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Abstract—The Millimeter Wave (mm-wave) band has a broad-
spectrum capable of transmitting multi-gigabit per-second date-
rate. However, the band suffers seriously from obstruction and
high path loss, resulting in line-of-sight (LOS) and non-line-of-
sight (NLOS) transmissions. All these lead to significant fluctu-
ation in the signal received at the user end. Signal fluctuations
present an unprecedented challenge in implementing the fifth gen-
eration (5G) use-cases of the mm-wave spectrum. It also increases
the user’s chances of changing the serving Base Station (BS) in
the process, commonly known as Handover (HO). HO events
become frequent for an ultra-dense dense network scenario, and
HO management becomes increasingly challenging as the number
of BS increases. HOs reduce network throughput, and hence
the significance of mm-wave to 5G wireless system is diminished
without adequate HO control. In this study, we propose a model
for HO control based on the offline reinforcement learning (RL)
algorithm that autonomously and smartly optimizes HO decisions
taking into account prolonged user connectivity and throughput.
We conclude by presenting the proposed model’s performance
and comparing it with the state-of-art model, rate based HO
scheme. The results reveal that the proposed model decreases
excess HO by 70%, thus achieving a higher throughput relative
to the rates based HO scheme.

Keywords—Handover management; 5G; machine learning; re-
inforcement learning; mm-wave communication

I. INTRODUCTION

Unlike its predecessors, the fifth-generation (5G) of mobile
communication networks has been considered a paradigm
shift due to its attractive service in terms of latency, data
rates, device inter-connectivity, and network flexibility. These
enhancements in Key Performance Indicators (KPIs) make 5G
a game-changer by allowing new applications such as remote
surgery, smart cities, device-to-device communication (D2D),
industrial Internet, smart agriculture, etc. [1].

To meet these service requirements and demands, 3GPP has
launched the New Radio (NR) standardization with the follow-
ing use cases: enhanced mobile broadband (eMBB), massive
Machine Type Communication (mMTC), and Ultra-Reliable
Low-Latency Communication (URLLC) [2], [3]. eMBB aims
at enhancing the system capacity and supporting the ever-
increasing end-user data rate. eMBB introduces two significant
technological enhancements: mm-wave use to achieve higher
data rate and antenna array that supports massive multiple-
input and multiple-output (MIMO) beamforming. URLLC
introduces entirely new use-cases requirements to support
vertical industries such as self-driving cars, remotely surgery
for eHealth and other mission-critical use cases. The unique
features introduced by URLLC include improved latency,
reliability while guaranteeing high service availability and
security. mMTC intends to provide cost-efficient and robust

connection of billions of devices that transmit small packets
of data (with 10s latency) but without overloading the network.
Some factor to consider in mMTC are low power consumption,
longtime availability of service, and coverage. mMTC can also
be seen as a particular case of URLLC with more emphasis
placed on reliability while less emphasis is placed on the
latency [3]. The new use cases pave the way for increasing
interconnected devices to the Internet, resulting in the Intenet
of Things (IoT) development. IoT is a technology that targets
to connect everyday devices (e.g., home appliances, wearable
devices) to the Internet, making the scenario even severer. The
considerable projection increase in the number of cellular IoT
devices in the near future [4] entails 5G networks dealing with
stringent requirements and an increasing number of connected
devices.

Heterogeneous network (HetNet), Ultra-Dense
Network (UDN) and the use of mm-wave are candidate
solutions to overcome the possible challenges of 5G
networks [5]. Together, they can significantly increase
network throughput, available bandwidth and spectral
efficiency [6]. HetNet is the deployment of various base
station (BS) topology based on coverage footprint and type
of Radio Access technology used [7]. Moreover, densification
of the network is a phenomenon of deploying more small
cells (SCs) in the network to increase cell density, coverage,
and network throughput. The main challenge of deploying
UDN is increased interference sources and signal fluctuation.
For example, there are many access points (AP) and cells in
crowded substations or stadiums; thus, signals can have more
reflecting and scattering paths, contributing to high signal
interference and fluctuation. On the other hand, the concept
of utilizing a broader bandwidth refers to opening up a new
frequency spectrum for mobile communication to increase
the available bandwidth. mm-Wave frequencies offer great
potentials in terms of data rate due to their larger bandwidth,
and mm-wave bands have been designated as Frequency
Range-2 (FR2) in 5G New Radio (NR) [8]. Nevertheless,
the mm-wave spectrum comes with its limitation as it is
more likely to suffer from extreme penetration losses due to
higher frequencies. Thus, mm-wave use as carrier frequency
decreases the BS footprint area, thereby resulting in multiple
SCs in the network.

