The Nelson Mandela AFrican Institution of Science and Technology

NM-AIST Repository https://dspace.mm-aist.ac.tz
Computational and Communication Science Engineering Research Articles [COCSE]
2021-05-04

Sensitivity and Uncertainty Analysis of
Variable-Volume Deterministic Model for
Endothermic Continuously Stirred Tank Reactor

Muhirwa, Jean Pierre

Journal of Mathematics and Informatics

https://dspace.nm-aist.ac.tz/handle/20.500.12479/1176
Provided with love from The Nelson Mandela African Institution of Science and Technology



Journal of Mathematics and | nformatics
Vol. 20, 2021, 73-89 Journal of
I SSN: 2349-0632 (P), 2349-0640 (online)

Published 4 May 2021 Mathematics and

www.researchmathsci.org i
DOI: http://dx.doi.org/10.22457/jmi.v20a08189 I nform at ICS

Senditivity and Uncertainty Analysis of Variable-Volume
Deter ministic Model for Endother mic Continuously
Stirred Tank Reactor

Jean Pierre Muhirwa®?", I sambi Sailon Mbalawata® and Verdiana Grace Masanja’

'Nelson Mandela African Institution of Science aretiinology Tanzania
School of Computational and Communication SciemzeEngineering
Department of Applied Mathematics and Computati@@aénce
Arusha-Tanzania
“University of Rwanda-College of Science and Tecbgy) School of Science
Department of Mathematics, Kigali-Rwanda
3African Institute for Mathematical Sciences-SeaiataResearch Department,
Kigali-Rwanda
’E-mail: verdiana.masania@nm-aist.ac‘q.’E-;maiI: imbalawata@nexteinstein.org,
"Corresponding author. Email: muhirwaj@nm-aist.ac.tz

Received 7 March 2021; accepted 29 April 2021

Abstract. This paper deals with the formulation and the idietility of the variable-
volume deterministic model for the endothermic owmusly stirred tank reactor
(CSTR). The identifiability of physical parametarsthe formulated model is done by
using the least squares and the delayed rejectiaptiae algorithm version of the
Markov chain Monte Carlo (MCMC) method. The leagiare estimates are used as prior
information for the MCMC method. To measure the elooutput associated with the
perturbed model parameters, we use global semgitarialysis implemented in Latin
Hypercube Sampling method. The obtained resultsn frpartial rank correlation
coefficients show that six parameters are veryigseasand correlated with the model
outputs. Finally, we show that the least squarethtadViICMC numerical results impart
the model to be realistic, reliable and worthwhibedescribe the dynamics of CSTR
processes as physical parameters of the model eltedentified and their uncertainties
in the model response are analysed and quantified.

Keywords: Variable-volume; Markov chain Monte Carlo; Endathi; continuously
stirred tank reactor

AMS Mathematics Subject Classification (2010): 65C05, 78M31

1. Introduction

Continuously stirred tank reactors (CSTRs), asafrtbe chemical engineering reactors,
are recently very useful in industrial productidbhemical engineering reactors are
categorised in three main types whereby the fiys is batch reactor, the second is semi-
batch rector and the last is CSTR. The reactorsatpdifferently. For example, the
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batch reactor is fed once and the product is reth@ree whereas for the semi-batch
reactor, the reactants are supplied continuoudy tine product is formed and removed
at an instant or vice-versa. On the contrary, C®Rrates in such a way that the
reactants are fed continuously and the formed mtsdare also removed continuously.
Chemical products that may be produced from thesetors are food supplements,
cosmetic products, alcohols, fertilisers, mediciaed biogas among others.

