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ABSTRACT

Estimation of Parameters of Gaussian Random Variables

Using Robust Differential Geometric Techniques.

(May 2009)

Sudha Yellapantula, B.E., Gitam College of Engineering, Andhra University

Chair of Advisory Committee: Dr. Don R. Halverson

Most signal processing systems today need to estimate parameters of the under-

lying probability distribution, however quantifying the robustness of this system has

always been difficult. This thesis attempts to quantify the performance and robust-

ness of the Maximum Likelihood Estimator (MLE), and a robust estimator, which

is a Huber-type censored form of the MLE. This is possible using differential geo-

metric concepts of slope. We compare the performance and robustness of the robust

estimator, and its behaviour as compared to the MLE. Various nominal values of

the parameters are assumed, and the performance and robustness plots are plotted.

The results showed that the robustness was high for high values of censoring and

was lower as the censoring value decreased. This choice of the censoring value was

simplified since there was an optimum value found for every set of parameters. This

study helps in future studies which require quantifying robustness for different kinds

of estimators.
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CHAPTER I

INTRODUCTION

A. Background to Estimation Theory

Modern estimation theory is the foundation of many signal processing systems de-

signed to extract information and estimate the values of a group of parameters. Some

examples of signal processing applications include Communications, Control, Radar,

Sonar, Speech, Image Analysis, Biomedicine and Seismology [1]. All these systems

have the common problem of estimating the values of some parameters based on

continuous waveforms. Estimation theory can be broadly classified into parameter

estimation and estimation of random variables; we focus on parameter estimation and

its corresponding robustness.

1. Parameter Estimation

In parameter estimation, the underlying distribution is determined a priori. In

other words, it is assumed that the distribution of variables being assessed belong

to known parametrized families of probability distributions. The data can be mod-

eled as random variables (
−→
X ), and the underlying probability density function (pdf)

is parametrized by the unknown parameter. The estimator can be thought of as a

rule that assigns a value for each realization of X. Given an N-point data set, {X[0],

X[1],. . . ,X[n]}, parameter estimation is the process of defining an estimator which

best estimates the underlying unknown parameter [2], [3].

θ̂ = g (X [0] , X [1] , . . . , X [n])

The journal model is IEEE Transactions on Automatic Control.
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where g(·) is the function to be determined by the estimator. When the assumptions

are correct, an optimal (in some well-defined sense, such as minimum variance) esti-

mator can often be found. However a significant problem with parameter estimation

is that the estimator performance is highly sensitive to changes in the underlying

model. In certain cases, if the assumptions are violated even slightly, the estimator

may completely break.

2. Robust Estimation

Robust Estimation provides estimators that emulate classical estimation methods,

but they are not unduly affected by outliers or other minor departures from the

assumed model. They are more ‘robust’ than parametric estimators and have bet-

ter performance than the non-parametric estimators. The definition given by Huber

states that robustness signifies insensitivity to small deviations from the assumptions.

Some of the desirable properties of a robust estimator are that the estimator should

have optimal or nearly optimal performance at the assumed model. Secondly, the es-

timator should be robust in that small deviations from the model assumption should

not cause a breakdown. The robustness theory developed by Huber [4] is largely

qualitative and difficult to quantify. The new methods developed by Halverson, et.al

[5], [6], [7], [8], [9], [10] use novel differential geometric techniques which are quan-

titative and intuitive in nature. This work focuses on robust estimation of gaussian

parameters.
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B. Background to Differential Geometry

1. Introduction to Differential Geometry Terminology

Some intuitive understanding of differential geometry terms are explained below, to

help understand the equations that follow [11] :

1. Euclidean space: An n-dimensional space with notions of distance and angle

that obey the Euclidean relationships is called an n-dimensional Euclidean space. An

essential property of a Euclidean space is its flatness.

2. Non-Euclidean space: While there is essentially only one Euclidean space

of each dimension, there are many non-Euclidean spaces of each dimension. Non-

Euclidean spaces can be constructed by systematically deforming Euclidean spaces.

Two types of non-euclidean spaces are: a. Hyperbolic geometry, b. Elliptical geome-

try.

3. Consider two straight lines indefinitely extended in a two-dimensional plane

that are both perpendicular to a third line. In Euclidean geometry the lines remain

at a constant distance from each other, and are known as parallels. In hyperbolic

geometry they curve away from each other, increasing in distance as one moves further

from the points of intersection with the common perpendicular; these lines are often

called ultraparallels. In elliptic geometry the lines curve towards each other and

eventually intersect.

4. Reimmanian geometry: Riemannian geometry deals with a broad range of

geometries whose metric properties vary from point to point, as well as two standard

types of Non-Euclidean geometry, spherical geometry and hyperbolic geometry, as

well as Euclidean geometry itself. Riemannian geometry is the branch of differential

geometry that studies Riemannian manifolds, smooth manifolds with a Riemannian

metric, i.e. with an inner product on the tangent space at each point which varies
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smoothly from point to point. This gives in particular local notions of angle, length

of curves, surface area, and volume. From those some other global quantities can be

derived by integrating local contributions.