Network densification is an inevitable destination for net-
work operators to provide a more sustainable and enhanced
Quality of Service (QoS) for mobile users. However, network
densification with SCs is not a solution without any side
effects; it increases the number of HOs, which is characterized
by changing from one BS to another BS for the user equip-
ment (UE) when there is an ongoing communication (voice or
data). Given the limited coverage area of SCs, the UE would
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need more HOs since there will be more BSs within an area of
interest after the densification. Moreover, the different types of
BSs from HetNet deployment will result in complicated HO
signalling processes [6]. Furthermore, considering that the HO
interval is inversely proportional to the UE speed [9], the case
becomes even more severe in the case of high mobility user.

HO process involves exchanging information between serv-
ing BS, target BS and Core Network (CN). Exchanged mes-
sages, commonly known as signalling overheads, is necessary
during the three (3) steps involved in HO, which are HO prepa-
ration, execution and completion. If excessive and undesirable
HO increases, then both signalling overhead and average HO
interruption time increases [10], [11]. The high signalling
overhead and HO interruption time result in a significant
increase in latency, thereby undermining the attempt to meet
with 5G network specifications, particularly the URLLC use
cases. Besides, the average throughput also decays with the
increasing number of HOs, resulting in degraded quality of
experience (QoE) for the users [12]. Therefore, it is apparent
that special consideration should be given to HO management
to ultimately achieve and unleash the potential of the 5G
networks by meeting all its requirements.

To meet the 5G expectation, novel and advanced HO
control that minimizes the effects of HO are required. The
focus is on reducing unnecessary, and unwanted HO events
such as ping-pong and frequent HOs, and the main parameters
to be considered are the total number of HOs per UE trajectory
and the time spent during HO. These parameters together
define HO cost, which is the multiplication of both parameters
[12]. In other words, the total number of HOs and the time
spent during a single HO should be reduced to get away with
one of the negative implications of using mm-wave spectrum in
the UDNs. The former can be achieved through an intelligent
method by avoiding ’unnecessary’ HOs, whereas the latter is
a characteristic of the RAT [13]. Therefore, in this paper, we
present an intelligent method based on DRL for HO reduction
in mm-wave BSs in a UDN environment.

The rest of this article is organized as follows. First, in
Section II, we describe HO management in 5G networks, and
a review of the state-of-the-art HO management approaches,
then in Section III, the Deep Reinforcement Learning (DRL)
framework was introduced as well as how it is linked to HO
problem. Next, in Section IV, the use case is presented as well
as a description of the simulation environment. In Section V,
we evaluate the performance of the proposed model and
compare it with the rate based HO scheme. Finally, Section VI
concludes the paper.

II. HO MANAGEMENT IN 5G NETWORKS

HO is described as the process of transferring an ongoing
UE’s resource from one channel to another in wireless mobile
communication. The process mainly involves a change of
connection from either serving BS, carrier frequency chan-
nel or prioritizing a new technology found within the UEs’
vicinity. One of the key design strategies for the successful
implementation of 5G networks is the efficient handling of
HO to make UEs seamlessly change BS association, thereby
limiting unnecessary HO. HO process in mobile communica-
tion involves three states. The first stage is the measurement or

information gathering phase, where the UE measures the signal
strength (other parameter measurements are also possible) of
every potential neighbour BS and the current serving BS. The
second phase is about the HO decision, where the current
serving BS decides to initialize the HO based on the measured
data from the first stage. The third phase is the cell exchange
phase, when the UE releases the serving BS and connects to
the new BS [14].