CSTRs are very complex and exhibit non-lineperational behaviour which may
lead to complex control techniques. For controll@§TRs, it requires to control the
disturbances in inlets and outlets at the same fithe inlets are composed of parameters
and variables such as temperature profiles, re@ctzoncentration, reactants density,
heating or cooling system temperature, and reataotume while the outlets are
composed of the product concentration, product &aipre, product volume, and
product density, to name few. Scientists and emgmeare interested in fully
understanding the dynamics of these tanks througthematical analysis [1, 2, 3]. Other
researchers have carried out uncertainty quartiitaon CSTR models. For instance,
uncertainty quantification of only kinetic paramsteon model states of anaerobic
digester, which is a kind of CSTR has been studéedlysed and quantified in [4].
Despite the accurate results obtained, it is bettequantify the influence of each and
every uncertain parameter on model outputs fontbdel to be robust.

Many researchers also studied behaviouh@fCSTRs with exothermic reactions
which release heat energy [5, 6, 7]. However, frima chemical point of view,
endothermic reactions which absorb heat energiesegually very important and
considered in chemical industries. There are masaymeles of endothermic reactions
that are frequently performed and are abundantigddn nature, in industries, and in our
daily real life activities. Few of the known examplinclude a daily activity of
transforming eggs into omelette. This is one of tkal examples of endothermic
reaction, for which the pan absorbs enough heatggrte cook eggs. Another typical
example is plants photosynthesis process, whichines)the plants to absorb the sun
energy to transform minerals into food. More exampinclude water evaporation,
melting ice cubes, baking breads, and dissolutibsait in water. In modelling the
endothermic reaction, some existing researches thaynodel parameters around their
nominal values instead of sampling them from sonstributions, and only consider
reacting tank temperature and concentration ase stafriables or reacting tank
temperature, cooling/heating jacket temperature amtentration with the treatment of
the volume as a constant [8, 9, 10, 11]. It is wlithse reasons, there is a need to develop
an endothermic CSTR model with varying volume argingi advanced sampling
technigue to study and analyse the uncertainty tffication of model parameters. It is
important to consider the volume as variable bezdlSTRs may expand and deform
continuously.

This paper aims to consider a four statéalbes endothermic CSTR deterministic
model and sampling and optimizing the CSTR’s mqulameters by using the least
squares and Markov Chain Monte Carlo methods wvhighrotivation of looking at the
influence of parameters variability on the systeodel response.

The reminder of the paper is structured as folldBextion 2 describes the schematic
diagrams that show the dynamics of CSTR, the modssumptions, parameters,
constants and variables involved in this reseaféction 3 discuses methods and
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materials used. In Section 4, the numerical aralgéithe model and discussion of the
results are carried out whilst Section 5 gives tating remarks.

2. Description of variable-volume deter ministic model for endothermic CSTR

2.1. CSTR dynamicsillustrations

Figure 1 depicts the dynamics of the endothermitRESOn the left hand side, there are
physical properties of the raw materials (inlet)d in the center, we have the CSTR
under consideration that is covered by the headicket which supplies heat energy into
CSTR. The collection of products (outlets) withgtsysical properties from CSTR is on
the right hand side. To study the behaviour ofrtée system as a whole is complicated.
That is why a conventional control volume drawrFigure 2 is involved to represent the
Reynold transport theorem (RTT) which governs flamvand out of the system.

T_in
c_in
Fin Stirrer
rho_in \|/
F_out
Inlets Reacting, Tank rho_out
TH_in.rho_H T out
C_out
Outlets (Products]
Figure 1. The dynamics of endothermic CSTR process
E: Total energy in a control velume
Vv: volume of contrel velume
Inlets streams Control Volume T P T T e
e

w: work done due to surrcundings

IQ: heat exchange

Figure2: The dynamics of endothermic CSTR using RTT

2.2.Model assumptions
Most of mathematical models are built based onrapsions. Therefore, from Figure 2, a
variable-volume deterministic model for the endatfie CSTR can be formulated after

taking into consideration of the following assurps:
A : To avoid spatial gradients of velocity, temperatuwoncentration and other physical
properties of the mixture inside the CSTR, them jrfect mixing.
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A, : Non-viscous fluid and static mixer for which thea# work produced by the stirring
process is negligible.

