ignored. We now turn to these issues. 
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Typical Covariates Adjusted for and Their Effect Sizes 

Teddlie and Reynolds (2000) reviewed the covariates adjusted for in school 

effectiveness studies. They found that the five most frequently adjusted covariates at the 

student level included previous achievement status, eligibility for free or reduced lunch, 

ethnicity, proficiency of English, and parents’ occupational status. The most adjusted 

school-level covariates were aggregated student characteristics, which include school 

mean of previous test scores, and percentage of students eligible for free or reduced 

lunch. 

As far as student background variables, results of previous research indicated that 

student prior attainment explains most of the total variance in student achievement 

outcomes or annual gain scores. Because of multicollinearity between intake attainment 

and other student background variables, adjustment with only intake attainment achieved 

similar total variance reduction as adjustment with all student background information. 

Thomas and Mortimore (1996) found that when only intake attainment was accounted 

for, the total variance reduced 58%, which is similar to that (63%) in the more refined 

model in which all student background variables, including gender, ethnicity, parent 

education, Socio Economic Status, were adjusted. These results were consistent with 

other research (Cuttance, 1992; Gray, Jesson, & Sime, 1990; Goldstein et al., 1993; 

Sammons, Nuttall, Cuttance, & Thomas, 1995; Scheerens, 1992; Willms, 1992). 

Furthermore, when student prior attainment was accounted for, the difference between 

the schools with the highest and the lowest mean scores reduced 70.6%, and the variance 

accounted by school level factors reduced from 14% to 10%. These figures about the 

between school variance reduction were similar to the refined model. Thus, the 
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adjustment with other student background variables beyond intake attainment just 

marginally refined the results. 

As far as school background variables, most research conducted using Value-

Added Models with multilevel analysis adjusted student body Socio Economic Status 

(SES), which is usually measured as the percentage of students eligible for free or 

reduced lunch (Cuttance, 1992; Goldstein, 1997; Raudenbush & Willms, 1989; Teddlier 

& Reynolds, 2000; Thomas, Sammons & Mortimore, 1997; Willms, 1986). In the United 

States, Louisiana state and Dallas Independent School District adjust SES of student 

body in their school accountability systems (Mendro, 1998; Teddlie & Stringfield, 1993; 

Webster, 2005; Webster & Mendro, 1997). Darandari (2004) indicated that SES of 

student body has a strong correlation with other context variables. Once the variation of 

SES of schools has been accounted for, other school context variables, such as 

percentage of minority, rarely have residual effects on student achievement. Thomas and 

Mortimore (1996) also investigated the impact of Socio Economic Status of the student 

body. They found that once individual student Socio Economic Status (SES) was 

adjusted at the student level, the impact of SES of student body could not be detected. 

However, if SES of individual student was not adjusted for, even if their intake 

attainments were adjusted, the SES of student body still had statistically significant 

impacts on student achievement.  

Reviews of research about school effectiveness on student achievement outcome 

indicated that SES of student body explained more than 50% of the school level variance 

of achievement outcome (Willms, 1987). For student achievement progress, Teddlie and 
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Stringfield (1993) and Willms (1987) indicated that 35% of the between school variance 

in annual gain scores was explained by SES of the schools. 

Influence of Ignoring Covariates 

The independence assumption of multilevel modeling requires that the residuals 

at level 1 are independent from the predictors at both level 1 and level 2, and with the 

level 2 residuals. In addition, the residuals at level 2 are assumed to be independent from 

the level 1 and level 2 predictors (Darandari, 2004; Goldstein, 1995a, 1995b; 

Raudenbush & Bryk, 2002). When a related covariate is ignored, its effect will be 

included in the residuals. If this covariate correlates with other covariates, which is very 

common in educational research, the independence assumption will be violated. This 

problem is especially serious at school level. This is because the measurements of school 

practice and school context are very difficult and seldom conducted. Thus, it is not clear 

yet which school background variables influence school effectiveness and should be 

adjusted. The omitted school background variables become a component of the school-

level residual. If the omitted school background variables are correlated with the 

specified school background variables, the independence assumption at the school level 

is violated. Even if all the related background variables are specified in the model, 

without specifying school practice variables, the dependence between predictors and 

residuals at the school level can not be avoided because school background usually 

correlates with school practice. For example, high social economic schools are more 

likely to attract highly competitive administrators and teachers. 
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Violation of the school-level independence assumption can bias the coefficients 

of school-level covariates associated with the intercepts (β0j) (Kim, 1990; Krull, 1997). 

Furthermore, the violation can bias SEs of the grand mean of intercepts (γ00) and the 

grand mean of the student level regression weights (γ01) (Krull, 1997; Raudenbush & 

Bryk, 2002). Specifically, Donoghue and Jenkins (1992) found that violation of this 

assumption can increase SE of γ00. 

Violating this assumption can also bias the estimates of variance components at 

the school level. Krull (1997) found that violation of this assumption increased variance 

of intercepts across level-2 units, τ00. However, although Donoghue and Jenkins (1992) 

found bias on τ00, they did not find any particular pattern of bias. What they found is 

underestimation of variance of the slopes across level-2 units, τ11. 

In HLM, estimation of one parameter influences estimation of other parameters. 

In order to obtain estimation of residuals for each school, we need to obtain estimations 

of regression coefficients for each school. In HLM, a regression coefficient for each 

school is the weighted mean of the grand mean of the regression coefficients across all 

the schools and the OLS estimate of the regression coefficient in that school 

(Raudenbush & Bryk, 2002). This estimate is called as Empirical Bayess estimate, or 

shrinkage estimate, or Best Linear Unbiased Predictor (BLUP). Maximum Likelihood 

estimations of the grand means of the regression coefficients depend on estimation of the 

variance components. Thus, if variance components estimates are biased, the grand 

means of the regression coefficients are biased, and so, the estimated regression 

coefficients and the residual for each school are biased. 
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Given the fact that violating independence assumption at school level is almost 

unavoidable, the estimate of school practice effect is almost always biased. Given other 

assumptions are met, if some school background variables are omitted, the estimates of 

school effectiveness in traditional multilevel models are at most estimating the 

confounded Type A and Type B effects (Carter, 2004; Raudenbush, 2004; Raudenbush 

& Willms, 1995; Rubin, 2004). In this situation, the Type B effect is overestimated. 

Even if all the related school background variables are specified, the correlation between 

school background variables and school practice will pull down the estimates of school 

practice effectiveness.  Thus, what is more important is not whether or not the value-

added school effectiveness is biased, but is whether the magnitude of the bias is too 

serious to invalidate applications such as school ranking or classification. The reason for 

saying this is that validity is not for the measurement itself, but for the inference based 

on the measurement (Crocker & Algina, 1986). The estimates of school effectiveness in 

a value-added model may be invalid for evaluating the absolute effectiveness of the 

schools, but may still be valid for ranking schools, or selecting exceptional schools.  

 In contrast to prior studies that investigated the effect of omitted covariates on 

parameter estimates, the current study investigated the influence of omitted covariates on 

school rankings and classifications.  Another difference between the current study and 

prior studies is that the current study also investigated the effects of omitted covariates in 

a longitudinal model with more than two time points of data. Most previous studies only 

explored the effect of omitted covariates in a gain score model with only two time points 

of data, as noted previously. 
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The magnitude of the effect of ignoring related covariates on the school 

effectiveness estimate is influenced by other factors. These factors include sample size, 

effect size of the omitted covariates, correlation between the omitted covariates and the 

specified covariates, and the intraclass correlation of the covariates if the school level 

covariate is an aggregated variable derived from the student level covariate. 

In a simulation study with the traditional two-level HLM model, Busing (1993) 

found that the group variance tended to be underestimated when the number of groups 

was small. Having a large number of groups, in general, is more important than having a 

large number of individuals per group in estimating group level fixed effect and variance 

components. He further suggested that highly accurate estimates of group level variance 

components needed at least 100 groups. Kreft (1996) suggested a rule of thumb that if 

the interest is in the fixed part, at least 30 groups with 30 individuals in each were 

required. If the interested is in the random part, the number of groups should be at least 

100 with at least 10 individuals per group. On the other hand, Brown and Draper (2000) 

found that with as few as six to twelve groups, Restricted ML estimation (RML) 

provided reasonable estimates of variance components, and with 48 groups, both RML 

and Full information ML (FML) could provide reasonable variance estimates. Mass and 

Hox (2004) found that given the intraclass correlation of the residuals was not too large, 

which was 0.1, 0.2, or 0.3 in their study, and the distributions of the residuals were 

normal, small number of groups turned out to be a problem only with respect to the SE 

of the second level variance. Both the fixed parameter estimates and the variance 

parameter estimates had negligible bias. The largest percentage relative bias was -0.3% 

when the number of groups was 30, group size was 5, and ICC was at the highest level 
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(i.e., 0.3). They also conducted a small simulation with even smaller sample size. They 

found that with only 10 groups of group size 5, the estimates of fixed effects and 

variance components were negligibly biased; the largest bias happened on the second 

level variance components, which was 25% upward. However, the SEs of the variance 

components were seriously biased, and the largest coverage rate was only 30.4%. The 

study of Mass and Hox (2004) was consistent with the claim of Snijders and Bosker 

(1999, P. 44) that multilevel modeling became attractive only when the number of 

groups larger than 10. In a simulation study, Darandari (2004) also found that with 50 

schools and 30 students per school, the bias of the variance of intercepts at the school 

level was only about 0.3%. 

Mass and Hox (2004) suggested that the conflict among the studies about the 

influence of sample size might be due to the different ICC level in different studies. 

Busing (1993) used an ICC level as high as 0.8, which is not common in educational 

contexts (Bosker & Witzier, 1995). Furthermore, Kamali (1992) found that if there were 

biases in estimates of level-2 parameters, increasing number of individuals per group 

even further increased the biases. In addition, Raudenbush and Bryk (2002) and 

Goldstein (1995b) pointed out that unequal group sizes might influence the uncertainty 

of Empirical Bayes (EB) estimates in HLM.  

The effect size of the omitted school-level covariate is another factor that 

influences the effect of ignoring covariates. Weerasinghe and Orsak (1998) found that 

the instability of school ranks tended to increase as the explained variance decreases. 

Willms (1988) also found that when school-level had a small amount of explained 
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variance, and the variables that explained the variance was omitted, the rankings of 

schools changed substantially.  

The strength of correlation between the omitted school-level covariate and the 

specified school-level covariate also influences magnitude of the bias on fixed effect and 

variance component of the level-1 intercept. Darandari (2004) found that stronger 

correlation was associated with larger bias. When the level of collinearity was -0.5, 

ignoring one covariate resulted in a percentage of bias from 15% to 27% on the fixed 

effect estimates, and 0.4% to 8% on the intercept variance component estimate, 

depending on the effect size of the omitted covariate. 

The ICC of the covariate is another factor that influences the effect of omitted 

covariate. Rosenbaum (2002) and Rubin (2004) indicated that in observational studies, 

statistical models can control for the effects of covariates only when groups are similar 

on the covariates. When groups have small overlap on the covariates, statistical models 

produce inaccurate estimates even if the covariates are specified correctly. The 

magnitude of overlap of groups on a covariate can be measured by intraclass correlation 

of the covariate. The Intraclass correlation is the ratio of between group variance to total 

variance (Raudenbush & Bryk, 2002). Goldstein (1995b) found a similar phenomenon 

that intraclass correlation of a covariate could influence the accuracy of parameter 

estimation in HLM. 

In terms of covariate adjustments in Value-Added Models, another interesting 

question is whether some strategy can reduce or even completely delete the effects of 

omitting covariates. The LMEM created by Sanders (Sanders & Horn, 1994; Sanders, 

Saxon, & Horn, 1997) is claimed to have this ability. As noted previously, LMEM does 
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not explicitly specify any covariates in the model, but takes the correlations among 

repeated measurements nested within a student into account. However, the studies about 

LMEM found conflicting results regarding its efficiency in isolating the covariates’ 

effects from school effectiveness estimates. Thus, the current study empirically 

investigated how valid are LMEM school effectiveness estimates for school rankings 

and classifications. 

Influence of Number of Time Points 

The definition of value-added school effectiveness implies a focus on modeling 

achievement growth of individual students, but not modeling achievement outcomes at a 

single time point. There are two classes of models that model achievement growth. One 

is the gain score model with data from only two time points, and the other includes 

different kinds of longitudinal models with data from three or more time points. 

Studies that compared the two types of models found that they led to different 

estimates of school or teacher effectiveness.  With the same dataset, Rowen, Correnti, 

and Miller (2002) estimated teacher effectiveness with both a two-level gain score model 

and Conditional Cross-Classified Model (CCCM). When using the gain score model, 

they found that between 6% and 13% of the variance in adjusted gains of mathematics 

lied among classrooms depending on the grade. On the other hand, with the CCCM 

model, they found that to which classroom the students were assigned accounted for 

between 51% and 72% of the reliable variance in students’ growth rate in mathematics. 

Considering the difference between the gain score model and the longitudinal 

models, many researchers suggested using longitudinal design with at least three years of 
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data (Hill & Rowe, 1996; Mortimore, Sammons, Stroll, Lewix & Ecob, 1988; 

Raudenbush 1989; Raudenbush & Bryk, 1989; Teddlie & Reholds, 2000). This is 

because school effectiveness is most likely to present over a long term. For example, 

writing ability may not be obviously improved in one year, but may only be detectably 

improved in a long term of schooling (Teddlie & Reynolds, 2000). Furthermore, 

Sammons and Goldstain (1995) suggested that beyond adjusting for intake attainment, 

school effects in previous years should also be controlled in estimating school 

effectiveness for the current year. 

