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ABSTRACT 

 

Optimal Waterflood Management under Geologic Uncertainty Using Rate Control: 

Theory and Field Applications. (May 2009) 

Ahmed Humaid H. Alhuthali, B.S., King Fahd University of Petroleum and Minerals;  

M.S., Texas A&M University 

Chair of Advisory Committee: Dr. Akhil Datta-Gupta 

 

Waterflood optimization via rate control is receiving increased interest because 

of rapid developments in the smart well completions and I-field technology. The use of 

inflow control valves (ICV) allows us to optimize the production/injection rates of 

various segments along the wellbore, thereby maximizing sweep efficiency and delaying 

water breakthrough. It is well recognized that field scale rate optimization problems are 

difficult because they often involve highly complex reservoir models, production and 

facilities related constraints and a large number of unknowns. Some aspects of the 

optimization problem have been studied before using mainly optimal control theory. 

However, the applications to-date have been limited to rather small problems because of 

the computation time and the complexities associated with the formulation and solution 

of adjoint equations. Field-scale rate optimization for maximizing waterflood sweep 

efficiency under realistic field conditions has still remained largely unexplored. 

We propose a practical and efficient approach for computing optimal injection 

and production rates and thereby manage the waterflood front to maximize sweep 

efficiency and delay the arrival time to minimize water cycling. Our work relies on 

equalizing the arrival times of the waterfront at all producers within selected sub-regions 

of a water flood project. The arrival time optimization has favorable quasi-linear 

properties and the optimization proceeds smoothly even if our initial conditions are far 

from the solution. We account for geologic uncertainty using two optimization schemes. 

The first one is to formulate the objective function in a stochastic form which relies on a 

combination of expected value and standard deviation combined with a risk attitude 
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coefficient. The second one is to minimize the worst case scenario using a min-max 

problem formulation. The optimization is performed under operational and facility 

constraints using a sequential quadratic programming approach. A major advantage of 

our approach is the analytical computation of the gradient and Hessian of the objective 

which makes it computationally efficient and suitable for large field cases. 

Multiple examples are presented to support the robustness and efficiency of the 

proposed optimization scheme. These include several 2D synthetic examples for 

validation purposes and 3D field applications.  
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CHAPTER I 

INTRODUCTION 

 

The recent increase in worldwide oil demand combined with the decreasing 

number of new discoveries has underscored the need to efficiently produce existing oil 

fields. The maturity of the existing fields poses multifaceted challenge to meet the global 

demand and has increased the urgency to seek new alternatives to increase production 

and improve recovery. A variety of secondary oil recovery methods has been developed 

to improve oil recovery after primary depletion (Lake et al. 1992; Craig 1971). The most 

widely used is waterflooding because it is relatively easy and inexpensive to implement. 

In spite of its many appealing characteristics, the presence of heterogeneity such as high 

permeability streaks might yield unfavorable results (Sudaryanto and Yortsos 2001; 

Brouwer et al. 2001; Brouwer and Jasen 2004; Alhuthali et al. 2007). Those streaks can 

act as highly conductive channels causing injected water to bypass oil and prematurely 

breakthrough at the producers. This will result in a poor sweep ifficiencyand 

consequently reduce oil production and recovery. Various methods have been suggested 

to mitigate this problem. Among these is smart well completions where the production 

or the injection section is divided into several intervals (Arenas and Dolle 2003; Glandt 

2003; Hussain et al. 2005). The flow rate at each interval can be independently 

controlled by inflow control valves (ICVs); hence, making it possible to control flow 

rates across the high permeability streaks. The smart well technology has several 

advantages including the following: 1) access to multiple zones using only one well, 2) 

cost savings by minimizing well down-time and intervention, and 3) quick response to a 

sudden change in well performance. 

The appealing features of the smart well technology have inspired several 

researchers to develop efficient algorithms to optimize production along the intervals of  

_________________ 

This dissertation follows the style of SPE Reservoir Evaluation & Engineering. 
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smart wells, and thereby improve sweep efficiency. Two main types of optimization 

algorithms were developed, namely the gradient-based algorithms and the stochastic 

algorithms (Brouwer and Jasen 2004; Sarma et al. 2005; Tavakkolian et al. 2004; 

Emerick et al. 2007). Both algorithms use reservoir simulators to evaluate the objective 

function. The gradient-based algorithms require an efficient estimation of the gradient of 

the objective function with respect to the control variables. In contrast, the stochastic 

algorithms such as genetic algorithms do not require an estimation of the gradient, but 

they require multiple forward simulation runs to find the global minimum. The 

advantage of stochastic optimization over the gradient-based optimization is the ability 

to search for a global solution while the gradient-based optimization generally converges 

to a local solution. The main disadvantage of the stochastic optimization is the extensive 

computation power required especially when the number of control variables is large. 

Field scale rate optimization problems generally involve highly complex 

reservoir models, production and facilities related constraints and a large number of 

unknowns. All these make optimal reservoir management via rate and flood front control 

difficult without efficient optimization tools. Some aspects of the optimization problem 

have been studied before using mainly optimal control theory. However, the applications 

to-date have been limited to rather small problems because of the computation time and 

the complexities associated with the formulation and solution of adjoint equations. Field-

scale rate optimization for maximizing waterflood sweep efficiency under realistic field 

conditions has still remained largely unexplored. 

The purpose of this research is three-fold. First, we develop a practical and 

efficient approach for computing optimal injection and production rates to maximize 

sweep efficiency and delay the water arrival time to minimize water cycling. Our work 

will rely on equalizing the arrival time of the waterfront at all producers within selected 

sub-regions of a water flood project. The arrival time optimization has favorable quasi-

linear properties and the optimization proceeds smoothly even if our initial conditions 

are far from the solution (Cheng el al. 2005). Furthermore, the sensitivity of the arrival 

time with respect to injection and production rates can be calculated analytically using a 
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single flow simulation.  This makes our approach computationally efficient and suitable 

for large-scale field applications. The arrival time optimization ensures appropriate rate 

allocation and flood front management by delaying the water breakthrough at the 

producing wells. Second, the approach will be generalized to account for geologic 

uncertainty since reservoir parameters such as permeability are known in a stochastic 

sense. The uncertainty quantification will be addressed by performing the optimization 

on multiple permeability realizations. Finally, we will account for reservoir and facility 

constraints through a constrained non-linear optimization viz. sequential quadratic 

programming (SQP). 

 

1.1 Optimal Waterflood Management Using Rate Controls  

Previous efforts on optimization of waterflooding relied on optimal control 

theorem to allocate injection/production rates for fixed well configurations. Asheim 

(1988) investigated the optimization of waterflood based on maximizing net present 

value (NPV) for multiple vertical injectors and one producer where the rate profiles 

change throughout the optimization time. Sudaryanto and Yortsos (2001) used 

maximizing the displacement efficiency at water breakthrough as the objective for the 

optimization with two injectors and one producer. The optimal injection policy was 

found to be ‘bang bang’ type. That is, the injectors were operated only at their extreme 

values, either at the maximum allowable injection rate or fully shut. The optimization 

then involved finding the switch time between the two injectors to ensure simultaneous 

water arrival at the producing well. Brouwer et al. (2001) studied the static optimization 

of waterflooding with two horizontal smart wells containing permanent downhole well 

control valves and measurement equipment. The static optimization implies that the flow 

rates of the inflow control valves (ICVs) along the well segments were kept constant 

during the waterflooding process until the water arrived at the producer. Various 

heuristic algorithms were utilized to minimize the impact of high permeability streaks on 

the waterflood performance through rate control. The results indicated that the optimal 

rate allocation amounts to reducing the distribution of water arrival times at various 
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segments along the producer. Subsequently, Brouwer and Jansen (2004) extended their 

work to dynamic optimization of water flooding with smart wells using optimal control 

theory. The optimization was performed on one horizontal producer and one horizontal 

injector. Each well is equipped with 45 ICVs. The objective was to maximize the NPV, 

and it was achieved through changing the rate profile along the well segments 

throughout the optimization period. Both rate constrained and bottomhole pressure 

constrained well conditions were studied.  

Lorentzen et al.  (2006) also carried out a study on the dynamic optimization of 

waterflooding using a different approach from those described above. He carried out his 

optimization by controlling the chokes to maximize cumulative oil production or net 

present value. Their new approach uses the ensemble Kalman filter as an optimization 

routine. The ensemble Kalman filter was originally used for estimation of state variables 

but has been adapted to optimization in their work.  

Several authors have reported the use of streamlines to optimize waterflood 

projects. Grinestaff and Caffrey (2000) provided detailed case histories of waterflood 

optimization for the Northwest Fault Block (NWFB) of Prudhoe Bay. They didn’t use a 

formal optimization procedure, but instead they used streamline flow visualization, 

allocation calculations, and the rapid turnaround of simulation runs to guide the 

engineer. They utilized allocation factors (Grinestaff 1999) as their primary criterion for 

optimal sweep. Thiele and Batycky (2006) provide a different measure of flood 

efficiency. Their technique focuses mainly on the injectors and calculates the efficiency 

for each to identify the least effective injectors. The injection capacity can then be 

reallocated to improve the waterflood performance. Ghori et al. (2007) used the injection 

efficiency optimization to generate injection rate to improve waterfood performance in a 

giant Middle East field.  The optimization procedures were constrained to a realistic 

field conditions to ensure direct field implementation. 

 

 

 



5 

 

 

1.2 Optimal Waterflood Management under Geologic Uncertainty 

To address the problem of geologic uncertainty in production optimization, two 

approaches have been studied. The first one is based on a closed-loop approach where 

measurements from smart wells were used to continuously update the reservoir model 

and an optimal control strategy was used to allocate rates based on the most recent 

update of the reservoir model. Naevadal et al. (2006) developed a closed-Loop control 

approach which is a combination of an optimal control for waterflood optimization and 

automatic history matching using ensemble Kalman filter for reservoir model updating. 

They observed that the results obtained using a closed-loop approach starting from an 

unknown permeability field, were almost as good as those obtained assuming a proiri 

knowledge of the permeability field. A similar closed-loop approach was adapted by 

Sarma et al. (2005). However, in their work, they used Karhunen-Loeve (K-L) 

expansions and Bayesian inversion theory for history matching and model updating. 

Wang et al. (2007) used another closed loop approach which is still a combination of 

history matching and rate control optimization. They used ensemble Kalman filter for 

automatic history matching and real time model updating. For rate control optimization, 

they compared the performance of three different methods namely steepest ascent, 

simultaneous perturbation stochastic approximation (SPSA), and ensemble Kalman 

filter. Their result showed that the steepest ascent algorithm is the most efficient and 

gives reasonable results. 

The second type of handling of uncertainty is to perform the optimization over 

multiple realizations since the reservoir geology is only known in a probabilistic 

framework. Van Essen et al. (2006) expanded on the work done by Brouwers et al 

(2004) and wrote the objective function in terms of the expected value of NPV obtained 

from multiple realizations. They used the adjoint method to compute the gradient of the 

objective function and the steepest ascent algorithm to maximize it. Their results showed 

that their optimization approach improve the expected NPV and resulted in smaller 

variance of possible NPV outcomes. Similarly, Chen et al. 2008 performed the 

optimization over multiple realizations to maximize the expected NPV, however they 
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used ensemble Kalman filter to compute the gradient of the objective function. Their 

method includes a model updating part. They used the ensemble Kalman filter for model 

updating (Gu and Oliver 2007).  

 

1.3 Objectives 

The main objective of this research is to develop an efficient and practical 

optimization approach to compute injection and production rates in a waterflooding 

project to maximize sweep efficiency. The approach should have the ability to handle 

geologic uncertainty, large field cases, and operational and facility constraints. 

 

1.3.1 Optimal Waterflood Management for a Single Reservoir Model 

• The first step in our research is to develop the objective function for our 

optimization which will address the sweep efficiency for a single reservoir 

model. The principle concept behind our optimization is to equalize the arrival at 

all producers within a sub-group of wells. The arrival time optimization was 

chosen because of their quasi-linear property and it also ensures maximizing 

sweep efficiency. The objective function will be formulated as the square of l2 

norm of the residuals between a desired arrival time and a calculated arrival time  

• The objective function then will be minimized using a sequential quadratic 

programming algorithm. This algorithm will minimize the objective function in 

an iterative manner. In each iteration, the algorithm requires evaluating the 

following: 1) the objective function and 2) the gradient and the Hessian of the 

objective function.  

• The objective function evaluation will involve an analytical calculation of the 

residuals using the concept of time of flight. Of course, this step can’t be 

accomplished unless we trace the streamlines. 

• The gradient and the Hessian of the objective function will be computed 

analytically using an analytical form for the sensitivity of the arrival time with 
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respect to the control variables (i.e. wells rates). The analytical computation of 

the gradient and Hessian will require only one simulation run. 

 

1.3.2 Optimal Waterflood Management under Geological Uncertainty 

• To address geologic uncertainty, the optimization will be performed on multiple 

realizations. The objective function will be formulated into two forms: stochastic 

and min-max problem forms.  

•  The stochastic form will be derived based on the decision analysis framework. 

The objective function will involve an expected value of the l2 norm of the 

residuals for each realization and their standard deviation. The expected value 

and the standard deviation will be combined through a risk coefficient.  

• The min-max problem will be formulated as minimizing the maximum of 

outcomes evaluated for each realization involved in the optimization. This type 

of optimization can be considered as minimizing the worst case scenario.  

• The gradient and the Hessian of the objective will be computed analytically using 

only one simulation run per realization. This will make our approach efficient 

and suitable for large field cases. 

 

1.3.3 Applications 

• We will show that our proposed approach is capable of optimizing 

injection/production rate under changing mobility effects and changing field 

conditions.  

• We will demonstrate the ability of our proposed approach to efficiently allocate 

rates along the producing section of smart-complex wells. 

• We will illustrate the practicality and efficiency of our proposed approach 

through field examples. 
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CHAPTER II 

OPTIMAL WATERFLOOD MANAGEMENT VIA RATE CONTROL 

USING SINGLE RESERVOIR MODEL
*
 

 

In this chapter we propose an optimal reservoir management scheme during 

waterflooding using a single reservoir model. The scheme relies on an appropriate 

allocation of injection and production rates to maximize the sweep efficiency. The 

underlying principle behind our optimization scheme is to equalize the arrival time of the 

waterfront at all producers within selected sub-regions of a water flood project. The 

organization of this chapter is as follows. First, we outline the major steps of the 

proposed approach and illustrate the procedure using a 2D synthetic example. Next, we 

discuss the underlying mathematical formulation. These include the optimization 

problem, residual computations, the analytical computation of the sensitivities, and field 

and individual well constraints. We also examine the convergence properties of our 

method and the validity of the assumptions used to derive the analytical sensitivities. 

Finally, we demonstrate the power and feasibility of our approach using multiple 2D 

examples at various mobility ratios and a 3-D field case.  

 

2.1 Approach  

Our approach can be implemented in both finite-difference and streamline 

simulators. In this study, we chose to use a commercial streamline simulator because the 

streamlines and the time of flight (which are essential for our optimization) are readily 

available (ECLIPSE File Formats Reference Manual 2005). If a finite-difference 

simulator is used instead, then we need to perform the streamline tracing and time of 

                                                
* Part of this chapter is reprinted with permission from “Optimal Waterflood Management Using Rate 

Control” by Ahmed H. Alhuthali, Dayo Oyerinde, and Akhil Datta-Gupta, 2007. SPE Reservoir 

Evaluation & Engineering, 10 (5):539-551, Copyright 2007 by the Society of Petroleum Engineers. 
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flight computations using the total phase fluxes from the simulator (Cheng et al. 2005). 

In addition, we assume that a static model is readily available and the injected fluid 

composition is fixed and it is not a control variable. Our optimization scheme is limited 

only to optimize wells rates and it doesn’t include well location and configuration as 

control variables to improve sweep. The major steps in our approach are outlined below. 

• Tracing streamlines and arrival time computation. The first step is to 

generate streamlines and compute the time of flight. Tracing streamlines has 

been discussed by several authors (King and Datta-Gupta 1998; Datta-Gupta and 

King 1995; Pollock 1988). The time of flight, which is defined as the time 

required by a neutral tracer particle to travel along a streamline will form the 

basis for computing the arrival time of the waterfront at all producers. If a 

streamline simulator is being used, all these quantities are already available and 

this step can be bypassed.  

• Residuals and Sensitivity Computation. In this step we compute the residuals 

that quantify the difference between the desired arrival time and the computed 

arrival time at each of the producing well. We also calculate the sensitivity of the 

arrival time at the producer to wells rates analytically using simple integrals 

along streamlines. The sensitivities are partial derivatives that relate changes in 

arrival time to small perturbations in production and injection rates. They are an 

integral part of our rate optimization process. 