A, 1 No pressure drop is taking place in the CSTRs.

A, : Kinetic energy, potential energy and other formexternal energy are infinitesimal
small compared to the heat exchange and the tweattfre chemical reactions.

A : Wall temperature is negligible. Only the heat exue is channelled through the
designed area.

A, : The volume is treated as a variable.

A, : Densities (0) and specific heat capacities,() are constants.

A, . There is negligible momentum on the system siheee is also negligible external
stress acting on the system.

Based on the eight assumptions above, the systé@ndiriary Differential Equations that
governs the dynamics of the deterministic varialieime model for endothermic CSTR
is formulated and it is given by Equation (1);

dv _

W_ I:in_ Fout'

SEL 1
&=L ch-0)-ke™ T e, o
dT _F e T Telc AU (T-T,)
W:V_(Ti”_-r)-l- . + oV H

pc, c,

a _Fuq 7)o AVO T
dt vV Puc, Vy

whereV denotes the volume of the react@rdenotes the concentration of the reactant,
T denotes the temperature of the mixture inside &md, T, denotes the temperature
inside the covering heating jackek, denotes the inlet volumetric flow rate,
F.. represents the outlet volumetric flow ratejs the overall volumetric flow rate of
the mixture,C,, is the inlet concentratiork, is the pre-Arrhenius frequency factdg, is

the activation energyR is the gas law constank, , is the reference temperaturk,

is the inlet temperatureyl ™ is the reaction enthalpyyis the mixture densityc, is the

heat capacity of the reactah is the cross-sectional area between the reactbrtian
heating jacket to allow the heat energy fldw, is the heat transfer coefficierf, is the

volumetric flow rate of the heatey,, is the volume of the heating jackdi,, is the

heating temperature inlep,, is the density of the heater, angL is the heat capacity of
the heating jacket.
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3. Methodsand materials

3.1. Least squares method

The least squares method is among the classicéhiaption methods that aim to

minimize the sum of squares of the model’s reswl{2]. The residual is defined as the
deviation of the predicted model values from theesbed model values or simply the

model bias. Mathematically, given the model funetip= f (x(t),5) +r, thenr is the
residual while f (x(t), £) is the numerical solutions of the model (observaldes), X(t)

is the vector of model dependent variablg$,is the vector of model parameters, and y is
the predictive dependent model. Thus, from Equdtione have

x(t) = [V (1),C(1), T (1),T, (V)]
andfB =[Foy, F . Ko, E Tpean H 1 0.C, U A F, MV, 0, € 1. In order

to use the least squares method, one needs to éxperimental data but due to
technology advancement and due to the developnieahaputers, simulations become a
very useful approach to experimentally describe piwsical systems. In addition,
various applied mathematics and engineering prablare enough complicated to be
solved analytically and to be experimentally defeed due to non-linearity behaviors as
mentioned in [13]. For instance, in this paperywashave the degree of freedom which is
fourteen, we need to minimize the sum of squaregsifiuals by solving fourteen non-
linear systems of equations simultaneously. Ancdyly, this task seems to be complex.
As a result, simulations simplify the task and mmiizie the cost and other unnecessary
risks that may occur during statistical experimemstaidies. To obtain the statistical
experimental data, we introduce the noise of stahdieviation 0.05 to hundred
numerical solutions (100 datasets) of the modelaqn (1) which is equivalent to
100x4 statistical experimental datasets. The obthrorrupted data points are then the
statistical experimental measurements of the vixiablume deterministic model for the
endothermic CSTR.

out?