On the other hand, the gain score model has some advantages over the 

longitudinal models. One is that the test scores of adjacent grades are more likely to 

measure the same construct than the test scores over a wide span of grades, because 

subject matters may change qualitatively in their nature across several years of 

instruction. The change of student achievement test scores over a wide time span is 

difficult to interpret. This is because the change may be due to the students’ development 

on the same construct measured over time, or may be due to the tests measuring different 

constructs at different grade levels. For example, the mathematic tests at Grades 3 and 8 

may have dramatically different content and require qualitatively different skills. The 

shift in measured constructs violates the assumption of vertical equating of test scores, 

which is a requirement of most longitudinal statistical models. Conversely, difference 

scores on a vertical scale for adjacent grades are easier to interpret because the 

assessments designed for using in adjacent grades usually measure relatively similar 

knowledge content and cognitive process.  
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The second advantage of the gain score model is that the model has fewer 

requirements on data collection and maintenance than the longitudinal models. The 

longitudinal models require tracking individual students for at least three years and 

maintaining the link between the student records and the school records. Although it is 

possible to establish such a complete database given the modern information technology, 

cost for such complex databases can be high. Furthermore, many states and school 

districts around the country have not established such databases. These states or school 

districts may wonder whether they can use a gain score model with only test scores at 

two adjacent grades to evaluate schools in terms of value-added effectiveness. The 

second advantage of the gain score model leads to its third advantage. Because the gain 

score model has fewer time points of data collection, the data used by the gain score 

model generally has less missing data than the data used in the longitudinal models. 

The identified problems of the annual gain score model and the studies about the 

differences between the gain score model and the CCCM (Rowan, Correnti & Miller, 

2002) were based on a gain score model that adjusted for the test scores collected one 

year before estimating school effectiveness. Sammons (1996) addressed the use of 

baseline attainment or achievement data collected after a period of years in the same 

school and noted that this was likely to lead to a reduction in the estimated school 

effectiveness. Cuttance (1985) also cautioned against the use of prior achievement as 

controls when they are approximal to the point at which the school effects are measured. 

Preece (1989) commented on the potential problem of partialling out school effects in 

such cases.  
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Still unknown is whether the estimates of school effectiveness will be more 

accurate if other prior test scores are used for adjustments. Theoretically, the ideal 

method should be to adjust test scores at the point of entry to an instruction period. One 

reason is that by adjusting for test score at the point of entry to a school, the school 

effectiveness in previous years is not ignored when estimating school effectiveness in 

the current year. Because test scores collected before entering to a school is not 

influenced by the quality of the school under concern, adjustment with prior test scores 

collected before entering a school reduces the correlation between adjusted test scores 

and the school effectiveness under concern, which reduces the correlation between the 

predictor and the residual. High correlation between the predictor and the residual leads 

to underbiased estimates of the school level variance. The current study empirically 

compared the two methods of adjusting prior achievement: adjusting for test scores at 

the end of kindergarten which was regarded as the point of entry to an elementary school 

versus adjusting for test scores at the end of Grade 4 which was one year before the 

grade in which the school effectiveness was estimated.  
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CHAPTER III 

METHODOLOGY 
 

In the present Monte Carlo study, 200 datasets were generated using the 

Conditional Cross-Classified Model under each simulation condition. Value-added 

school effectiveness was estimated with each of the four Value-Added Models. The 

estimates of value-added school effectiveness were then used to create school rankings 

and classifications. Pairwise comparisons of school rankings and classifications were 

conducted. The consistencies of school rankings were quantified by Spearman rho2; the 

agreements of school classifications were quantified by unstandardized Kappa coefficient 

and the Kappa Z coefficient.   

This chapter presents the methodology of the study. It is divided into five sections. 

The first section articulates model specifications, which include a simulation model used 

to generate the datasets and four estimation models used to estimate value-added school 

effectiveness. The second section illustrates the simulation conditions. The third section 

introduces the parameter values used in the current study to generate the datasets. The 

fourth section presents the simulation procedure. The fifth section addresses the statistical 

analysis used to compare school rankings and classifications based on different Value-

Added Models. 

Model Specification 

A total of five models were specified in the current study. One model, which is 

the CCCM model, was used to simulate student test scores from the end of Grade 1 to the 

end of Grade 5. Two gain score models were used with students’ test scores at Grade 4 
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and Grade 5 to estimate school effectiveness in Grade 5. One gain score model adjusted 

students’ test scores at the end of kindergarten (Gain_kindergarten), the other gain score 

model adjusted the students’ test scores at the end of Grade 4 (Gain_grade4). Two kinds 

of longitudinal models, the Unconditional Cross-Classified Model (UCCM) and the 

Layered Mixed Effect Model (LMEM), used student test scores from Grade 3, Grade 4, 

and Grade 5 to estimate school effectiveness in Grade 5. Next, the specifications of these 

models are presented. 

Simulation Model Used to Generate Simulated Data 

A CCCM model was used to generate students’ test scores from the end of Grade 

1 to the end of Grade 5. The CCCM model assumes a linear growth trajectory for each 

student given no school effectiveness, which is called the natural growth. The value-

added school effectiveness is viewed as “deflection” from the linear growth trajectory if 

the student encounters a school with effectiveness utj at time t (Hill & Goldstein, 1998; 

McCaffrey et al., 2004; Ponisciak & Bryk, 2005; Raudenbush & Bryk, 2002; Rowen, 

Correnti & Miller, 2002). There are two covariates in the CCCM model. Based on review 

of the typical covariates adjusted in school effectiveness research, the CCCM included 

test scores at the end of kindergarten as the student-level covariate that influenced the 

intercepts of students’ individual growth trajectories. For simplicity, no covariate in the 

current study influenced students’ natural growth rates. However, the correlation between 

intercept and natural growth rate was taken into account. The school-level covariate was 

student body SES. The school-level effect in the current year (i. e., Grade 5) included the 

fixed effect of student body SES and the residual school effect which is the value-added 

school effectiveness. All school effects in the previous years were assumed to persist 
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undiminished in the current year. In the current study, students did not change schools 

once they entered a given school.  The CCCM equation used to simulate data in the 

current study was: 

jiijtij urkinderY 000100 * +++= ββ   (Intercepts of individual students’ growth curves)   

 + timer i *)( 110 +β               (individual students’ natural growth rates) 

 +         (School level effects) (∑
=

+
t

t
tjj uSES

1
01 *γ )

              +                                  (residual in each grade)                          (3.1) tije

where 

Ytij is the test score of student i in school j at time t (for Grade 1, t = 0), 

kinderij is the test score of student i in school j at the end of kindergarten,  

SESj is the Socio Economic Status of school j, 

β00 is the grand mean of test scores at the end of Grade 1. Because the Grade 1 test scores 

and the kindergarten test scores were standardized in the current study, β00 was 0 in the 

current study, 

β01 is the fixed effect of students’ test scores at the end of kindergarten. 

r0i is the random effect of student i on the intercept of his growth trajectory, which is his 

test score at the end of Grade 1,  

uoj is the random effect of school j on the intercept, 

β10 is the overall natural growth rate of all the students, 

r1i is the random effect of student on the natural growth rate, 

γ01 is the fixed effect of student body SES on student development during a year, 

utj is the value-added effectiveness of school j at time t, and 
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etij is the residual test score of student i in school j at time t.  

Four School Effectiveness Estimation Models 

For each simulated data set, four different models were used to estimate value-

added school effectiveness in Grade 5. Three models have been used in school 

accountability systems in various states. These three models were two-level gain score 

model adjusted for test scores from the previous year, Unconditional Cross-Classified 

Model (UCCM), and Layered Mixed Effect Model (LMEM). The other model, which is a 

two-level gain score model adjusted for the test scores collected at the point before 

entering a school (e. g. the test scores at the end of kindergarten before entering an 

elementary school), was examined to investigate the problem of adjustment with test 

scores from the previous year (e. g., the test scores at the end of Grade 4 when estimating 

school effectiveness in Grade 5). 

Model 1. Two-level gain score model adjusted for the test scores at the end of 

kindergarten (Gain_kindergarten). 

Model 1 was a traditional covariate adjusted two-level model. The dependent 

variable at the student level was the gain score from the end of Grade 4 to the end of 

Grade 5. The independent variable at the student level was the test score collected at the 

end of kindergarten, whose effect was fixed or held constant across schools. The 

intercepts at the student level, which were the adjusted school means of students’ gain 

scores, were randomly varied across schools. At the school level, the adjusted school 

mean of students’ gain scores was the dependent variable, and study body SES was the 

covariate. The Empirical Bayes estimate of the residual for school j was the value-added 
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effectiveness of school j during the year of Grade 5.  The mathematic equation of Model 

1 was: 

Student level model: 

                                 (3.2)                            d ijijjjij rkinder ++= *10 ββ

School level model: 

                                                                                       (3.3)                                                     jj uSES 0010 * +00 +=j γγβ

                                                                                                       (3.4) 

When equations 3.3 and 3.4 were used to replace β0j and β1j in equation 3.2, the combined 

equation is obtained:  

                                                                                                       (3.5) 

In Model 1, the variances of rij are constant across schools.  The SAS code used to 

specify and estimate Model1 was (Singer, 1998): 

proc mixed data=student noclprint;                       

 class id school; 

 model gain = kinder SES/solution ddfm=bw;           

 random intercept /sub=school solution; 

run; 

Model 2. Two-level gain score model adjusted for the test scores at the end of Grade 4 

(Gain_grade4). 

Model 2 was also a two-level gain score model. Model 2 has the same format as 

Model 1. The only difference was that Model 2 adjusted students’ test scores at the end of 

Grade 4 instead of their test scores at the end of kindergarten. The two-level equation of 

Model 2 is: 

101 γβ =j

ijj ruKinderSESd ijij ++++= 100100 ** 0γγγ
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Student level model: 

                                                                         (3.6)                             

School level model: 

                                                                                                        (3.7)                                                       

                                                                                                               (3.8) 

The combined equation of Model 2 is: 

                                                                                                               (3.9) 

The SAS code used to specify and estimate Model 2 was: 

proc mixed data=student noclprint;                      

 class id school; 

 model gain = grade4 SES/solution ddfm=bw; 

 random intercept /sub=school solution; 

run; 

Model 3. Unconditional Cross-Classified Model 

Model 3 had the same form as the CCCM but did not adjust for any covariates. 

Specifically, the mathematic equation of Model 3 is:  

jitij urY 0000 ++= β   (Intercepts of students’ growth curves)   

 + timer i *)( 110 +β               (students’ natural growth rate) 

 +                               (School level effects) ∑
=

t

t
tju

1

              +                                  (residual at each grade)                 (3.10) tije

For each school, the covariance matrix of utj is diagonal with the variance of utj at 

each time point as a diagonal element. For each student, the covariance matrix of r0i and 

jj u0100 *j SES 00 ++= γγβ

101 γβ =j

Graded ijijjjij r++= 4*10 ββ

ijjijij ruSESd Grade ++++= 100100 ** 04γγγ
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r1i is unstructured. For each student, the covariance matrix of etij is diagonal, with 

constant variances of etij as the diagonal elements (Doran, 2003). Given five schools, the 

SAS code used to specify and estimate the UCCM model is: 

PROC MIXED DATA=t5 method=REML scoring=100 convh=10E-4 noclprint;                

CLASS id; 

MODEL SCORE= Time / SOLUTION; 

random intercept time / type=un sub=id; 

random z0_1-z0_5/  type= toep(1) solution; 

random z1_1-z1_5/ type= toep(1) solution; 

random z2_1-z2_5/ type= toep(1) solution;  

parms (0.22) (0.06) (0.325) (0.317) (0.317) (0.317) (0.1)/hold=4 5 6 7; 

RUN; 

This piece of SAS code was transferred from a piece of R code that was used to 

specify and estimate the same kind of model. The R code was written by Lockwood, 

Doran and McCaffrey (2003). In order to verify that the SAS code was transferred 

correctly, the correlation between the SAS and the R estimates of school effectiveness 

was calculated.  

The set of zt _ j variables was a set of dummy variables, with “1” indicating that 

student i was in school j during the year t (Sanders, Saxon, & Horn, 1997; Tekwe, et al., 

2004). Table3.1 illustrates a heuristic dataset with two students in two schools; and each 

student has three observations. 
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Table 3.1  

Heuristic dataset for fitting the UCCM model 
Student 

ID 
School 

ID 
Time Score Z0_1 Z0_2 Z1_1 Z1_2 Z2_1 Z2_2 

1 1 0 500 1 0 0 0 0 0 
1 1 1 580 1 0 1 0 0 0 
1 1 2 600 1 0 1 0 1 0 
2 2 0 560 0 1 0 0 0 0 
2 2 1 590 0 1 0 1 0 0 
2 2 2 620 0 1 0 1 0 1 

  

Model 4. Layered Mixed Effect Model (LMEM)

LMEM does not specify any covariates. Furthermore, LMEM does not specify 

any pattern of student growth trajectory after adjusting for school effectiveness 

(McCaffrey et al. 2004). Because the current study assumed that students did not change 

their schools during their elementary schooling, the multiplicative factor Ctj *is either 0 

or 1. Thus the equation of LMEM in the current study was: 

tijtj

t

t
ttij eSY ++= ∑

=1

µ                                                                 (3.11) 

Stj are independently normally distributed variables. Thus, for each school, the 

covariance matrix of Stj is diagonal with the variance of school effectiveness at time t on 

the diagonal. For each student, the covariance matrix of etij is unstructured. It is the 

unstructured covariance matrix of etij that is supposed to control the covariates’ effects.   