• Minimization and Optimal Rate Allocations. Sequential quadratic 

programming (SQP) procedures (Nocedal and Wright 2006) is used to minimize 

the arrival time residuals. This step generates the required changes in rates to 

equalize waterfront arrival time at the producing wells subject to appropriate 

field constraints. 

• Mobility Effects and Changing Field Conditions.  The steps above are 

repeated until the norm of the residuals meets a pre-defined stopping criterion. 

Once this criterion is met, we move to a new time interval, update streamlines 
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and perform the optimization again to account for mobility effects and changing 

field conditions.  

 

2.2  An Illustration of the Procedure 

The detailed mathematical formulation behind our proposed approach will be 

discussed later. First, we will illustrate the procedure using a 2D example that involves 

four injectors and nine producers arranged in a repeated five-spot pattern (Figure 2.1). 

 

 

 

Figure 2.1 Well locations: 2D homogenous example 

 

 

We assume homogenous permeability (k = 100 md) and an end-point mobility 

ratio of unity for this example. The relative permeability curves are shown in Figure 2.2. 

The reservoir dimensions are 1716x1716x33ft, and the porosity is assumed to be 

constant and equals to 0.225. As a base case, we choose the total fluid production rate to 

be the same for all producers (280 RB/D) and also, for all injectors (630 RB/D). The 

optimization was performed simultaneously on both the injectors and the producers to 

equalize the arrival times of the injected fluid at all producers.  
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Figure 2.2 Relative permeability curves 

 

 

The arrival time distribution at the producing wells and their water cut response 

for the base case are shown in Figures 2.3a and 3b.  

Clearly, there is a significant variation in arrival times whereby some producers 

reach high water cut rapidly compared to others. This is a consequence of assigning 

equal rates to all producers regardless of their location. For example, the well P5 is 

located in the middle and its delayed breakthrough can be explained by the fact that it is 

supported by four injectors, each contributing to a quarter of the production. In contrast, 

the early water breakthrough at the corner producers (P1, P3, P7, and P9) is because 

each producer here is supported by only one injector, contributing to all of the 

production. The water breakthrough for the side producers (P2, P4, P6, and P8) is in-

between because each producer is supported by two injectors. Next, the production rates 

were reassigned to equalize the arrival time. 
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a. Water arrival time    

 

b. Water cut 

 

Figure 2.3 Arrival time and water cut prior to rate optimization: 2D 

homogenous example 
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The static optimization was performed under voidage replacement constraint, 

that is, the total field production is equal to the field injection.  The new rates after 

optimization are shown in Table 2.1. There were no changes to the injection rates, and 

significant changes to the production rates.  

 

 

Table 2.1 Production rates prior to and after optimization: 2D homogenous 

example 

Well Rate Before Rate After Optimal Rate 

ID Optimization  (RB/D) Optimization (RB/D) Geometrical (RB/D) 

P1 280.0 157.7 157.5 

P2 280.0 314.9 315.0 

P3 280.0 157.7 157.5 

P4 280.0 314.9 315.0 

P5 280.0 629.6 630.0 

P6 280.0 314.9 315.0 

P7 280.0 157.7 157.5 

P8 280.0 314.9 315.0 

P9 280.0 157.7 157.5 

I1 630.0 630.0 630.0 

I2 630.0 630.0 630.0 

I3 630.0 630.0 630.0 

I4 630.0 630.0 630.0 

 

 

These changes lead to an equalized arrival times and excellent water cut 

performance as shown in Figs. 2.4a and 4b. The results agree with optimal rates 

calculated from simple geometrical analysis (angle open to flow) for this homogeneous 
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example. Figures 2.5a and 5b show oil saturation at breakthrough prior to and after 

optimization. Increased sweep efficiency after optimization can be clearly seen here.  

 

 

 

4a. Wells arrival time    

 

4b. Water cut 

Figure 2.4 Arrival time and water cut after rate optimization: 2D homogenous 

example 
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a. Prior to rate optimization, water arrives at 700 days  

 

 

b. After rate optimization, water arrives at 1000 days 

 

 

 

Figure 2.5 Oil saturation at arrival time: 2D homogenous example 

 

 

 

5a. Prior to Rate Optimization, Water Arrival at 

Oil Saturation 
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Also, after optimization, water breakthrough occurs at 65% recovery as opposed 

breakthrough at 40% recovery without optimization (Figure 2.6a). Performance plots 

such as water cut vs. recovery and cumulative water production vs. time shown in 

Figures. 2.6a and 6b demonstrate improved waterflood characteristics, for example, 

higher recovery and reduced water cycling.  

 

 

 

a.   Water cut vs. recovery  

 

b. Cumulative water production vs. time 

Figure 2.6 Comparison before and after rate optimization in terms of water cut 

and cumulative water production: 2D homogenous example 
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Although this example was rather simple and the optimal rates could be obtained 

using a simple geometrical analysis, it serves to verify our approach. We now change the 

permeability field to a heterogeneous case as shown in Figure 2.7. The permeabilities 

range over three orders of magnitude and have a north east trend. Obviously, the 

optimization is less intuitive here to reach a simultaneous arrival time at all producers. 

For base case, we choose the optimized rates obtained from the homogenous case as our 

initial guess. This resulted in significant variation in arrival times as shown in Figure 

2.8.  

 

 

 

Figure 2.7 Permeability field: 2D heterogeneous example 

 

 

100 1000 10000 100000 

Permeability (md) Logarithmic Scale 



18 

 

 

 

Figure 2.8 Water arrival time prior to rate optimization 

 

 

After optimization, we managed to reduce this variation significantly, leading to 

a simultaneous arrival time of around 700 (Figure 2.9). The optimization was carried out 

at multiple time intervals: 100, 200, 300, 400, 500, 600, 700 days. Because the mobility 

ratio is chosen to be unity, very little variation in injection/production rates is observed 

with time as shown in Figs. 2.10a and 10b.  

 

 

Figure 2.9 Water arrival time after rate optimization 
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a. Total fluid rate 

 

b. Water injection rate 

 

Figure 2.10 Total production/injection rates after rate optimization, M=1: 2D 

heterogeneous example 
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The optimized case show significant improvements in sweep efficiency and 

recovery at breakthrough as shown in Figure 2.11. The base case has a recovery of 37% 

of OIIP while the optimized case has a recovery of 49% of OIIP, indicating the potential 

for improved recovery via rate optimization. 

 

 

a. Prior to rate optimization, water arrival at 500 days, recovery = 37% of OIIP 

 

 

b. After rate optimization, water arrival at 700 days, recovery = 49% of OIIP 

 

 

 

Figure 2.11 Oil saturation at arrival time: 2D heterogeneous example  

 

 

Oil Saturation 
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2.3 Mathematical Formulation 

In this section, we discuss the underlying mathematical formulations behind our 

proposed method. First, we present the formulation of the rate optimization based on 

waterfront arrival times and the streamline time of flight. We then discuss the analytical 

calculation of sensitivities of arrival time to well rates and their role in the optimization 

process. Finally, we briefly review field and individual well constraints in the 

optimization process. 

 

2.3.1 Objective Function and Its Minimization 

Our objective is to maximize the sweep efficiency by equalizing the arrival times 

of the waterfront for a specific group of producers (Sudaryanto and Yortsos 2001). Let 

mit ,  denote the calculated arrival time for producer i belonging to group m, and, mdt , , the 

desired arrival time for the group m. Then the overall arrival time misfit can be 

expressed as. 

( )
,

22

, ,2
1 1

( ) ( )
group prod mN N

d m i m

m i

t t
= =

= −∑ ∑e q q  .................................................................... (2.1a) 

where the arrival time residual at an individual well is given by 

, , ,
( )

i m d m i m
e t t= − q  ............................................................................................ (2.1b) 

The vector q contains the control variables (wells rate) and has a dimension of n, the 

number of well rates to be optimized. Our goal is to minimize the misfit by optimizing 

the injection/production rates subject to equality and inequality constraints which are 

mainly defined by the operational restrictions and facility capacities. 
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( )

( )

2

2

1
 = ( )min 

2

Subject to

                   0              

                   ( ) 0              

Where  :   and   :  
n z n y

f

h g

=

≤

ℜ → ℜ ℜ → ℜ

q e q

q

h q

g q

 ..................................................... (2.2) 

The superscripts z and y represent the number of equality and inequality constraints 

respectively. 

The sequential quadratic programming (SQP) algorithm (Nocedal and Wright 

2006), one of the widely used algorithms for non-linear constrained optimization, is used 

to minimize Eq. 2.2.  The principal idea is the formulation of a quadratic programming 

sub-problem based on a quadratic approximation of the Lagrangian function and 

linearization of the constraints. The QP sub-problem can be written as: 

( ) ( ) ( )

( ) ( )

( )

21
 min 

2

Subject to

                   0              

                   ( ) ( ) 0 

( , , ) ( ) ( )     
L K

k T k k

T
k k

k k T

T T

L K

f f L

L f

δ δ δ
δ

δ

δ

+ ∇ + ∇

+ ∇ =

+ ∇ ≤

= + +

q q q q q q

q

h q h q q

g q g q q

q λ λ q λ h q λ g q

................................................. (2.3) 

The vectors λL and λK in the Lagrangian function represent the Lagrange 

multipliers corresponding to the equality constraints and the Karush-Kuhan-Tucker 

multipliers corresponding to the inequality constraints. The QP sub-problem is solved at 

each major iteration k of the SQP. 

For our application, we assume that the constraints are linear and they have the 

following forms: 
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+h(q) = Aq b

g(q) = Cq + d
 .................................................................................................. (2.4) 

By combining Eqs. 2.3 and 2.4, the QP sub-problem at k
th
 iteration can now be 

formulated as follows,  

2 2

22
 ( ) ( )min 

Subject to 

                      ( )=0

                      ( ) 0

k k

k

k

δ β

δ

δ

− +

+

+ ≤

e q S q q δq

δq

A q h q

C q g q

.................................................................. (2.5) 

In Eq. 2.5 δq  represents a perturbation in rate and ( )S q  is the sensitivity matrix. A single 

entry of the sensitivity matrix Sij quantifies the changes in arrival time at producer i 

because of small changes in the rate of well j. It is given by 

, ( )
k

i m

ij

j

t
S

q

∂
=

∂

q
 ............................................................................................. (2.6) 

The term 
2

2
βδq  in Eq. 5 is a regularization term to ensure that the Hessian of the 

Lagrangian is positive definite (Nocedal and Wright 2006).  The Hessian of Eq. 2.5 is 

given by 

2( ) ( )k T k k β= +H S q S q I  ...................................................................... (2.7) 

The weights β determine the relative strengths assigned to the rates prior to optimization. 

In general, the optimization results will be sensitive to the choice of β (McLaughlin and 

Townley 1996). 

When the QP sub-problem is subject to no constraints, an LSQR algorithm 

(Paige and Saunders 1982) can be used to solve the following system of linear equations: 
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( ) ( )

 = 
0

k k

δ
β

   
   
   

S q e q
q

I
 ................................................................................. (2.8) 

If the QP sub-problem is subject only to equality constrains, the solution can be obtained 

by solving the following system of linear equations: 

( ) ( )
 = 

0 ( )

k T T k k

k
L

δ    
    

−    

qH A S q e q

λA h q
 .............................................................. (2.9) 

If the QP includes inequality constraints, the typical solution involves the active set 

strategy, through which a sequence of equality constrained problems is solved (Nocedal 

and Wright 2006). 

 

2.3.2 Arrival Time and Residual Computation 

We define the arrival time to a producer as the time required for the waterfront to 

reach the producer from its current position.  For example, if the time required by the 

waterfront to travel from the injector to the producer is 1000 days and the front already 

has traveled for 600 days, the arrival time is 400 days. For calculation purposes, we 

compute the arrival time to a producer as the average of the arrival times associated with 

a set of fast streamlines as defined by the user.  In our application, we take the top 20% 

of the streamlines. 

,

,

,

,
1,

1
/

i m

fsl i

w wf l

k

k
N

w
l i

l wfsl i S S

df
t

N dS
τ

=
=

       

= ∑  ...................................................... (2.10) 

In the above expression, Nfsl,i  represents the number of the fastest streamlines connected 

to the producer i belonging to group m.  As mentioned, we choose a set of the fastest 

streamlines which consists a portion of Nsl,i, where Nsl,i is the total number of streamlines 

connected to the producer i. The variable τ represents the usual streamline time-of-flight 

defined as, 



25 

 

 

( )  s dxτ
Σ

= ∫ x  .................................................................................................... (2.11) 

where the integral is along the streamline trajectory, ∑ and s(x) is the ‘slowness’ defined 

as the reciprocal of the total interstitial velocity  

1 ( ) ( )
( )

( ) sl

A
s

v q

φ
= =

x x
x

x
 ................................................................................ (2.12) 

The variables qsl, ( )A x and ( )φ x  represent the flow rate, streamtube area, and porosity 

along individual streamlines. Note that Eq. 2.10 acknowledges that the travel time of the 

waterfront is related to the streamline time of flight through the fractional flow 

relationship. 

So far we have discussed the calculation of the arrival time for individual 

producers. The next step is to compute the desired arrival time in Eq. 2.1. This should be 

the same for all producers within group m. The desired arrival time, ,

k

d m
t for group m at 

iteration k is chosen so as to minimize the variance as follows: 

( )
,

,

2

,
1

,
,

1
 ( )min 

prod m

d m

N
k k

i m
k i

prod m
d m

t t
Nt =

−∑ q  ................................................................ (2.13) 

which results in the following, 

,

,

,

,

( )
prod mN

k

i m
k i

d m

prod m

t

t
N

∑
=

q

 ........................................................................................ (2.14) 

Note that ,d mt is recomputed at each iteration of the optimization to ensure minimization 

of Eq. 2.5. Finally, the residuals for each producer are computed using Eq. 2.1b. 
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2.3.3 Analytical Sensitivity Calculation 

The next step is to compute the coefficients of the sensitivity matrix Sij 

analytically. By Combining Eqs. 2.6 and 2.10, we can write Sij as follows,   

,

,

,

1,

1
/

fsl i

w wf l

N
l i w

ij
l j wfsl i S S

S
df

N q dS

τ

=
=

 
 
 

∂
= ∑

∂
 ............................................................ (2.15) 

Using the chain rule, the partial derivative in Eq. 2.15 can be written as 

, , ,

,

l i l i sl i

j sl i j

q

q q q

τ τ∂ ∂ ∂
=

∂ ∂ ∂
 ............................................................................................ (2.16) 

The expression 
, ,

/
l i sl i

qτ∂ ∂  represents the change in time of flight along individual 

streamlines connected to producer i because of changes in the total flow rate along the 

streamline. If we assume that the streamlines do not shift because of small perturbations 

in wells rate, then this partial derivative can be computed analytically using Eq. 2.11 and 

Eq. 2.12. 

, ,

, , , ,

  
( ) ( )l i l i

sl i sl i sl i sl i

s s
dx dx

q q q q

τ τ

Σ Σ

∂ ∂
= = − = −

∂ ∂∫ ∫
x x

 .................................................. (2.17) 

The second partial derivative in Eq. 2.16, (
jisl

qq ∂∂ /, ) represent the change in the total 

production rate along a streamline connected to producer i because of a change in the 

total rate of well j. Recall that well j can be either a producer or an injector. Let’s 

consider first the case when it is a producer. In this case, the derivative will vanish for i 

≠ j because of the assumption that the streamlines do not shift for small perturbations in 

well rates. If i=j, the well rate and the flow rate along individual streamline are related as 

follows, 

, ,i sl i sl i
q N q=

 
................................................................................................. (2.18) 
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Using Eqs.  17 and 18, we can now rewrite Eq. 2.16 as  

, ,

, 0

sl i sl i

j j

s i

j

i j
q q

i j
q

τ τ

τ

∂
= − ∀ =

∂

∂
= ∀ ≠

∂

 .................................................................................... (2.19) 

After substituting Eq. 2.19 in Eq. 2.15, we have the analytical form of the sensitivities 

with respect to production rates. 

,

0

 is a producer 

i m

ij

j

ij

t
i j

q

i j

j

S

S

= − ∀ =

= ∀ ≠  ......................................................................................... (2.20) 

In Eq. 2.20, we assume that ti,m is sensitive only to the production of producer i. The 

sensitivity of ti,m is negligible with respect to other producers. 