Traditionally, HO is of two types, hard and soft HOs.
In the case of hard HO, the connection must be released
from the serving BS before the connection with the target BS
can be established. In soft HO, the serving BS connection is
maintained and used for a while in parallel with the target
BS connection [14]. 5G mm-wave communication supports
the hard HO method in most cases [8]. Besides, it supports
dual connectivity, which means that the UE can be connected
to more than one BS. However, when it comes to HO in
dual connectivity, the individual connections perform hard
HO, and new HO scenarios emerge, which lead to more HO
complications in mm-wave communication [15].

Mm-wave communication is already severely affected by
blockages and high path loss; thus, deploying multiple mm-
wave BSs would result in additional challenges, particularly
from HO management’s perspective. Hence, by adopting hard
HO in mm-wave communication, the UE will often experience
intermittent connections, leading to poor QoE regardless of
QoS. One of the causes of UE dissatisfaction from mm-wave
BS might be either blockage or interference, leading to a
reduction in the SNR of the serving BS; these situations present
a ping-pong problem. Another cause of UE dissatisfaction from
mm-wave BS is when UE moves out of signal range since it
is known that the UE experiences excellent coverage of mm-
wave communication when it is within 200m from the serving
BS [16]. The challenge is selecting BS intelligently during
HO in such a way that leads to a few ping pong, reducing
unnecessary HO, and maintaining UE-BS connectivity for a
long duration. Generally, optimal BS selection to re-associate
with UE is needed to reduce the problem mentioned above. In
legacy technology, fourth generation and all technology which
use sub 6 GHz, the issue of HO is less severe considering the
sparse nature of BS deployment compared to 5G, which uses
mm-wave frequencies. Furthermore, sub 6 GHz has a broad
coverage compared to mm-wave, making unnecessary HO less
frequent. It is worth noting that the HO process involves
several procedures, but we present the general conditions
required for HO to occur for the sake of simplicity.

A. HO Process in 5G

In 5G, 3GPP [8] defines six HO events for entering and
leaving. These events are A1, A2, A3, A4, A5, and A6 and are
used to trigger HO. They are described as follows [17]: Event
A2 and A1 are activated when the UE’s channel condition
drops below and exceeds the configured threshold, respectively.
They are also used to start and stop inter-frequency neighbour
search. Intra-frequency HO is initiated by event A3 when the
neighbouring channel’s condition is higher than the service
channel’s condition based on the configured threshold. Event
A4 and A5 are typically used for inter-frequency HO, where
the target cell’s signal strength has to be higher than the abso-
lute threshold for the A4 event to be triggered. In addition to
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Event A4, however, event A5 requires that the serving BS radio
frequency (RF) condition be below a certain threshold. Event
A6 is similar to event A3 but is used for intra-frequency HO to
the secondary frequency on which the UE is encamped. Event
A4 and A5 can also be used for conditional HO management,
e.g. load balancing. Event B1 and B2 specifies the entering and
leaving condition for inter-RAT HO [8]. The threshold values
are all configured value, and if they are correctly configured,
they can significantly reduce the number of unnecessary HOs.
In this paper, we assume for UE to HO, one of the trigger
conditions for HO must be met.

However, these HO events only show the minimum require-
ments for the UE to undergo HO. The HO trigger events do not
include any intelligence in deciding which BS to associate UEs
with, especially when choosing among multiple BSs. Hence,
it always chooses the BS that provides the highest empirical
rewards, for instance, BS with the highest signal to interference
plus noise ratio (SINR) or highest reference signal received
power (RSRP). Furthermore, the selection of the optimal BS
to HO does not only depend on the BS which provides the
maximum instantaneous reward SINR but other factors such
as throughput, which depends on bandwidth and number of
UEs, also need to be considered, especially for mm-wave BS,
thus, making the matter of optimal BS selection an open issue.