This SAS code was adopted from the article of Tekwe et al. (2004). The encoding 

method of z variables was the same as that in the UCCM model. Given 5 schools, the 

SAS code for specifying and estimating the LMEM model was: 

PROC MIXED DATA=valueadd.t5 method=REML scoring=100 convh=10E-4 

noclprint ;  

CLASS id t1 t2 t3; 
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MODEL SCORE= t1 t2 t3/ noint; 

random z0_1-z0_5 /type=toep(1) solution; 

random z1_1-z1_5 /type=toep(1) solution; 

random z2_1-z2_5 /type=toep(1) solution;  

repeated /TYPE=UN SUB=ID; 

parms 

(0.3170)(0.3170)(0.3170)(0.7479)(0.5711)(0.8483)(0.5411)(0.9866)(1.4986)/hold=1 2 3; 

RUN; 

Simulation Conditions 

The simulation study had a 2*2 design. Two conditions were varied in the 

simulation: (1) Number of Schools (NS), which had two levels: 50 and 10; (2) Number of 

Students per School (NSS), which had two levels; 50 and 10. The levels of the NS 

condition were partially based on the NCES 2003-2004 Public Elementary/Secondary 

Universe Survey Data and partially based on the typical number of schools studied in 

most school effectiveness research. The distribution of the number of elementary schools 

in a school district is extremely positively skewed in the United States (skewness = 

31.78). Among the 13,479 school districts that contain regular elementary schools, four 

school districts have more than 300 regular elementary schools respectively; 23 school 

districts have 100-300 regular elementary schools; 61 school districts have 50-100 

regular elementary schools; 98 school districts have 30-50 regular elementary schools; 

98.65% of the school districts have less than 30 regular elementary schools; 97.3% of the 

school district have less than 20 regular elementary schools, 92.6% of the school districts 

have less than 10 regular elementary schools. In school effectiveness research, 50 groups 
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was a frequently occurring number; 30 groups was mentioned as minimum (Mass & Hox, 

2004). However, a smaller number (i. e., 10) was used as the lowest level of the NS 

condition to enlarge the difference between the highest level and the lowest level of the 

NS condition, so that the influence of the NS condition would be more obvious if it really 

exists. In addition, NCES 2003-2004 Public Elementary/Secondary Universe Survey 

Data indicates that 92.6% of school districts have less than 10 elementary schools. In 

summary, the two levels of the NS condition were 50 and 10.  

The levels of the NSS condition were selected based on the literature and the 

capacity of the computer used in the simulation. A size of 50 was chosen because the 

literature suggests this number is more than sufficient for such models (Mass & Hox, 

2004). Although group size of 30 is normal in educational research (Mass & Hox, 2004), 

10 was used as the lowest level of the NSS condition in order to enlarge the difference 

between the two levels of the NSS condition. Furthermore, in a pilot study, I found that 

large school size led to both a dramatic increase of computing time and convergence 

problems. With 50 schools and 100 students per school, the estimation of UCCM and 

LMEM in SAS and R could not achieve convergence. Thus, this study did not use large 

school size, such as 100. 

Parameter Values 

The CCCM model was used to generate the data. The CCCM model included 

three fixed effect parameters and five variance component parameters. The three fixed 

effect parameters were: (1) the effect of kindergarten test score on the intercept which 

was the test score at the end of Grade 1 (β01), (2) the grand mean of students’ natural 

growth rates (β10), and (3) the effect of student body SES (γ01). The five variance 
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component parameters were: (1) the variances of measurement errors in each year , which 

were equal across years (i.e., σ2
e0 = σ2

e1= σ2
e2= σ2

e3= σ2
e4= σ2

e ), (2) the variance of 

student random effect on the intercept (i.e., σ2
r0i), (3) the variance of school random effect 

on the intercept (i.e., σ2
u0j), (4) the variance of student random effect on the natural 

growth rate (i.e., σ2
r1i ), and (5) the variances of school value-added effectiveness, which 

were constant across years (i.e., σ2
u1j= σ2

u2j= σ2
u3j= σ2

u4j= σ2
uj) . Besides the parameter 

values in the CCCM model, four kinds of correlations that may influence estimates of 

value-added school effectiveness were also considered. The four correlations were: (1) 

correlation between the intercept and the slope of student natural growth trajectory (i.e. 

rr0ir1i), (2) correlation between the student body SES and the aggregated school 

kindergarten test score, (3) correlations among school value-added effectiveness over 

time, and (4) intraclass correlation of the kindergarten test scores. Table 3.2 lists the 

parameter values of fixed effects, variance components, and the correlations. 

The parameters for the fixed effects, variance components, and the correlations 

were selected to reflect the findings in school effectiveness research. For effect size of the 

kindergarten test score, Thomas and Mortimore (1996) found that student prior 

attainment alone accounted for 58% of the total variance of student achievement 

outcomes at a single time point. Given the within school variance is about 90% when 

adjusting for student prior attainment (see a meta-analysis by Bosker & Witzier, 1995), 

student kindergarten test score explains about 64% of the within school variance of 

student test scores at the end of Grade 1, and 36% of the within school variance is due to 

student level residual r0i and measurement error e0it. In term of the total variance of test 

scores at the end of Grade 1, the percentage accounted for by student level residual and 
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measurement error is about 32%. Because the variance of student level residual is usually 

larger than measurement error variance at each time point, I attributed 22% of total 

variance of test scores at the end of Grade1 to r0i, and 10% of the total variance to e0i.  

Table 3.2 

Parameter values of fixed effects, variance components, and correlations 
Parameter   Value 

School Level Fixed Effect 
β00 Grand mean of intercept  0.000 
γ01 Effect of school SES  -0.414 

School Level Random Effect 
U0j Variance of School effect on 

intercept (school selection effect) 
(τ00) 

 0.100 

Utj Variance of value-added school 
effectiveness at time t (τtt) 

 0.317 

School Level Predictor 
SESj Mean and variance of School 

SES  
 0.000 (1.000) 

Student Level Fixed Effect 
β01 Effect of kindergarten test score 

on intercept 
 0.762 

β10 Grand mean of natural growth 
rate 

 0.630 

Student Level Random Effect 
r0i Variance of  student random 

effect on intercept  
 0.220 

r1i Variance of natural growth rate  0.325 
Student Level Predictors and Outcomes 

Kinderij Mean and variance of student 
kindergarten test scores 

 0.000 (1.000) 

Y0ij Mean and variance of student 
test scores at Grade1 (time=0) 

 0.000 (1.000) 

Correlations 
r01 Correlation  between intercept 

and natural growth rate 
 -0.210 

rses.kinder Correlation between school SES 
and school mean kindergarten 
test score 

 -0.930 

rtt’ Correlation of value-added 
school effectiveness over time 

 0.600 

rkinder Intraclass correlation of 
kindergarten test score 

 0.210 

 

The school level variance of student test scores at the end Grade1 was determined 

based on the meta-analysis of Bosker and Witziers (1995). They found that in the United 
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States, without adjustment, school-level factors explained about 21% of the total variance 

of student achievement at a single time point; after adjusting for student intake 

characteristics, school-level factors accounted for 10% of the total student achievement 

variance at a single time point.  

In the current study, students’ test scores at the end of kindergarten and at the end 

of Grade 1 were assumed to be standardized. Given the variance of Grade 1 test scores 

accounted for by the kindergarten test scores, the regression coefficient for the 

kindergarten test score can be determined, and the residual variance at each level can also 

be determined for generating student test scores at the end of Grade 1. 

According to the CCCM model, test scores in later years are the sum of student 

true score in the previous year plus achievement growth plus error. In each year, the 

overall achievement growth of a student can be divided into two parts. One is the natural 

growth given no school effectiveness exist. This growth can occur because of natural 

maturity or other environment influences. Thus, this part of growth is called natural 

growth. CCCM assumes the natural growth is linear. The other part of annual growth is 

due to school. By attending a school, a student may gain above and beyond natural 

growth in a given year. In order to generate test scores at later grades, students’ natural 

growth and growth due to school must be partitioned. Previous research found that most 

of the variance of student annual growth lied among schools.  In a study with a similar 

model as the CCCM in the current study, Rowan, Currenti and Miller (2002) found that 

72% to 73% of the reliable variance in achievement growth in reading lied among 

schools. In a study with traditional three-level HLM model,   Raudenbush (1989) found 

that 80% of growth variance in math and 43.9% in reading were between schools. 
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Mortimore et al. (1988) found that 30% of the variance of learning progress from Grade 1 

to Grade 3 was between schools. Based on these studies, the simulation posited that 60% 

of the variance of the overall growth in a year was due to school, and 40% was due to 

students’ natural growth. Thus, the variance of growth due to school was 1.5 times of the 

variance of growth due to students’ natural growth. In the current study, the distribution 

of students’ natural growth rate was adopted from the study of Ponisciak and Bryke 

(2005). They used an unconditional cross-classified model to estimate school 

effectiveness from Grade 2 to Grade 8. This study included 388,000 students in 500 

Chicago Public elementary schools. In their study, the natural growth rate had a mean of 

0.63 and a variance of 0.325. Thus, variance due to school was 0.487 (i.e., 

0.325*1.5=0.487), and the total variance of growth was 0.812 (i.e., 0.325+0.487=0.812).  

Based on literature (Teddlie & Stringfield, 1993; Willms, 1987), 35% of the 

between school variance of growth (i.e. 0.487*0.35 = 0.169) can be explained by the 

difference in school SES. Given school SES had a standardized normal distribution, and 

the total variance of student annual growth was 0.812, the fixed effect of school SES on 

student growth was -0.414. The effect was negative because school SES is usually 

measured by the percentage of students eligible for reduced or free lunch.     

The correlation between student residuals on the intercept (r0i) and the natural 

growth rate (r1i) was set at -0.21. This was done based on the study by Ponisciak and 

Bryk (2005). Because school SES usually correlates with school aggregated prior 

attainment, the currently study considered this correlation in data simulation. The 

correlation between school SES and school mean kindergarten test score was set at -0.93 

based on the study by Darandari (2004). The study by Darandari (2004) was conducted 
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on two years of test scores of 3,992 students in 24 schools. The school size ranged from 

81 to 276. 

The correlations among value-added school effectiveness over time were also 

taken into account in data simulation. Review of stability of school effectiveness over 

time suggested that there was a fair degree of stability in secondary schools’ effect on the 

overall measures of academic achievement over time. The same trend was evident for 

basic skill areas in the primary schools, though correlations were lower (Teddlie & 

Reynolds, 2000). The study of Willms (1987) found that correlations of school 

effectiveness over years ranged from 0.6 to 0.8. Bosker and Scheerens (1989) reported 

the correlations in Netherland were from 0.75 to 0.96. Although Mandevill (1988) 

reported that the correlations in the USA ranged from 0.34 to 0.66, Bosker and Scheerens 

(1989) pointed out that these figures might be deflated because of inadequacy of 

statistical control of intake characteristics. Based on these previous studies of the stability 

of school effectiveness over time, the correlations among school effectiveness over time 

were set at 0.60 in the current study. 

In addition to the parameters specified in the model, the intraclass correlation of 

kindergarten test scores was also considered in data generation. According to the meta-

analysis of Bosker and Witzier (1995), without any adjustment, the proportion of between 

school variance to the total variance of student test scores at a single time was about 0.21 

in the United States. Thus, the intraclass correlation of kindergarten test scores was set at 

0.21 in the current study. 
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Simulation Procedure 

The simulation procedure can be divided into three parts. The first part involved 

generating student test scores from the end of Grade 1 to the end of Grade 5 with respect 

to the parameter values and the simulation conditions. The second part involved 

estimating the value-added school effectiveness in Grade 5 with each of the four Value-

Added Models. The third part involved obtaining school rankings and classifications 

based on the school effectiveness estimates in the four models, and comparing the school 

rankings and classifications.  For each combination of the simulation conditions, the 

simulation procedure was repeated 200 times. The sequence of the simulation procedure 

was as follows: 

A. Data Generation 

    A.1. Generate data at the school level:  

A.1.1. Sample the values of the value-added school effectiveness in Grades 2, 3, 4, 

and 5 (i.e., u1 to u4) from a multivariate normal distribution, with univariate 

means of 0, univariate variances of 0.317, and all the bivariate correlations of 0.6.  

A.1.2. Sample the values of school effect on the intercept (i.e., u0) from a normal 

distribution with a mean of 0 and a variance of 0.1.  

A.1.3. Sample school means of kindergarten test scores (i.e. kinder_mean) from a 

normal distribution with a mean of 0 and a variance of 0.21. This variance was 

determined according to the intraclass correlation of kindergarten test scores.  

A.1.4. Calculate school SES values based on the equation 

             SES= (-2.02)* kinder_mean + 0.3764 * rannor(-5), 
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given that school SES had a standardized normal distribution, and school SES 

was correlated with school mean kindergarten test score as -0.93. “Rannor ()” is 

the SAS random number generation function for the standardized normal 

distribution.    

  A.2. Generate data at the student level: 

          A.2.1. Sample 5 variables (i.e. e1 to e5) from 5 univariate normal distributions with 

means of 0 and variances of 0.1. Each variable represents the measurement 

error at each grade. 

          A.2.2. Calculate student kindergarten test scores based on the equation 

                            kinder = kinder_mean + 0.89 * rannor(-5),  

                     given the intraclass correlation of kindergarten test score was 0.21, and 

student kindergarten test score had a normal distribution with a mean of 0 

and a variance of 1. 

A.2.3. Sample values of student random effect on the intercept (i.e., r0i) from a 

normal distribution with a mean of 0 and a variance of 0.22. 

A.2.4.Calculate values of students’ natural growth rates (i.e., r1i) based on the 

equation 

                    r1=0.63 + (-0.2552)*r0+0.5573*rannor(-10), 

          given that r1 has a normal distribution with a mean of 0.63 and a variance of 

0.325, and the correlation between r1 and r0 was -0.21. 

A.2.5. Calculate student test scores at the end of Grade 1 based on the equation as 

                   Grade 1=0.7616*kinder+u0+r0+e1, 
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                 given that student test score at Grade 1 had a standardized normal 

distribution.  