Similar assumptions hold when computing the sensitivity with respect to 

injection rates. Following a similar approach, the analytical sensitivity with respect to 

the injection rate can be written as follows, 

, ,

,

, ,
1

, ,

,

, ,

/

0

0 0

 is an injector  

fsl i j

w wf l

N
w

l i j
l w S S

ij fsl i j

j fsl i

ij fsl i j

S

S

df

dS
if N

q N

if N

j

τ
=

=

 
 
 

∑

= − ≠

= =  ............................................ (2.21) 

The variable Nfsl,i,j is the number of the fastest streamlines connecting  a producer i to  an 

injector j. This number represents only a portion of Nfsl,i, the total number of the fastest 

streamlines connected to the producer i. If the injector j is not connected to producer i 

through a fast streamline i.e. (Nfsl,i,j=0), then the arrival time at producer i is not sensitive 
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to a perturbation in the rate of injector j. This assumption will be examined later in the 

discussion section.  

It is worthwhile to emphasize here that the computation of the sensitivity matrix 

discussed here require a single flow simulation using either a streamline or a finite-

difference model. Use of finite-difference model will require the additional calculations 

associated with the streamlines and time of flight. In contrast, if we compute the 

sensitivity matrix by numerical perturbation, it will require 
injprod NN ++1  simulation 

runs if both production/injection rates were optimized.  Thus, analytical computation of 

sensitivity matrix can lead to a substantial savings in computation time.      

 

2.4 Application and Discussion 

In this section, we first use the 2D homogenous case discussed before to examine 

the validity of the assumptions made for the analytical sensitivities in Eqs. 2.20 and 2.21 

and their impact on the convergence of the solution. We then examine the impact of 

mobility ratios on the rate optimization process. Next, we illustrate our proposed 

approach using an application to smart wells with inflow control valves (ICV). Finally, 

the feasibility of our approach is demonstrated through a field example.  

 

2.4.1 Sensitivity Comparisons and Convergence Behavior: 2D Homogeneous 

Example 

We first examine with the validity of the assumptions in the analytical sensitivity 

computations (Eqs. 2.20 and 2.21) by comparison with the numerical perturbation 

method.  We have assumed that the streamlines do not shift significantly because of 

small local perturbations in rates. Also, the waterfront arrival time at producer i will be 

mainly sensitive to production at producer i and relatively insensitive to others. Table 

2.2 shows the sensitivity of the arrival time at the nine producers with respect to their 

production rates using the numerical perturbation method.  



 

 

 

 

2
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Table 2.2 Sensitivity of arrival time at producers with respect to production rates 

ijS  j = 1 j = 2 j = 3 j = 4 j = 5 j = 6 j = 7 j = 8 j = 9 

i = 1 -1.7098 -0.0147 0.0242 -0.0179 0.0411 0.0334 0.0225 0.0321 0.0283 

i = 2 -0.1193 -2.7960 -0.1155 0.0378 -0.0177 0.0460 0.0136 0.0152 0.0088 

i = 3 0.0198 -0.0149 -1.7095 0.0256 0.0389 -0.0135 0.0258 0.0302 0.0160 

i = 4 -0.1201 0.0455 0.0184 -2.8039 -0.0180 0.0193 -0.1228 0.0428 0.0076 

i = 5 -0.4493 -0.3045 -0.4479 -0.3092 -3.5780 -0.3014 -0.4511 -0.3050 -0.4584 

i = 6 0.0136 0.0418 -0.1179 0.0088 -0.0194 -2.7978 0.0125 0.0401 -0.1255 

i = 7 0.0184 0.0340 0.0318 -0.0227 0.0384 0.0345 -1.7170 -0.0171 0.0139 

i = 8 0.0136 0.0178 0.0180 0.0368 -0.0185 0.0456 -0.1232 -2.7990 -0.1265 

i = 9 0.0302 0.0310 0.0227 0.0299 0.0402 -0.0170 0.0221 -0.0167 -1.7124 
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The shaded values represent the sensitivity of the arrival time of a specific 

producer to its production rate. Clearly, these elements are one to two orders of 

magnitude higher than the off-diagonal elements which have been neglected in our 

analysis.  Similarly for the injection wells we assume in Eq. 2.20 that if there is no 

connection between the injector j and the producer i, then the sensitivity of the arrival 

time at the producer i is negligible with respect to injector j. To illustrate this, Figure 

2.12 shows the streamline patterns for the 2D homogenous example at the first iteration 

during optimization. Injector I1 is connected only to four producers: P1, P2, P4, and P5. 

The sensitivity of the arrival time with respect to injection rates computed using the 

numerical perturbation method is summarized in Table 2.3. A small perturbation in the 

injection rate of I1 has a sizable impact only on the arrival times at P1, P2, P3, and P4.   

Same behavior is observed for the other injectors. 

 

 

Figure 2.12 Streamlines: 2D homogenous example  
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Table 2.3 Sensitivity of arrival time at producers with respect to injection rates 

ijS  j = 1 j = 2 j = 3 j = 4 

i = 1 -0.2953 -0.0297 -0.0285 -0.0306 

i = 2 -0.7248 -0.7258 -0.0682 -0.0719 

i = 3 -0.0308 -0.2976 -0.0295 -0.0320 

i = 4 -0.7253 -0.0715 -0.7230 -0.0724 

i = 5 -1.7683 -1.7704 -1.7675 -1.7706 

i = 6 -0.0703 -0.7260 -0.0693 -0.7269 

i = 7 -0.0316 -0.0324 -0.2951 -0.0328 

i = 8 -0.0705 -0.0718 -0.7232 -0.7279 

i = 9 -0.0299 -0.0299 -0.0291 -0.2963 

 

 

Next, we briefly examine the convergence characteristics of the minimization 

using the analytical sensitivities. As expected, an accurate calculation of the sensitivities 

using the numerical perturbation generally leads to faster convergence and less iterations 

as shown in Figure 2.13a. For the 2D homogeneous, it requires 5 iterations to minimize 

the norm of the residuals to 0.02. In contrast, the analytical sensitivities require 8 

iterations to minimize the norm of the residuals to 0.09. However, if we compare the 

associated costs, the numerical method requires 71 simulation run (13 simulation run / 

iteration) whereas the analytical method requires only 8 (one simulation run / iteration) 

as shown in Figure 2.13b.  This clearly demonstrates the potential computational 

advantage of our method for large-scale field applications. 
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a. Comparison in terms of numbers of iterations 

 

b. Comparison in terms of numbers of simulation runs 

 

 Figure 2.13 Comparison between analytical and numerical sensitivities  
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2.4.2 Impact of Mobility Ratio: 2D Heterogeneous Example 

We have seen that the optimal rates do not change with time significantly in 

Figure 2.10a and b when M=1. We now examine the impact of changing M on the 

optimization process. We will use the same 2D heterogeneous example described in 

Figure2.7 for two different mobility ratio displacements, M=0.25 and 10. 

For favorable mobility ratio (M=0.25), Osako et al. (2004) showed that the 

transverse flux associated with viscous cross flow is generally quite significant. This 

requires updating the pressure field more frequently. We performed the optimization at 

multiple time intervals of equal size viz. 100 Days. At each time interval, the pressure 

field is updated, the streamline and time of flight are recomputed. The optimization is 

then carried out using the new sensitivities.  Figure 2.14a and b show the optimization 

results for M=0.25.  A higher variability in well rates can be observed here compared to 

the unit mobility ratio case in Figure 2.10a and b. The optimized water arrival when 

M=0.25 is around 950 Days.  For the unfavorable mobility ratio case (M=10), the cross 

flow is not significant and we require fewer pressure updates.
16

 Figures 2.15a and b 

show that the rates are almost constant throughout the optimization process. The 

optimized water arrival occurred at 350 Days.  
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a. Total Fluid Rate 

 

b. Water Injection Rate 

 

Figure 2.14 Production/injection rates after rate optimization, M=0.25: 2D 

heterogeneous example 
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a. Total fluid rate 

 

b. Water injection rate 

 

Figure 2.15 Production/injection rates after rate optimization, M=10: 2D 

heterogeneous example 
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To summarize the effects of mobility ratio, for favorable mobility ratios we need 

to perform the optimization at multiple time intervals to account for pressure updates. 

The selection of the time step size depends, among others, on transverse fluxes arising 

from mobility and unsteady state effects according to guidelines provided by Osako et 

al. (2004). 

 

2.4.3 A Smart Well Example 

This example demonstrates the applicability of our approach to mange waterfront 

using smart wells with inflow control valves (ICV). The example follows closely from 

that of Brouwer et al. (2001) where the goal is to counteract the adverse impact of a high 

permeability streak causing premature water breakthrough during waterflooding. 

The example consists of a two dimensional reservoir modeled with 50x50x1 

gridblocks. The dimensions of each gridblock are, ∆x=∆y=∆z= 33ft, and the porosity is 

assumed to be constant and equals to 0.225. The reservoir has a permeability of 100 md 

except in the middle where there is a permeability streak of 400 md. The width of this 

streak is 10 gridbocks and it extends throughout the reservoir from east to west. The 

wells are placed such that the flow direction is parallel to the high permeability streak as 

shown in Figure 2.16. There are two wells: 1 producer and 1 injector. Both wells are 

completed as smart-horizontal wells with 50 controllable segments (ICVs) for each well. 

Each griblock along the well path represents a segment and will be treated as an 

individual well for flow simulation purposes. Thus, we will consider optimizing 100 

wells: 50 producers and 50 injectors. As a base case, we assume that each segment has 

an equal rate of 100 RB/D for both wells. Obviously, the segments crossing the high 

permeability streak will result in an early water arrival as shown in Figure 2.17a. The 

water reaches the producer in 350 days while the recovery is 48% of OIIP. Our aim is to 

improve the sweep efficiency though optimizing the rates of the individual segments to 

equalize the water front arrival times. The results after optimization are shown in Figure 

2.17b. We have been able to delay the water arrival by about 200 days and reach to 
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almost an even water front at arrival time. The recovery at breakthrough is improved by 

32%, a very significant increase.  

 

 

 

Figure 2.16 2D example for smart wells optimization 

 

 

 

a. Prior to rate optimization, water arrival at 350 days, recovery = 48% 

 

 

b. After rate optimization, water arrival at 575 days, recovery = 80% 

 

Figure 2.17 Oil saturation at arrival time: 2D smart well example 
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The water cut history for each segment before and after the optimization is 

presented in Figure 2.18a and b. Clearly, the rate optimization effectively diminishes 

the impact of the high permeability streak. After optimization all segments water out 

almost at the same time. The optimization was performed for one time interval as we 

assumed M=1. Throughout the optimization process the total production rate is kept 

constant and is equal to the field injection rate. The upper bound for injection/production 

for each segment is set at 500 RB/D, and the lower bound is zero RB/D. The optimized 

injection/production rates for each segment are presented in Figure 2.19a and b. The 

results are quite intuitive. The algorithm suggests shutting in the segments that lie 

primarily on the high permeability streak and assigning higher rates for segments located 

towards the toe or the tail of the horizontal section. Allocating rates in such manner 

helps equalize the time of flight for the streamlines and leads to almost an equalized 

front arrival at the producer.  Similar observations were reported by Brouwer et al. 

(2001).  

 

2.4.4 A Field Example 

We have applied our approach to a CO2 pilot project area in the Goldsmith San 

Andres Unit (GSAU), a dolomite formation located in west Texas. The pilot area covers 

around 320 acres with an average thickness of 100ft. It consists of nine inverted 5-spot 

patterns and has over 50 years of production history before the initiation of the CO2 pilot 

project in 1996.  Extra wells located outside the pilot area were included in this study to 

account for correct boundary conditions. The extended study area was descretized into 

58x53x10 mesh or a total of 30,740 grid cells containing 11 water injectors and 31 

producers. The porosity field, shown in Figure 2.20a, is obtained by a Sequential 

Gaussian Simulation using the well log and seismic data. The permeability field, shown 

in Figure 2.20b, is generated via a cloud transform based on the porosity-permeability 

relationship.  In this example, we have only two phase flow because the reservoir 

pressure is kept above the bubble point pressure during the waterflood. 
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a. Prior to rate optimization 

 

b. After rate optimization 

Figure 2.18 Water cut profile for 50 segments along the horizontal section: smart 

well example 

 

 

 

0.00

0.20

0.40

0.60

0.80

1.00

0 250 500 750 1000

Time (Days)

W
a
te

r 
C

u
t

 

0.00

0.20

0.40

0.60

0.80

1.00

0 250 500 750 1000
Time (Days)

W
a
te

r 
C

u
t



40 

 

 

 

                         

19a. Total fluid production rate 

 

                                      

19b. Water injection rate 

Figure 2.19 Total fluid production and injection after rate optimization: smart 

well example 
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a. Porosity distribution 

 

 

b. Permeability distribution 

 

Figure 2.20 Porosity and permeability distribution: field example 

 

 

We used the actual field production/injection history during the first 14 years as 

the base case for our optimization. Our goal is to show that our approach will suggest a 

new production strategy resulting in a better sweep. To account for the changing 

production rate and different starting times of the injection and production wells, 7 

pressure time-steps were used during the first 14 years. At the beginning of each time 

interval, we start with the base case production strategy and then implement our 

approach. The optimization was performed only on the production wells, while injection 

wells were kept the same as the base case controlled by the bottom-hole pressure. The 

production wells were subdivided into different groups, with each group having a 
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desired arrival time defined as the average of arrival times for the wells in the group as 

discussed in the mathematical formulation section. The well groups are chosen in the 

following manner: 

• Compute the arrival time for each producer as the average time of flight of the 

fastest streamlines to the producer.  For the field case, we took the arrival time as 

the time required to travel from the injector to the producer. This is unlike the 

previous cases, where it was computed as the travel time from the waterfront to 

the producer. This revised definition now allows us to continue the optimization 

even after water breakthrough.   

• Identify the injector that contributes most of the fastest streamlines to each 

producer. 

• Choose the producers with the same contributing injector as one group. 

This process is repeated every time-step because of changing production/injection rates 

and infill drilling. To illustrate the procedure, Figure 2.21a shows three groups of 

production wells connected to three injectors: I1, I5, and I11. These groups were 

selected for the first time-step in the first iteration. Because of changing field condition 

during the second time-step and injector I2 being activated, the groups connected to I1 

and I11 were changed as shown in Figure 2.21b. 
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a. Wells groups before activating injector I2: first time-step 

 

b. Wells groups after activating injector I2: second time-step 

Figure 2. 21 Wells groups at the first and second time-steps for the field example. 

(inactive wells are shown in grey) 
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We implemented three operational constraints throughout the optimization 

process: (i) Field injection and total fluid production to be kept the same as the base 

case. (ii) Well total production should not to exceed 800 STB/D. (iii) Well flowing 

bottom-hole pressure should not go below 1000 psi. Those constraints were met during 

the optimization process as shown in Figures 2.22 and 2.23.  

 

 

Figure 2.22 Field water injection before and after optimization acknowledging 

field constraints  
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a. Flowing bottom hole pressure 

 

b. Total fluid production 

 

Figure 2.23 Performance of 33 wells after optimization: field example 

 

The optimization resulted in delaying of the field water breakthrough by almost 3 

years and reduced the water cut as shown in Figure 2.24a. More cumulative oil was 

produced during the period of optimization resulting in a higher ultimate recovery as 

shown in Figure 2.24b. We can reach the same conclusions if we examine the oil 

saturation profile before and after the optimization. 
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a. Water cut vs. time 

 

b. Cumulative oil production vs. time 

 

Figure 2.24 Performance plots for the field example 

 

 

Difference maps between the base and optimized case in terms of oil saturation 

are shown in Figure 2.25, indicating the bypassed oil that was recovered because of 

optimization. Figure 2.26 shows the performance of P28 and 31 before and after 

optimization. Those wells belong to the same group as shown in Figure 2.21 and they 

located in an area where there has been a significant improvement in oil recovery as 

shown in Figure 2.25. The performance shows that the improvement occurred because 

of reallocating rate in that area. Producer 28 was produced at a lower rate than the base 

case while P31 was produced at a higher rate as shown in Figure 2.26b. 
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Figure 2.25 Difference maps in terms of oil saturation between the base case and the optimized case (So, base - So, 

optimized) @ 5000 days: field example 
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a. Flowing bottom hole pressure vs. time 

 

b. Total fluid production rate vs. time 

 

Figure 2.26 Performance plots for P28 and P31 : field example 
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It took about 30 minutes to perform the optimization on a Pentium
®
 Dual CPU 3 

GHz desktop. The simulation runs were performed using a two phase streamline 

simulator. 

 

2.5 Chapter Summary 

In this chapter we proposed a practical and efficient technique to optimize 

injection and production rates via flood front management to maximize the sweep 

efficiency during waterflood. Our work relies on equalizing the arrival times of the 

waterfront at all producers within selected sub-regions of a water flood project. The 

approach is computationally efficient and can be applied using both finite-difference and 

streamline simulators. Some specific conclusions from this study can be summarized as 

follows:  

1. Streamline time of flight provides an effective way to optimize waterflood 

through equalizing the arrival time at the producers. The streamline approach also 

facilitates analytical computation of the arrival time sensitivities with respect to 

production and injection rates. 