5. Manifold: A manifold is a mathematical space in which every point has a

neighborhood which resembles Euclidean space, but in which the global structure

may be more complicated. In a one-dimensional manifold (or one-manifold), every

point has a neighborhood that looks like a segment of a line. In a two-manifold, every

point has a neighborhood that looks like a disk.

6. Differential Manifold: A differentiable manifold is a type of manifold that is

locally similar enough to Euclidean space to allow one to do calculus. A differen-

tiable manifold can be described using mathematical maps, called coordinate charts,

collected in a mathematical atlas. One may then apply ideas from calculus while

working within the individual charts, since these lie in Euclidean spaces to which the

usual rules of calculus apply. The notion of a differentiable manifold refines that of a

manifold by requiring the transitions i.e., the function which changes the coordinate

systems between charts to be differentiable.

7. Tensor: A tensor is an object which extends the notion of scalar, vector,

and matrix. Tensors allow one to express physical laws in a form that applies to

any coordinate system: an association of a different (mathematical) tensor with each

point of a geometric space, varying continuously with position.

2. Formula Used for Robustness Analysis

The formula used for Robustness Analysis is derived by Vishal Varma [12], [13] and

is stated below as follows:

Given a performance function P = h (·), where P can be modelled as a Reimmanian

surface, with a reimannian metric g, and h is a function on it, then the maximum
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directional derivative is given by

(D ~Xh) =
√
∇hG−1∇hT (1.1)

where G is a covariant tensor matrix for the given Reimannian metric which is defined

by the curve; while ∇ represents the gradient of the function.
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CHAPTER II

THEORY: ROBUST ESTIMATION

A. Maximum Likelihood Estimation of Gaussian Random Variables

1. Introduction

The maximum likelihood estimation is a popular way of obtaining practical estima-

tors. MLE has the asymptotic properties of being unbiased, acheiving the Cramier

Rao Lower Bound (CRLB) and having a gaussian pdf. Consider a set of data points

which have a guassian distribution with mean µ0 and variance θ0. Let the estimates

of the mean and variance be denoted by µ̂ and θ̂. The likelihood function can be

written as:

f( ~X; µ̂, θ̂) =

 1√
2πθ̂

n e
(
− (x1−µ̂)2

2θ̂
− (x2−µ̂)2

2θ̂
−... (xn−µ̂)2

2θ̂

)
(2.1)

The maximum likelihood estimates can be found by differentiating the log-likelihood

function with respect to each of the parameters and setting them to zero.

2. Estimation of Mean

The best estimate of the mean µ using maximum likelihood estimation is obtained

by taking the partial derivative with respect to µ̂ of the log-likelihood function and

setting it to zero.

fX1X2X3...Xn(x1x2...xn) =

 1√
2πθ̂

n e(− (x1−µ̂)2

2θ̂
− (x2−µ̂)2

2θ̂
−... (xn−µ̂)2

2θ̂
) (2.2)

Taking the natural logarithm on both sides and taking the partial derivative with

respect to µ̂, we obtain the following:

∂

∂µ̂
ln(f) =

∂

∂µ̂

[
−(X1 − µ̂)2

2θ̂
− (X2 − µ̂)2

2θ̂
− ...− (Xn − µ̂)2

2θ̂

]
(2.3)
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=
2(X1 − µ̂)

2θ̂
+

2(X2 − µ̂)

2θ̂
+ ...+

2(Xn − µ̂)

2θ̂
(2.4)

∂

∂µ̂
ln(f) = 0⇒ 2(X1 − µ̂)

2θ̂
+

2(X2 − µ̂)

2θ̂
+ ...+

2(Xn − µ̂)

2θ̂
= 0 (2.5)

⇒ X1 +X2 + ...+Xn − nµ̂ = 0 (2.6)

µ̂ =
X1 +X2 + ...+Xn

n
(2.7)

3. Estimation of Variance

Expression to calculate the best estimate for the variance θ is obtained by taking the

partial derivative with respect to θ̂ of the log-likelihood function, and setting it to

zero.