3.2. Markov chain Monte Carlo method

Markov chain Monte Carlo (MCMC) method is among teeent advanced sampling
technigues developed to tackle the estimation cdrpaters of complex systems such as
biological, chemical and engineering systems. Asxample, the method has been used
to study the dark energy model with gravitatiomald in [14]. It has been also used as an
approximation method for branching process of dignacessing in [15]. The ingredients
of the MCMC method comprise of a distribution cdlkhe proposal distribution, initial
covariance matrix, and prior information about ngogrameters. In this paper, initial
parameter values are optimized by using least squarethod and treated as the prior
information about model parameters for the MCMC hudt The suitable proposal
distribution used for this case is chosen to besGian and the turned initial covariance
0.00002x 1,

Jd
identified, andl ,, is thed xd identity square matrix. We generdi80, 00( samples
for each one of the 14 parameters. Finally, stagisinference and graphical analysis,

matrix is ¥ = ., where d represents the number of parameters to be
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which are trace, scatter, autocorrelation, histmgrand marginal density distributions
are performed to study the convergence and théifiddility of the model parameters.
The delayed-rejection adaptive metropolis (DRAM)oa® of the types of the MCMC
algorithms which combines two concepts of delaygdetion (DR) and adaptive
metropolis (AM) is used to efficiently and accubgtenhance the sampling of posterior
distributions, especially for complex and non-line@dels which sometimes have a slow
startup sampling. This method overcomes the MCMGtimes of the burn-in and
thinning of some posterior samples during samptiagod. The DRAM algorithm used
in this paper, is also found in [16, 17, 18, 19kl & is presented as follow:

Step 1: Initialization of the algorithm: Get the initigl, from the initial proposal
distribution p,(f) and set the initial non-adaptive perfdg and the initial covariance
matrix 2.

Step 2: Implementation of the algorithm: Fgr=1, 2... do the following:
(i) Sample a current point gf from the current proposal distribution
a(B1B;4).
(i)  Compute the acceptance probabilitywith probability p as
a5, 5) = ming, 2B/ KXo Ko B 1B)
P(Bi! Xy, Xy Xy B 18-,
Acceptf, = B if v<a(B,,, ), wherev1U(0,1),
Otherwise reject the drawn sample point b6, , = 3.
(i)  After each iteration, update the covariance matrixith the
formulaZ; =Cov(4,, B,,---..3, )+ <1 ., » where {is a small non-negative

number that avoids the covariance matrix to beudarg
(iv) ] « j+1.

4. Numerical analysis of the model

The numerical solutions for the deterministic valgavolume endothermic CSTR model
(1) are performed by using the fourth order Runggtdmethod which is an ode45solver
software package available in MatlabR2016b.

4.1.Numerical simulations

The simulation of model (1) requires parameters anitibl values. Table 1 shows

parameters and initial values used to obtain theemical solutions of the model, and the
graphical presentation of the state variables’tgmig are shown in Figure 3. Also, the
samples are generated and analysed graphically usite, scatter, autocorrelation,
histogram and marginal density distribution plots.
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Table 1. parameter values, constants and variables.

Parameter Symboal (unit) Physical Literature Reference
Meaning Value
kmol Feeding 316.¢ [20]
C.n(m Concentration
kmol Initial 316.¢ [20]
G (min m3) Concentration
kmol Mixture State Variabl  Simulates
C (min ms) Concentration
T, (K) Feeding 298.3! [20]
Temperature
T, (K) Initial 29€.3¢ [20]
Temperature
T (K) Mixture State Variabl ~ Simulate
Temperature
b kcal Reactior 1004.3%< 108 [20]
(—kmol ) Enthalpy
T, (K) Initial Heating 288.1¢ [20]
° Temperature
T (K) Feeding 29: [21]
Heating
Temperature
T, (K) Heaing State Variabl Simulate
Temperature
kJ Gas Law 8.31¢ [20]
R (m) Constant
V, (m°) Initial Volume  10C [22]
V (m°) Reactot State Variabl Simulatet
Volume
( 1 ) Pre-Arrhenius 0. [20]
Ko min Frequency
kJ Activation 0.t [20]
E (m) Energy
T ... (K) Reference 298.1¢ [20]
Temperature
m? Volumetric 130x 102 [20]
F=F, (m) Flow Rate
kg Density of the 100( [22]
Y (ﬁ Mixture
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Figure 3: Numerical results of the model