2. Analytical computation of sensitivities requires only one flow simulation 

regardless of the number of injectors and producers and leads to an efficient 

optimization algorithm. The assumptions used to derive the analytical sensitivities 

were verified by comparing the results with the numerical perturbation method.  

3. We have validated our approach using 2D homogenous and heterogeneous cases 

and also by application to smart wells with inflow control valves. In all these 

cases, the optimization has led to a significant delay in water breakthrough with 

corresponding increase in sweep efficiency and oil recovery. 

4. The power and practical feasibility of our method has been demonstrated by a 

field example from the Goldsmith San Andres Unit (GSAU) in west Texas. We 

optimized the production rates for 31 wells while accounting for changing field 

condition such as shut-in and infill drilling. 

5. The optimization approach presented here is specific to the geological model used 

for flow simulation. However, because of its computational efficiency, a 
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stochastic approach can be coupled with our method by performing the 

optimization on multiple realizations and quantifying the uncertainty associated 

with the optimization result. 
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CHAPTER III 

OPTIMAL RATE UNDER GEOLOGIC UNCERTAINTY
*
 

 

In this chapter, we propose a practical and efficient method for computing optimal 

injection and production rates given multiple geologic models. The approach relies on 

equalizing arrival time of the waterfront at all producers for maximizing the sweep 

efficiency which was explained in the previous chapter. There are four major 

characteristics that distinguish our approach from previously published works. First, we 

use streamlines to efficiently and analytically compute the sensitivity of the arrival times 

with respect to well rates.  Second, we account for geologic uncertainty via two 

optimization frameworks: (i) a stochastic framework that relies on a combination of the 

expect value and variance of a performance measure from multiple realizations for risk 

assessments and (ii) a min-max problem formulation that minimizes the worst case 

scenario. Third, analytical forms for gradients and Hessian of the objective functions are 

derived which make our optimization computationally efficient for large field cases. 

Finally, the optimization is performed under operational and facility constraints using a 

sequential quadratic programming approach. We propose a measurement-based 

optimization that allows us to assign specific weights to each realization involved in the 

optimization process based on observed data. 

The organization of this chapter is as follows. First, we outline the major steps of 

the proposed approach. Next, we discuss the underlying mathematical formulation. These 

include the objective function formulation, minimization, and measurements-based 

optimization (MBO). Finally, we demonstrate the power and feasibility of our approach 

using a 2D heterogeneous case and a synthetic field example.  

 

 

                                                
*Part of this chapter is reprinted with permission from “Optimal Rate Control Under Geologic 

Uncertainty,” by Ahmed H. Alhuthali, Akhil Datta-Gupta, Bevan Yuen, and Jerry P. Fontanilla, paper 

SPE 113628 presented at the 2008 SPE/DOE Symposium on Improved Oil Recovery, Tulsa, Oklahoma, 

20-23 April 2008. Copyright 2008 by the Society of Petroleum Engineers. 
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3.1 Approach  

Our approach relies on equalizing arrival time of waterfront at multiple producers 

to enhance sweep efficiency in a waterflood project accounting for geologic uncertainty. 

The approach is general and can be implemented using both finite-deference and 

streamline simulators. We assume that multiple geologic realizations are readily available 

and the optimization is limited only to wells rates. It doesn’t include well placement and 

configuration as control variable. The major steps of our approach are summarized in 

Figure 3.1, and are outlined below. 

• Flow simulation and streamline tracing. The first step is to conduct flow 

simulation for each geologic realization. If a finite-difference simulator is used, 

then we need to trace the streamlines using the fluid fluxes derived from flow 

simulation (Datta-Gupta and King 2007). 

• Compute the travel time residuals, analytical sensitivities, and analytical 

Jacobian. The second step is to compute the residuals which quantify the misfit 

between the desired arrival time and the computed arrival time at each producing 

well for every geologic realization. In addition, this step involves the analytical 

computation of the arrival time sensitivities for all realizations. The sensitivities 

are defined as the partial derivatives of arrival time with respect to wells rates.  It 

is important to point out that in our approach the sensitivity computations require 

only one simulation run per realization and can be carried out simultaneously with 

the flow simulation. The sensitivities are then used to compute the Jacobian which 

is defined as the gradient of the residuals. 

• Compute Analytical gradient and Hessian. The next step is to use the analytical 

Jacobian and the residuals to compute the gradient and the Hessian of the 

objective function. The objective function has a stochastic or a min-max form and 

will be discussed in detail in the mathematical formulation section. 

• Minimization and Optimal Rate Allocations. Once the gradient and the Hessian 

are available, we can use standard optimization algorithms to minimize the 

objective function. In our study, we used the Sequential Quadratic Programming 

(SQP) technique (Nocedal and Wright 2006) to generate the required changes in 

rates to minimize the objective function subject to appropriate field constraints. 
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This step and the above-mentioned steps are repeated until a pre-defined stopping 

criterion on the objective functions or the rates is met.  

• Mobility Effects and Changing Field Conditions.  Depending upon the field 

conditions, occasionally we update the streamlines and perform the optimization 

again to account for mobility effects and changing field conditions.  

 

 

 

Figure 3.1 Flow chart to show the major step in the optimization approach 

 

 

3.2 Mathematical Formulation 

In this section, we discuss the underlying mathematical formulation behind the 

proposed optimization scheme. First, we present the formulation of the objective function 

in both stochastic and min-max forms. We then discuss the minimization algorithm and 

the derivation of the analytical gradient and the Hessian of the objective function. Finally, 

we discuss the measurements-based optimization to account for field production history. 
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3.2.1 Objective Function Formulation  

Our main objective is to maximize the sweep efficiency in waterflooding project 

through rate allocation. We accomplish this by equalizing the arrival time of the 

waterfront at the producers. Mathematically, this requires minimizing an appropriately 

defined misfit function for a specific group of producers. For a single realization j, we 

can formulate the misfit function as the square of the l2 norm of the residuals, 

( )
, 2

, ,
1 1

( ) ( )
group prod mN N

T

j j d m i m
m i

t t
= =

= −∑ ∑e e q q  ................................................................ (3.1) 

 The arrival time residuals are represented by the vector e in Eq. 3.1. The variable mit ,  

represents the calculated arrival time at well i, belonging to group m. The desired arrival 

time,  mdt ,  for the well group m is given by the arithmetic average of mit ,  for each 

iteration during the optimization. The vector q contains the control variables and has a 

dimension of n, the number of well rates to be optimized.   

To address geologic uncertainty, Eq. 3.1 needs to be generalized to handle 

multiple realizations. In this paper, we will use two forms of the objective function to 

address uncertainty. The first one is a stochastic formulation in terms of an expected 

value of the misfit in Eq. 3.1 for multiple realizations penalized by its standard deviation 

as follows, 

( ) =  T Tf r σ   Ε +   q e e e e   ............................................................................ (3.2) 

Equation 2 can derived within the decision analysis framework as shown in Appendix-

A. The decision analysis framework and concepts have been used previously in the oil 

industry (Bickel et. al. 2006; Guyaguler and Horne 2001; Simpson et. al. 2000; Yeten et. 

al. 2003). The variable r is the risk coefficient that weights the trade off between the 

expected value and the standard deviation. A positive r means that the decision maker is 

risk averse, while a negative r means that the decision maker is risk prone. A zero risk 

coefficient indicates that the decision maker is risk neutral.
 
In this study we will limit our 
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discussions to positive and zero risk attitude coefficients. The expected value and the 

standard deviation are given by the following equations, 

( )

1

1/ 2
2

2

1

( )

Nr
T T

i i
i

r

T T T T

N

Varσ

=

 Ε = ∑ 

     = = Ε − Ε       

e e e e

e e e e e e e e

 ............................................. (3.3) 

The variable Nr in Eq. 3.3 refers to the number of realizations used in the optimization.  

Our goal is to minimize Eq. 3.2 by changing q, the injection/production rates, subject to 

multiple equality and inequality constraints imposed by the operational restrictions and 

facility limitations. Thus, 

( )

( )

 min 

Subject to

                   0              

                   ( ) 0              

Where  :   and   :  
n z n y

f

h g

=

≤

ℜ → ℜ ℜ → ℜ

q

q

h q

g q

 ...................................................... (3.4) 

The superscripts z and y represent the number of equality and inequality constraints 

respectively. 

The second form of the objective function involves a min-max optimization 

scheme. This approach attempts to optimize the worst-case scenario. The problem can be 

formulated as follows (Brayton et al. 1979), 

( )

 max  min  

Subject to

                   0              

                   ( ) 0              

Where  :   and   :  

T

i i

n z n y

i

h g

=

≤

ℜ → ℜ ℜ → ℜ

e e

q

h q

g q

 .................................................... (3.5) 
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For our application, we assume that the constraints are linear and they have the following 

forms: 

+h(q) = Aq b

g(q) = Cq + d
 ................................................................................................. (3.6) 

3.2.2 Objective Function Minimization  

In this section, we discuss the approaches to minimize Eq. 3.4 and 3.5. Equation 4 

can be minimized using the sequential quadratic programming (SQP) algorithm for non-

linear constrained optimization (Nocedal and Wright 2006).  The main concept behind 

the approach is to formulate the problem into a series of quadratic programming (QP) 

sub-problems which can be solved at each major iteration k. The QP sub-problem is 

mainly a quadratic approximation of the Lagrangian of Eq. 3.4 which is given in the 

following form: 

( )( , , ) ( ) ( )
L K

T T

L KL f= + +q λ λ q λ h q λ g q  ................................................................. (3.7) 

The vectors λL and λK refer to the Lagrange multipliers corresponding to the equality 

constraints and the Karush-Kuhn-Tucker multipliers corresponding to the inequality 

constraints. After linearizing the constraints using a Taylor approximation, the QP sub-

problem can be written as: 

( ) ( ) ( )

( ) ( )

21
 min 

2

Subject to

                   0              

                   ( ) ( ) 0     

k T k k

q q

T
k k

q

k k T

q

f f Lδ δ δ
δ

δ

δ

+ ∇ + ∇

+ ∇ =

+∇ ≤

q q q q q q
q

h q h q q

g q g q q

 ............................................... (3.8) 

Equation 8 indicates that we need to evaluate the following terms at each iteration to 

minimize Eq. 3.4: 

• The objective function : ( )kf q  

• The gradient of the objective function : ( )k

q
f∇ q  
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• The Hessian of the Lagrangian: ( )2 k

q
L∇ q . This term is equal to the Hessian of 

the objective function, ( )2 k

q
f∇ q , given that the constraints are linear. 

• 
The gradient of the constraints: ( )k

q
∇ h q  and  ( )

k

q∇ g q
 

The objective function evaluation relies mainly on the computation of the 

residuals which we will discuss later. The gradient of the constraints are straightforward 

because we assumed that they are linear with respect to the control variable. The 

computation of the gradient and Hessian of the objective function will be discussed in the 

next section. 

The second form of the objective function that we are interested in is a min-max 

problem given by Eq. 3.5. This problem can be reformulated into an equivalent linear 

programming problem as follows (Brayton et. al. 1979). 

( )

 min 

Subject to

                   ( )  

                   0              

                   ( ) 0              

Where  :   and   :  

 

i

n z n y

f

h g

γ

γ≤

=

≤

ℜ → ℜ ℜ → ℜ

q

q

h q

g q

 ...................................................... (3.9) 

fi(q) is equal to 
i

T

i
ee which represents the residuals obtained from realization i and will be 

treated as a constraint in Eq. 3.9. It will be approximated using Taylor series expansion.  

( ) ( ) ( )T

i i i
f f fδ δ+ = +∇q q q q q ..............................................................................(3.10) 

This requires the computation of the gradient of fi(q) for each realization involved in the 

optimization. The gradient can be evaluated using the following expression: 

( ) 2T T

q i q i i i i
f  ∇ = ∇ = q e e J e  ..........................................................................(3.11) 
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The term Ji refers to the Jacobian Matrix for realization i. Later we will show that the 

Jacobian Matrix can be computed analytically without additional simulation runs. 

 

3.2.3 Objective Function Evaluation  

The objective function evaluation in Eq. 3.8 and 3.9 relies on the computation of 

the residuals for each realization. We introduced the general form for residuals in Eq. 3.1, 

but we haven’t explained how to calculate the waterfront arrival time and the desired 

arrival time.  

The calculated arrival time is given by the following expression. 

( )
,

,

, ,
1,

1
/

fsl i

w wf l

i m

N
w

l i
l wfsl i S S

df
t

N dS
τ

=
=

 
 
 

= ∑q  ...........................................................(3.12) 

In the above expression, Nfsl,i  represents the number of the fast streamlines connected to 

the producer i belonging to group m.  We choose a set of the fast streamlines which 

consists of a fraction of 
,sl i

N , the total number of streamlines connected to the producer i. 

The variable τ  represents the usual streamline time-of-flight. The desired arrival time for 

a group of producers is computed as the arithmetic average of the calculate arrival times 

at the producers within this group. 

,

,

,

,

( )
( )

prod mN

i m
i

d m

prod m

t

t
N

∑
=

q

q  ........................................................................................(3.13) 

In the previous chapter, we provided a complete discussion on the derivation of Eq. 3.12 

and 3.13. 

 

3.2.4 Objective Function Gradients and Hessian 

The gradient of the objective function in Eq. 3.2 is given by the following 

expression: 
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( )
( )

,
( ) 2 2  

T T

T

q T
f r

σ
 ∇ = Ε + 

Cov e e J e
q J e

e e
 .........................................................(3.14) 

The derivation of Eq. 3.14 is given in Appendix-B. The first term in Eq. 3.14, E[J
T
e], 

represents the expected value of the gradient of the misfit function in Eq. 3.1 computed 

for each realization. The second term contains Cov(e
T
e, J

T
e) which represents the cross-

covariance vector of the misfit and its gradient computed for each realization. For 

illustration, a single element with an index i in the cross covariance vector is given by the 

following expression: 

( ) ,( )T T

i i
Cov Cov= e e J e  .................................................................................(3.15) 

The expression in Eq. 3.15 indicates that an element i can be obtained by computing then 

cross covariance between two vectors. The first term is the misfit function in Eq. 3.1 for 

each realization and the second term is the i
th

 element of the gradient evaluated for each 

realization.  

The Hessian of the objective function in Eq. 3.2 is given by, 

( ) ( )

( ) ( )

2

3

4 , 2 ,
( ) 2   

( )

4  ,  ,
                                  

( )

T T T T

T

q T

T T T T T

T

f r

r

σ

σ

+
 ∇ = Ε + 

−

Cov J e J e Cov e e J J
q J J

e e

Cov e e J e Cov e e J e

e e

 ..........................(3.16) 

The derivation of Eq. 3.16 is presented in Appendix-C. The first term, E[J
T
J]  is the 

expected value of Hessian of the square of the l2 norm of the residuals computed for each 

realization. Cov(J
T
e, J

T
e) is the covariance matrix for the gradients vectors  obtained 

from each realization. A single element in this matrix can be obtained using the following 

expression: 

( ) ( ) ,( )T T

ij i j
Cov Cov= J e J e  ...........................................................................(3.17) 
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This expression means that an ij-element where i is the row index and j is the column 

index, is evaluated by computing the covariance between two series of numbers. The first 

one represents the i
th

 element of each gradient vector, and the second series represents the 

j
th

 element of each gradient vector. Cov(e
T
e, J

T
J) is a cross covariance matrix between 

the square of the l2 norm of the residuals evaluated for each realization  and the Hessian 

of the l2 norm of the residuals  computed for each realization. An element in this matrix, 

Covij, is computed using the following expression: 

( ) ,( )T T

ij ij
Cov Cov= e e J J  ................................................................................(3.18) 

The above expression indicates that a single element located at ij-index is computed by a 

cross-covariance between two series of numbers. The first series is the square of the l2 

norm for each realization, and the second one is the ij-elements of the Hessian matrix 

computed for each realization.  