The conventional event-based HO trigger depends only on
the UE’s measurement report (MR) rather than the general
network perception, which often results in sub-optimal HO
decisions. Moreover, in 5G, HO decisions would be taken
at the network level, where both the distribution and load of
users alongside BSs status would be considered. Intelligence
is therefore required to make optimum decisions regarding
selecting the target BS by incorporating or considering other
appropriate features during the BS selection process.

B. State-of-the-Art HO Management Approaches

In [18], the authors addressed the HO prediction method
in 5G and used RL to find the optimal beam that the UE
should select to maximize throughput. Their method assumes
that the state fed to RL is the combination of all RSRP
values seen from all surrounding BSs. However, considering
the states as discrete values in such a complex environment,
the proposed solution does not generalize the HO solution.
The states created by combining RSRP are continuous intrinsic
values and not discrete values as assumed. The actual network
generates continuous RSRP values.

More recently, there have been several studies that solve
HO using multi-armed bandit. The armed bandit is the classic
probability-based RL problem. In [19] the authors assume the
UE as an agent and set the BS as an arm which the UE
chooses to maximize its return, which is the average through-
put for their case. The dynamics of the environment was well-
considered and captured in the learning process. However,
they only considered UE dynamics in their work without
considering the dynamics of the environment, such as moving
and stationary obstacles, which can make the solution more
complex. They also did not consider user trajectory. Despite
the success of [20] in optimizing HO from an energy point
of view, the proposed model is still insufficient as it ignores
some vital factors such as UEs trajectory and distribution as
well as the available bandwidth in the target BS.

In addition, different heuristic approaches have also been
proposed as an alternative solution to the HO problem. Several
researchers have focused their attention on different HO man-
agement techniques using these approaches. For example, [14]
demonstrates how inter-cell interference coordination (ICIC)
can be used to enhance HO decision performance. There is also
a more advanced version of ICIC known as enhanced Inter-Cell
Interference Coordination (eICIC), which can reduce the HO
failure ratio (HoF) and the radio link failure (RLF) compared
to the case without eICIC. However, despite the advantages of
this method, it involves extensive overhead signalling during
coordination between the BS and finding the global solution
regarding when and which BS to HO, thereby increasing delay
and degrading UE’s QoE. A BS skipping technique for mobile
UEs that demonstrates a significant increase in the overall UE
throughput was proposed in [12]. The authors take advantage
of a coordinating BS in deciding which BS to select to reduce
the number of HOs. They also added a HO cost function,
which penalizes the action of HO and maintains the minimum
SINR as much as possible to avoid taking HO. Their method
has been proven to work based on stochastic analysis, but the
fundamental question remains how to skip BSs smartly. Hence,
there is a need to develop intelligent BS skipping techniques
which incorporates all the necessary factors during decision
making.

In order to overcome the stated challenges while achiev-
ing high throughput in mm-wave communication, we pro-
pose a DRL algorithm that intelligently selects the BS that
will prolong UE-BS association while guaranteeing maximum
throughput. We develop an efficient method that alleviates the
effect of HO and help realize the potential of mm-wave fre-
quency in 5G systems. We leverage the availability of extensive
data that the network generates during the training phase. The
advantage of the proposed method is that it learns offline before
its deployment to the BS controller to assist in HO decision.
The model aims to maximize the system’s average throughput
by considering the signal to noise ratio (SNR), UE velocity,
number of HOs per UE trajectory, and network load balancing.

III. REINFORCEMENT LEARNING ASSISTED HO
MANAGEMENT

Our objective is to achieve the maximum throughput, which
is achieved if the whole network environment is considered.
The network environment includes, but is not limited to,
UE trajectories, velocity and distribution, blockages, and BS
distribution and UE velocity. Some of these factors vary with
time, while others do not. Therefore, it is difficult for the
heuristic approaches to solve the HO problem while includ-
ing changing factors over time. Hence, the solution is to
explore the environment and exploit the actions that achieve
the intended objective. Artificial Intelligence (AI) has a class
of algorithms known as RL that solves this problem; these
algorithms learn through trial-and-error. When combined with
Deep Neural Network (DNN), RL forms DRL, which performs
exhaustive search and learns by themselves through experience
from interacting with the environment to achieve the objective
of maximizing or minimizing the objective function.
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Fig. 1. General Framework of RL.