∂

∂θ̂
ln(f) = 0⇒ − n

2θ̂
+

1

2θ̂2

[
(X1 − µ̂)2 + (X2 − µ̂)2 + ...+ (Xn − µ̂)2

]
= 0 (2.8)

θ̂ =
1

n

∑
i

(Xi − µ̂)2 (2.9)

The expression for θ̂ can be further simplified by substituting the expression for µ̂ as

follows:

θ̂ =
1

n

∑
i

Xi −
1

n

∑
j

Xj

2

(2.10)

=
1

n

∑
i

X2
i +

1

n2

∑
j

Xj

2

−
(

2Xi

n

)∑
j

Xj

 (2.11)

θ =
1

n

∑
i

X2
i −

1

n2
(
∑
i

Xi)
2 (2.12)

4. Expression for the Mean Square Error

Mean square error is defined as :

err = E
[
(θ − θ̂)2 + (µ− µ̂)2

]
(2.13)
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where θ̂ and µ̂ are the best estimates of the mean and the variance, while θ and µ are

the true values. Substituting the values for θ̂ and µ̂ , we obtain:

Error = E

[
(
1

n

∑
i

X2
i −

1

n2
(
∑
i

Xi)
2 − θ)2 + (

1

n

∑
i

Xi − µ)2

]
(2.14)

Error = θ2 + µ2 +
1

n2
E

(∑
i

X2
i

)2
+

1

n4
E

(∑
i

Xi

)4
+

+

(
2θ

n2
+

1

n2

)
E

(∑
i

Xi

)2
− 2θ

n
E

[∑
i

X2
i

]
−

−2µ

n
E

[∑
i

Xi

]
− 2

n3
E

(∑
i

X2
i

)∑
j

Xj

2
 (2.15)

The above expression can be simplified by using the fact that the samples are inde-

pendant and identically distributed (iid). A general expression can be found in terms

of n. This can be done by expanding each of the terms, and combining like terms.

The following relations hold for all i:

E [Xi] = µ (2.16)

E
[
X2
i

]
= θ + µ2 (2.17)

E
[
X3
i

]
= 3µθ + µ3 (2.18)

E
[
X4
i

]
= 3θ2 + 6θµ2 + µ4 (2.19)

Since these relations hold for all i, the expression for the error can be simplified by

combining like terms. The expectation for each of the terms in the expression for the

error is given below:

E

(∑
i

X2
i

)2
 = E

[
nX4

1 + 2

(
n

2

)
X2

1X
2
2

]
(2.20)

for n = 2 E

(∑
i

Xi

)4
 = E

[
nX4

1 + 6

(
n

2

)
X2

1X
2
2 + 8

(
n

2

)
X3

1X2

]
(2.21)
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for n = 3 E

(∑
i

Xi

)4
 = E

[
nX4

1 + 6

(
n

2

)
X2

1X
2
2 + 12n

(
n− 1

2

)
X2

1X2X3+

+8

(
n

2

)
X3

1X2

]
(2.22)

for n ≥ 4 E

(∑
i

Xi

)4
 = E

[
nX4

1 + 6

(
n

2

)
X2

1X
2
2 + 12n

(
n− 1

2

)
X2

1X2X3

+4!

(
n

4

)
X1X2X3X4 + 8

(
n

2

)
X3

1X2

]
(2.23)

E

(∑
i

Xi

)2
 = E

[
nX2

1 + 2

(
n

2

)
X1X2

]
(2.24)

E

[∑
i

X2
i

]
= E

[
nX2

1

]
(2.25)

E

[∑
i

Xi

]
= E [nX1] (2.26)

for n = 2 E

(∑
i

X2
i

)∑
j

Xj

2
 = E

[
nX4

1 + 2

(
n

2

)
X2

1X
2
2 +

+4

(
n

2

)
X3

1X2

]
(2.27)

for n ≥ 3 E

(∑
i

X2
i

)∑
j

Xj

2
 = E

[
nX4

1 + 2

(
n

2

)
X2

1X
2
2 +

+4

(
n

2

)
X3

1X2 + 2n

(
n− 1

2

)
X2

1X2X3

]
(2.28)

Substituting the values of the expectation for each of the terms, the general expression
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for error is for n ≥ 4:

ERROR = θ2 + µ2 +
(

1

n
+

1

n3
− 2

n2

)
E
[
X4

1

]
+

(
2θ + 1

n
− 2θ

)
E
[
X2

1

]
+

(
(n)!

(n− 2)!

(
1

n2
− 2

n3
+

3

n4

))(
E
[
X2

1

])2

+

((
2θ + 1

n2

)
(n)!

(n− 2)!

)
(E [X1])2

+

((
− 2

n2
+

6

n3

)
(n− 1)!

(n− 3)!

)
E
[
X2

1

]
(E [X1])2

+

((
4

n4
− 4

n3

)
(n)!

(n− 2)!