 

3.2.5 Jacobian Matrix and Analytical Sensitivity Calculations  

In this section, we show the computation of the Jacobian matrix, J, for each 

realization.  The Jacobian is given by the following expression: 

q
=∇J e............................................................................................................(3.19) 

A single element in the residual vector, e, can be written as follows: 

, , ,
( ) ( )

i m d m i m
e t t= −q q  ...........................................................................................(3.20) 

Equation 20 refers to the arrival time residual at producer i. By combining Eq. 3.13, 

3.19, and 3.20 It can be shown that a single element in the Jacobian matrix can be written 

as, 

1

1 GroupN

ij kj ij
k

Group

J S S
N =

 
= −∑ 
  

 .......................................................................(3.21) 
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The sensitivity coefficient Sij quantifies the changes in arrival time at producer i 

because of small changes in the rate of well j. It is given by 

, ( )i m

ij

j

t
S

q

∂
=

∂

q
. ...............................................................................................(3.22) 

In the previous chapter, we derived an analytical form for these sensitivities. If the 

derivative is taken with respect to the rate of a producer, the sensitivity coefficient is 

given by the following expression: 

,

0

 is a producer 

i m

ij

j

ij

t
i j

q

i j

j

S

S

= − ∀ =

= ∀ ≠  .........................................................................................(3.23) 

 In Eq. 3.22, we assume that ti,m is sensitive only to the production of producer i. The 

sensitivity of ti,m is considered to be negligible with respect to the rates of other 

producers. 

If the derivative is taken with respect to the rate of an injector, the sensitivity coefficient 

can be written as follows: 

, ,

,

, ,
1

, ,

,

, ,

/

0

0 0

 is an injector  

fsl i j

w wf l

N
w

l i j
l w S S

ij fsl i j

j fsl i

ij fsl i j

S

S

df

dS
if N

q N

if N

j

τ
=

=

 
 
 

∑

= − ≠

= =  .................................................(3.24) 

The variable Nfsl,i,j is the number of the fast streamlines connecting  a producer i to  an 

injector j. This number represents only a fraction of Nfsl,i the total number of the fastest 

streamlines connected to the producer i. If the injector j is not connected to producer i 

through a fast streamline i.e. (Nfsl,i,j=0), then the arrival time at producer i is not sensitive 

to a perturbation in the rate of injector j. 
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The analytical calculation of sensitivities leads to an analytical calculation of the 

Jacobian matrix for each realization.  Consequently, this leads to an analytical calculation 

of the gradient and Hessian of objective function as shown by Eq. 3.14 and 3.16. Also, it 

leads to an analytical calculation of the gradient to solve the min-max problem shown by 

Eq. 3.11. 

 It is important to emphasize that the computation of the Jacobian matrix requires 

a single flow simulation using either a streamline or a finite-difference simulator. On the 

other hand, if we compute the Jacobian matrix by numerical perturbation, it will require 

injprod NN ++1  simulation runs if both production/injection rates were optimized.  Thus, 

analytical computation of Jacobian matrix can lead to a substantial savings in 

computation time. 

 

3.2.6 Measurements-Based-Optimization  

In this section, we will discuss how to include observed measurements in the 

optimization process if they are available. Unlike some previous approaches where 

measurements are used to history match the reservoir model, we propose a method to 

incorporate production data in the optimization by giving different weight to multiple 

realizations. Previously, we assumed that all realizations are equiprabable and has equal 

weights, 1/Nr, which is implied by Eq. 3.3. The question is “can we assign different 

weights for each realizations based on their closeness to the observed data?” Under such 

conditions, the expected value of the square of l2 norms of the residuals will be given as 

follows,  

1

1

1

Nr
T T

i i i
i

Nr

i
i

w

w

=

=

   Ε =∑   

=∑

e e e e

 ......................................................................................(3.25) 

This can be achieved through the application of the Bayes’ theorem. Let’s denote P(Xi) as 

the prior distribution of model parameters Xi. Also, let’s denote P(d|Xi) as the likelihood 

of the observed measurements d given that we have a reservoir model Xi.  The weight wi, 

can be written as 
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1

( ) ( | )
( | )

( ) ( | )
r

i i
i i N

j j
j

P X P d X
w P X d

P X P d X
=

= =

∑
 ............................................................(3.26) 

In the above expression, we assign weights based on a conditional probability of the 

model parameters given that we have measurements available. If we assume that the prior 

models are equiprobable, we can write the weights in terms of the likelihoods only.   

1

 ( | )

( | )
r

i
i N

j
j

P d X
w

P d X
=

=

∑
 .........................................................................................(3.27) 

The likelihoods represent the distribution of errors between the observed 

measurements and the simulation response g(Xi). The errors are assumed to be additive 

and Gaussian with zero mean and covariance Cd. 

11
( | )   ( ( )) ( ( ))

2

T

i i d i
P d X Exp d g X C d g Xα − 

− − − 
 

 ..........................................(3.28)  

By substituting Eq. 3.28 into Eq. 3.27, we can write the weights as follows, 

1

1

1

1
 ( ( )) ( ( ))

2

1
 ( ( )) ( ( ))

2

r

T

i d i

i N
T

j d j
j

Exp d g X C d g X

w

Exp d g X C d g X

−

−

=

 
− − − 
 =
 

− − −∑  
 

 ................................................(3.29) 

The above expression is general enough to include all kind of measurements. In this 

paper, we will present an example of including 4D seismic data in the optimization 

process. It is important to point out that the weights can be continuously updated as more 

measurements become available. 

 

3.3 Applications and Discussion 

In this section, we first use a 2D heterogeneous example to illustrate our approach 

for addressing geologic uncertainty. Next we demonstrate the practical viability of the 

approach using a synthetic field example based on a giant middle-eastern field. Finally, 
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we revisit the 2D heterogeneous case to illustrate the impact of incorporating observed 

measurements in the optimization scheme and how that can facilitate decision-making. 

 

3.3.1 Illustration of the Approach: A 2D Heterogeneous Example  

This example case involves four producers and one injector arranged in a five-

spot pattern (Figure 3.2). The porosity is fixed at 0.225 and the permeability is spatially 

heterogeneous. The reservoir has a dimension of 1716x1716x33ft and is discretized into 

50x50x1 grid blocks. The field total production rate equals to 2520 RB/D. For the base 

case, we divide the total production equally among all producers. The optimization is 

performed only on the producers under the following constrains: (i) the total production 

should be kept the same (ii) the maximum individual well total production is 1100 RB/D 

and (iii) the minimum individual well total production is 150 RB/D. We generated 182 

realizations of the permeability field out of which 32 realizations are used for the 

optimization and the rest for validation purposes. A sample of the 32 realization is shown 

in Figure 3.3. These realizations were generated using  sequential Gaussian simulation 

with strongly anisotropic variograms. 

 

 

 

Figure 3.2 Well locations: 2D heterogeneous case 
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Figure 3.3 Multiple realizations of permeability (md): 2D heterogeneous case 

 

 

First, let’s start with examining the impact of different number of realizations on 

the optimization. We assume to be risk-neutral (r =0) and perform the optimization using 

the following number of realizations: 1, 2, 4, 8, 16, and 32. The total well fluid rates after 

optimization are shown in Figure 3.4. Although the rates obtained from each 

optimization case are different, the general trends of high and low productions are the 

same for all cases. It is somewhat expected because all the realizations were drawn from 

the same distribution and they have similar permeability trends.  

1 10 100 1000 10000 1000000 1 10 100 1000 10000 1000000
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Figure 3.4 Optimized rates using different number of realizations (Nr): 2D 

heterogeneous case  

 

 

The impact of the optimization on the expected value and the standard deviation 

of the arrival time misfit is shown Figure 3.5. Here we have shown a comparison 

between the base case and the optimized case with 32 realizations. For this, we run the 

flow simulator for each of the 32 realizations with the base case rates and the rates 

obtained from the optimized case with 32 realizations. The results show that with the 

optimized rates we manage to reduce the expected value by almost 67% and the standard 

deviation by almost 58%. It is important to point out that the huge improvement in the 

standard deviation was achieved although we set r to be zero. This seems to indicate that 

the expected value and the standard deviation are highly correlated for the case studied.  
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Figure 3.5 Comparison between the base case and the optimized case in terms of 

expected value and standard deviation: 2D heterogeneous case, Nr = 32 

 

 

We performed additional sensitivity on the choice of r. Here, we fix the number 

of permeability realizations at 32 and choose the following value of r to be: 0, 1, 2, 3, and 

4. Recall that positive values of r indicate risk averse attitude.  We will compare the 

results with different risk attitude coefficients. We will also compare these results to the 

min-max optimization which is actually optimizing the worst case scenario. For this, we 

first perform the stochastic optimization with multiple values of r as well as the min-max 

optimization using the 32 realizations. Next, we run the forward simulation for the 32 

realizations using the rates obtained from these different optimization cases. The travel 

time residuals for each realization are then used to compute the expected value and the 

standard deviation. Figure 3.6 shows the comparison in terms of the expected value. As r 

increases, the expected value of travel time misfit increases because of the trade-off with 

the standard deviation. The min-max case, representing optimizing the worst case 

scenario has the highest expected value but still lower than the base case in Figure 3.5. 

Figure 3.7 shows that as r increases the standard deviation decreases as one might expect 

from Eq. 3.2. The standard deviation for the min-max case is only slightly lower than the 

case with r equal to zero for this example.  
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Figure 3.6 Comparison in terms of the expected value for different r and the 

worst case scenario after optimization: 2D heterogeneous case, Nr = 32 

 

 

 

Figure 3.7 Comparison in terms of the standard deviation for different r and the 

worst case scenario after optimization: 2D heterogeneous case, Nr = 32 

 

 

So far, we have seen the results of the stochastic and the min-max optimization in 

terms of the expected value of the arrival time misfit and its standard deviation from 32 

realizations. However, the min-max optimization does not address the expected value; 

rather, it tries to improve the worst case scenario. This is reflected in Figure 3.8 which 

compares the maximum of arrival time misfit for 32 realizations after optimizing with 

different r and the min-max case. The min-max case which optimizes the worst case 
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scenario has the lowest value, as expected.  However, all the optimized cases have arrival 

time misfit values that are lower than that of the base (un-optimized) case (1694370 Sq. 

days). 

 

 

 

Figure 3.8 Comparison in terms of the maximum of  the square of l2 norm of 

residuals for different r  and the worst case scenario after optimization : 2D 

heterogeneous case, Nr = 32  

 

 

Finally, we examine the impact of optimization on the sweep efficiency. Recall 

that the objective of our optimization is to maximize waterflood sweep efficiency and 

hence increase oil production and recovery. We now use the 150 realizations that were 

set aside in the beginning. Specifically, we run the flow simulator for 1500 days for these 

150 realizations using the total fluid production rates obtained from the following cases: 

 

• No control: the production wells are produced based on their productivity index. 

• Optimized case using 32 realization and r = 0. 

• Optimized case using single realization. 

• Based case: equal rates. 

 

We will present the results in terms of average cumulative oil production from 150 

realizations for each of the above cases. Figure 3.9 shows a significant increase in 
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average cumulative oil production obtained from the optimized case using 32 realizations 

and r = 0 compared to the case with no control. These results clearly show the value of 

control in waterflood projects. Figure 3.10 shows that the optimized cases will yield 

higher average cumulative oil production compared to the base case with equal rates for 

all producers.  More importantly, it shows that the optimized case using 32 realizations 

will yield a higher average cumulative oil production compared to the optimized case 

using the single realization chosen here. These results underscore the value of addressing 

geologic uncertainty in the optimization process. 

 

 

 

Figure 3.9 Comparison between the optimized case using 32 realizations and no 

control case  in terms of the average cumulative oil  production from 150 

realizations : 2D heterogeneous case, r = 0 

 

 

 

14

16

18

20

22

Optimized, Nr = 32 No Control

A
v
e
ra

g
e
 C

u
m

 O
il,

 R
B

  

x 105



71 
 

 

 

 

Figure 3.10 Comparison between the optimized case using 32 realization, the 

optimized case using a single realization, and the base case  in terms of the average 

cumulative oil  production from 150 realizations : 2D heterogeneous case, r = 0 

 

 

3.3.2 A Synthetic Field Example  

We have applied our approach to a synthetic field example based on a giant 

middle-eastern field. This field has more than four oil and gas bearing reservoirs. The 

reservoir under study is a folded anticline consisting primarily of Jurassic carbonate. 

Matrix porosity and permeability averaged 25% and 600md, respectively (Alhuthali et al. 

2005). 

The simulation model for this example is a sector model extracted from the full 

field model. It is a 3-phase black-oil model descretized into 58x36x17 mesh or a total of 

35,496 grid cells. The reservoir is under peripheral water injection. Initially, the model 

has 22 producers and 11 injectors as shown in Figure 3.11. The porosity and 

permeability fields for different layers are shown in Figure 3.12. The average porosity 

and permeability for layers deteriorate with depth as depicted by Figure 3.13. 
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Figure 3.11 Well locations: 3D synthetic field case 

 

 

 

Porosity    Permeability 

 

Figure 3.12 Porosity and permeability fields for different layers: 3D synthetic field 

case 
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Figure 3.13 Average porosity and permeability per layers: 3D synthetic field case 

 

 

It has been reported in the literature (Cosentino et. al. 2002) that part of this 

reservoir is fractured. These fractures have mainly a north-west trend as shown in Figure 

3.14. We generated multiple realizations of discrete fracture networks (DFN) using pre-

specified distributions that control fracture length, height, and azimuth inside elliptical 

fracture swarms (Al-Harbi et al. 2005). The DFN patterns are then converted to a grid-

based fracture permeability using a moving window to calculate the fracture density for 

each grid cell. The fracture density is used to enhance the matrix permeability and 

generate multiple single-permeability realizations for the synthetic field. Figure 3.15 

shows a sample of the DFN realizations and the corresponding grid-based permeability 

distribution. 
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Figure 3.14 Integrated map showing mainly fracture distribution and orientations 

after Cosentino et al. (2002) 

 

 

 

Figure 3.15 Discrete fracture network maps on the top and the corresponding 

grid-based fracture permeability maps below: 3D synthetic field case 

 

 

The optimization is performed using 10 permeability realizations and r = 0, that is 

risk-neutral conditions. It is implemented after 15 years of production when a smart-

complex well is added, making a total of 23 producers. The smart-complex well location 

and completion is shown in Figure 3.16. The well is completed horizontally towards the 

top of the reservoir, specifically the second layer. It consists of a mother-bore and two 

laterals with a total reservoir contact of about 4 km.  

 

 



75 
 

 

 

 

 

Figure 3.16 Smart-complex well completions, 2 ICVs along the mother-bore (L1 

and L2) and one ICV at the entry of each lateral (L3 and L4): 3D synthetic field case 

 

 

The well is equipped with four ICVs, two along the mother-bore and one at the 

entry of each lateral. For the purpose of the optimization, we will consider the complex 

well as four horizontal wells. The rate optimization will be performed with multiple 

equality and inequality constraints summarized as follows,  

• Voidage replacements & total production = 400M RB/D 

• Maximum  well total production = 35M RB/D 

• Maximum well total injection = 70MRB/D 

• Minimum well total production/injection = 1000 RB/D 

• Maximum complex well total production < 50M RB/D 
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Figure 3.17 Comparison between the base case and the optimized case in terms of the total fluid production: 3D 

synthetic field case 
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Figure 3.18 Comparison between the base case and the optimized case in terms of the total fluid injection: 3D 

synthetic field case
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The base case is chosen such that the production and injection rate are assigned 

based on the well productivity or injectivity indices. The complex well is assigned a 

production rate of 48M RB/D as a base case, and the total rate is distributed equally 

among the four branches. Figures 3.17 and 3.18 compare the base case rates and the 

optimized case rates. The producer numbered 23 (P23) represents the smart-complex 

well.  

The spatial distributions of rate allocation before and after optimization are 

shown in Figure 3.19 and 3.20 respectively. In terms of injection allocation, there has 

been no significant change before and after optimization on the western flank. However 

on the eastern flank, some of the injection rate was allocated from the southern injectors 

to the northern ones. In term of production allocations, there has been a significant 

change in the production rate allocation after optimization. Recall that the objective of 

the optimization is to equalize the water arrival time at all producers. For peripheral 

water injection in a homogeneous reservoir, intuitively we expect the production rates to 

increase towards the center of the field with increasing distance from the injectors. As 

we see, that is not necessarily the case for this strongly heterogeneous case. The complex 

well is produced at a total production of 43M RB/D which is lower than the base case 

rate that was assigned. 

The optimized case resulted in a reduction of the objective function by almost 

60% from the base case where rates were allocated based on well productivity indices. 

Figure 3.21 shows the decrease in the objective function with iterations.  
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Figure3. 19 Bubble map showing rate allocations for the base case, the size of the bubble represents the amount of total 

injection/production rate: 3D synthetic field case 
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Figure 3.20 Bubble map showing fate allocations for the optimized case, the size of the bubble represents the amount of total 

injection/production rate: 3D synthetic field case 
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Figure 3.21 Normalized objective function evaluation per iteration: 3D synthetic 

field case 

 

 

To examine the impact of optimization, we generated a new permeability 

distribution with the same geostatistical and fracture parameters and run the forward 

simulator for this model using the base case rate and the optimized rates for almost 2000 

days. Figure 3.22 compares the water cut before and after optimization. There has been 

a significant reduction in the water cut, especially after the optimization was 

implemented.  