20

From Figure 3, we can see that the concentratidheofeactants is decreasing inside the
tank from 316.8 and approaching zero. When thetaatc are fed continuously into the
tank they are consumed and this is an indicatiomasing a complete conversion of
reactant's concentration into product's conceotatihe temperature of the system is
observed to increase exponentially from 29%&3 360K, however there is a covering
heating process to boost the reactor's temperabamsequently, the temperature of the

80



Sensitivity and Uncertainty Analysis of VariabledMme Deterministic Model for
Endothermic Continuously Stirred Tank Reactor

heating tank decreases slightly from 288<1Lf almost zero after 5 minutes. From sub-
plot 1 of Figure 3, we can further observe that\wbkime of the reacting tank increases
with time as the feeding rates become more andeagrdzgan the removal rates. This has a
significance in designing the reacting tank whichyndeform continuously to increase

the production conversion rate from 108 tmapproximately 126 ™

4.2, east squaresresults
To apply the least squares, we initialize the modwrameter values as

By =[Four F K BT H w000, ULAR, Vi 04 Ep T
=[130x% 10° ,13&¢ 107 ,0.9,0.5,298.15,1004.3° 10 Q
4186,100000,0.015,465 0 ,%0 "10 ,1000,4186]

We also initialize the state variables of the gysés x, =[100,316.8,298.35,288.15

From Figure 4, we can observe that the distancedssat the predictive solutions and the
exact model solutions seems to be minimized. Heheesystem model is fitting the
measurements very well, simply because red anddalloes are nearly coincident.

Reactor Volume Concentration

125 300
120 250 = *Fitted
£
4 N
a = *Fitted ¥ 200
=115 c
2 S
£ 5 150
o 110 =
> 2 100
o
105
50
100
0 5 10 15 20 0 5 10 15 20
time (min) time (min)
Temperature Heating Temperature
____________
360 =
, = .
- Fj < -
~ Fitted 550 Fitted
€340 5
o g
2 8 200
@ £
2320 °
£ o
° £ 150
8
o
300 T
100

0 5 10 15 20 0 5 10 15 20
time (min) time (min)

Figure 4. The fitted model. The real data are experimerdatd dfter introducing noise.

4.3. MCMC resultsand uncertainty analysis

The identifiability of the model parameters in MCMiS mainly based on the
convergence diagnostic tests and the uncertaingysis of posterior distributions.
Various diagnostic tests for MCMC convergence amtettainty analysis include
observatory tests, statistical tests, and graphésas [23, 24, 25, 26, 27, 28, 29, 30, 31].
In this paper, the MCMC graphical diagnostic tagted are trace (time-series), scatter
(pairs), histograms of the posterior distributi@msl autocorrelation plots. The statistical
tests are performed to check, examine and quastifge statistical quantities of the
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posteriors distributions. The statistical testsdusee posterior means, medians, standard
deviations, MCMC errors, tau, geweke, kurtosis skelvness.

4.31. Traceplots

The generated time series for parameters is pletiddthe target of diagnosing whether
the posterior parameter distributions are statipnHirthe chain gets stuck somewhere
during sampling period, then the chain does noterstvaightforward from one side to
another. So, the MCMC algorithm produces a poorimgixThe poor mixing indicates

that the parameters are not identifiable. Therefdwgther task of changing the

ingredients of the algorithm should be done tocidffitly and effectively identify the

parameters.

Fout

0.4
021.5 .

0

Tmean x
340 1.01148

1.01146

320

1.018

1.017

1.016
980

970

960

x10° %10°

Figure5: Trace plots of sampled posteriors

Trace plots that are shown in Figure 5 indicaté thare are no high trends in sampled
parameters since the chain is stationary and mfrees one side to another. We may
explore that DRAM does not stuck in any place dysampling, which represents the
good mixing of the chain.