)
E
[
X3

1

]
E [X1]

+
(n)!

n4(n− 4)!
(E [X1])4

+ (−2µ)E [X1] (2.29)

Substituting the values of the expectation for each of the terms, the general expression

for error, in terms of the coefficients is given below:

ERROR =
θ

n2
(2θn− θ + n) for n ≥ 4 (2.30)

B. Robust Estimator g(x)

1. Introduction

A robust estimator can be found by a Huber-type censoring, where the Maximum

likelihood estimator is censored. The new estimator g (X) is equal to the ML estima-

tor over a range ’L’, after which, the estimator is truncated to a constant value (also



11

Fig. 1. Limiting function g(X)

equal to L). Mathematically, the function can be represented as:

g(X) =


−L, −∞ < X < −L

X, −L < X < L

L, L < X <∞


(2.31)

For example, the robust estimator for X is truncated to −L and L as can be seen in

Figure 1.

2. Estimation of Mean, Variance and Mean Square Error

Replacing X with g(X), the mean, variance and error expressions are as given below :

µ̂ =
g (X1) + g (X2) ...+ g (Xn)

n
(2.32)

θ̂ =
1

n

∑
i

g2 (Xi)−
1

n2

(∑
i

g (Xi)

)2

(2.33)
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Error = E


 1

n

∑
i

g2 (Xi)−
1

n2

(∑
i

g (Xi)

)2

− θ

2

+

(
1

n

∑
i

g (Xi)− µ
)2
 (2.34)

Error = θ2 + µ2 +
1

n2
E

(∑
i

g2 (Xi)

)2
+

1

n4
E

(∑
i

g (Xi)

)4
+

(
2θ

n2
+

1

n2

)
E

(∑
i

g (Xi)

)2
− 2θ

n
E

[∑
i

g2 (Xi)

]
− 2µ

n
E

[∑
i

g (Xi)

]

− 2

n3
E

(∑
i

g2 (Xi)

)∑
j

g (Xj)

2
 (2.35)

Since the samples are i.i.d. , the following relations hold:

E [g (X1)] = E [g (X2)] = ... = E [g (Xn)]

and similarly other like terms can be combined. This leads to the general expression

for the error, in terms of the expectations of functions of g(X).

err = θ2 + µ2 +
(

1

n
+

1

n3
− 2

n2

)
E
[
g4 (X1)

]
+

(
2θ + 1

n
− 2θ

)
E
[
g2 (X1)

]
+

(
(n)!

(n− 2)!

(
1

n2
− 2

n3
+

3

n4

))
E
[
g2 (X1) g2 (X2)

]
+

((
2θ + 1

n2

)
(n)!

(n− 2)!

)
E [g (X1) g (X2)]

+

((
− 2

n2
+

6

n3

)
(n− 1)!

(n− 3)!

)
E
[
g2 (X1) g (X2) g (X3)

]
+

((
4

n4
− 4

n3

)
(n)!

(n− 2)!

)
E
[
g3 (X1) g (X2)

]
+

1

n4

(n)!

(n− 4)!
E [g (X1) g (X2) g (X3) g (X4)]

+ (−2µ)E [g (X1)] (2.36)
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Each of the 8 expectations can then be broken down into 3 integrals. The integrals

are evaluated in Matlab, and the final answer to each of the expectation expressions

is given in terms of the erf function, which is defined in Matlab as twice the integral

of the gaussian distribution function with zero mean and variance = 0.5.

erf(x) =
2√
π

x∫
0

e−t
2

dt (2.37)

Hence, erf(∞) = 1 and erf(−∞) = −1.

f(X) =
1√
2πθ

e
−(X−µ)2

2θ (2.38)

E [g (X1)] =

−L∫
−∞

g (X1) f(X1)dX1 +

L∫
−L

g (X1) f(X1)dX1 +

∞∫
L

g (X1) f(X1)dX1

=

−L∫
−∞

(−L) f(X1)dX1 +

L∫
−L

X1f(X1)dX1 +

∞∫
L

Lf(X1)dX1

=
(
µ

2
+
L

2

)
erf

(
L+ µ√

2θ

)
+
(
µ

2
− L

2

)
erf

(
L− µ√

2θ

)
+

θ√
2πθ

[
e
−(L+µ)2

2θ − e
−(L−µ)2

2θ

]
(2.39)

E
[
g2 (X1)

]
=

−L∫
−∞

g2 (X1) f(X1)dX1 +

L∫
−L

g2 (X1) f(X1)dX1 +

∞∫
L

g2 (X1) f(X1)dX1

=

−L∫
−∞

L2f(X1)dX1 +

L∫
−L

X2
1f(X1)dX1 +

∞∫
L

L2f(X1)dX1

= L2 +

(
µ2 + θ

2
− L2

2

)[
erf

(
L+ µ√

2θ

)
+ erf

(
L− µ√

2θ

)]
−

−
√
θ

2π

[
(L− µ) e

−(L+µ)2

2θ + (L+ µ) e
−(L−µ)2

2θ

]
(2.40)
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E
[
g3 (X1)

]
=

−L∫
−∞

g3 (X1) f(X1)dX1 +

L∫
−L

g3 (X1) f(X1)dX1 +

∞∫
L

g3 (X1) f(X1)dX1

E
[
g3 (X1)