 

 

Figure 3.22 Comparison between the base case and the optimized case in terms of 

water cut: 3D synthetic field case 
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To demonstrate the impact on the oil recovery, Figs. 3.23 and 3.24 show the 

cumulative oil and water production ratio after the optimization is implemented. These 

ratios are computed as follows, 

 .  ( 15 )

 .  

Cum production fromstart of optimization at years
Ratio

Total Cum production
=  ......................... (3.30) 

 

 

Figure 3.23 Cumulative oil production ratio vs. time: 3D synthetic field case 

 

 

 

Figure 3.24 Cumulative water production ratio vs. time: 3D synthetic field case 
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The numerator in Eq. 3.30 represents the cumulative production starting at 15 

years when the optimization implemented. The denominator is the cumulative 

production from the beginning. An incremental cumulative oil production of 5% is 

realized after using the optimized rates. In addition, there has been a significant 

reduction in the cumulative water production (about 30%). 

 

3.3.3 Measurements-Based Optimization (MBO): 2D Heterogeneous Case  

This section illustrates our approach of incorporating observed measurements in 

the optimization process. For this example, we show how to incorporate the 4D seismic 

derived saturation data if our objective is to minimize Eq. 3.2 with r = zero. The same 

approach will apply for any other data, including production data. We use the previous 

2D example shown in Figure 3.2. We assume a true model with the permeability field 

given in Figure 3.25. We run the forward simulator using this model for 200 days to 

generate a water saturation map which we will treat as measured data derived from 4D 

seismic surveys (Figure 3.26).  We assumed a 10% error in the 4D seismic data. The 

rates used for this simulation run are the base case rates. Next, we run the flow simulator 

for 32 realizations using the base case rates and generate water saturation maps for each 

realization after 200 days. 

 

 

 

Figure 3.25 True permeability field: MBO 
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Figure 3.26 Water saturation map for the true model after 200 Days: MBO 

 

 

We then computed the weights for each realization using Eq. 3.29. Figure 3.27 

shows the weights obtained for each realization. It is clear that four realizations will 

dominate the optimization results in this case. 

The optimization was performed after producing the field for 200 days. Figure 

3.28 shows a comparison between the rates obtained using equal weights for 32 

realizations and the rates obtained using the MBO. Figure 3.29 shows a comparison in 

terms of water cut versus oil recovery between the base case, the optimized case with 

equal weights, and the MBO case. These plots were generated using the true model and 

the optimized rates were used after 200 days of production. It is clear that using the 

optimized rates resulted in delaying the water breakthrough significantly. The MBO 

improved the results and delayed the water breakthrough even further. 
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Figure 3.27 Calculated weight for 32 realizations using Bayes’ Theorem: MBO 

 

 

 

 Figure 3.28 Comparison between the MBO and optimize case using equal weights 

in terms of total production rate: MBO 
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Figure 3.29 Comparison between the MBO, optimize case using equal weights, 

and the base case in terms of water cut vs. oil recovery: MBO 

 

 

3.4 Chapter Summary 

In this paper we proposed a practical and an efficient technique to optimize 

injection/production rates and maximize the sweep efficiency during waterflood 

accounting for geologic uncertainty. The approach is computationally efficient and 

shown to yield robust rates that can be implemented in field operations.  Some specific 

conclusions from this study are summarized as follows: 

• Geologic uncertainty was addressed in terms of two forms of objective functions: 

(i) a stochastic form which includes the expected value and the standard 

deviation combined with a risk coefficient and (ii) a min-max form which 

minimizes the worst case scenario. 

• Analytical formulations of the objective function gradients and Hessian were 

derived. These formulations require only one flow simulation per realization 

regardless of the number of injectors and producers and leads to an efficient 

optimization algorithm.  
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• The proposed measurement-based optimization provides a simple mechanism to 

incorporate production history during optimization.  

• The power and practical feasibility of our method has been demonstrated by a 

synthetic field example based on a giant middle-eastern field. We optimized the 

production rates for 36 wells including a smart-complex well. The optimization 

was performed while accounting for geologic uncertainty using 10 realizations. 

• In all studied cases, our approach improved sweep efficiency and increased oil 

production with a corresponding decrease in the water-cut response. 
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CHAPTER IV 

APPLICATIONS OF WATERFLOOD OPTIMIZATION VIA 

OPTIMAL RATE CONTROL WITH SMART WELLS
*
 

 

In this chapter, we revisit the optimization algorithm developed in the previous 

chapter and demonstrate its practical feasibility through large-scale field applications. 

We also propose an efficient method to handle some of the nonlinear constraints that 

arise during a waterflood project. These constraints have a nonlinear relationship with 

respect to the control variables which are wells rates in our study. We impose two such 

constraints in our optimization viz. the minimum or maximum flowing bottom-hole 

pressure (FBHP) constraints and rate restrictions on high water cut wells. The need for 

those constraints generally arises from facility-related limitations or reservoir 

management guidelines. We have applied our method to two examples. The first one is a 

3D synthetic field named Brugge field which is a benchmark case developed by TNO 

(Peters et  al. 2009). The reservoir properties for the case are based on a North Sea 

Brent-type field.  Ten years of historical production data was available for this synthetic 

case. The production data was used to history match 30 geologic realizations and 

updated models were used in the production optimization process. Out of the 30 history-

matched models, ten realizations were used to conduct the optimization over 30 smart 

wells, each equipped with 3 ICVs.  The rest of the realizations were used to test the 

optimized rates. The second case is a real field example from the middle-east with more 

than 300 wells. Most of the wells are vertical wells and their rates are controlled 

manually in the field using surface chokes on a monthly basis. In addition, the study area 

includes a few horizontal wells and a smart well. The smart well is a maximum reservoir 

                                                
*Part of this chapter is reprinted with permission from “Field Applications of Waterflood Optimization via 

Optimal Rate Control with Smart Wells,” Ahmed H. Alhuthali, Akhil Datta-Gupta, Bevan Yuen, and 

Jerry P. Fontanilla, paper SPE 118948 presented at the 2009 SPE Reservoir Simulation Symposium, The 

Woodlands, Texas, February 2-4, Copyright 2009 by the Society of Petroleum Engineers. 
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contact (MRC) well with horizontal section extending for around 5 km and equipped 

with 4 ICVs.  Our optimization results demonstrate the viability of our approach with a 

substantial increase in the cumulative oil production and a considerable decrease in the 

associated water production. 

 

4.1 Handling Non-linear Constraints  

In this section we briefly discuss our approach to handle some of the nonlinear 

constraints that arise during field applications, specifically, the minimum or maximum 

allowable flowing bottom-hole pressure and rate restriction on high water cut wells.  

 

4.1.1 The Minimum Allowable Flowing Bottom-Hole Pressure (FBHHP) (Pwmin)  

In waterflood projects, field operators may impose a restriction on the minimum 

allowable flowing bottom-hole pressure based on operation or reservoir management 

concerns. Our optimization method uses wells rates as control variables and not the 

FBHP. Thus, the Pwf,min needs to be added as a constraint during the optimization 

process. Mathematically, it can be treated as an inequality constraint as follows,  

, ,m inw f i w f
P P≥  .............................................................................................. (4.1) 

Equation 4.1 dictates that the FBHP for well i, Pwf,i, should be greater or equal to Pwf,min 

at all times. The relationship between Pwf,i and the control variables, rates, has the 

following general form, 

( ), ,i i r i wf i
q PI P P= −  .......................................................................................... (4.2) 

The variables PIi and Pr,i in Eq. 4.2 represents the well productivity index for well i and 

reservoir pressure respectively. This relationship is non-linear because the reservoir 

pressure changes with time. However, we assume steady state conditions within the time 

interval of optimization. This is a reasonable approximation for waterflood as the total 
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mobility is a relatively weak function of saturation. The inequality in Eq. 4.1 can be 

written in terms of rates as follows,  

,maxi

k k

iq q≤  ......................................................................................................... (4.3) 

The superscript k represents the iteration number. Normally, our optimization will be 

implemented over multiple optimization time intervals and each optimization interval 

will consist of multiple iterations to minimize the objective function. The variable qi,max 

represents the maximum allowable rate given by, 

( ),max , ,min

k k k

i i r i wf
q PI P P= −  ................................................................................. (4.4) 

We approximate qi,max explicitly using the information from the previous iteration, k-1. 

( )
( )

1

,min1

,max 1 1

,

k

r wk k

i i k k

r w i

P P
q q

P P

−

−

− −

−
≈

−
 .............................................................................. (4.5) 

In Eq. 4.5, we have used the production rate allocated during the previous iteration along 

with the reservoir and flowing bottom hole pressure. The approximation in Eq. 4.5 relies 

on the assumption that the reservoir pressure will not change substantially between 

successive iterations. Figure 4.1 shows cross plots of normalized well block pressures 

for consecutive iterations for several wells for a real field case that we will discuss later. 

These results show that the well block pressures, indeed, do not change between 

successive iterations which is consistent with our assumptions. This is also because of 

the fact that the rate changes between successive iterations are also not very large as 

shown in Figure 4.2. 
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 Figure 4.1 Cross plot to compare wells block pressures between multiple iterations within a single optimization 

time step 
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Figure 4.2 Cross plot to compare well rates between multiple iterations within a single optimization time step 
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4.1.2 Rate Restriction on High Water Cut Well. 

In this section, we briefly discuss how we impose restrictions on high water cut 

Hwells by modifying the bound constraints. Suppose we would like to cap the 

production of well i to a specific total production qwcr  if the well water cut, wci, exceeds 

some preset limit wcr. This can be mathematically written as follows, 

  if 
i rwc i r

q q wc wc≤ ≥  ........................................................................................ (4.6) 

The relationship between qi and wci is not linear and implementing Eq. 4.6 requires 

additional assumptions. Specifically, we assume that if we are at k-1 iteration of a 

specific optimization time interval, then the wc in well i won’t change substantially from 

iteration k-1 to k because of a well rate reallocation. Figure 4.3 shows cross plots for 

water cut normalized to the highest water cut from almost 300 wells between successive  

iterations for a real field example to be discussed later. The results seem to validate our 

assumptions. It is important to point out that to ensure efficient handling of the non-

linear constraints, the optimization is carried out over multiple optimization time 

intervals.  
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Figure 4.3 Cross plot to compare well water cut between multiple iterations within a single optimization time step: 

the water cut is normalized to the highest water cut 
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4.2 Applications and Discussion  

One of the main objectives of our paper is to demonstrate the practical feasibility 

of our previously approach for optimal rate control using field examples. Here we 

discuss applications to two cases. The first example is a 3D synthetic benchmark 

example, called the ‘Brugge’ field. The second example is a real field application on a 

giant middle-eastern field. 

 

4.2.1 A Synthetic Field Example: Brugge Field 

In this section we will present a closed loop approach to optimize the production 

from the Brugge field over 20 years. The Brugge field is a synthetic benchmark case that 

was set up by TNO as part of an SPE ATW to evaluate various closed loop control 

strategies. The details for this case can be found in Peters et al. (2009). 

Reservoir Models. A series of model realizations were generated based on a 

reservoir properties and well log attributes extracted from a highly-resolution model 

consisting of 20 million grid cells. The Brugge field properties are based on a North Sea 

Brent-type field. The field was divided into 4 zones and the average properties of these 

zones are summarized in Table 1. The structure of the Brugge field consists of an E-W 

elongated half-dome with a large boundary fault at its north edge, and one internal fault 

with a modest throw at an angle of around 20 degrees to the north boundary fault. The 

model consists of 60000 gridblocks with 9 layers. It has 20 vertical producers completed 

mainly in the top 8 layers and 10 peripheral injectors completed in all 9 layers. The field 

structure and well locations are shown in Figure 4.4. 
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Figure 4.4 Map showing the structure of Brugge field and well locations 

 

 

The first 10 years of the production history of the field was provided for history 

matching purposes. The production history was based on a ‘true model’ response with 

added noise. The closed loop control approach consisted of two steps: (i) model updating 

via production data integration using the field production history for the first 10 years 

and (ii) rate optimization whereby rates are allocated over the next 20 years. 

Production Data Integration:  For integration of water-cut response, we have 

used the streamline-based generalized travel time inversion (He et al. 2002). In this 

approach the water-cut data misfit is quantified in terms of an ‘optimum’ travel time-

shift that maximizes the cross-correlation between the observed data and simulated 

response. Compared to traditional ‘amplitude inversion’, the travel time inversion has 

been shown to have favorable quasilinear properties that ensures rapid convergence 
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(Cheng et al. 2005). We carry out matching of the flowing bottom-hole pressure data in 

the frequency domain following the procedure outlined by Vasco and Karasaki (2006). 

We take a Fourier transform of the bottom-hole pressure data and match only the zero-th 

frequency component of the data.  

The data assimilation step involves minimization of a penalized misfit function 

consisting of the following three terms 

1 2δ δ β δ β δ− + +d S R R L R  .............................................................................. (4.7) 

In the above expression, δd is the vector of generalized travel time shift of water-cut and 

zero-frequency pressure misfit at the wells, and S is the stacked matrix of the sensitivity 

of generalized travel-time and the zero frequency pressure to reservoir parameters. These 

sensitivities are obtained semi-analytically during the flow simulation with minimal 

additional computational expense. Also, Rδ  correspond to the change in the reservoir 

property (for example, permeability) and L is a second spatial difference operator. The 

first term ensures that the difference between the observed and calculated production 

response is minimized. The second term, called a ‘norm constraint’, penalizes deviations 

from the prior model that already incorporates available geologic and static information 

related to the reservoir. Finally, the third term, a ‘roughness penalty’, simply recognizes 

the fact that production data is an integrated response and is thus, best suited to resolve 

large-scale structures rather than small-scale property variations.  

The minimization is carried out via an iterative least-squares solution of the 

augmented linear system 

1

2

δ

β δ

β

   
   

=   
   
   

S d

I R 0

L 0

 ............................................................................................. (4.8) 

The weights 1β  and 2β  determine the relative strengths of the prior model and the 

roughness term.  An iterative sparse matrix solver, LSQR, is used for solving this 
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augmented linear system efficiently. The LSQR algorithm is well suited for highly ill-

conditioned systems and has been widely used for large-scale tomographic problems in 

seismology (Paige and Saunders 1982). 

 

 

 

Figure 4.5 Water cut misfit and generalized travel time misfit 

 

 

The history matching of the Brugge field was implemented by changing the 

permeability field (Kx and Ky). The history matching was performed for 30 realizations. 

Ten of these realizations are used later in the optimization process and the rest are used 

to validate the optimization results. Figure 4.5 shows the changes in water cut 

‘amplitude’ misfit and the ‘generalized travel time misfit’ for one of the history matched 

realizations.  The generalized travel time misfit is defined as the ‘optimal time shift’ that 

maximizes the cross-correlation between the observed and the calculated water cut. The 

water cut amplitude misfit is defined as the difference between the observed water cut 

and the calculated response from the reservoir simulator. This figure shows the decreases 

in the misfits as the iteration number increases. Figure 4.6 compares the initial 

permeability field and the history matched model for a few layers and also displays the 

changes from history matching.  
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Figure 4.6 Permeability changes after history matching 
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Significant improvement in the overall field history match was achieved in terms of oil 

and water production as shown in Figure 4.7. 

 

 

 

(a) Oil rate 

 

(b)  Water rate 

 

 
Figure 4.7 History matching results for the field overall production: Brugge 

field 

 

 

For individual wells, Figure 4.8 shows the quality of the water-cut history match 

for 8 producers. A satisfactory history match was achieved for all these wells in terms of 

water cut. Similarly for FBHP, a significant improvement was achieved for the 8 

producers as shown in Figure 4.9.  
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(a) Comparison for the first group of wells  

Figure 4.8 Comparisons between observed, initial, and matched water cut for multiple wells: Brugge field 
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(b) Comparison for the second group of wells 

 
Figure 4.8 Continued 
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(a) Comparison for the first group of wells  

 

Figure 4.9 Comparisons between observed, initial, and matched FBHP for multiple wells: Brugge field 
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(b) Comparison for the second group of wells 

Figure 4.9 Continued 
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Optimization Process: the optimization is performed to improve sweep 

efficiency over 10 history matched models by equalizing the arrival times at the 

producers. Most of the wells are equipped with three ICVs and the optimization is 

implemented by controlling the rates of the ICVs. For optimization purposes, we divided 

the wells into two groups based on the location of the internal fault. Group 1 includes the 

following producing wells: BR-P-1, 3, 4, 5, 6, 7, 8, 16, 17, 18, 19, 20 and the following 

injection wells: BR-I-1, 2, 3, 4, 5, and 6. Group 2 has the following producing wells: 

BR-P-2, 9, 10, 11, 12, 13, 14, and 15, and the following injection wells: BR-I-7, 8, 9, 

and 10.  