A. Reinforcement Learning

This section gives a brief overview of the RL and DRL
framework and further discusses how the HO optimization
problem is formulated and solved using the DRL algorithm.

1) RL Framework: RL is a subfield of AI that enables
machines to create artificially intelligent agents that learn to
optimize their accumulated reward by interacting with the
environment. In RL, the agent receives feedback after each
action. The feedback includes the reward and the next state of
the environment. The relationship between agent, action and
environment is shown in Fig. 1 [21]. The agent learns the best
policy through multiple interactions with the environment, and
the learning procedure is detailed in the following paragraphs.

Here, we first define the main elements of RL. At time t,
the agent observes the state of the environment, st ∈ S , where
S is the set of possible states. After observing state st agent
takes an action, at ∈ A(st) where A(st) is the set of possible
actions at state st. After selecting and taking the action at
from state st, agent receives the immediate reward rt+1 from
state-action pair (st, at). The selected action in state st moves
the agent to state st+1 at time t + 1. It is essential for the
environment to have state dynamics such that P(st+1|st, at)
exists. There are two approaches to solving RL problems:
The first approach is based on policy search, and the second
approach is based on the value function approximation. Their
names reflect their behaviour. The former searches directly for
the optimal policy based on a parameterizing policy such as
NN. The later keeps improving the value function estimate by
selecting actions greedily according to the previously updated
value function and indirectly learning optimal policy.

RL methods have a dilemma, which is the trade-off be-
tween exploitation and exploration. This has to do with how
the agent learns the environment through trial and error. Should
the agent be encouraged to perform exploitation or exploration
during learning? Exploitation implies that the agent acts more
greedily by taking the best actions that maximize the reward.
Exploration means the agent act less greedy, so it can learn
about the environment more to find optimal actions. The
most common solution to this dilemma is the e-greedy policy
where the agent explores with probability less than ε ∈ [0, 1]
and exploits the best action otherwise is applicable to value
function. For policy search methods, the problem is less severe.

2) DRL Framework: All RL methods based on tabular
solution suffer from the so-called ”the curse of dimension-
ality”, which means that computational requirements increase

exponentially with an increase in the number of states. More-
over, for the task involving continuous states, the problem
becomes severe. To overcome this problem, DRL is introduced
by exploiting the advantage of neural networks (NN) in the tra-
ditional RL. The idea behind DRL is to train neural networks
to approximate optimal policy [21].

In [22], the authors combine deep convolutional neural
networks (CNN) with RL to develop a novel artificial agent
capable of learning successful policies directly from high-
dimensional sensory input data. The CNN is used to represent
the action-value function, denoted as Q(s, a; θ), where Q(s, a)
represents the action-value function and the parameter θ is
the weight of the neural networks. θ is updated every time Q
- network performs an iteration with the mean square error
as the loss function. The loss function is the mean square
error between the action-value Q(s, a; θ) and target values
r + γ ·maxa′ Q

∗(s′, a′; θ−).

It is imperative to train the neural network using training
samples from both the previous and current episodes. This
is necessary because approximating the optimal policy direct
using only current samples results in slower learning and
undesirable temporal correlations. To solve this problem, the
concept of experience replay, in which previous experiences
by the agent at each time-step (st, at, rt, st+1) as well as
recent experience are stored for subsequent use in the training
phase. The experience replay buffers previous experiences and
randomly selects the training set over the data. This results in
the gradual smoothing of the data distribution to avoid the bias
of the sample data.

Fig. 2. Overview of Heterogeneous Network (HetNets) with Dense
mm-wave BS, UE’s and sub 6 GHz BS in the Urban Area.