A.2.6. Generate student test scores at Grade 2, 3, 4, and 5. The test score of a 

student at each grade is the error free test score at the previous grade plus 

natural growth rate plus the effect of school SES on achievement growth 

plus school value-added effectiveness during that year plus measurement 

error at that grade. For example, the equation for generating student test 

scores at Grade 2 was: 

                             Grade 2=grade1_True+r1-0.414*SES+u1+e1; 

B. Estimation of value-added school effectiveness in different models. 

    B.1. Create a dataset that includes student test scores from Grade 3 to Grade 5, 

the time variable, and all the associated covariate variables. 

    B.2. Transform the dataset in B.1 from wide format to long format. In wide 

format, each student has only one recode, and test score at each time point 

takes up one variable. In long form, each student has multiple records, and 

test score at each time point takes one record (Doran, 2003; Singer, 1998).  

UCCM and LMEM require long format of data to estimate school 

effectiveness. The SAS code for transforming the dataset from wide format 

to long format is: 

                       DATA d_long; set d_wide; 

 array tvar(3) time3-time5; 

 array scorevar(3) grade3 grade4 grade5; 

 do i=1 to 3; 
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   time=tvar(i); 

   score=scorevar(i); 

   grade=time+1; 

   output; 

 end; 

                         drop i time3-time5 grade3 grade4 grade5; 

                      RUN; 

    B.3. Create the value-added school effectiveness design matrix. In order to 

estimate value-added school effectiveness with UCCM and LMEM, the 

design matrix of value-added school effectiveness in the two models must 

be created by researchers themselves.  The design matrix should reflect the 

accumulation character of value-added school effectiveness in the two 

models. Given 10 schools, the SAS code for creating the design matrix is: 

                DATA t5; SET d1; 

 array z0(*) z0_1-z0_10; 

 do s=1 to 10; 

  if school=s then z0(s)=1; else z0(s)=0; 

 end; 

 array z1(*) z1_1-z1_10; 

 do s=1 to 10; 

  if (school=s and time=3) or (school=s and time=4)then z1(s)=1;  

  else z1(s)=0; 

 end; 
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array z2(*) z2_1-z2_10; 

 do s=1 to 10; 

  if school=s and time=4 then z2(s)=1;  

  else z2(s)=0; 

 end; 

keep id school time score grade z0_1-z0_10 z1_1-z1_10 z2_1-z2_10; 

       RUN;   

The resulted design matrix is similar to the z variables in Table 3.1.  

B.4. Estimate value-added school effectiveness with the four Value-Added Models, 

respectively. The SAS code for specifying and estimating the four Value-

Added Models were presented in section 1 of this chapter. 

C. Compare school rankings and classifications. 

C.1. For each estimation model, obtain the estimated school rankings based on the 

school effectiveness estimates. Larger school effectiveness had higher rank. 

Furthermore, obtain the known true school rankings based on the generated values 

of value-added school effectiveness. 

C.2. Compare the school rankings. 

C.3. For each estimation model, obtain the estimated school classifications based on 

the school effectiveness estimates and the classification criteria. The schools with 

effectiveness estimates 1 SE below the mean were classified as ineffective schools; 

the schools with effectiveness estimates 1 SE above the mean were classified as 

effective schools; other schools were classified as average. Similarly, obtain the 
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known true school classifications based on the generated values of value-added 

school effectiveness. 

C.4. Compare the school classifications. 

Statistical Analysis 

The current study focused on two main interests. One was to compare the 

performance of different Value-Added Models in school rankings. The other was to 

compare the performance of different Value-Added Models in school classifications.  

The pairwise comparisons of school rankings and classifications in the current 

study can be classified into three series. The first series of comparisons evaluated the 

consistency of the estimated school rankings and classifications versus the known true 

school rankings and classifications. Specifically, in the first series, four comparisons were 

conducted. They were: (1) school rankings and classifications based on the 

Gain_kindergarten model versus the known true school rankings and classifications, (2) 

school rankings and classifications based on the Gain_grade4 model versus the known 

true school rankings and classifications, (3) school rankings and classifications based on 

the UCCM model versus the known true school rankings and classifications, (4) school 

rankings and classifications based on the LMEM model versus the known true school 

rankings and classifications. In the second series of comparisons, the school rankings and 

classifications based on the Gain_kindergarten model were compared to the school 

rankings and classifications based on the Gain_grade4 model. In the third series of 

comparisons, the school rankings and classifications based on the UCCM were compared 

to the school rankings and classifications based on the LMEM.   

 The research question answered by each pairwise comparison was: 
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1. Under the typical situations in elementary school effectiveness research, can a 

gain score model adjusting for kindergarten test scores validly recover the true school 

rankings or classifications in Grade 5? 

2. Under the typical situations in elementary school effectiveness research, can a 

gain score model adjusting for Grade 4 test scores validly recover school rankings or 

classifications in Grade 5? 

3. Under the typical situations in elementary school effectiveness research, can we 

ignore the covariates but still achieve valid school rankings and classifications? 

4. Under the typical situations in elementary school effectiveness research, if we 

model the correlations among test scores over time, can we ignore the covariates but still 

achieve valid school rankings and classifications?  

5. Under the typical situations in elementary school effectiveness research, when 

a gain score model is used, can adjustment using test scores from the previous year 

achieve similar school rankings or classifications as adjustment using test scores 

collected before entering to a school? 

6. Under the typical situations in elementary school effectiveness research, can 

estimation of the correlations among test scores over time alleviate or eliminate the 

damage caused by ignoring the covariates?      

The statistic used to evaluate consistency of school rankings was Spearman rho2. 

When investigating the effect of simulation conditions, rho2 was the dependent variable. 

Furthermore, descriptive but not inferential ANOVA was used to evaluate the magnitude 

of the effects of the simulation conditions. The reason is that the null hypothesis test will 

almost always achieve statistically significance given the large number of replications in 
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simulation studies. In descriptive ANOVA, the η2 was used to evaluate the effect size of 

each factor and their interaction.  

In order to compare the Value-Added Models for school classifications, the 

classification criterion is determined first. The current study adopted the classification 

criterion from the study of Ballou, Sanders and Wright (2004). In their study, the teachers 

with effectiveness estimates 1.5 SE below the mean were regarded as ineffective; the 

teachers with effectiveness estimates 1.5 SE above the mean were classified as effective; 

other teachers were classified as average. This criterion was also adopted by Thomas and 

Mortimore (1996). The current study used 1 SE instead of 1.5 SE as the cutoff value 

because the 1.5 SE resulted in zero frequencies in some cells of the contingency tables in 

the current study, which makes the calculation of Kappa coefficient impossible. 

The statistic to evaluate agreement of classifications was the Kappa coefficient. 

This statistic controls for chance agreement expected from the distribution of the data and 

employs the table’s row and column totals in determining chance agreement. The general 

range of Kappa is +1.0 for perfect agreement downward to the point where agreement 

ratio equals chance agreement (Lang & Tedllier, 1992). The standardized Kappy 

coefficient is distributed like a z score. Thus, the standardized Kappy coefficient is also 

called as Kappa z coefficient. When z is larger than 2, the null hypothesis that the 

agreement of classifications is equal to the agreement by chance is rejected. Because the 

classifications based on different models are independent, Kappa z can be used for a null 

hypothesis test, and the Kappa coefficient is used for quantifying the degree of agreement.  

Besides using Kappa z and Kappa to evaluate the overall agreement of school 

classifications, the source of disagreements was explored further. This was done by 
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calculating the frequencies of various kinds of disagreement, so that, people can know 

what are the most frequent types of misclassifications when using a certain value-added 

model. 
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CHAPTER IV 

RESULTS 
 

The results of the present study were organized into three sections. The first 

section reports the results involving checking the simulation program and deciding the 

replication numbers. In particular, the first section presents the distribution of the 

simulated data, checking the SAS code for the estimation models, convergence rate and 

number of replications. The second section reports the results involving the consistencies 

of school rankings, arranged in the sequence of the six research questions. The third 

section reports the results involving the agreements of school classifications, also 

arranged in the sequence of the six research questions. 

Program Checking and Replication Numbers 

Data Generation Check 

The process for generating data was presented in Chapter III. In order to confirm 

the accuracy of the generated data in representing the desired population distribution and 

the correlations, descriptive statistics for the variables in a large sample with 500 schools 

and 500 students per school are presented in Table 4.1. The correlations that were 

specified in data generation were also estimated in the large sample, and these results are 

presented in Table 4.2. 
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Table 4.1 

Descriptive statistics of the variables in a large sample (NS = 500, NSS = 500) 
  Mean SD Skewness Kurtosis 

U0 School selection effect -0.010a 
(0.0)b

0.312 
(0.316) 

0.076 
(0.0) 

-0.515 
(0.0) 

U1 School value-added 
effect during the 2nd 
Grade 

-0.015 
(0.0) 

0.577 
(0.563) 

-0.059 
(0.0) 

-0.224 
(0.0) 

U2 School value-added 
effect during the 3rd 
Grade 

-0.011 
(0.0) 

0.553 
(0.563) 

0.074 
(0.0) 

0.011 
(0.0) 

U3 School value-added 
effect during the 4th 
Grade 

-0.001 
(0.0) 

0.558 
(0.563) 

-0.053 
(0.0) 

-0.204 
(0.0) 

U4 School value-added 
effect during the 5th 
Grade 

0.041 
(0.0) 

0.589 
(0.563) 

-0.039 
(0.0) 

-0.059 
(0.0) 

jkinder  School mean of test 
scores at the end of 
kindergarten  

-0.001 
(0.0) 

0.489 
(0.46) 

0.095 
(0.0) 

-0.181 
(0.0) 

SESj School SES 0.014 
(0.0) 

1.036 
(1.0) 

-0.123 
(0.0) 

-0.035 
(0.0) 

r0 Student intercept 0.001 
(0.0) 

0.468 
(0.469) 

0.004 
(0.0) 

0.012 
(0.0) 

r1 Student pre-exist 
growth rate 

0.631 
(0.63) 

0.571 
(0.57) 

-0.002 
(0.0) 

0.010 
(0.0) 

kinder Student test scores at 
the end of kindergarten 

0.001 
(0.0) 

1.018 
(1.0) 

0.011 
(0.0) 

-0.010 
(0.0) 

Grade1 Student Grade1 test 
score 

-0.010 
(0.0) 

0.999 
(1.0) 

0.0174 
(0.0) 

0.000 
(0.0) 

e1 Measurement error at 
Grade1 

-0.001 
(0.0) 

0.316 
(0.3162) 

0.009 
(0.0) 

-0.001 
(0.0) 

e2 Measurement error at 
Grade2 

-0.001 
(0.0) 

0.316 
(0.3162) 

0.005 
(0.0) 

0.008 
(0.0) 

e3 Measurement error at 
Grade3 

0.000 
(0.0) 

0.316 
(0.3162) 

-0.002 
(0.0) 

0.016 
(0.0) 

e4 Measurement error at 
Grade4 

0.001 
(0.0) 

0.316 
(0.3162) 

-0.002 
(0.0) 

0.023 
(0.0) 

e5 Measurement error at 
Grade5 

0.000 
(0.0) 

0.316 
(0.3162) 

0.001 
(0.0) 

0.010 
(0.0) 

A. sample estimate 
B. true value 
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Table 4.2 

Correlations in the large sample (NS = 500, NSS = 500) 
Correlation between 

school mean 
kindergarten score 

and SES 

Correlations among 
U1, U2, U3,  U4

Correlation between 
intercept and slope 

(R0 Vs R1) 

Intraclass 
correlation of 

kindergarten test 
scores 

-0.932a ( -0.93)b 0.641c-0.610d (0.6) -0.211 (-0.21) 0.239 (0.21) 
A. sample estimate 
B. true value 
C. largest correlation 
D. smallest correlation 

 As presented in Table 4.1 and Table 4.2, the distribution of each variable in the 

large sample closely approximated the desired population distribution. The correlations 

estimated in the large sample were also very close to the population values specified in 

data generation.  

Estimation Models Check 

The SAS codes for a two-level gain score model have been well documented 

(Littell, Milliken, Stroup, & Wolfinger, 1996; Singer, 1998).The SAS codes for the 

UCCM model and the LMEM model have not been well documented. To the knowledge 

of the author, only one published article presented the SAS code for LMEM model 

(Tekwe et al., 2004), and no published articles have presented the SAS code for UCCM 

model or CCCM model. However, R codes for both LMEM model and UCCM model 

were provided in a published article (Lockwood, Doran, & McCaffrey, 2003). The SAS 

code for the UCCM model in the current study was transformed from the corresponding 

R code. In order to confirm the accuracy of the transformation, the consistency of school 

effectiveness estimates between SAS UCCM code and R UCCM code was examined 

with the largest sample size conditions (i.e., NS=50, NSS=50). With the same estimation 
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function (i.e., Restricted Maximum Likelihood Function) and the same optimization 

algorithm (i.e., Newton-Raphson iteration), the correlation between the SAS UCCM 

school effectiveness estimates and the R UCCM school effectiveness estimates was 

0.9583. The correlation between the SAS LMEM school effectiveness estimates and the 

R LMEM school effectiveness estimates was also examined with a smaller dataset (i.e., 

NS=30, NSS=30). The smaller dataset was used because R had convergence problems 

when fitting LMEM model with the larger dataset. The correlation between the SAS 

LMEM school effectiveness estimates and the R LMEM school effectiveness estimates 

was 0.998. Thus, the SAS codes for specifying UCCM and LMEM were at least as 

appropriate as the published R codes. 