The additional constraints imposed are as follows, 

• The maximum production rate per producer is 3000 rb/Day. 

• The maximum Injection rate per injector is 4000 rb/Day. 

• Maximum allowable flowing bottom-hole pressure is 2626 psia. 

• The minimum allowable flowing bottom-hole pressure is 740 psia.  

• The optimized rates are reported at each ½ a year. 

We have preformed the optimization under two scenarios. The first one imposes voidage 

replacement constraint and maintains the reservoir pressure. To accomplish this, we 

imposed the constraint that the injection for each well group is equal to the total 

production from the same group. The production strategy for the base case assumes 

injection in all ICVs in injection wells and production from all ICVs in the production 

wells. In addition, any production ICV with water cut exceeding 90% is shut in. Figure 

4.10 shows a comparison between the base case and the optimized case in terms of 

average cumulative oil and water production over 20 realizations. These are the history-

matched realizations that were not included in the optimization process. 

 



106 
 

 

 

 

(a) Average cumulative oil production 

 

(b) Average Cumulative water production 

Figure 4.10 Comparison between the base case and the optimized case in terms of 

average cumulative oil and water productions: Brugge field, Scenario 1 

 

 

The results show an increase in the cumulative oil production and a 

corresponding decrease in the cumulative water production. For both the base and the 
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The second scenario does not impose voidage balance and attempts to produce 

the field at its maximum allowable production rate (60000 RB/D). The production here 

falls off gradually because of FBHP and water cut constraints. This scenario addresses 

the fact that some operators might prefer an accelerated production strategy to maximize 

the net present value. The total injection for this case is constrained to 40000 RB/D for 

the whole optimization period. This scenario has the same well constraints as the 

previous scenario. Figure 4.11 shows a comparison between the base and the optimized 

case for this scenario in terms of cumulative oil production and water production. The 

results indicate a noticeable increase in oil production and a substantial decrease in water 

production. It is important to point out that the major difference between the two 

scenarios is reservoir pressure maintenance strategy. Figure 4.12 shows a comparison 

between both scenarios in terms of reservoir pressure and total production. The total 

injection rate is the same for both scenarios and is equal to 40000 RB/D for the whole 

period as mentioned earlier. The reservoir pressure for the first scenario is maintained at 

its initial level because the production/injection ratio is kept close to unity and the 

reservoir fluids are nearly incompressible.  
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(a) Average cumulative oil production 

 

(b) Average Cumulative water production 

Figure 4.11 Comparison between the base case and the optimized case in terms of 

average cumulative oil and water productions from 20 realizations: Brugge field, 

Scenario 2 
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(a) Reservoir pressure 

 

(b) Total field production rate 

Figure 4.12 Comparison between scenario 1 and scenario 2 in terms of reservoir 

pressure and total field production rate: Brugge field 

0

500

1000

1500

2000

2500

10 15 20 25 30

Time (Year)

P
s
ia

Scenario 1 

Scenario 2

30000

35000

40000

45000

50000

55000

60000

10 15 20 25 30

Time (Year)

R
B

/D

Scenario 1 

Scenario 2



110 
 

 

 

The reservoir pressure for the second scenario falls off sharply at the beginning 

because the production/injection ration is greater than 1 to start with and then the 

pressure levels off when the production/injection ratio becomes nearly 1. The optimized 

rate control profile for these two scenario are different, especially during the early 

production period as depicted in Figure 4.13. This figure shows the rate control strategy 

for producing well BR-P-1 for both scenarios. During the early time the production from 

ICV-1 remains almost stable in scenario 1, while it falls off quickly in scenario 2. This 

can be attributed to the fact that the reservoir pressure falls off quickly in the layers 

covered by ICV-1 for the second scenario because of the accelerated production during 

the early time. The rest of the profile is almost the same for all ICVs for this well. 

As we discussed earlier, our optimization approach attempts to maximize the 

sweep efficiency. This is demonstrated in Figure 4.14 which compares the base and the 

optimized cases in term of oil saturation maps for layers 4 and 5 for the first scenario. 

The results indicate improved sweep for the optimized case over the base case as 

indicated by circles. 

 

4.2.2 Field Application in Giant Middle-Eastern Oil Field 

In this section, we will demonstrate the applicability of our approach using a 

giant Middle Eastern field.   

Reservoir Models. The study area represents one of the most mature parts of this 

field with over 50 years of production history. Peripheral water injection was initiated in 

the late 1960s to provide full pressure maintenance. The water injection was initially 

implemented by gravity water injection which was replaced by sea water injection to 

increase flexibility in controlling the waterflood front propagation. The field 

development took multiple stages which were implemented in a southward trend. This 

area was mainly developed by vertical wells with 1 km spacing. All wells are equipped 

with surface chokes to provide flexibility in controlling wells production and injection 

rates. Horizontal drilling has been used extensively in the development process during 

the last 10 years. 
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(a) Scenario 1 

 

(b) Scenario 2 

Figure 4.13 BR-P-1 rate performance over 20 years for scenario 1 and 2: Brugge 

field 
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Figure 4.14 Comparisons between the base case and the optimized case in terms oil saturation for layer 4 and 5: 

Brugge field 
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Multilateral and maximum reservoir contact wells are also being considered as a viable 

option to develop specific areas in the field. The main drive behind multilateral and 

MRC wells is to increase oil production, reduce the average water cut, reduce the unit 

cost of production, and utilize the limited drainage area available ( Alhuthali et al. 2005; 

Husain et al. 2005; Saleri et al. 2003).  

The study area considered here is described as two N-S trending structural 

anticlines separated by a structural saddle. It is part of the Arab-D formation which 

consists primarily of Jurassic carbonate. The simulation model was a sector from a large 

field consisting of pseudo injection and production at the boundary of the sector. This 

sector model consisted of 90 rows, 140 columns, and 17 layers with grid cells 

approximately 500m by 500m (Ghori et al. 2007).  

Optimization Process: The Optimization is performed on a sub-region of the 

sector model. However the sub-region includes involve a large number of wells to 

demonstrate the capability of our technique. Also, the optimization region includes the 

core area which is the farthest from the injection line. It is important to show that rates 

can be allocated without adversely impact the pressure performance of this area. 

Furthermore, there are some additional constraints are imposed throughout the 

optimization process such as  

• Minimum and maximum allowable flowing bottom hole pressure 

• Maximum and minimum well rate 

• Voidage replacement for pressure maintenance 

• Restrictions on high water cut wells.  

To select the sub-region for optimization purposes, we employed two techniques. The 

first one depends on the streamline configurations. We looked at the streamlines 

generated in the sector model, and then chose the area within the white box as shown in 

Figure 4.15.  
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Figure 4.15 Streamlines configuration, area of interest is within the white box: 

giant field example  

 

 

 

 

 

This technique gives us a general idea about where we should select our region; 

however, it is not adequate to specify exactly the wells to be chosen. So, we moved to a 

second scheme whereby we divided the injection wells in to multiple groups based on 

the proximity to each other as shown in Figure4.16 (a). We then computed the 

sensitivity of the arrival time to all producers with respect to each injector in the sector 

model. More details on the calculation of the arrival time sensitivity with respect to 

injection rates are presented in Chapter II. We then compared the magnitude of the 

sensitivities and assigned producers to the injection group with the highest impact on the 

arrival time as shown in Figure 4.16 (b). Then, we selected the injectors and producers 

within groups 3,4,5,6,7, and 8. Figure 4.17 shows the well locations for the selected sub-

region which include almost 300 wells. Most of those wells are verticals and there are a 

few horizontal wells. This region also includes a smart MRC well. This well consists of 

one lateral extending for almost 5 km and divided into 4 segments. Each segment is 
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equipped with an ICV to control the segment production. The well is located in an area 

where there is an indication of stagnation as depicted by Figure 4.18. 

The optimization is carried out for 20 years with an optimization time step of ½ 

year. The base case has the following characteristics: (i) field will be produced at the 

current strategy for the next 20 years, (ii) wells will be shut in if the water cut exceed 

95%, (iii) no new wells are drilled during the 20 years, (iv) no change of completion is 

implemented during the 20 years, and (v) a ratio of 1 for voidage replacement is ensured 

for the area of interest. The base case will be used as benchmark to compare our 

optimization. It shouldn’t be interpreted as if the operator will maintain the current 

strategy for the next 20 years. The optimization is performed under the constraint that 

the total injection should be the same as the base case which is dictated by the 

operational and facility constraints. This constraint is acknowledged during the 

optimization as shown in Figure 4.19 (a). There is a significant increase in the 

cumulative oil production for the optimized case compared to the base case as shown in 

Figure 4.19(b). Similarly, there is a considerable reduction in the cumulative water 

production as shown in Figure 4.19(c).  



 
 

 

 

1
1

6
 

 

     

a. Injectors grouping      b. Producers grouping  

 

Figure 4.16 Injectors groups and the corresponding producers groups: giant field example; some of the groups are 

hidden per field operator request 
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Figure 4.17 Well locations, area of interest: giant field example 
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Figure 4.18 Time of flight in the area of interest, Smart MRC well location and completion: giant field example 
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a. Cumulative water injection 

 

b. Cumulative oil production 

 

Figure 4.19 Comparison between the base and the optimized case in terms of 

cumulative water injection, oil production, and water production; y-axis scale is 

removed per operator request 
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c. Cumulative water production 

 

Figure 4.19 Continued 

 

Figure 4.20 shows a comparison between the optimized case and the based case 

in terms of production and injection allocation for the first time step. This figure shows 

how the production and injection is reallocated after optimization. The results indicate 

that most of the production is re-allocated towards the core area (A-1) and the stagnation 

area (A-2). Figure 4.21 shows comparisons between the performance of the smart MRC 

well before and after the optimization. We assumed equal rates for each ICV in the base 

case. This figure shows an incremental oil production and a decrease in water production 

for the next 20 years.  
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a. Base Case 

 

Figure 4.20 Bubble maps which compare the base and the optimized cases in 

terms of production rates and injection rates per well at the first time step: giant 

field example 
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b. Optimized Case 

 

Figure 4.20 Continued 
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a. Normalized oil rate 

 

b. Normalized water rate 

 

Figure 4.21 Comparison between the base and optimized cases for the smart 

MRC well in terms of oil and water rates and oil and water cumulative: giant field 

example 
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c. Normalized cumulative oil production 

 

d. Normalized cumulative water production 

 

Figure 4.21 Continued 
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The pressure maintenance in the core area A-1 was not compromised because the 

optimization was performed under flowing bottom hole pressure constraints. Figure 

4.22 shows the pressure performance of two wells within the core area, indicating that 

the flowing BHP constraints are maintained. 

 

 

a. Well 1 

 

b. Well 2 

Figure 4.22 Comparisons between the base and the optimized cases in terms of 

the FBHP for two wells located in the core area: giant field example 
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4.3 Chapter Summary 

In this chapter, we demonstrated via field applications an efficient approach to 

waterflood optimization using smart wells and optimal rate control. Our approach relies 

on equalizing the streamline time of flight at the producing wells to maximize 

waterflood sweep efficiency. We also demonstrated the ability of our approach to handle 

some of the non-linear constraints that arise in managing a water flood project such as 

minimum and maximum allowable FBHP and restriction on high water cut wells. The 

optimization approach calls for allocating injection/production rates to maximize the 

sweep efficiency during waterflood and can account for geologic uncertainty using 

multiple realizations. We show that the approach is computationally efficient and yields 

robust rates that can be implemented in field operations using two 3D field-scale 

examples.  

The first example is a synthetic case based on a North Sea Brent-type field called 

‘Brugge’ field. The optimization was part of a closed loop approach which consisted of 

two steps: (i) production data integration for the first 10 years of production history, and 

(ii) production optimization over the next 20 years. This process was performed on 

multiple realizations to account for geologic uncertainty. The rates derived from the 

optimization process were tested using multiple history matched realizations that were 

not included during the optimization. Results showed that the optimized rates 

significantly improved sweep efficiency and oil recovery compared to the base case. 

In the second example, the optimization was used to improve the sweep 

efficiency in a giant Middle-Eastern field. The optimization involved nearly 300 vertical 

and horizontal wells and one smart MRC well. Results showed significant improvements 

in cumulative oil production and a corresponding decrease in water production using the 

optimized rates compared to the base production strategy. 
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CHAPTER V 

CONCLUSIONS AND RECOMMENDATIONS 

 

5.1 Conclusions  

Field scale rate optimization problems often involve highly complex reservoir 

models, production and facilities related constraints and a large number of unknowns. 

All these make optimal reservoir management via rate and flood front control difficult 

without efficient optimization tools. Some aspects of the optimization problem have 

been studied before using mainly optimal control theory. However, the applications to-

date have been limited to rather small problems because of the computation time and the 

complexities associated with the formulation and solution of adjoint equations. Field-

scale rate optimization for maximizing waterflood sweep efficiency under realistic field 

conditions has still remained largely unexplored. 

The primary objective of our optimization algorithm is to enhance the sweep 

efficiency in a waterflood project by equalizing the arrival time at multiple producers 

and correspondingly increase the cumulative oil production. There are four major 

characteristics that distinguish our approach from previously published works. First, we 

use streamlines to efficiently and analytically compute the sensitivity of the arrival times 

with respect to well rates.  Second, we account for geologic uncertainty via two 

optimization frameworks: (i) a stochastic framework that relies on a combination of the 

expect value and variance of a performance measure from multiple realizations for risk 

assessments and (ii) a min-max problem formulation that minimizes the worst case 

scenario. Third, analytical forms for gradients and Hessian of the objective functions are 

derived which make our optimization computationally efficient for large field cases. 

Finally, the optimization is performed under operational and facility constraints using a 

sequential quadratic programming approach. We proposed a measurement-based 

optimization that allows us to assign specific weights to each realization involved in the 

optimization process based on observed data. Our approached is general and can be 
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employed using both finite-deference and streamline models. In addition, the approach 

can be implemented on multiple geologic realizations to account for geologic 

uncertainty. We assume that these realizations are readily available and we limit the 

optimization to well rates only. In general, the optimization will be performed at 

multiple time steps to account for mobility effects, changing field conditions and non-

linear constraints. This is illustrated in Figure 5.1.  

During each optimization time-step, the following steps are implemented: 

• Flow simulation and streamline tracing. The first step is to perform a flow 

simulation for a specific time interval for each geologic realization. Either a 

streamline or a finite difference simulator can be used here. Streamlines will be 

readily available if a streamline simulator is used. However, if a finite-difference 

simulator is used, then we need to trace the streamlines using the fluid fluxes 

derived from the flow simulation (Datta-Gupta and King, 2007). 

• Compute the Travel Time Residuals and Analytical gradient and Hessian. 

The second step is to compute the residuals which quantify the difference 

between the desired arrival time and the computed arrival time at each producing 

well. In addition, this step involves the analytical computation of gradients and 

the Hessian using a streamline-based technique (Alhuthali et al., 2008). 

• Minimization and Optimal Rate Allocations. Once the gradient and the 

Hessian are available, we can use standard optimization algorithms to minimize 

the objective function. In our approach, we use the Sequential Quadratic 

Programming (SQP) technique (Nocedal and Wright 2006) to generate the 

required changes in rates to minimize the objective function subject to 

appropriate field constraints. The above-mentioned steps are repeated until a pre-

defined stopping criterion on the objective function or the rates is met. We then 

move on to the next time interval for optimization. 
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Figure 5.1 Flow chart to show the optimization process at multiple time steps 
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Some specific conclusions from this study can be summarized as follows: 

1. Streamline time of flight provides an effective way to optimize waterflood 

through equalizing the arrival time at the producers. The streamline approach 

also facilitates analytical computation of the arrival time sensitivities with respect 

to production and injection rates. 

2. Analytical computation of sensitivities requires only one flow simulation 

regardless of the number of injectors and producers and leads to an efficient 

optimization algorithm. The assumptions used to derive the analytical 

sensitivities were verified by comparing the results with the numerical 

perturbation method.  

3. Geologic uncertainty was addressed in terms of two forms of objective functions: 

(i) a stochastic form which includes the expected value and the standard 

deviation combined with a risk coefficient and (ii) a min-max form which 

minimizes the worst case scenario. 

4. Analytical formulations of the objective function gradients and Hessian were 

derived. These formulations require only one flow simulation per realization 

regardless of the number of injectors and producers and leads to an efficient 

optimization algorithm.  