IV. DRL-AIDED INTELLIGENT BS SELECTION

In this section, we explain our considered system model.
Then, we describe the proposed DRL optimal BS selection
framework. It is worth noting that the DRL framework is based
on Deep Q Network (DQN) and that both terms would be used
interchangeably for the rest of this paper.
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A. System Model

We consider Fig. 2 as our use-case system model, which
demonstrate a simplified 5G HetNet where the mm-wave SCs
are placed close to each other as part of the HetNet. For
simplicity, we assume that every BS and UE has a single
antenna and 28 GHz, 2.1 GHz are used for mm-wave BS
and sub-6 GHz BSs respectively. The environment consists
of a sub-6 GHz macro BS, UE’s, and the mm-wave BSs in
Fig. 2. Wireless Insite (WI) software is used to develop the
environment, and it uses ray tracing, which provides accurate
results that mimic the actual network environment. SINR is a
popular metric for measuring channel quality. In the system
model, however, we consider SNR, and the reason is that
mm-wave antennas are capable of forming directional beams;
therefore, Inter-cell interference contribution is assumed to be
negligible.

B. Proposed Optimal Base Station Selection based on DRL

In this section, we present our design and the proposed
DRL-based architecture. Fig. 3 shows the main components
of the proposed DRL framework, and the description of each
component is presented in the following session.

Fig. 3. DRL-based Framework Comprising Environment, States, Actions,
and Rewards.

a) Agent: An agent is an entity that can interact with
the environment. It observes the state of the environment, takes
action and receives the consequence of the action taken. For
this problem, we model the agent as a BS controller, and
the reason for doing this is because the DRL model requires
training resources. The BS controller is chosen because it
possesses resource in terms of time, computation power, data
set, and, more crucially, the entire network’s global information
consisting of mm-wave BSs. It should also be noted that
the UE collects the input state features in the measurement
report (MR) and shares them with the agent.

b) Action: In the HetNet, the association strategy be-
tween UE and BS mainly depend on the HO events A1-A6
[23]. However, always choosing the target BS with the highest
SNR or RSRP lead to the sub-optimal decision. The wireless
environment’s dynamic nature is correlated with mobile and

stationary obstacles, the presence of several nearby mm-wave
BS, and signal fluctuation due to path loss. These factors in-
crease the number of HOs for mobile UE unless appropriately
handled. Fig. 3 shows M mm-wave BS, and arbitrary UEs,
moving from point P1 to PN , and in each point, Px(X, Y,
Z) is in cartesian coordinates. Intuitively, there are more than
one BSs that if the UE connects to it, it can prolong UE
connectivity with fewer HOs and guarantee maximum user
throughput. Hence, we define the action a ∈ A(s) as the scalar
representation of the serving BS at state s. The action space
A(s) includes all BSs along the UE route.

c) State space: The state explains the current condition
of the network environment and determines what happens next.
For our problem, the state is the UE Cartesian coordinate point
Px. However, due to the difficulties involved in localizing
mobility location, SNR is chosen instead to represent Point
Px(X,Y, Z). We consider SNR received from all BSs at Point
Px to represent location Px instead of actual Px in Cartesian
coordinates. Logically, the combination of SNRs from BSs is
unique continuous values that are the same as point Px in the
Cartesian coordinates throughout the UE route. Therefore, we
can relate UE’s current position to a combination of BSs SNR
values. The advantage of SNR is that UE always receives MR
containing accurate SNR from the serving and neighbouring
BSs, and we can use this potential information.

Hence, at point Px, the state space for an arbitrary UE is
given as, s = {γ1, γ2, γ3......γm, BSi∈m} where γi is the SNR
of BS i, i is the index variable in m BS, and BSi∈m is a serving
BS index in one-hot encoded vector. One-hot encoding [24] is
the vector transformation of an integer variable into the binary
value of zeros except for the index of the integer. For instance,
if the serving Bs index at point Px is BSi=3 and there are a total
of five BSs m = 5, hence, it’s equivalent one-hot encoding
vector become BS(i=3) = [0, 0, 1, 0, 0].