]
=

(
3µθ + µ3

2

)
(I1 + I2) +

L3

2
(I1 − I2) +

+

√
θ

2π

[(
L2 − µL+ µ2 + 2θ

)
E1 +

(
L2 +−µL+ µ2 + 2θ

)
E2

]
(2.41)

E
[
g4 (X1)

]
=

−L∫
−∞

(
−L3

)
f(X1)dX1 +

L∫
−L

X3
1f(X1)dX1 +

∞∫
L

L3f(X1)dX1

= L4 +

(
µ4 + 6µ2θ + 3θ2

2
− L4

2

)[
erf

(
L+ µ√

2θ

)
+ erf

(
L− µ√

2θ

)]

−
√
θ

2π

[(
L3 − µL2 + µ2L− µ2 − 5θ2 + 3θL

)
e
−(L+µ)2

2θ +

+
(
L3 + µL2 + µ2L+ µ2 + 5θ2 + 3θL

)
e
−(L−µ)2

2θ

]
(2.42)

To simplify notation, let the following integrals be replaced by alphabets as given

below:

I1 = erf

(
L+ µ√

2θ

)
(2.43)

I2 = erf

(
L− µ√

2θ

)
(2.44)

E1 = e
−(L+µ)2

2θ (2.45)

E2 = e
−(L−µ)2

2θ (2.46)

The expectations of functions of the new estimator can now be simplified as follows:

E [g (X1)] =
(
µ

2
+
L

2

)
I1 +

(
µ

2
− L

2

)
I2 +

√
θ

2π
(E1 + E2) (2.47)
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E
[
g2 (X1)

]
= L2 +

(
µ2 + θ

2
− L2

2

)
(I1 + I2)−

√
θ

2π
[(L− µ)E1 + (L+ µ)E2] (2.48)

E
[
g3 (X1)

]
=

(
3µθ + µ3

2

)
(I1 + I2) +

L3

2
(I1 − I2) +

+

√
θ

2π

[(
L2 − µL+ µ2 + 2θ

)
E1 +

(
L2 − µL+ µ2 + 2θ

)
E2

]
(2.49)

E
[
g4 (X1)

]
= L4 +

(
µ4 + 6µ2θ + 3θ2

2
− L4

2

)
(I1 + I2)

−
√
θ

2π

[(
L3 − µL2 + µ2L− µ2 − 5θ2 + 3θL

)
E1+

+
(
L3 + µL2 + µ2L+ µ2 + 5θ2 + 3θL

)
E2

]
(2.50)

The expression for error can be simplified as:

ERROR = θ2 + µ2 +
(

1

n
+

1

n3
− 2

n2

)
E
[
g4 (X1)

]
+

(
2θ + 1

n
− 2θ

)
E
[
g2 (X1)

]
+

(
(n)!

(n− 2)!

(
1

n2
− 2

n3
+

3

n4

))(
E
[
g2 (X1)

])2

+

((
2θ + 1

n2

)
(n)!

(n− 2)!

)
(E [g (X1)])2

+

((
− 2

n2
+

6

n3

)
(n− 1)!

(n− 3)!

)
E
[
g2 (X1)

]
(E [g (X1)])2

+

((
4

n4
− 4

n3

)
(n)!

(n− 2)!

)
E
[
g3 (X1)

]
E [g (X1)]

+
1

n4

(n)!

(n− 4)!
(E [g (X1)])4

+ (−2µ)E [g (X1)] (2.51)
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C. Error, Performance, Slope, Robustness

The mean square error for both the MLE and the Robust Estimator is a function of

mean (µ) and (θ).

MeanSquareError = f (µ; θ) (2.52)

In most practical problems, we have a constant signal to noise ratio. An approxima-

tion of signal-to-noise ratio (defined k) is

k =
µ2

θ
(2.53)

This thesis attempts to find the performance and robustness of the estimators on this

constant signal-to-noise ratio manifold.

From (2.53), we can write

µ =
√
kθ (2.54)

Also, we know that the maximum slope occurs as given by equation (1.1).

SLOPE2 =

(
∂P

∂θ

)(
1

g11

)(
∂P

∂θ

)T
(2.55)

where

g11 = 1 +

(
∂µ

∂θ

)2

(2.56)

g11 =
k + 4θ

4θ
(2.57)

and P is the performance surface of the estimator. Since ∂P
∂θ

is a scalar value, of one

dimension, hence, the SLOPE value can be simplified as:

SLOPE2 =

(
∂P

∂θ

)2 (
1

g11

)
(2.58)

For the robust estimator, the error is given by (2.51). The slope is found in a
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similar manner, using (2.58). The slope is calculated using simulations in Matlab.