Number of Replications 

In order to decide the number of replications in each combination of the sample 

size conditions, a trial was conducted using 200, 500, 400, and 300 replications. If a 

larger number of replications can not obviously change the mean and SD of Spearman 

rho2 between school rankings, smaller number of replications was used. Because less 

stable parameter estimates usually result from smaller sample size and a more complex 

model, the trial was conducted under the smallest sample size conditions (i.e., NS=10, 

NSS=10) and with the UCCM model. The means and SDs of Spearman rho2 from 200 

replications and 500 replications were very close to each other. Table 4.3 lists the means 

and SDs of the Spearman rho2 between the UCCM school rankings and the true school 

rankings for 200 and 500 replications, respectively. 
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Table 4.3 

Mean and SD of Spearman rho2 between the UCCM school rankings and the known true 
school rankings for 200 and 500 replications 

Replications Mean of rho2 SD of rho2

200 0.588 0.215 
500 0.565 0.212 
 

Table 4.3 indicated that increasing the number of replications from 200 to 500 did 

not appreciably change the mean and SD of the sampling distribution of rho2. Thus, the 

results of 200 replications in each cell were used in subsequent analysis. In order to 

achieve balanced design, each cell had 200 converged replications. Because of 

convergence problems encountered when fitting UCCM and LMEM under large sample 

size conditions, more replications were run under large sample size conditions to achieve 

the 200 converged replications.   

Model Fitting and Convergence Rates 

Because the optimization algorithm built in SAS PROC MIXED (i.e., Newton-

Raphson iteration) needs to invert the covariance matrix of the random effects, when the 

number of random effects was large, the computation load may not be handled by a PC 

with limited RAM. Even when a PC has 2 Gb RAM, the SAS code for the UCCM model 

and the LMEM model still encountered a huge convergence problem when fitting the 

datasets that included a large number of students. This was expected because each student 

has a random intercept and slope in the UCCM model, and the correlations among 

repeated measures nested within each student are estimated in the LMEM model.  

For each level of the school size condition, 5 trials were run. The number of 

students per school was 50, 60, 80 and 100; and the number of schools 50. The try-out 
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process was stopped whenever none of the 5 trials converged.  In order to make the 

convergence process easier, initial values of the variance components for student and 

school level random effects were provided; and the measurement error variances were 

fixed. The maximum number of iterations was set at 100, and the convergence criterion 

was 10e-4. For both 10 schools and 50 schools, with 50 students per school, 3 out of 5 

trials with the LMEM model achieved convergence. When the number of students per 

school was 50, UCCM took about 30 minutes to converge, and LMEM took about 45 

minutes to converge. When the number of students per school was 60, none of the 5 trials 

converged. Thus, the trial process was stopped, and the largest number of students per 

school in the current study was determined to be 50.  

With 50 schools and 50 students per school, the convergence rates were low for 

the CCCM and the LMEM. The convergence rates were calculated as: 

Convergence Rate = 200 / total number of replication conducted 

The convergence rate for different models under different sample size conditions are 

presented in Table 4.4. 

Table 4.4 

Convergence rates for different Value-Added Models 
NS NSS UCCM LMEM Gain_Kindergarten Gain_Grade4 
50 50 0.733 0.504 1.000 1.000 
50 10 1.000 1.000 1.000 1.000 
10 50 1.000 0.691 1.000 1.000 
10 10 1.000 1.000 1.000 1.000 

 

School Ranking 

Pairwise comparisons of school rankings based on different models were analyzed 

to answer six research questions: (1) whether a gain score model that adjusted for the test 
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scores collected at the end of kindergarten (Gain_kindergarten) could recover the true 

school rankings in Grade 5; (2) whether a gain score model that adjusted for the test 

scores of Grade 4 (Gain_grade4) could recover the true school rankings in Grade 5; (3) 

whether the cross-classified model that ignores the covariates could recover the true 

school rankings in Grade 5; (4) whether the LMEM model that estimated correlations 

among repeated measurements over time could adjust for the covariates without 

specifying them in the model and recover the true school rankings in Grade 5; (5) when a 

gain score model was used, whether adjustment with the test scores of Grade 4 could 

achieve similar school rankings as adjustment with the test scores at the end of 

kindergarten; (6) whether estimating the correlations among repeated measurements 

could alleviate the problem caused by omitted covariates in estimating school rankings.  

It should be noted that the results were obtained under the typical situations found in 

school effectiveness research. Cautions need to be taken when generalizing the results to 

other situations. 

Question 1 for School Rankings   

This question was answered by comparing school rankings based on the 

Gain_kindergarten model with the known true school rankings in the simulated data. The 

means and SDs of Spearman rho2 between the Gain_kindergarten school rankings and the 

true school rankings across 200 replications are listed in Table 4.5. 
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Table 4.5 

Mean and SD of rho2 between the Gain_kindergarten school rankings and the known true 
school rankings across 200 replications 

NSa NSSb Mean SD Skewness Kurtosis 
50 50 0.947 0.028 -1.582 2.311 
50 10 0.835 0.050 -1.035 2.766 
10 50 0.854 0.148 -1.577 2.146 
10 10 0.749 0.157 -1.138 1.297 

A. NS represented Number of Schools 
 B.  NSS represented Number of Students per School 

When the number of schools and the number of students per school were both 50, 

the Gain_kindergarten school rankings achieved high agreement with the known true 

school rankings. The negative skewness indicates that most of the rho2 were even larger 

than 0.947, because for negatively skewed data, the median is greater than the mean. In 

addition, the small SD indicated that the high consistency was stable across the 200 

replications. When the number of schools was 50, with only 10 students per school, the 

Gain_kindergarten school rankings could still achieved stable and moderate agreement 

with the known true school rankings. For 10 schools with 50 students per schools, 

although Gain_kindergarten achieved moderate agreement, the agreement was not stable 

across the replications (SD = 0.148). For 10 schools with 10 students per schools, both 

the degree of agreement and its stability were low (Mean = 0.749, SD = 0.157).  

In order to examine the effect of sample size conditions on the rho2 between 

Gain_kindergarten school rankings and the known true school rankings, eta2 for the main 

effects of NS, NSS, and their interaction effect on rho2 were calculated, respectively. The 

eta2 for the NS factor was 13.96%; the eta2 for the NSS factor was 19.24%; and the eta2 

for the interaction between NS and NSS was 0.03%.  
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Although Table 4.5 indicated that both small number of schools and small number 

of students per school could decrease the agreement between Gain_kindergarten school 

rankings and the known true school rankings, the results might be limited by the sample 

size conditions. In order to investigate the effect of a wider range of sample size 

conditions, two small supplementary simulations were conducted. The first small 

simulation was aimed at answering two questions: (1) whether the moderate agreement 

between Gain_kindergarten school rankings and the known true school rankings caused 

by small number of schools can be improved by increasing the number of students per 

school; (2) whether the moderate agreement caused by small number of students per 

school can be improved by increasing the number of schools. In order to answer the first 

question, the number of schools was set at 10, and the number of students per school was 

set at 60, 80, and 100, respectively. In order to answer the second question, the number of 

students per school was set at 10; and the number of schools was set at 60, 80, and 100, 

respectively. The means and SDs of rho2 across 200 replications are listed in Table 4.6 

Table 4.6 

Mean and SD of rho2 between the Gain_kindergarten school rankings and the known true 
school rankings for other sample size conditions 

NS NSS Mean SD 
10 60 0.847 0.157 
10 80 0.864 0.141 
10 100 0.874 0.123 
60 10 0.840 0.038 
80 10 0.847 0.036 
100 10 0.847 0.031 

 

Table 4.6 indicated that when the number of schools was small, it did not help to 

select more students per school to increase the ability of Gain_kindergarten to recover the 
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true school rankings. The ability of Gain_kindergarten to recover the true school rankings 

was also limited by the small number of students per school. When the number of 

students per school was small, no matter how many schools were ranked, the ability of 

Gain_kindergarten to recover the true school rankings could not be further improved. 

Table 4.6 also indicates that SD of the rho2 was mainly influenced by the number of 

schools, not by the number of students per school. Other research about the influence of 

sample size on parameter estimates and the associated SEs in multilevel modeling has 

also found that a small number of second level units compromises the SEs of sample 

estimates, but not on the sample estimates themselves, and increasing the number of first 

level units can not eliminate the bias caused by small number of second level units 

(Kamali, 1992; Mass & Hox, 2004).  

The second small simulation was conducted to investigate how many schools 

could be ranked validly with 50 students per school. With 50 students per school, 200 

replications were conducted for each level of the NS factor, which were 20, 30, 40, 100, 

and 150, respectively. The means and SDs of rho2 are listed in Table 4.7.  

Table 4.7 

Mean and SD of rho2 between the Gain_kindergarten school rankings and the known true 
school rankings for different number of schools  

NS NSS Mean SD Skewness Kurtosis 
20 50 0.909 0.073 -1.830 3.685 
30 50 0.938 0.044 -2.438 8.584 
40 50 0.938 0.038 -1.668 3.345 
100 50 0.958 0.013 -1.415 2.747 
150 50 0.959 0.013 -2.271 8.025 

 

Table 4.7 indicates that when the number of students per school was 50, 

Gain_kindergarten model had high ability to recover the true school rankings even when 
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the number of schools was as small as 20. However, the improvement of the degree of 

agreement was not linear. There was a plateau phenomenon. When the number of schools 

was 100 or larger, the degree of agreement did not obviously increase.  

Question 2 for School Rankings   

This question was answered by comparing school rankings based on the 

Gain_grade4 model with the known true school rankings in the simulated data. The 

means and SDs of rho2 between Gain_grade4 school rankings and the known true school 

rankings across 200 replications are listed in Table 4.8. Table 4.8 indicates that under all 

the sample size conditions, the agreements between the Gain_grade4 school rankings and 

the known true school rankings were low, and the SD was influenced by the number of 

schools but not by school size.  

Table 4.8 

Mean and SD of rho2 between the Gain_grade4 school rankings and the known true 
school rankings across 200 replications 

NS NSS Mean SD Skewness Kurtosis 
50 50 0.559 0.008 -0.122 -0.420 
50 10 0.489 0.096 -0.058 -0.001 
10 50 0.522 0.217 -0.430 -0.648 
10 10 0.437 0.213   0.043 -0.742 

 

In order to investigate whether the low ability of the Gain_grade4 model to 

recover school rankings was limited by the sample size conditions in the current study, 

and whether recovery can be improved by increasing the number of schools and school 

size, another supplementary simulation with 150 schools and 100 students per school was 

conducted. The mean across 200 replications was 0.499, and the SD was 0.058. Thus, 

Gain_grade4 had low ability to recover true school rankings even with larger sample 
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sizes. The results for research question 2 suggested that gain score models that adjust for 

test scores from the previous year are not good choices for ranking schools with respect 

to the definition of value-added school effectiveness. 

Question 3 for School Rankings   

This question was answered by comparing school rankings based on the UCCM 

model with the known true school rankings under different sample size conditions. The 

means and SDs of Spearman rho2 between the UCCM school rankings and the known 

true school rankings across 200 replications are listed in Table 4.9. 

Table 4.9 

Mean and SD of rho2 between the UCCM school rankings and the known true school 
rankings across 200 replications 

NS NSS Mean SD Skewness Kurtosis 
50 50 0.559 0.157 -1.714 3.093 
50 10 0.569 0.096 -0.469 0.699 
10 50 0.647 0.190 -0.655 -0.349 
10 10 0.588 0.215 -0.682 -0.131 

 

Table 4.9 indicated that under any of the sample size conditions in the current 

study, the rho2 between the UCCM school rankings and the known true school rankings 

was about 0.6, corresponding to rho of 0.775 (i.e., 0.60.5 = 0.775). This suggests that the 

UCCM model could not accurately recover the true school rankings under the sample 

size conditions in the current study. In addition, no changing trend of the agreement level 

was observed along with the change in the sample size conditions. The results suggested 

that without other remedial strategies, given the effect size of the covariates in the current 

study, ignoring the covariates resulted in invalid school rankings with respect to the 

definition of value-added school effectiveness. 
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Question 4 for School Rankings 

This question was answered by comparing school rankings based on the LMEM 

model with the known true school rankings under different sample size conditions. The 

means and SDs of Spearman rho2 between the LMEM school rankings and the known 

true school rankings across 200 replications are listed in Table 4.10. 

Table 4.10 

Mean and SD of rho2 between the LMEM school rankings and the known true school 
rankings across 200 replications 

NS NSS Mean SD Skewness Kurtosis 
50 50 0.658 0.077 -0.847 2.232 
50 10 0.642 0.082 -0.512 0.389 
10 50 0.671 0.181 -0.718 -0.145 
10 10 0.638 0.188 -0.842 0.596 

 

Table 4.10 indicates that the LMEM school rankings could only achieve rho2 of 

around 0.65 with the known true school rankings under all the sample size conditions in 

the current study. This suggested that LMEM does not have adequate ability to recover 

the true school rankings. Furthermore, no changing trend was observed on the degree of 

consistency along with the changes in the sample size conditions. The results suggest that 

the strategy of estimating the correlations among repeated measurements could not 

eliminate the negative effects of ignoring covariates on school rankings.  Thus, the claim 

that each student can serve as his own blocking factor so that no explicit adjustment for 

covariates is needed (Sanders & Horn, 1994; Sanders, Saxon & Horn, 1997) is not valid 

for school rankings.
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Question 5 for School Rankings 

This question was answered by comparing the school rankings based on the 

Gain_kindergarten model and the Gain_grade4 model under different sample size 

conditions. The means and SDs of Spearman rho2 between the Gain_kindergarten school 

rankings and the Gain_grade4 school rankings across 200 replications are listed in Table 

4.11. 