4.3.2. Scatter plots

The scatter plots check the correlation index betwgairs of samples. High correlation
index among many pairs of samples can lead to pdemtifiability of the model
parameters. As a consequence, the model cannetibkly applicable. Low correlation
index among pairs is preferably to be observed fgood mixing.
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Figure®6: Scatter plots (pairs)

As there are fourteen parameters to be identifiedh fthe data points, then there are as
many as combinations as possible for each of theserh pairs from the fourteen
parameters and this is equivalent to ninety onéescplots. However, we only present
the scatter plots of the first ten parameter sasnplach is equivalent to forty five scatter
plots. Figure 6 shows that none of the parametersteongly correlated with each other.
If one observes strong correlation among samplednpeters, then it is the indication
that the algorithm mixes badly.

4.3.3. Histogramsfor posteriors

The histograms for sampled posterior parametersa foonverging Markov chain must
fairly follow the normal distribution curve. It itherefore a good practice to plot the
histograms for all sampled parameters to maketbateall of them have bell shapes.

Fout

(
f
T
:

o
w
o
N
IS
=y
o
o
P
o
N
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o

0.1 0.2 0.
Tmean

%
FL
%
F

325 330 335 340 1.01147 101148 1140 1145 _ 1150 1155 3910 3915 3920 3925
u A x10f Fu Vu

1.0165 1017 10175 1018 0 26 4 6 0 0.01 0.02 0 0.01 0.02
P 4 P,

H H

x
B

-

965 970 975 980 4035 4040 4045 4050

Figure 7. Histograms for the posterior samples distribution

So, from Figure 7, we see that almost all sampl@cmpeters agree with the normal
distributions, except for the parametétg, and E which are slightly skewed to the right
side. As a result, the DRAM method identified vibk parameters of the model (1).
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4.34. Autocorrelation plots

The autocorrelation plots show how independent his sampling process. If the
coefficients of the autocorrelation functions (dsaxfor some of the posteriors do not
decay toward zero as the number of lags (y-axigeases, then it is the sign of having
parameters dependence in sampling which caused@C method not to converge to
the target distribution. Thus, a decay of autodati@n functions coefficients provides
the accuracy and the certainty of obtaining a cogimg posterior distribution of
parameters.

From Figure 8, we can see that all coefficientauatiocorrelation functions are
exponentially decaying as the number of lags irsgea Therefore, the consecutive
parameters are independently sampled during théimenof the DRAM algorithm, and
this determines the convergence of the method.

Sample Autocorrelation Function (Fuut) Sample Autocorrelation Function (F) Sample A relation Function (k)

1

Sample Autocorr
o

Sample Autocorr

Sample Autocorr

'
-

0 20 40 60 80 100 20 40 60 80 100
Lag Lag

o
=)

10 20 30 40 50
Lag

Sample Autocorrelation Function (T

mean) 1 Sample Autocorrelation Function ( H*)

1 Sample Autocorrelation Function (E)

Sample Autocorr
Sample Autocorr
Sample Autocorr

0 20 40 60 80
Lag

=)
S

Sample Autocorrelation Function (cp)

Sample Autocorr
Sample Autocorr
Sample Autocorr

0 20 40 60 80 100 ’ 0 20 40 60 80 100
Lag Lag
S le A relation Function (V,

Sample Autocorrelation Function (F

W

Sample Autocorr
Sample Autocorr
Sample Autocorr

0 20 40 60 80 100
Lag
Sample Autocorrelation Function (pH)