D. Cost Function J

The Mean Square Error and the Slope have been calculated in the previous sections,

for the Robust Estimator. The question now arises, can the user decide how much

emphasis he/she wants on the robustness and how much on the performance? It

is possible that at the onset, maximum emphasis could be placed on robustness.

Later, the emphasis can be shifted towards performance. This kind of quantitative

robustness can be acheived by a composite cost function J. Performance, P is defined

as the inverse of the mean square error. Also, robustness is defined as the inverse of

the slope.

P =
1

ERROR
(2.59)

R =
1

SLOPE
(2.60)

The composite function J can be defined as

J = rR + (1− r)P 0 ≤ r ≤ 1 (2.61)

A value of r=1, puts 100% emphasis on robustness, while r=0, puts 100% emphasis

on perfofrmance.

1. Error and Slope for MLE

The general expression for Error is given by (2.30). This error is plotted (for n =

4, 5, 6, . . . , 20). As can be seen in Figure 2, the error at any given variance is the

highest for the least number of samples (n = 4) and decreases as the number of

samples increases. This is consistent with our intuitive understanding as well. The

error in this case was found to be independent of the signal to noise ratio, k as
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well. In Figure 3, the slopes for k = 0.1 are plotted against variance for various

number of samples. We can see that for any given variance, the slope is the lowest

for n = 4 and the highest for n = 20. This is again what would be expected because

as the number of samples increase, the error decreases, but the robustness of our

measurements decreases (hence the slope increases). Figures 4 and 5 show how the

slope varies with the variance for different values of k and all have the same general

trend as in Figure 3. Figure 6 shows a 3D plot of error which varies with both

mean and variance, while Figure 7 is the performance curve, the inverse of error.

As the variance increases, the error increases (and the performance decreases) while

the robustness increases as shown in Figure 9 and the slope decreases, as shown in

Figure 8.

2. Plots of the Robust Estimator, versus L

Figure 10 shows the error for the robust estimator for n = 4, k = 10 and three differ-

ent variances. Error is plotted against the censoring height L. With high censoring

(low values of L) we have really high error, which asymptotes to the MLE value of

error as the censoring becomes negligible (high values of L). In this case too, the

error is the highest for the highest variance. Similarly, Figures 11 and 12 show the

error plots for different values of n and k. Both the plots show the same behavior

as explained in Figure 10. Figures 13, 14 and 15 are the performance plots and

they are the inverse plots of Figures 10, 11 and 12 respectively. We notice that

there exists an optimum value of L, where the performance is higher than the MLE.

Figures 16, 17 and 18 are the plots of the slope versus L. It can be seen that the

slope is the lowest for very high censoring and it asymptotes to the MLE value as L

tends to infinity. There exists a value of L for which the slope is the highest (most

non-robust). Figures 19, 20 and 21 are the inverse of the previous 3 plots. We need
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to find an optimum L which maximises both performance and robustness for a given

set of parameters.



20

Fig. 2. Error vs variance, for the MLE,(is independent of k), for all n

Fig. 3. Slope versus variance, for all n, k = 0.1
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Fig. 4. Slope versus variance, for all n, k = 1

Fig. 5. Slope versus variance, for all n, k = 10
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Fig. 6. Error (n=5), over the constant k manifold

Fig. 7. Performance (n=5), over the constant k manifold
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Fig. 8. Slope (n=5), over the constant k manifold

Fig. 9. Robustness (n=5), over the constant k manifold
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Fig. 10. Error versus L, n=4, k=10, theta=0.1, 0.5, 1

Fig. 11. Error versus L, n=10, k=1, theta=0.1, 0.5, 1
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Fig. 12. Error versus L, n=14, k=10, theta=0.1, 0.5, 1

Fig. 13. Performance versus L, n=4, k=10, theta=0.1, 0.5, 1
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Fig. 14. Performance versus L, n=10, k=1, theta=0.1, 0.5, 1

Fig. 15. Performance versus L, n=14, k=10, theta=0.1, 0.5, 1
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Fig. 16. Slope versus L, n=4, k=10, theta=0.1, 0.5, 1

Fig. 17. Slope versus L, n=4, k=10, theta=0.1, 0.5, 1
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Fig. 18. Slope versus L, n=4, k=10, theta=0.1, 0.5, 1

Fig. 19. Robustness versus L, n=4, k=10, theta=0.1, 0.5, 1
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Fig. 20. Robustness versus L, n=10, k=1, theta=0.1, 0.5, 1

Fig. 21. Robustness versus L, n=14, k=10, theta=0.1, 0.5, 1
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CHAPTER III

RESULTS

The plots of normalized performance and normalized robustness are plotted for dif-

ferent values of n, k, θ and L. The error is calculated using (2.51). Given a value of

n, k, θ, perfomance and robustness are calculated for all L. Let ~P and ~R denote the

values of performance and robustness for different L values.