Table 4.11 

Mean and SD of rho2 between the school rankings based on the Gain_kindergarten model 
and the Gain_grade4 model across 200 replications 

NS NSS Mean SD Skewness Kurtosis 
50 50 0.593 0.084 -0.106 -0.294 
50 10 0.594 0.083 -0.425 -0.111 
10 50 0.599 0.204 -0.66 -0.214 
10 10 0.586 0.220 -0.488 -0.486 

 

Table 4.11 indicates that the agreement between school rankings based on the 

Gain_kindergarten model and the Gain_grade4 model was low under any of the sample 

size conditions in the current study. This result was consistent with the studies of 

Sammons (1996), Cuttance (1985), and Preece (1989). They warned against adjustment 

of test scores that were approximate in time with the current test scores. They 

recommended adjusting test scores collected at the point of entry to school (e. g. the end 

of kindergarten for elementary schools). Considering the results of question1 that the 

Gain_kindergarten model had high ability to recover the true school rankings with 

enough schools and students per school, the Gain_kindergarten model is recommended 

for school rankings.  
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Question 6 for School Rankings  

This research question was answered by comparing school rankings based on the 

UCCM model and the LMEM model. The results for research questions 4 and 5 for 

school rankings indicated that neither the UCCM model nor the LMEM model could 

adequately recover the known true school rankings. However, this research question 

evaluates whether estimating correlations among repeated measurements makes any 

difference in school rankings. The mean and SD of Spearman rho2 between the UCCM 

school rankings and the LMEM school rankings across 200 replications are listed in 

Table 4.12. 

Table 4.12 

Mean and SD of rho2 between the UCCM school rankings and the LMEM school 
rankings 

NS NSS Mean SD Skewness Kurtosis 
50 50 0.874 0.014 -2.579 5.821 
50 10 0.924 0.022 -0.761 0.580 
10 50 0.996 0.004 -5.189 40.353 
10 10 0.914 0.079 -2.476 8.939 

 

Table 4.12 indicates that the school rankings based on the UCCM and the LMEM 

were highly consistent under all the sample size conditions in the current study, with rho2 

larger than 0.87 corresponding to rho larger than 0.93. Thus, estimating correlations 

among repeated measurements did not make big differences in school rankings versus 

ignoring the covariates. 

Conclusions Regarding School Rankings 

The Gain_kindergarten model accurately recovered the known true school 

rankings when the number of schools and the number of students per school were not too 
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small. When the number of schools or the number of students was too small, increasing 

the sample size of the units at the other level did not improve the accuracy of school 

rankings. When the number of students per school was sufficiently large, such as 50, the 

model achieved high accuracy in ranking both large number of schools, such as 150, and 

relatively small number of schools, such as 20.  

The other Value-Added Models (Gain_grade4, UCCM and LMEM) could not 

accurately recover the known true school rankings under all the sample size conditions in 

the current study. Furthermore, in the gain score models, adjustment using the grade 4 

test scores resulted in different school rankings versus adjustment using the kindergarten 

test scores. In addition, ignoring covariates consistently invalidated school rankings no 

matter whether or not correlations among repeated measurements were estimated.   

School Classification 

Another important usage of value-added estimates of school effectiveness is to 

identify effective schools to accumulate successful educational strategies, or to identify 

ineffective schools that require help. The same set of pairwise comparisons was 

conducted to answer the six questions for school classifications instead of school 

rankings. 

Question1 for School Classifications  

Agreement between school classifications based on the Gain_kindergarden model 

and the known true school classifications was evaluated to answer this question. Table 

4.13 reports the means and SDs of simple Kappa coefficients and Kappa Z coefficients 

across the 200 replications. It should be noted that the Kappa Z coefficient for each 
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replication was calculated with the asymptotic SE but not the empirical SD of the Kappa 

coefficients. 

Table 4.13 

Agreement between the Gain_kindergarten school classifications and the known true 
school classifications across 200 replications 

NS NSS Mean of Kappa SD of Kappa Mean of Kappa Z SD of Kappa Z 
50 50 0.822 0.087 7.781 0.815 
50 10 0.683 0.102 6.489 0.953 
10 50 0.739 0.246 3.157 1.011 
10 10 0.603 0.271 2.584 1.115 

  

The mean Kappa Z coefficients in Table 4.13 indicate that for all the sample size 

conditions, the agreement between school classifications based on the Gain_kindergarten 

model and the known true school classifications was statistically significantly higher than 

the chance agreement. However, the simple Kappa coefficients indicate that for small 

sample size conditions, such as 10 schools with 10 students in each school, the agreement 

of school classifications was not high. When both the number of schools and the number 

of students were relatively large, such as 50 in the current study, the agreement of school 

classifications was larger than 0.80; and the SD was as small as 0.087. Thus, the answer 

to research question 1 about school classifications was that the Gain_kindergarten model 

could recover the true school classifications with a high degree of accuracy when the 

sample size conditions were adequately large, and its performance in school 

classifications was stable across repeated sampling.  

In order to further examine the effect of the NS and the NSS factor on simple 

Kappa coefficient, eta2 for the effect of the NS factor, the NSS factor, and their 
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interaction were calculated, respectively. The eta2 for the NS factor was 4.2%; the eta2 for 

the NSS factor was 11%, and the eta2 for their interaction was 0.001%.  

A practical interesting question is whether the low level of agreement of school 

classifications caused by too small number of schools could be enhanced by increasing 

the number of students per school. For example, if a small school district has only 10 

elementary schools, the district superintendent may wonder whether valid classifications 

of the schools could be achieved if more students in each school are selected. Another 

practical interesting question is whether the low level of agreement caused by a too small 

number of students per school can be improved by including more schools in the analysis. 

For example, if because of missing data only the data of 10 students per school could be 

used for analysis, a school accountability analyst may wonder whether school 

classifications are valid for statewide accountability, even if not valid for districtwide 

accountability. A small supplementary simulation was conducted to answer the two 

questions. In order to answer the first question, the number of schools was fixed at 10, 

and the number of students per school was set at 60, 80, and 100, respectively. In order to 

answer the second question, the number of students per school was fixed at 10; and the 

number of schools was set at 60, 80, and 100, respectively. The means and SDs of Kappa 

coefficients and Kappa Z coefficients across 200 replications are listed in Table 4.14. 
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Table 4.14  

Agreement between the Gain_kindergarten school classifications and the known true 
school classifications when either NS or NSS was too small 

NS NSS Mean of Kappa SD of Kappa Mean of Kappa Z SD of Kappa Z 
10 60 0.759 0.247 3.244 0.997 
10 80 0.754 0.242 3.212 0.985 
10 100 0.753 0.235 3.197 0.951 
60 10 0.675 0.105 7.017 1.076 
80 10 0.673 0.087 8.068 1.033 

100 10 0.684 0.075 9.172 1.008 
 

Table 4.14 indicates that when the number of schools was too small, such as 10 in 

the current study, increasing the number of students per school did not increase the 

validity of school classifications based on the Gain_kindergarten model. Thus, 

Gain_kindergarten model is not appropriate for school classifications in a small school 

district. Table 4.14 also suggests that when the number of students per school was too 

small, such as 10, increasing the number of schools did not increase the validity of school 

classifications based on the Gain_kindergarten model. Thus, when too few students in 

each school have the required data, Gain_kindergarten model can not achieve valid 

school classifications no matter whether the classifications are districtwide or statewide.     

Another small supplementary simulation was conducted in order to investigate 

how many schools could be validly classified with the Gain_kindergarten model given 

the number of students per school was 50. The number of students per school was fixed 

at 50, and the levels of the number of schools (NS) factor were set at 20, 30, 40, 100, and 

150, respectively. Again, 200 replications were run under each level of the NS factor. The 

Means and SDs of simple Kappa coefficients and Kappa Z coefficients are reported in 

Table 4.15. 
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Table 4.15 

Agreement between the Gain_kindergartern school classifications and the known true 
school classifications for different number of schools across 200 replications 

NS NSS Mean of Kappa SD of Kappa Mean of Kappa Z SD of Kappa Z 
20 50 0.784 0.155 4.701 0.884 
30 50 0.807 0.113 5.915 0.803 
40 50 0.803 0.107 6.799 0.887 
100 50 0.836 0.058 11.190 0.771 
150 50 0.844 0.046 13.820 0.742 

 

Given each school having data for 50 students, the Gain_kindergarten model 

could validly recover school classifications for more than 30 schools. Although more 

schools resulted in more valid classifications, the improvement of validity of the 

classifications was not obvious when the number of schools was larger than 30. 

In order to further explore the source of misclassifications, the maximum 

frequencies of various kinds of misclassifications in the 200 replications are reported in 

Table 4.16. Serious misclassifications were defined as misclassifying effective schools as 

ineffective or ineffective schools as effective. Table 4.16 indicates that most 

misclassifications were non-serious misclassifications that misclassified schools across 

two near categories. Among the non-serious misspecifications, no specific pattern was 

observed. Only one serious misclassification was observed. This misclassification 

happened when both the number of schools and the number of students per school were 

as small as 10. This serious misclassification classified an effective school as ineffective. 
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Table 4.16 

 Maximum frequency of misclassifications for the Gain_kindergarten model across 200 
replications  

NS NSS True classification Gain_kindergarten 
classification 

Maximum 
Frequency 

1a 0b 4 
1 -1c 0 
0 1 4 
0 -1 5 
-1 0 4 

50 50 

-1 1 0 
1 0 7 
1 -1 0 
0 1 6 
0 -1 5 
-1 0 6 

50 10 

-1 1 0 
1 0 2 
1 -1 0 
0 1 2 
0 -1 2 
-1 0 2 

10 50 

-1 1 0 
1 0 2 
1 -1 1 
0 1 3 
0 -1 2 
-1 0 3 

10 10 

-1 1 0 
A.“1” represents effective schools. 
B. “0” represents average schools. 
C. “-1” represents ineffective schools. 
 

Question 2 for School Classifications 

This research question was answered by comparing school classifications based 

on the Gain_grade4 model and the known true school classifications. The means and SDs 

of simple Kappa coefficients and Kappa Z coefficients are presented in Table 4.17. 
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Table 4.17 

Agreement between the Gain_grade4 school classifications and the known true school 
classifications across 200 replications 

NS NSS Mean of Kappa SD of Kappa Mean of Kappa Z SD of Kappa Z 
50 50 0.418 0.129 3.988 1.232 
50 10 0.394 0.123 3.755 1.172 
10 50 0.418 0.293 1.814 1.238 
10 10 0.363 0.318 1.572 1.350 

 

Table 4.17 indicates that under all the sample size conditions in the current study, 

the agreements between the school classifications based on the Gain_grade4 model and 

the known true school classifications were around 0.4. Although the Kappa Z coefficients 

indicated statistically significant different from chance agreement, the level of agreement 

of 0.4 was not high enough to indicate adequate agreement. Thus, the answer to research 

question 2 about school classifications was that the Gain_grade4 model could not validly 

recover the known true school classifications.

In order to investigate whether the low degree of agreement was limited by the 

sample size conditions in the current study, a small supplementary simulation with 150 

schools and 100 students per school was conducted. The mean and SD of Kappa 

coefficient across 200 replications were 0.446 and 0.073, respectively.     

Maximum frequencies of various kinds of misclassifications across the 200 

replications are reported in Table 4.18. For Gain_grade4 model, most of the 

misclassifications were non-serious misclassifications. No specific pattern was observed 

in the non-serious misclassifications. There were seven serious misclassifications across 

the sample size conditions, which was higher than that for the Gain_kindergarten model. 

Furthermore, the serious misclassification happened even when the sample sizes were 
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relatively large (i.e., NS=50, NSS=50).The serious misclassification for the Gain_grade4 

model had no specific pattern. 

Table 4.18 

Maximum frequencies of misclassifications for the Gain_grade4 model across 200 
replications 

NS NSS True classification UCCM 
classification 

Maximum 
Frequency 

1 0 9 
1 -1 1 
0 1 8 
0 -1 8 
-1 0 7 

50 50 

-1 1 1 
1 0 9 
1 -1 1 
0 1 9 
0 -1 7 
-1 0 7 

50 10 

-1 1 1 
1 0 3 
1 -1 0 
0 1 3 
0 -1 3 
-1 0 3 

10 50 

-1 1 1 
1 0 2 
1 -1 1 
0 1 2 
0 -1 3 
-1 0 3 

10 10 

-1 1 1 
 

Question 3 for School Classifications  

The agreement between school classifications based on the UCCM model and the 

known true school classifications was examined to answer this research question. The 
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means and SDs of simple Kappa coefficients and Kappa Z coefficients across 200 

replications are presented in Table 4.19. 

Table 4.19 

Agreement between the UCCM school classifications and the known true school 
classifications across 200 replications 

NS NSS Mean of Kappa SD of Kappa Mean of Kappa Z SD of Kappa Z 
50 50 0.448 0.148 4.315 1.337 
50 10 0.446 0.123 4.252 1.169 
10 50 0.099 0.167 0.431 0.731 
10 10 0.433 0.298 1.872 1.276 

 

Table 4.19 indicates that under all the sample size conditions in the current study, 

the school classifications based on the UCCM model did not achieve high level of 

agreement with the known true school classifications. Thus, ignoring covariates might 

result in invalid school classifications.  

An interesting result was that when the number of schools was too small, such as 

10, increasing the number of students per school resulted in worse classifications. This 

finding corresponded to the results reported by Kamali (1992) who found that if there 

were biases in estimates of level-2 parameters, increasing the number of individuals per 

group even further increased the biases.  

Maximum frequencies of various kinds of misclassifications are reported in Table 

4.20. Table 4.20 indicates that most of the misclassifications were non-serious. However, 

the frequency of non-serious misclassification was not negligible. When the number of 

schools was 50 and the number of students per school was 10, the number of ineffective 

schools that were misclassified as average was even larger than the number of ineffective 

schools that were correctly classified. The serious misclassifications could happen even 
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when the sample sizes were relatively large. In addition, when the number of schools was 

10 and the number of students per school was 50, there were 3 serious misspecifications 

in which effective schools were classified as ineffective.  