d) Reward Design: The reward is an abstract term
reflecting environmental feedback. The importance of reward is
to motivate the agent to learn to reach the target through reward
maximization, and our goal is to maximize UE throughput
while minimizing HOs. It is also essential to design the reward
in such a way that it avoids giving delayed rewards since it
may cause the so-called credit assignment problem [20], [21].
We introduce an immediate reward function estimating the
immediate impact of the action taken to achieve the agent’s
target. We design the immediate reward so that the number
of HOs and instantaneous received SNR value are combined.
We derive the reward from the throughput equation as follows:
The instantaneous throughput can be expressed as:

T =
B

N
× log2(1 + SNRi) (1)

where B is the maximum bandwidth allocation per serving BS,
N is the total number of UEs connected to the BS, and SNRi
is received SNR from serving BSi. The reward is obtained
by incorporating the impact of HO cost to eqn. 1. Hence, the
reward can be expressed as:

r (st+1, a, st) =

{
T (1−Hc) , if HO occurs
T, otherwise (2)
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where Hc is the HO cost [25] which is a unit-less quantity
that is used to measure the fraction of time without useful
transmission of data along the user’s trajectory due to the
transfer of HO signalling and the switching of radio links
between serving and target BSs.

For model to work, we assume that the average SNR
represents the long term experienced SNR at a particular point
and that the agent uses these accurately collected SNR values
to calculate the reward. We also assume the time delay values
of 2 sec per HO for UE’s HO from mm-wave BSs to mm-
Wave BSs and 0.7 sec per HO for UE’s HO mm-wave BSs to
sub-6GHz BSs and vice versa [12].

1) Learning algorithm: Fig. 3 shows the proposed model
framework built DQN algorithm, summarized in Algorithms 1.
In this Algorithm 1, the first thing the agent does is to observe
the type of service and if the SNR received from the serving
BS is greater than the threshold then it maintains the serving
BS else agent decides by taking action a following the ε-greedy
policy. For a moving UE in particular , at position p, the UE
takes action a according to the stated policy πθ(s, a). Then,
after one step of UE p+1, the environment generates the next
state sP+1. The experienced transition (s,a,r) is stored in the
replay memory D, after which the UE receives the next state
(sp+1) and perform action ap+1 determine by πθ, and process
continue until it reaches terminal state.

V. PERFORMANCE EVALUATION

This section evaluates the proposed DRL-based algorithm’s
performance, but first, we describe the simulation set-up and
parameters and then presenting the simulation results and
discussions. We also compare the performance of the proposed
DRL model and with the benchmark HO policy [23], which
is rate based HO (RBH) strategy.

A. Simulation Setups

The environment, agent and reward are constructed as
follows: The environment is constructed using ray tracing sim-
ulator WI, and states that are obtained from the environment
consist of different number of BSs ranging from 10 - 70 BSs,
random obstacle, the random walking model for UE with speed
1 - 10 ms−1 and UE’s trajectories is of length 500 m length.
Python with Keras library and TensorFlow framework was
used to implement the agent, and reward is generated based
on throughput as expressed in Eqn 2. The summary of the
simulation parameters is presented in Table I. In addition, the
hyper-parameters used in the implementation of the DQN are
shown in the Table. II.

B. Results

The user’s velocity was set to 8 ms−1, and 10 mm-wave
BSs were considered in the first experiment. Also, the SNR
threshold values considered is within the range of 1 dB and
7 dB. We analyse the relationship between the number of HOs
and the threshold SNR, which is the UE triggering condition
to HO. Fig. 4 shows the different values of the minimum SNR
against the number of HO. From the figure, it can be clearly
observed that the proposed model outperforms the RBH. The
minimum HO reduction gain is seen when the threshold SNR is
7. The trend shows that for any SNR, the proposed DQN based

Algorithm 1: Deep Q-Learning
1 Initialize replay memory D to capacity N;
2 Initialize action-value function Q with random weight

θ;
3 Initialize the target action-value function Q̂ with

weight θ− = θ
4 Initialize the target Q-network replacement frequency

fu;
5 Repeat:
6 Get Initial state
7 Assign terminal state ← False
8 Repeat The agent observes the state:
9 if SNR of Serving BSs ≥ minimum SNR for service Ci

then
10 Action: ← Index of serving BSs;
11 else
12 Action: ← agent takes an action following