P (normalized) =
~P −min|~P |

max|~P | −min|~P |
(3.1)

R(normalized) =
~R−min|~R|

max|~R| −min|~R|
(3.2)
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Fig. 22. Plot of Robustness and Performance versus censoring value ’L’ for n=4; k=0.1;

θ = 0.1

Fig. 23. Plot of Robustness and Performance versus censoring value ’L’ for n=4; k=0.1;

θ = 1
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Fig. 24. Plot of Robustness and Performance versus censoring value ’L’ for n=4; k=0.1;

θ = 10

Fig. 25. Plot of Robustness and Performance versus censoring value ’L’ for n=4; k=1;

θ = 0.1
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Fig. 26. Plot of Robustness and Performance versus censoring value ’L’ for n=4; k=1;

θ = 1

Fig. 27. Plot of Robustness and Performance versus censoring value ’L’ for n=4; k=1;

θ = 10
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Fig. 28. Plot of Robustness and Performance versus censoring value ’L’ for n=4; k=10;

θ = 0.1

Fig. 29. Plot of Robustness and Performance versus censoring value ’L’ for n=4; k=10;

θ = 1
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Fig. 30. Plot of Robustness and Performance versus censoring value ’L’ for n=4; k=10;

θ = 10

Fig. 31. Plot of Robustness and Performance versus censoring value ’L’ for n=10;

k=0.1; θ = 0.1
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Fig. 32. Plot of Robustness and Performance versus censoring value ’L’ for n=10;

k=0.1; θ = 1

Fig. 33. Plot of Robustness and Performance versus censoring value ’L’ for n=10;

k=0.1; θ = 10
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Fig. 34. Plot of Robustness and Performance versus censoring value ’L’ for n=10; k=1;

θ = 0.1

Fig. 35. Plot of Robustness and Performance versus censoring value ’L’ for n=10; k=1;

θ = 1
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Fig. 36. Plot of Robustness and Performance versus censoring value ’L’ for n=10; k=1;

θ = 10

Fig. 37. Plot of Robustness and Performance versus censoring value ’L’ for n=10;

k=10; θ = 0.1
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Fig. 38. Plot of Robustness and Performance versus censoring value ’L’ for n=10;

k=10; θ = 1

Fig. 39. Plot of Robustness and Performance versus censoring value ’L’ for n=10;

k=10; θ = 10
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We can conclude by observing the plots of normalized robustness and normalized

performance as shown in Figures 22- 39 for different nominal values of θ,k that, as

expected, the robustness is very high for high censoring, and is low as the censoring

value tends to infinity (no censoring). The choice of emphasis between performance

and robustness is actually greatly simplified, since there is an L value for every set of

paramters, below which we have higher robustness and above which we have higher

performance. The choice of L which maximises the cost function for different values

of ’r’ is given in the Tables I- XVIII which follow.
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Table I. Choice of L for r values, n = 4, k = 0.1, θ = 0.1

n = 4, k = 0.1, θ = 0.1

r(emphasis) L Value (maximum)

0 0.151

0.1 0.201

0.2 0.201

0.3 0.201

0.4 0.201

0.5 0.501

0.6 0.551

0.7 0.551

0.8 0.601

0.9 0.601

1 0.601
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Table II. Choice of L for r values, n = 4, k = 0.1, θ = 10

n = 4, k = 0.1, θ = 10

r(emphasis) L Value (maximum)

0 1.401

0.1 1.501

0.2 1.501

0.3 1.601

0.4 1.801

0.5 2.001

0.6 2.201

0.7 0.001

0.8 0.001

0.9 0.001

1 0.001
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Table III. Choice of L for r values, n = 4, k = 0.1, θ = 1

n = 4, k = 0.1, θ = 1

r(emphasis) L Value (maximum)

0 5.101

0.1 5.101

0.2 5.201

0.3 5.301

0.4 5.501

0.5 5.901

0.6 0.001

0.7 0.001

0.8 0.001

0.9 0.001

1 0.001



44

Table IV. Choice of L for r values, n = 4, k = 1, θ = 0.1

n = 4, k = 1, θ = 0.1

r(emphasis) L Value (maximum)

0 0.501

0.1 0.501

0.2 0.501

0.3 0.501

0.4 0.501

0.5 0.601

0.6 0.001

0.7 0.001

0.8 0.001

0.9 0.001

1 0.001
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Table V. Choice of L for r values, n = 4, k = 1, θ = 1

n = 4, k = 1, θ = 1

r(emphasis) L Value (maximum)

0 2.101

0.1 2.101

0.2 2.101

0.3 2.201

0.4 2.301

0.5 2.401

0.6 0.001

0.7 0.001

0.8 0.001

0.9 0.001

1 0.001
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Table VI. Choice of L for r values, n = 4, k = 1, θ = 10

n = 4, k = 1, θ = 10

r(emphasis) L Value (maximum)