Table 4.20  

Maximum frequencies of misclassifications for the UCCM model across 200 replications 
NS NSS True classification UCCM 

classification 
Maximum 
Frequency 

1 0 9 
1 -1 1 
0 1 8 
0 -1 7 
-1 0 10 

50 50 

-1 1 1 
1 0 8 
1 -1 1 
0 1 8 
0 -1 6 
-1 0 7 

50 10 

-1 1 1 
1 0 2 
1 -1 3 
0 1 3 
0 -1 2 
-1 0 2 

10 50 

-1 1 2 
1 0 2 
1 -1 1 
0 1 2 
0 -1 3 
-1 0 3 

10 10 

-1 1 1 
 

Question 4 for School Classifications 

In order to answer this research question, the agreement between school 

classifications based on the LMEM model and the known true school classifications was 
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examined. The means and SDs of Kappa coefficients and Kappa Z coefficients are 

reported in Table 4.21 

Table 4.21 

Agreement between the LMEM school classifications and the known true school 
classifications across 200 replications 

NS NSS Mean of Kappa SD of Kappa Mean of Kappa Z SD of Kappa Z 
50 50 0.503 0.131 4.791 1.235 
50 10 0.498 0.122 4.746 1.155 
10 50 0.524 0.298 2.289 1.278 
10 10 0.490 0.276 2.125 1.165 

 

 Although the Kappa Z coefficients indicated that the levels of agreement were 

statistically significantly different from chance agreement, the Kappa coefficients of 

about 0.5 indicated that the levels of agreement between the LMEM school 

classifications and the known true school classifications were low for all the sample size 

conditions. Thus, the answer to research question 4 about school classifications was that 

LMEM could not accurately recover the true school classifications. This suggests that 

even if the correlations among repeated measurements were considered, a model ignoring 

covariates could not recover the true school classifications. 

Further exploration of the source of misclassifications was conducted. Maximum 

frequencies of various misclassifications across 200 replications are reported in Table 

4.22. For LMEM, there were serious misclassifications under all the sample size 

conditions. There was no specific pattern observed for both non-serious 

misclassifications and serious misclassifications. 
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Table 4.22 

Maximum frequencies of misclassifications for the LMEM model across 200 replications 
NS NSS True classification UCCM 

classification 
Maximum 
Frequency 

1 0 7 
1 -1 1 
0 1 7 
0 -1 7 
-1 0 7 

50 50 

-1 1 1 
1 0 8 
1 -1 1 
0 1 7 
0 -1 9 
-1 0 8 

50 10 

-1 1 1 
1 0 8 
1 -1 1 
0 1 2 
0 -1 2 
-1 0 2 

10 50 

-1 1 0 
1 0 3 
1 -1 0 
0 1 3 
0 -1 2 
-1 0 3 

10 10 

-1 1 1 
 

Question 5 for School Classifications 

This research question was answered by comparing the school classifications 

based on the Gain_kindergarten model and the Gain_grade4 model under different 

sample size conditions. The means and SDs of Kappa coefficients and Kappa Z 

coefficients across 200 replications are listed in Table 4.23. 
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Table 4.23 

Agreement between the Gain_kindergarten school classifications and the Gain_grade4 
school classifications 

NS NSS Mean of Kappa SD of Kappa Mean of Kappa Z SD of Kappa Z 
50 50 0.443 0.125 4.224 1.190 
50 10 0.467 0.114 4.456 1.073 
10 50 0.459 0.280 1.991 1.192 
10 10 0.442 0.327 1.912 1.392 

 

The Kappa coefficients in Table 4.23 indicate that the school classifications based 

on the Gain_grade4 model had low levels of agreement with the school classifications 

based on the Gain_kindergarten model. Considering the fact that Gain_kindergarten 

model could validly recover the true school classifications given enough number of 

schools and number of students per school, the Gain_kindergarten model was preferred 

over the Gain_grade4 model for school classifications. 

Question 6 for School Classifications  

This research question was answered by comparing school classifications based 

on the UCCM model and the LMEM model. The answer to research questions 3 and 4 for 

school classifications indicated that neither the UCCM model nor the LMEM model 

could accurately recover the school classifications in the known true values of school 

effectiveness. However, whether estimating correlations among repeated measurements 

can make any differences in school classifications remains unknown. The agreements 

between school classifications based on the UCCM model and the LMEM model are 

reported in Table 4.24. 
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Table 4.24 

Agreement between the school classifications based on the UCCM model and the LMEM 
model 

NS NSS Mean of Kappa SD of Kappa Mean of Kappa Z SD of Kappa Z 
50 50 0.864 0.092 8.204 0.690 
50 10 0.780 0.098 7.393 0.911 
10 50 0.297 0.146 1.216 0.962 
10 10 0.782 0.218 3.329 0.880 

 

Table 4.24 indicates that when the number of schools was relatively large, such as 

50, the LMEM model consistently achieved moderately high degree of agreement with 

the UCCM model in school classifications. Thus, given that sample size was adequately 

large, only estimating correlations among repeated measurements does not make any 

obvious difference versus omitting covariates in school classifications.  

Conclusions Regarding School Classifications 

Among the four Value-Added Models, the Gain_kindergarten model is 

recommended for school classification, because only the Gain_kindergarten model 

achieved high levels of agreement with the known true values of school effectiveness for 

school classification. Furthermore, the high levels of agreement were stable across 

repeated sampling when the sample size conditions were sufficiently large. For 

Gain_kindergarten model, the frequencies of various kinds of misclassifications were 

small and most of the misclassifications were non-serious. When sample sizes were large 

enough, no serious misclassifications were observed. 

However, the agreements between school classifications based on other Value-

Added Models and the known true values of school effectiveness were low even when 

the sample sizes were relatively large. The frequencies of misclassifications were not 
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negligible. Even when the sample sizes were relatively large, serious misclassifications 

were still observed.     
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CHAPTER V 

CONCLUSIONS AND DISCUSSION 
 

This chapter first summarizes the main message of the present study, and 

addresses the implications of the findings for school accountability practices. Second, this 

chapter integrates the results with prior studies in the literature. Third, this chapter 

addresses the limitations of the present study and offers suggestions for future studies. 

Conclusions and Implications for Practice 

The main message of the present study is that the Gain_kindergarten model can 

recover the true school rankings and classifications with a high degree of accuracy. 

However, other Value-Added Models, including the Gain_grade4 model, the UCCM 

model, and the LMEM model can not accurately recover the true school rankings and 

classifications. But the good performance of the Gain_kindergarten model in recovering 

school rankings and classifications was not exhibited when either the number of schools 

or the number of students per school was too small, such as 10. This problem could not 

be remedied by increasing the sample size at the other level (i. e., the number of students 

if schools were few, or the number of schools if students were few). On the other hand, 

with enough students per school, such as 50, the Gain_kindergarten model could rank 

more than 20 and classify more than 30 schools with high levels of accuracy. Thus, small 

school districts that have less than 20 elementary schools should be caution when using 

the Gain_kindergarten model to rank or classify schools. The small school districts take 

up 97.3% of the school districts around the States (NCES 2003-2004 Public 

Elementary/Secondary Universe Survey Data). Thus, in the United States, the 
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Gain_kindergarten model is more appropriate for state-wide school accountability than 

for district-wide accountability. Alternative statistical models and estimation methods 

that can result in valid school rankings and classifications with small number of schools 

will be valuable for most of the school districts in the United States. 

In order to evaluate the effectiveness of elementary schools on students’ annual 

gains, the current study suggests measuring student achievement level at the point of 

entry to an elementary school (e. g., the end of kindergarten). This measure of prior 

achievement should be adjusted in evaluating school unique contributions to students’ 

gains in a given subsequent year (e. g., Grade 5). Compared with keeping students’ test 

scores over several successive years, this strategy of using test scores at the point of entry 

to school for adjustments is more economic and results in less missing data. Another 

advantage of this strategy is that test scores from two successive years are more likely to 

measure the same psychological construct than test scores over a wide span of time 

(Martineau, 2006). The measurement invariance makes vertical equating of test scores 

meaningful.   

The failure of the Gain_grade4 model in recovering school rankings and 

classifications and its difference with the Gain_kindergarten model implies that 

adjustment with test scores from the previous year is not appropriate for school rankings 

and classifications and could not replace the adjustment with test scores at the point of 

entry to school. This finding warns against the popular practice of adjusting test score 

from the previous year in gain score modeling.  

The failure of the UCCM model in school ranking and classification implies that 

the student level and the school level covariates with effect sizes similar to those in the 



 112

current study should be adjusted for; otherwise school rankings and classifications will be 

invalid. The failure of the LMEM model and the similarity of school rankings and 

classifications between the LMEM model and the UCCM model imply that estimating 

the correlations of repeated measurements within a student can not adjust for the 

covariates without specifying the covariates in the model.  Considering these results, 

explicitly specifying the covariates in the statistical models is strongly recommended.    

It should be noted that these conclusions were limited by the constraints in the current 

study. In particularity, the constraints in the current study included: (1) the effect sizes of 

the covariates in the current study were moderately large, with student kindergarten test 

scores explaining 58% of the total variance of student test scores at the end of Grade 1, 

and the school SES explaining 35% of the between school variance of annual growth; (2) 

the intake test scores were collected five years before the grade in which the school 

effectiveness was estimated; (3) the model that was used to generate test scores assumed 

that each student had a natural growth even if no school effectiveness existed, and the 

natural growth was linear; (4) the intraclass correlation of the kindergarten test scores 

was 0.21; (5) the total variance of growth in a year was 0.812; (6) for UCCM and LMEM, 

the sample size conditions didn’t include large number of schools or large number of 

students per school, such as more than 100; (7) The test scores at different grades 

represent a single construct or the combined constructs with unchanging proportions 

across grades. These constraints might limit the results of the current study from 

generalizing to other situations. However, as previously explained in considerable detail, 

these simulation parameters were derived from prior research. 
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Explanation of the Results 

The present study found that the accuracy of school rankings and classifications 

based on value-added estimates of school effectiveness depends upon the choice of prior 

measurements. The gain score model that adjusted for the test score at the end of 

kindergarten recovered the true school rankings and classifications in Grade 5, however, 

the gain score model that adjusted for the test scores at end of Grade 4 did not recover the 

known true school rankings or classifications in Grade 5. 

This difference between the Gain_kindergarten model and the Gain_grade4 model 

in school rankings and classifications is expected according to the independence 

assumption of regression. The independence assumption of regression requires that the 

predictor variables should be independent with the residuals. In gain score models, value-

added school effectiveness is the residual. Because students’ test scores at the end of 

kindergarten are collected before they enter an elementary school, so the kindergarten test 

scores are independent from school effectiveness. On the contrary, because the test scores 

at the end of Grade 4 are influenced by both the test score at the end of kindergarten and 

the effectiveness of the schools the students attended in previous years, the Gain_grade4 

model actually adjust for both the kindergarten test scores and the effectiveness of the 

schools in previous years. Because the effectiveness of the schools in previous years is 

correlated with their effectiveness in the current year, this violates the assumption of 

independence between predictors and residuals. Dependence between predictors and 

residuals partitions out some of school effectiveness in the current year and leads to lower 

estimated variance of school effectiveness in the current year. The reduced variance may 

distort school rankings and classifications.  
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  This finding was supported by the research of Cuttance (1985). Cuttance noted 

that in many studies, the measurement of background factors was carried out at around 

the same time as the outcomes are measured. This predictor could very well be affected 

by the type of school attended, and it seemed unwise to partial out such a factor in a study 

of school effects. Peece (1992) also pointed out that the background factors used as 

predictors should be measured at the beginning of the period of instruction. In the United 

Kingdom, Sammons (1996) reported that control of GCSE scores at age 16 and ability at 

age 17 was likely to lead to reduced estimates of departmental differences at A-level 

testing that took place at age 18. GCSE and arguably ability scores were themselves 

likely to have been influenced by earlier secondary school (or departmental) effects. 

The arguments against the use of the gain score model concerned the reliability 

and validity of difference scores as measures of growth. In terms of validity, some 

researchers argued that difference scores can not measure the shape of growth curve. 

However, deficiency in measuring the shape of growth curve does not influence whether 

difference scores are valid measurements of the amount of change (Rogosa, 1995). In 

terms of reliability, a common perception is that difference scores are intrinsically 

unreliable (Lord, 1956). However, Rogosa (1995) argued that the low reliability of 

difference scores was the artificial effect of the assumptions in some studies. These 

studies assumed equal reliabilities ρ(X1)= ρ(X2), and equal variances σ2
x1=σ2

x2, for the 

observed scores at Time 1 and Time 2. These assumptions imply equal true score 

variances at Time 1 and Time 2 and a negative correlation between true change and true 

initial score.  Furthermore, these studies assumed a high correlation between the test 

scores at Time 1 and Time 2. All these assumptions imply that growth curves are nearly 
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parallel which translates into almost no individual differences in true change. If there are 

almost no individual differences in growth, the low reliability of the difference scores 

should be no surprise. In an empirical study, Rogosa and Willett (1983) showed that 

when the correlation between scores on Time 1 and Time 2 was moderate, even with 

other constraints, the reliability of difference scores could be as high as 0.94, which was 

nearly as reliable as the separate measurements on Time 1 or Time 2.  

Another argument against the use of the gain score model is based on the idea of 

regression toward the mean. Intuitively, regression toward the mean says that on the 

average you are going to be closer to the mean at Time 2 than you were at Time 1 if you 

were far from the mean at Time 1. If regression toward the mean is real, the change of 

student test scores may be an artifact of regression and not due to educational 

interventions. It is a common belief in the research community that regression toward the 

mean is unavoidable as long as test scores at Time 1 and Time 2 are not perfectly 

correlated (Doran, 2003). Rogosa (1995) criticized this belief. He argued that the formal 

statement of regression toward the mean in the literature defined it in standard deviation 

units. A more realistic definition of regression toward the mean should use the actual 

metric of measurement. Regression toward the mean in actual metric pertains only when 

the correlation between change and initial status is negative or the true score variances at 

two time points are equal. Rogosa (1995) argued that correlation between change and 

initial status was not necessarily negative. The correlation could be positive, zero, or 

negative, depending on the initial time of measurement. The current study also found that 

the initial time of measurement was important for achieving valid school rankings and 

classifications.    
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Although Gain_kindergarten model has the advantages mentioned previously and 

may avoid the dilemma of low reliability and the problem of regression toward the mean, 

caution also need to be taken when using the Gain_kindergarten model to rank or classify 

schools. When using the Gain_kindergarten model, researchers need to check three things. 