5. The proposed measurement-based optimization provides a simple mechanism to 

incorporate production history during optimization.  

6. We have validated our approach using 2D homogenous and heterogeneous cases 

and also by application to smart wells with inflow control valves. In all these 

cases, the optimization has led to a significant delay in water breakthrough with 

corresponding increase in sweep efficiency and oil recovery. 

7. The power and practical feasibility of our method has been demonstrated by a 

field example from the Goldsmith San Andres Unit (GSAU) in west Texas. We 

optimized the production rates for 31 wells while accounting for changing field 

condition such as shut-in and infill drilling. Also, we show that the approach is 

computationally efficient and yields robust rates that can be implemented in field 
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operations using two 3D field-scale examples (Alhuthali et al. 2009). The first 

example is a synthetic case based on a North Sea Brent-type field called ‘Brugge’ 

field. The optimization was part of a closed loop approach which consisted of 

two steps: (i) production data integration for the first 10 years of production 

history, and (ii) production optimization over the next 20 years. This process was 

performed on multiple realizations to account for geologic uncertainty. The rates 

derived from the optimization process were tested using multiple history matched 

realizations that were not included during the optimization. Results showed that 

the optimized rates significantly improved sweep efficiency and oil recovery 

compared to the base case. In the second example, the optimization was used to 

improve the sweep efficiency in a giant Middle-Eastern field. The optimization 

involved nearly 300 vertical and horizontal wells and one smart MRC well. 

Results showed significant improvements in cumulative oil production and a 

corresponding decrease in water production using the optimized rates compared 

to the base production strategy. 

8. In all studied cases, our approach improved sweep efficiency and increased oil 

production with a corresponding decrease in the water-cut response. 

 

5.2 Recommendations  

Several recommendations that could improve the performance of the proposed 

optimization algorithm or extend the applications of the presented concepts are listed 

below: 

1. The current optimization algorithm relies mainly on equalizing the arrival time at 

all producer. Water cut is not considered in the formulation of the objective 

function; however, we allowed for restricting high water cut wells as bound 

constraints in the optimization process. This approach was discussed in Chapter 

IV. In general the optimization algorithm doesn’t guarantee restricting high water 

cut wells especially if the reason for high water production is not related to high 

the permeability streaks. For example, the water production can be high because 
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the well is located in a mature area. Equalizing the arrival time in a mature field 

might yield an extensive water production. Here, we suggest a methodology by 

which we can include the water cut in the formulation of the objective function 

and prevent allocating high production rates to high water cut wells. To achieve 

this objective, the arrival time is modified to have the following form: 

( )'

, , , ,( ) 1 ( )i m c i m i mt w t= −q q   ............................................................................... (5.1) 

In the above expression, the arrival time, ti,m, at well i which belongs to group m 

is multiplied by the well’s oil cut. If the water cut is zero, the modified arrival 

time is equal the original arrival time. When the water cut is greater than zero, 

the original arrival time will be rescaled based on the level of water cut. If the 

water cut is high, the original arrival time will be reduced significantly and this 

will prevent increasing the well’s production rate.  

If we assume that the water cut in Eq. 5.1 is not a function of the well’s 

production rate, a single element in the sensitivity matrix can be written as, 

( ) ( )
'

, ,'

, , , ,

( ) ( )
1 1

i m i m

ij c i m c i m ij

j j

t t
S w w S

q q

∂ ∂
= = − = −

∂ ∂

q q
. ............................................ (5.2) 

The variables 
'

ij
S and ij

S  represent the sensitivity element of the modified and the 

original arrival time respectively. The rest of the derivation of the objective 

function and its minimization can be carried on in a similar way which was 

presented in the previous chapters. 

2. A natural extension of the work presented in this study is to implement it on a 

CO2 Flooding. The presence of high permeability streaks can adversely impact 

the efficiency of CO2 Flooding leading to an early gas breakthrough and uneven 

flooding process. Here, we suggest extending our method to equalize the arrival 

time of CO2. We believe that the extension is straight forward and require the 

following steps: 
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• Tracing streamlines and arrival time computation. The first step is to 

generate streamlines and compute the time of flight. Tracing streamlines in 

CO2 has been discussed by.  

• Residuals and Sensitivity Computation. In this step we compute the 

residuals that quantify the difference between the desired arrival time and the 

computed arrival time at each of the producing well. We also calculate the 

sensitivity of the arrival time at the producer to wells rates analytically using 

simple integrals along streamlines.  

• Minimization and Optimal Rate Allocations. Sequential quadratic 

programming (SQP) procedures is used to minimize the arrival time 

residuals. This step generates the required changes in rates to equalize gas 

front arrival time at the producing wells subject to appropriate field 

constraints. 

3. The current optimization algorithm doesn’t account for accelerated production 

strategy to maximize the net present value. We suggest adding a norm constraint 

to the objective function to take care of the acceleration effect. The objective 

function can be written for a single realization as follows, 

( )

( )

 = min 

Subject to

                   0              

                   ( ) 0              

Where  :   and   :  

T T

n z n y

f

h g

+

=

≤

ℜ → ℜ ℜ → ℜ

q e e t t
q

h q

g q

. .................................................... (5.3) 

The vector t in Eq. 5.3 represent the total arrival time and minimizing the second 

term in the above equation will account for acceleration effect. The gradient of 

this objective has the following form, 

2T T T

q
   ∇ = +   e e J e S t . .............................................................................. (5.4) 
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Recall that J is the Jacobian of the misfit, and S is the sensitivity of the arrival 

time. The Hessian can be written as,  

2 2T T T T

q
   ∇ + = +   e e t t J J S S  ..................................................................... (5.5) 

It is important to point out that those forms can be generalized easily to multiple 

realizations using the same procedures illustrated in Appendices B and C.  
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NOMENCLATURE 

 

A   area along the streamline, sp ft [m2] 

 
A   matrix contains linear operators  

 

Bo   oil FVF, STB/bbl [stock-tank m3/m3] 

 

Bw   water FVF, STB/bbl [stock-tank m3/m3] 

 
b   vector contains constant elements 

 
C   matrix contains linear operators 

 

d   observed field measurements 

 
d   vector contains constant elements 

 

δd vector of generalized travel time shift of water cut and zero 

frequency pressure misfit. 

 

f (q)   scalar objective function, sq day 

 

fw   fractional flow, dimensionless 

 
e   arrival time residual vector, day [s] 

 

ei,m arrival time residual at well i (producer) which belong to group m, 

day [s] 

 
g(q)   inequality constrains  

 
h(q)   equality constrains  

 
I   identity matrix 
 

i and j   well index 
 

k   permeability, darcies 

 
J   Jacobian matrix 
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m   group index 
 

Nprod,m   number of production wells in group m 
 

Ngroup   number of groups 
 

Nsl,I   number of streamline connecter to well I (producer) 
 

Nfsl,i   number of fast streamlines connected to well i (producer) 
 

Nfsl,i,j number of fast streamlines between well i  (producer) and well j 
(injector)  

 

l   streamline index 

 

Pi   initial pressure, psi [kPa] 

 

Pb   grid block pressure, psi [kg/m2] 

 

Pr   reservoir pressure, psi [kg/m2] 

 

Pwf   well’s flowing bottom hole pressure psi [kg/m2] 

 
q   total fluid rate vector, B/D [m3/d] 

 

q   total fluid rate B/D [m3/d] 

 

qsl   total fluid rate along a single streamline,  B/D [m3/d] 

 

r   risk coefficient, dimensionless  

 
Rδ    vector of change in reservoir property 

 

sw   water saturation, fraction 

 

swf   flood-front saturation, fraction 

 

s(x)   slowness, day [ s] 

 
S   sensitivity matrix, sq D/B [s2/ m3] 
 

Si,j   sensitivities coefficient, sq D/B [s2/ m3] 
 

ti,m   arrival time at producer i which belongs to group m, day [s] 
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td,m   desired arrival time for group m, day [s] 
 

v   velocity, ft/D [m/d] 
 

w   weight, dimensionless 
 

wc,i,m   water cut at producer i which belongs to group m, day [s] 

 
x   spatial coordinate vector, ft [m] 
 

x   distance along the streamline, ft [m] 
 

X    random variable represent model parameters  
 

y   number of inequality constraints 
 

z   number of equality constraints 

 
λL   Lagrange multipliers for equality constraints 

 
λK   Karush-Kuhn-Tucker multipliers for  inequality constraints 
 

β weighting factor 
 

µo   oil viscosity, cp [Pa • s] 

 

µw   water viscosity, cp [Pa • s] 

 
ρ    risk tolerance 

 
ρo   water viscosity, lbm/cu ft [kg/m3] 

 
ρw   water viscosity, lbm/cu ft [kg/m3] 

 

φ porosity, fraction 

 
σ   standard deviation 
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APPENDIX A  

 DERIVATION OF THE STOCHASTIC FORM OF THE 

OBJECTIVE FUNCTION 

 

The problem of rate optimization under geologic uncertainty can be studied 

within the decision analysis framework. The problem involves the decision on the 

optimal rates given that we have multiple geologic realizations. These realizations will 

yield multiple events or outcomes yi defined as, 

T

i i i
y =e e  .......................................................................................................... (A.1) 

As Eq. A.1 indicates, the outcomes are simply the square of l2 norms of the residuals for 

realization i. Through decision analysis framework and utility theory (Howard 1971), we 

can derive an equation which combines all the outcomes in a single form.  

( )1
( )  

2

T T
f Var

ρ
 = Ε − q e e e e  .......................................................................... (A.2) 

Equation A.2 will be minimized over all possible outcomes to decide on the optimal 

rates. The variable, ρ, is a risk tolerance which describes the decision makers’ attitude 

towards risk.  The risk tolerance has the same unit as the expected value.  A positive ρ 

indicates a risk-prone attitude, while a negative ρ indicates a risk-averse attitude. The 

case of ρ = ∞ indicates that the decision maker is risk neutral. The sign interpretation of 

ρ is different from the previously published work because our objective is to minimize 

Eq. A.2 not to maximize it. In general, the assessment of the risk tolerance is involved 

and depends on the decision maker’s preferences (Guyaguler and Horne 2001). In our 

work, we re-write Eq. A.2 as follows, 

( )  T Tf r σ   = Ε +   q e e e e  .......................................................................... (A.3) 
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Where we define a risk coefficient r as follows 

 
2

T

r
σ

ρ

  = −
e e

 ............................................................................................. (A.4) 

A positive r indicates that the decision maker is risk-averse, while a negative r indicates 

that the decision maker is risk-prone. The risk coefficient equals to zero indicate risk 

neutrality which means that the decision maker is indifferent of the variability of the 

outcomes. The magnitude of r is a relative measure of the decision maker attitude 

towards the variability of the outcomes. For a risk-averse case, the magnitude will 

measure how far the decision maker will constrain his optimization to avoid uncertain 

areas of the search space. On the other hand, in a risk-prone case, the magnitude will 

measure how far the decision maker will relax his optimization to search for a better 

outcome. The risk coefficient can be kept constant or adjusted adaptively for each 

iteration during minimizing Eq. A.3.  
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APPENDIX B 

DERIVATION OF THE OBJECTIVE FUNCTION GRADIENT 

 

The gradient of Eq. 3.2 can be written as, 

( ) T T

q q q
f r σ   ∇ = ∇ Ε + ∇   q e e e e ................................................................. (B.1) 

The first tem represents the gradient of the expect value of the square of l2 norm of 

residuals evaluated for each realization. Because the expected value is a linear operator, 

the gradient of the expect value operator can be written as, 

2T T

q
   ∇ Ε = Ε   e e J e  .................................................................................... (B.2) 

The second term represents the gradient of the standard deviation. By taking the 

derivative of the standard deviation in Eq. 3, we can reach the following form:  

1
 /

2

T T T

q qVarσ σ     ∇ = ∇     e e e e e e  .......................................................... (B.3) 

The variance in Eq. B.3 can be given as: 

2 2( )  T T TVar      = Ε − Ε     e e e e e e ................................................................. (B.4) 

The gradient of the variance can be written as, 

{ }4  ( )( )    T T T T T

qVar        ∇ = Ε − Ε Ε       e e e e J e e e J e  ................................ (B.5) 

The expression in Eq. B.5 can be written in terms of a covariance as follows:  

( ), ( )( )   T T T T T T     = Ε − Ε Ε     Cov e e J e e e J e e e J e  ........................................ (B.6) 



147 
 

 

 

By substituting Eq. B.6 into Eq. B.5, the gradient of the variance can be written as, 

( )4 ,T T T

q
Var  ∇ = e e Cov e e J e  ..................................................................... (B.7) 

Now the gradient of the standard deviation can be written as, 

( ),
2 

T T

T

q T
σ

σ
 ∇ =    

Cov e e J e
e e

e e
 ......................................................................... (B.8) 

After substituting Eq. B.2 and B.8 into Eq. B.1, we can write the gradient of the 

objective function as follows, 

( )
( )

,
( ) 2 2  

T T

T

q T
f r

σ
 ∇ = Ε + 

Cov e e J e
q J e

e e
 ............................................................ (B.9) 
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APPENDIX C 

DERIVATION OF THE OBJECTIVE FUNCTION HESSIAN  

 

The Hessian of Eq. 3.2 is given by the following form: 

2 2 2( ) T T

q q q
f r σ   ∇ = ∇ Ε + ∇   q e e e e  ................................................................ (C.1) 

The first term is the Hessian of the expected value of the square of l2 norm of the 

residuals and it can be written as, 

2 2T T

q
   ∇ Ε = Ε   e e J J  ................................................................................. (C.2) 

The second term is the Hessian of the standard deviation, and it can be written as, 

2

2

3

1 1
  

2 4

T T T T

q q qT

q T T

Var Var Var
σ

σ σ

     ∇ ∇ ∇      ∇ = −        

e e e e e e
e e

e e e e
 .............................. (C.3) 

Equation C.3 contains the gradient and the Hessian of the variance. In Appendix B, we 

derived the gradient of the variance. The Hessian of the variance is the gradient of Eq. 

B.5 and it can be written as, 

{ }2

q
4  ( )( )    T T T T T

q q
Var         ∇ = ∇ Ε −∇ Ε Ε        e e e e J e e e J e  ................................. (C.4) 

The gradient of the first tem can be written as, 

q
( )( ) 2 ( )( ) ( )( ) T T T T T T T     ∇ Ε = Ε + Ε     e e J e J e J e e e J J  ................................ (C.5) 

The gradient of the second term can be written as, 
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  2   ( ) ( ) T T T T T T T

q
            ∇ Ε Ε = Ε Ε + Ε Ε            e e J e J e J e e e J J  ................ (C.6) 

By substituting Eqs. C.6 and C.5 into Eq. C.4, the Hessian of the variance can be 

written as, 

2
2 ( ) ( )  2

4 
( )( )     

T T T T T T

T

q
T T T T

Var
      Ε − Ε Ε      

 ∇ =   
     +Ε − Ε Ε       

J e J e J e J e
e e

e e J J e e J J
 ............................. (C.7) 

The first two terms in Eq. C.7 can be written in terms of the following covariance, 

( ), ( )( )   T T T T T T T T     = Ε − Ε Ε     Cov J e J e J e J e J e J e  ................................... (C.8) 

The last two terms in Eq. C.7 represent the cross-covariance between the square of l2 

norm of the residuals and the Hessian evaluated for each realization. 

( ), ( )( )   T T T T T T     = Ε − Ε Ε     Cov e e J J e e J J e e J J  ..................................... (C.9) 

By substituting Eqs. C.8 and C.9 into Eq. C.7, we reach the following form for the 

Hessian of the variance. 

( ) ( )2 8 , 4 ,T T T T T

q
Var  ∇ = + e e Cov J e J e Cov e e J J  ........................................... (C.10) 

By substituting Eq. B.7 and C.7 into Eq. C.3, we can reach to the final form of the 

Hessian of the standard deviation. 

( ) ( )

( ) ( )

2

3

4 , 2 ,
 

4 ,  ,
                     

T T T T

T

q T

T T T T T

T

σ
σ

σ

+
 ∇ =    

−
  

Cov J e J e Cov e e J J
e e

e e

Cov e e J e Cov e e J e

e e

 ......................................... (C.11) 
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After Substituting Eqs. C.2 and C.10 into Eq. C.1 the final form of the Hessian of the 

objective function is given as follows: 

( ) ( )

( ) ( )

2

3

4 , 2 ,
( ) 2    

( )

4  ,  ,
                                   

( )

T T T T

T

q T

T T T T T

T

f r

r

σ

σ

+
 ∇ = Ε + 

−

Cov J e J e Cov e e J J
q J J

e e

Cov e e J e Cov e e J e

e e

 ........................ (C.12) 
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