Sample Autocorr
Sample Autocorr

0 20 40 60 80 100
Lag Lag

Figure 8: Autocorrelation functions for all 14 identified jpaneters

The results in Table 2 show that all posterior nseane within their credible
intervals. The MCMC method converges as the MCMGiad®ns (MCerr) are
minimized. Some curves for posterior means havavshskewness and deviate from

normal curves for example, . This has been justified by the kurtosis and #exsess
values ofF_, that are far from 3 and O respectively, as it carexpected from Gaussian

distribution. This indicates that most of all paeders follow Gaussian distribution. The
geweke numbers for posterior distributions alsockhie convergence of the MCMC
method and by default assuming that the postereans for two windows which are the
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start of sampling (10%) and the end of sampling4p@re identical. When samples are
drawn from stationary distribution then geweke dizgfic statistical test approaches
standard normal distribution and its values areeetqd to be at most near unity for
converging chain. While tau values indicate thearrelation times and so the decrease
in tau values implies the better mixing in sampliagcertain posterior parameter
distribution. Based on that, the geweke and tauegabbtained in Table 2 show that there
were better mixing and independence in samplingepioss from stationary distribution
as geweke values for all parameters are at mosdiyngaty and tau values are small.

Table 2: Estimated parameters and their statistical infegen

Posterior

LSQ Posterior |Standard |Credible
Param |estimates |mean deviation |interval MCerr tau geweke |Skewness Kurtosis
Fout 127.429 [0.040377,

x107° 0.040469 | 0.033356 |0.0405619] 0.000911| 72.252| 0.75014 1.15 4.3
F 122.894 [1.196687,

x 1072 1.1983 0.58335 [1.199921] 0.008309| 59.379| 0.99404 0.3499 2.9
ko [0.849618,

0.8881| 0.84984 | 0.079068 |0.850056] 0.000664| 57.624| 0.99733 0.398 3.4

E [0.992368,

0.5097146| 0.99429 | 0.69412 |0.996216] 0.022557| 71.166 0.782 0.849 3.4
Tmean [331.9976,

295.29 332 0.97761 [332.00305] 0.011375| 66.184| 0.99982| -0.0325 3.1

H” [1011472.177,

997444.32| 1011500 | 0.96855 |1011572.182] | 0.018189| 60.161 1 0.0119 3.05
P [1145.017,

1094.291 1146 0.991195 |1146.0223] 0.016142| 59.628| 0.99998| -0.00517 3.06
Cp [3917.778,

3011.158| 3917.8 | 0.99181 [3917.884] 0.022299| 64.508| 0.99992 -0.063 3.08
u [10170.319,

0931.5342| 10171 0.97344 [10171.324] 0.014898| 65.456| 0.99998| -0.0125 3.09
A [1.52593,

0.0148386| 1.5279 | 0.71386 |1.52989] 0.061221| 452.28| 0.39106 0.324 3.08
Fy 46.4 [0.005048,

% 107% |0.005055 | 0.002363 |0.005062] 0.000203| 449.29| 0.39138 0.326 3.08
Vu 50.4 [0.0051169,

x 107*® 0.005124 | 0.002436 |0.0051304] 0.000206| 392.98| 0.38563 0.389 3.17
Pu [971.363,

977.79746| 971.37 | 0.96991 |971.389] 0.022239| 69.989| 0.99957 0.0489 3.13
CpH [4043.074,

4174.3783| 4043.1 0.97664 |4043.179] 0.015468| 65.86| 0.99996 0.0459 3.12

4.4.Partial rank correlation coefficients for the model parameters

Sensitivity analysis interpreted via partial randrelation coefficients (PRCCs), is a
technigue that quantifies the uncertainty in trepomsive model from the uncertainties of
input initial conditions and parameters. Thus, ttadg the influence of uncertainties on
the proposed model (1), we performed the globadiseity analysis of the model which
is a necessary and important tool to quantify ffeces of uncertainties of the parameters
on the responsive variables of the model. Basedhennature of the model, various
methods for the sensitivity analysis have been gse@. For example, for non-linear
models, methods that are based on decomposititthre afutput variance of the model like
sobol method are used to quantify the model urnicgytédut this is applicable for non-
monotonic models. For the case of nonlinear andatomiic models, spearman rank
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correlation coefficients, standardized rank redgoesgoefficients and the PRCCs are
preferably to be used, but the PRCCs are the noostrate and adequate to measure and
quantify the uncertainty in the outputs of the md@g2]. The PRCCs vary in the range of
+ 1 with significant correlation for the values apaching -1 or +1 and low correlation
for the values that are far from -1 or +1. In theper, the model (1) is nonlinear and
monotonic, so the Latin Hypercube Sampling ((LHSgtmod with the PRCCs are
implemented to qualitatively and quantitatively fpeming the sensitivity analysis. The
obtained results are presented in Figure 10 antéTab