One is to check whether the test scores measure the same thing at different observation 

occasions. This assumption is likely to be violated when there is a long interval between 

two measurements, or the two measurements are conducted during a period of rapid 

development. Second is to check whether the variance of difference scores is large 

enough to induce high reliability in measurement of growth. Third is to check the 

correlation between the initial measurement and the growth rate and how serious the 

problem of regression toward the mean is.   

Another finding of the current study was the impact of sample size conditions on 

the performance of the Gain_kindergarten model in school rankings and classifications. 

The current study found that the poor performance of Gain_kindergarten model caused 

by inadequate sample size at student level or school level could not be improved by 

increasing the sample size at the other level. This was consistent with other studies about 

the effect of sample size on the parameter estimates in a two-level HLM model (Busing, 

1993; Kamali, 1992; Mass & Hox, 2004). In addition, the current study found that with 

50 students per schools, 20 schools were enough for the Gain_kindergarten model to 

achieve valid school rankings and classifications. The study of Mass and Hox (2004) also 

suggested 20 groups as a rule of thumb for achieving accurate parameter estimates in a 

two-level HLM model. The study of Brown and Draper (2000) and the study of Snijders 

and Bosker (1999) suggested using more than 10 second level units. These studies 
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provided similar guidance about the second level sample size as the current study. 

However, Busing (1993) recommended using more than 100 groups to achieve accurate 

parameter estimates. Mass and Hox (2004) supposed that different level of intraclass 

correlation of dependent variable led to different conclusions about the sample size 

conditions across these studies.  

Another important finding of the current study was that estimation of the 

correlations among repeated measurements could not remedy the damage caused by 

omitting covariates when creating school rankings and classifications. This finding was 

opposite to the claim of Sanders and his colleagues that by estimating correlations of 

repeated measurements, each student could serve as his own blocking factor, so that 

explicit specification of the covariates was not needed (Sanders, Saxon & Horn, 1997).  

As mentioned in Chapter II, prior research results about the accuracy of LMEM in 

school effectiveness estimates were conflicted. The research team led by Sanders 

provided some empirical evidence to support their claim. However, some research found 

that LMEM had no advantage even over the Simplest Fixed Effect Model (Tekwe et al., 

2004). The study of Ballou, Sanders, and Wright (2004) and the study of McCaffrey et al. 

(2004) may be helpful in explaining the difference. Ballou, Sanders and Wright (2004) 

found that LMEM could overcome the problem of omitting the student level covariates, 

but could not overcome the problem of omitting the school or class level covariates. The 

current study and the study of Tekwe et al. (2004) omitted the covariates at both the 

student level and the school level. This may be a reason why the LMEM model could not 

remedy the damage caused by omitting the covariates. The study of McCaffrey et al. 

(2004) found that the value-added school effectiveness estimates in LMEM did not 
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correlate with the covariates when the covariates had small intraclass correlations. 

However, LMEM could not control for the effect of the covariates when the intraclass 

correlations of the covariates were large. The intraclass correlation of the kindergarten 

test scores in the current study was 0.21, which might destroy the ability of LMEM to 

adjust for the influence of the covariates without explicitly specifying them in the model.  

Limitations and Future Studies 

As mentioned in the first section of this chapter, the current study was conducted 

with some constraints, and these constraints influenced the results of the current study. 

Future studies about the effects of these constraints are needed to investigate to what 

extent the results of the current study may be generalized.  

Constraint 1:  The Effect Sizes of the Covariates in the Current Study Were Moderately 

Large 

In the current simulation study, the covariates and the parameter values of the 

effects of the covariates were decided based on literature review, and aimed at reflecting 

the typical situation in school effectiveness research. The current study only used one 

level, instead of a range of levels, of effect sizes of the covariates. The effect sizes of the 

covariates influenced the estimates of school effectiveness in unconditional models 

(Dorandari, 2004). Without exploring other levels of effect sizes of the covariates, we do 

not know whether the poor performance of the UCCM model in school rankings and 

classifications, as found in the current study, will persist in other levels of effect sizes of 

the covariates.  
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Future studies are required to study the effect of omitted covariates on school 

rankings and classifications under a range of effect size conditions. This may provide 

guidance about when the covariates could be omitted without hurting the accuracy of 

school rankings and classifications, and when the covariates must necessarily be specified.   

Constraint 2: The Kindergarten Test Scores Were Collected Five Years Before the Grade 

in Which School Effectiveness Was Estimated 

In the current study, school effectiveness in Grade 5 was estimated and used for 

school ranking and classification. The test scores adjusted in the Gain_kindergarten 

model were assumed to be measured at the end of kindergarten. Thus, there are five years 

between the initial measurement and the grade of concern.  

Although some researchers suggested that initial measurement at the point of 

entry to an education period is the ideal measure of prior attainment and should be used 

in adjustment (Cuttance, 1985; Peece, 1992; Sammons, 1996), Rogosa (1995) suggested 

that it is the interval between initial measurement and the time point of concern that 

really matters. As noted previously, an appropriate interval can create positive correlation 

between initial measurement and growth, which can avoid the problem of regression 

toward the mean. Thus, the author of the current study suspected that the long interval 

between the initial measurement and the grade of concern in the Gain-kindergarten model 

might be the key for the Gain_kindergarten model to perform well in ranking and 

classifying schools. The author questions whether a shorter time interval between initial 

measurement and the time point of concern might also facilitate the better performance of 

the Gain_kindergarten model in school rankings and classifications, no matter whether or 

not the initial measurement is made at the end of kindergarten. Future studies may 
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explore other initial measurements and find out which time intervals are most appropriate 

for using the gain score model to estimate school effectiveness, and applying the 

estimates in school ranking and classification. Future studies may also evaluate whether 

the results of the present study generalize to all the cases in which the time period 

between initial measurement and the grade of assessing school rankings or classifications 

is not five years. 

Constraint 3: The Simulation Model That Was Used to Generate Test Scores Assumed 

That Each Student Had a Natural Growth even if No School Effectiveness Existed, and 

the Natural Growth Was Linear 

The model used to generate student test scores was the CCCM model. This model 

assumes that for each student a linear growth curve exists even without school 

effectiveness. In addition, this model assumes that the school effectiveness in the 

previous years can persist without diminishment in the following years. Furthermore, this 

model does not consider teacher effectiveness when estimating school effectiveness.  

McCaffrey et al. (2004) proposed a general longitudinal model, which was 

supposed to be the most general form subsuming all the models involved in the current 

study. We still do not know what will happen if this more general model is used to 

generate the longitudinal data. Although the general longitudinal model is not used in 

school accountability practice, because of the model’s complexity, more research about 

this model should be conducted. 

Because the computation capability of the computer used here prohibited fitting 

the CCCM model to a even small dataset, such as 20 schools with 10 students per school 

and three measurements per students, the performance of the CCCM model in school 
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ranking and classification was not examined. Although the data were generated with the 

CCCM model, the CCCM model may be not able to completely recover the true school 

rankings and classifications under all sample size conditions and its performance may be 

even worse than the Gain_kindergarten model. When a highly capable computer is 

available, the performance of the CCCM model in school effectiveness estimates, school 

rankings and classifications, should be examined and compared with other models.  

Constraint 4: The Intraclass Correlation of the Kindergarten Test Scores Was 0.21 in the 

Current Study 

The study of McCaffrey et al. (2004) found that the ability of LMEM to control 

for the effects of covariates was low when the intraclass correlation of the omitted 

covariates was high. Considering their study, I wondered whether the poor performance 

of the LMEM model in school ranking and classification was due to the specific level of 

the intraclass correlation of the kindergarten test scores.  

The intraclass correlation of the kindergarten test score was based on a meta-

analysis of school effectiveness research and represented the typical level of intraclass 

correlation of test scores at a single time point (Bosker & Witzier, 1995).  The current 

study did not investigate the effect of varying the intraclass correlation of the covariates 

on the ability of the LMEM to control for the covariates. A systematic exploration of a 

range of intraclass correlations of the covariates would be valuable, and would provide 

guidance about when LMEM can control for the covariates without specifying them in 

the model.  

Another valuable research topic would be to investigate other strategies that can 

control for the covariates. Although specifying covariates in a statistical model is a 
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commonly used strategy in covariates adjustment, using covariates has many deficiencies, 

especially in educational research. This is because which covariates should be used in 

adjustments is not clear yet, and the measurement of the covariates in education, such as 

the school environment, can present difficult challenges. Furthermore, because of the 

multicollinearity among the covariates in education, specification of all the associated 

covariates may also result in biased estimates even if the covariates can be perfectly 

measured. Other strategies of covariates adjustment are needed to overcome or avoid the 

problem associated with the strategy that specifies covariates in the statistical model. 

The studies of Rausenbaum (2002) and Rubin (2004) about how to infer casual 

effects in observational studies are extremely important for exploring other strategies of 

covariates adjustment. They proposed a strategy that matches the participants based on 

their propensity scores at first, and further statistical analysis is conducted within each 

group of matched participants. Calculation of the propensity score is based on the 

associated covariates and is the central piece of this strategy. Further study of this 

strategy and comparing it with other covariates adjustment strategies in the typical 

situation of school effectiveness research would be very valuable for value-added 

assessment of school effectiveness. 

Constraint 5: The Total Variance of Growth Was 0.812 and Was Constant across Years 

According to the study of Rogosa (1983, 1995), the variance of growth influenced 

the reliability of gain scores as measurements of growth. The moderate variance of 

growth in the current study might have facilitated the Gain_kindergarten model to 

perform well in school ranking and classification. In addition, the constant variance of 
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growth across years specified in the simulation might also have benefited the 

Gain_kindergarten model.  

One topic for future research is to systematically investigate how the reliability of 

gain scores changes along with the change of gain score variance. This would provide 

guidance for people to decide whether gain scores are sufficiently reliable so that 

estimation of school effectiveness can base on it.  

Constraint 6: The Current Study Did Not Investigate UCCM and LMEM Model under 

Large Sample Size Conditions 

Because of the limitation of the RAM of the computer, the largest sample size 

conditions used when studied the UCCM model and the LMEM model was 50 schools 

with 50 students per schools and 3 measurements per students. The performance of the 

two models for school rankings and classifications might be better with larger sample 

size conditions and/or with more measurements per students.   

In literature review, I did not find any research about the influence of sample size 

in more complex multilevel models, such as the cross-classified model, the three-level 

HLM model, or the LMEM model. All the available studies about the influence of sample 

size in multilevel models were conducted with the classical two-level HLM model. When 

the research hardware is sufficiently capable, research about influence of sample size in 

more complex multilevel models will be highly appreciated in school effectiveness 

research, and in many other areas. 
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Constraint 7: The Test Scores at Different Grades Represent a Single Construct or the 

Combined Constructs with Unchanging Proportions across Grades. 

Because the current study explored the model specification issues but not the 

measurement issues in value-added assessment of schools, all the measurement 

assumptions associated with value-added assessment of schools were assumed to be 

satisfied. One of the measurement assumptions is that the test scores used in Value-

Added Models represent the same single construct or the same proportional mix of 

several constructs at each grade. For example, if a Value-Added Model employs student 

mathematic test scores from Grade 1 to Grade 5, all the mathematic tests from Grade 1 to 

Grade 5 should measure the same construct (e. g. calculation ability), or the combination 

of multiple constructs (e. g. calculation ability and reasoning ability). If the test scores 

measure the combination of multiple constructs, the proportions of the constructs in the 

combined test scores should be static across the grades (e. g.  for tests at all the grades, 

20% of the items measure calculation ability and 80% measure reasoning ability). We 

know that this assumption is not likely to be satisfied either by the statewide achievement 

tests (e. g. Texas Assessment of Knowledge and Skill) or by the tests published by testing 

organizations (e. g. Stanford 9 achievement test published by Harcourt Assessment). The 

proportions of the constructs measured at each grade by the currently used achievement 

tests are not static across grades. The grade specific statewide achievement tests are 

created to align with the state curriculum of each grade. The difference of the curriculum 

in each grade results in different test contents. The achievement tests published by testing 

organizations are also grade specific which weight different constructs in different ways 

depending on the knowledge contents and cognitive processes typically obtained by a 



 125

certain grade of students. Martineau (2006) found that this constructs shift problem 

caused value added estimates of school or teacher effectiveness in the current year 

contaminated by the effectiveness of the units the student attended in previous years. For 

example, the true value of a school’s value added effectiveness in the current year is 0.1, 

because the average schools the students attended before are effective in reasoning 

instruction but ineffectiveness in calculation instruction, and the proportion of calculation 

decreases but the proportion of reasoning test increases from the previous grade level, the 

estimate of the school’s value added effectiveness will be spuriously inflated to 0.8.  This 

contamination decreases the reliability of value-added estimates of school effectiveness 

to a level that is unacceptable for high stake accountability usage (i. e. reliability < 0.9).  

Martinuea (2006) suggested a solution to reduce constructs shift. This solution is 

to embed a large majority of upper- and lower-grade items at each grade level tests, and 

create a separate vertical scale for each pair of adjacent grades rather than a uniform 

vertical scale for all the grade levels. However, how well this strategy works is unknown. 

Furthermore, new vertical equating methods that may reduce or resolve the constructs 

shift problem are of great value to value-added assessment and other longitudinal studies.       
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    Wang, Z., & Wen, Luo (2006). Can we use gain score model to rank or classify 
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    Wang, Z., & Willson, V. (2005).  Indifference region and confidence region in 
Structural Equation Modeling. Paper presented at the American Educational 
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    Willson, V., & Wang, Z. (2004). Indifference region in Structural Equation Modeling. 
Paper presented at the Psychometric Society annual meeting. Monterey, CA. 
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