0 7.301

0.1 7.401

0.2 7.501

0.3 7.601

0.4 7.901

0.5 8.301

0.6 0.001

0.7 0.001

0.8 0.001

0.9 0.001

1 0.001
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Table VII. Choice of L for r values, n = 4, k = 10, θ = 0.1

n = 4, k = 10, θ = 0.1

r(emphasis) L Value (maximum)

0 1.201

0.1 1.201

0.2 1.201

0.3 1.201

0.4 1.201

0.5 1.201

0.6 0.001

0.7 0.001

0.8 0.001

0.9 0.001

1 0.001
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Table VIII. Choice of L for r values, n = 4, k = 10, θ = 1

n = 4, k = 10, θ = 1

r(emphasis) L Value (maximum)

0 4.301

0.1 4.301

0.2 4.301

0.3 4.301

0.4 4.301

0.5 4.301

0.6 0.001

0.7 0.001

0.8 0.001

0.9 0.001

1 0.001
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Table IX. Choice of L for r values, n = 4, k = 10, θ = 10

n = 4, k = 10, θ = 10

r(emphasis) L Value (maximum)

0 14.201

0.1 14.301

0.2 14.401

0.3 14.501

0.4 14.601

0.5 14.901

0.6 0.001

0.7 0.001

0.8 0.001

0.9 0.001

1 0.001
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Table X. Choice of L for r values, n = 10, k = 0.1, θ = 0.1

n = 10, k = 0.1, θ = 0.1

r(emphasis) L Value (maximum)

0 0.401

0.1 0.401

0.2 0.401

0.3 0.501

0.4 0.501

0.5 0.601

0.6 0.601

0.7 0.601

0.8 0.001

0.9 0.001

1 0.001
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Table XI. Choice of L for r values, n = 10, k = 0.1, θ = 1

n = 10, k = 0.1, θ = 1

r(emphasis) L Value (maximum)

0 1.801

0.1 1.801

0.2 1.801

0.3 1.801

0.4 1.901

0.5 2.001

0.6 0.001

0.7 0.001

0.8 0.001

0.9 0.001

1 0.001
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Table XII. Choice of L for r values, n = 10, k = 0.1, θ = 10

n = 10, k = 0.1, θ = 10

r(emphasis) L Value (maximum)

0 5.901

0.1 5.901

0.2 5.901

0.3 6.001

0.4 6.001

0.5 6.201

0.6 0.001

0.7 0.001

0.8 0.001

0.9 0.001

1 0.001
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Table XIII. Choice of L for r values, n = 10, k = 1, θ = 0.1

n = 10, k = 1, θ = 0.1

r(emphasis) L Value (maximum)

0 0.701

0.1 0.701

0.2 0.701

0.3 0.701

0.4 0.701

0.5 0.701

0.6 0.001

0.7 0.001

0.8 0.001

0.9 0.001

1 0.001
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Table XIV. Choice of L for r values, n = 10, k = 1, θ = 1

n = 10, k = 1, θ = 1

r(emphasis) L Value (maximum)

0 2.501

0.1 2.501

0.2 2.501

0.3 2.501

0.4 2.501

0.5 2.601

0.6 0.001

0.7 0.001

0.8 0.001

0.9 0.001

1 0.001
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Table XV. Choice of L for r values, n = 10, k = 1, θ = 10

n = 10, k = 1, θ = 10

r(emphasis) L Value (maximum)

0 8.101

0.1 8.201

0.2 8.201

0.3 8.301

0.4 8.401

0.5 8.501

0.6 0.001

0.7 0.001

0.8 0.001

0.9 0.001

1 0.001
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Table XVI. Choice of L for r values, n = 10, k = 10, θ = 0.1

n = 10, k = 10, θ = 0.1

r(emphasis) L Value (maximum)

0 1.301

0.1 1.301

0.2 1.301

0.3 1.301

0.4 1.301

0.5 1.301

0.6 0.001

0.7 0.001

0.8 0.001

0.9 0.001

1 0.001
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Table XVII. Choice of L for r values, n = 10, k = 10, θ = 1

n = 10, k = 10, θ = 1

r(emphasis) L Value (maximum)

0 4.601

0.1 4.601

0.2 4.701

0.3 4.701

0.4 4.701

0.5 4.701

0.6 0.001

0.7 0.001

0.8 0.001

0.9 0.001

1 0.001
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Table XVIII. Choice of L for r values, n = 10, k = 10, θ = 10

n = 10, k = 10, θ = 10

r(emphasis) L Value (maximum)

0 15.001

0.1 15.001

0.2 15.101

0.3 15.101

0.4 15.201

0.5 15.301

0.6 0.001

0.7 0.001

0.8 0.001

0.9 0.001

1 0.001
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