ε-greedy policy;
13 end
14 The agent observe new state sp+1 after UE move

from point p to another point p+ 1
15 From action a(p) taken above, calculates the

immediate reward r(s(p), action(p)) in position p
16 The agent stores all new experiences

(s(p), a(p), r(p), s(p+ 1), terminalstate) into the
replay memory D

17 Agent run experience replay once every fu steps;
18 Sample random mini-batch of Z experience

(s(p), a(p), r(p), s(p+ 1), terminal state) from the
reply memory D;

19

set ys =
{
rs(p), for terminal s(p+ 1)

rs(p) + γ maxa′ Q(s, a′; θ), otherwise

Agent performs a gradient descent step on
(yj −Q(s(p), a(p); θ))2

20 The agent updates the DQN wight θ once every C ;
Every C step reset Q̂ = Q, i.e θ− = θ;

model outperforms RBH. Overall, the proposed DQN model
resulted in a 70% HO reduction compared to the benchmark
RBH method.

For the second experiment, we evaluate the running time
for the two methods, as shown in Fig. 5. The parameters in this
experiment are as follows: UE velocity = 8 ms−1, and γth = 20
dB. Fig. 5 shows that all the policies follow a similar trend. It
can be observed that our proposed model takes a longer time
than RBH to decide the BS to HO the UE. This is because
the proposed model considers more parameters when making a
HO decision than the RBH method. Moreover, there is a linear
relationship between increasing the number of mm-wave BS
and running time for both policies.

Finally, we evaluate the proposed model’s performance in
terms of the number of HOs and throughput at different UE
velocities in the last experiment. The experimental parameters
are set as follows: γth = 20 dB, λ = 50 BSkm−2, and UE
velocity = 8 ms−1. The average system throughput and the
number of HOs for both HO management policies against the
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TABLE I. SIMULATION PARAMETERS

Parameter Value

BS intensity 10 - 70 (BS/km2)

mm-wave frequency 28 GHz

mm-wave bandwidth 1 GHz

BS transmit power 30 dBm

Thermal noise density −174 dBm/Hz

Delay without data transmission 0.75, 2 sec

TABLE II. DESIGN PARAMETERS FOR THE DEVELOPED DQN MODEL

Parameter Value

Hidden layers, Neuron size
6, {32, 64, 128,

256, 64}

Activation function hidden layers relu

Activation function output layer linear

Initial exploration training 1

Final exploration training 0.2

Learning rate, α and Discount Factor, γ 0.01 , 0.9

Mini-batch size C, Optimizer 32, Adam

Replay memory size, D 10000

UE velocity are shown in Fig. 6. Fig. 6(a) shows a slight
and gradual increase in the number of HOs for both models;
however, the proposed DQN model outperforms the RBH
policy. Compared to low-speed UE, the effect of HO on the
average throughput is more significant for high-speed UE, as
seen in Fig. 6(b). Nevertheless, in comparison to RBH, our
model proposed performs better.

VI. CONCLUSION

Mm-wave BS deployment will become ever denser with
the emergence of new 5G use cases that demand high data
rate. Using mm-wave for communication between UE and BS
leads to more HOs for arbitrary UE, and deploying dense
mm-wave BSs increases the problem. This paper presents a
DQN based model that smartly learn how to maximum UE
throughput while minimizing HO’s effect. The proposed DQN
model and the benchmark rate based HO mechanisms are
simulated, and their comparative performance analysis has
been performed based on throughput and the number of HOs.
According to the simulation results, it can be clearly seen that
the proposed approach gives more successful results than the
traditional approach in terms of throughput and number of
HO occurrences. A new HO strategy that can learn by feeding
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various state features such as images will be presented in the
future. Moreover, the idea of sharing the learnt strategy with
the UEs in the learning phase in order to fasten the training
process will be considered in the ultra-dense 5G network
environment.
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