‘PR(‘JCfng‘

PRCC for C
0.5 T

-05

1 2 3 4 5 6 7 8 9 10 11 12 13 14
Parameters Parameters
PRCC forTH

1.2 3 4 5 6 7 8 9 10 11 12 13 14
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0.4
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-02

-04

-06

1 2 3 4 5 6 7 8 9 10 11 12 13 14
Parameters Parameters

Figure9: PRCCs plots

12 3 4 5 6 7 8 9 10 11 12 13 14

Figure 9, subplots 1-4 displays the PRCCs for th&ume, the concentration, the
temperature and the heater temperature respectiVeig figure shows that the first

parameter E ) is strongly and negatively correlated with thdumee means that the

out

increase in the values &, decreases the values of the volume in the reatdink.
Likewise, the second paramet@f) is positively correlated with the concentration
whilst the third ong(k,) is significantly and negatively correlated with #@ncentration,
and consequently, the increase in the valued-ofvill increase the values of the
concentration in the model and the increasé&ofill decrease the concentration of the
model as can be seen from subplot 2. From subplee3an explore that the increase of
sixth parameter(H") values will increase the temperature of the tanlerehs the
increase of the sevenip) and the eightt(c,) parameters values will automatically

decrease the temperature values in the presentddl.n®ubplot 4 shows that only sixth
parameter is negatively correlated with the hetgmperature which explains that the
increase in the enthalpy values will directly irihithe increase of the heater temperature

values. As a resultF,,,F,k,,H",p and C, parameters are identified to be very
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sensitive to the model and hence much attentiorichbs quantitatively and qualitatively
accorded to them.

Table 3: PRCCs values for each responsive model variable.

Parameters Variables
v C T T,

Fou -0.989¢" 0.4067 -0.0263 -0.0126
F 0.1793 0.7850 0.1599 -0.2350
K, 0.0645 -0.9678 0.2452 -0.1453
E 0.1209 -0.1126 0.1999 -0.1934

T 0.0730 0.0739 0.0048 -0.0053

H 0.1246 -0.0532 0.5887 -0.5029”

p 0.1777 -0.0739 -0.5858 0.3995
c, 0.1076 -0.1335 -0.6017 0.3773
U -0.0473 0.0001 0.0060 -0.2588
A -0.0664 0.1083 -0.0800 -0.2929
F, 0.0918 0.0950 -0.1923 0.3310

Vv, 0.1325 -0.0212 -0.0447 -0.1234

ey 0.0846 -0.1467 0.0563 0.3318

Con 0.2289 -0.0405 -0.1175 0.2282

Note: value® means significant PRCCs values for the model vhgab

5. Conclusion

In this paper, we formulated and numerically solesdl analysed the variable-volume
deterministic model for the endothermic continugustirred tank reactor by using the
least squares and the MCMC methods. The MCMC edudtre been graphically and
statistically analysed to not only study the cogesice of the method and the robustness
of the model but to also examine the reliabilitytioé model by identifying its physical
parameters. We also performed the global senyitantalysis to quantify the effect of
uncertainty in the model from the uncertainty ofireated parameters by using LHS
method, in order to obtain the PRCCs and theiritehg significances for each variable
of the model. Six parameters among fourteen idedtiparameters were shown to be
correlated with the model variables and are venysitige to the model responses
(output). In the meantime, the numerical resulteeh@vealed that the model can be very
beneficial to qualitatively, quantitatively and exjmmentally describe the dynamics of the
variable-volume CSTR systems which require theihgaitrocess.
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