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SOIL & CROP SCIENCES | REVIEW ARTICLE

Importance of common bean genetic zinc 
biofortification in alleviating human zinc 
deficiency in sub-Saharan Africa
Mashamba Philipo1*, Patrick Alois Ndakidemi1 and Ernest Rashid Mbega1

Abstract:  Zinc deficiency is among the leading risks to human health in sub-Saharan 
Africa, its adverse exposure leads to diarrhea, pneumonia, and malaria. Furthermore, 
it is the leading cause of stunting in children and negatively influences the human 
immune system, body iron, and vitamin A and D. High zinc deficiency in sub-Saharan 
Africa is due to the consumption of staple foods with low zinc contents. Genetic zinc 
biofortification of common bean among staple food crops is the best approach for 
alleviating zinc deficiency, as it is cost-effective and can easily reach low-income 
households. Genetic zinc biofortification by conventional breeding coupled with mar
ker-assisted selection is the best strategy for sub-Saharan Africa, as the selection of 
crosses is precise and takes short time to develop high zinc-containing varieties. 
Zinc content increase in common bean seeds has a high impact on alleviating zinc 
deficiency as it is consumed whole compared to cereal grains which undergo 
milling, the process that removes zinc-rich parts before being consumed. This review 
explains the current status of zinc deficiency in sub-Saharan Africa, conventional 
methods for alleviating the problem, current and potential of modern genetic 
approaches for zinc biofortification of common bean in alleviating zinc deficiency in 
the region.
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1. Introduction
Phaseolus vulgaris (common bean) is an important annual herbaceous grain legume mostly grown 
and consumed in sub-Saharan Africa (Philipo et al., 2020a). It belongs to fabaceae family, and 
grown mostly for its dry seeds (Mondo et al., 2019; Philipo et al., 2021). Common bean is an 
important source of nutritional zinc among other staple foods (Głowacka et al., 2015). It contains 
relatively high zinc concentration in dry seeds compared to most staple food crops 
(M. W. M. W. Blair et al., 2009). The crop is largely grown in eastern and Southern Africa (Petry 
et al., 2015). Even though there is high production and consumption of common beans in sub- 
Saharan Africa, most of the widely consumed varieties had low seed zinc contents compared to 
locally adapted varieties (Blair, 2013; Philipo et al., 2020b). Zinc is an important micronutrient for 
most living organisms, including human beings and plants (Sharma et al., 2013).

Zinc is essential for plants, as it is a constituent of enzymes involved in carbohydrate, proteins 
and lipid metabolism, the synthesis of auxin, formation of pollen and management of genes 
involved in environmental stress tolerance (Chattha et al., 2017; Sharma et al., 2013). Soil zinc 
deficiency causes plants spikelet sterility, chlorosis, reduced growth and tolerance to environmen
tal stress (Broadley et al., 2007; Xue et al., 2016). Deficiency of zinc in soils also results in low 
nutritional quality edible parts in terms of zinc in edible parts, thus causing malnutrition in the 
human population (Bailey et al., 2015; Mulualem, 2015).

In humans, zinc makes up less than 0.005% of total body weight, and found in each and every 
type of cells (Bagherani & Smoller, 2016). It plays an important role in proper functioning of body 
defensive system, cell division and growth, brain function, wound healing, carbohydrate metabo
lism, reproduction and smell and taste senses(Ahmad et al., 2015; Liu et al., 2017). Zinc deficiency 
leads to reduced body immune response, slow wound healing, infertility and reduce growth and 
development (Bagherani & Smoller, 2016; Plum et al., 2010). Human body experiences zinc 
deficiency when food intake or supplements cannot meet body zinc demand, due to poor absorp
tion, increased loss and high body system utilization (Lokuruka, 2012). Worldwide zinc deficiency 
affects 20% of the world’s population, with more effect to the resource poor population residing in 
developing countries (Darnton-Hill et al., 2005; Stein et al., 2007).

Over the decades, attempts to reduce zinc deficiency have been dominated mostly by supple
mentation and chemical fortification of staple foods (Goudia & Hash, 2015). Recently biofortifica
tion has been advocated as a compliment to supplementation and chemical fortification (Stein 
et al., 2007). Biofortification is the process of enriching staple food crops with vitamins and 
minerals to the edible parts, through plant breeding or agronomic practices, so that when con
sumed significantly improve nutritional status of the target population (Welch & Graham, 2004). 
Compared to supplementation and chemical food fortification, biofortification is a cost-effective 
intervention and has been conducted in several food crops. In grain legumes, zinc biofortification 
has been practiced in a number of crops including soybean, common bean, peas, cowpeas, 
chickpeas, and lentils (Jha & Warkentin, 2020; Kumar & Pandey, 2020). The impact of pharmaceu
tical supplementation and chemical food fortification have not yet reached many poor resource 
populations residing in rural areas and few cases in urban particularly in sub-Saharan Africa 
(Garcia-Casal et al., 2017). In most cases the populations residing in rural areas of sub-Saharan 
Africa do not eat or eat less processed food, due to poor market and infrastructure, thus they often 
prepare their staple food by milling in locally available millers (Ferrão et al., 2017).

This review will discuss, the current zinc deficiency status in sub-Saharan Africa and cost- 
effective methods particularly the potential of genetic common bean zinc biofortification in redu
cing zinc deficiency among sub-Saharan African populations.
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2. Zinc deficiency status in sub-Saharan Africa
Malnutrition due to micronutrient deficiencies is a global public health problem despite several 
ongoing interventions to combat the problem. Compared to other global regions, sub-Saharan 
Africa as home for most resource poor population is more affected by micronutrient deficiencies 
(Fanzo, 2012). Zinc defiency is among major risks to human health, whose measured adverse 
outcome of exposure include: diarrhea, pneumonia and malaria (WHO, 2009). Zinc deficiency ranks 
number three, after iron and vitamin A among the micronutrient deficiencies (WHO, 2013). Globally 
zinc deficiency effects has an estimate range of 4–73% across subregions (WHO, 2002). In sub- 
Saharan Africa, zinc deficiency accounts for 18–22% attributable fractions for lower respiratory 
tract infections, 11–13% attributable fractions for diarrheal diseases and 10–22% attributable 
fractions for malaria (WHO, 2002, 2013). Lower respiratory infections, diarrheal diseases and 
malaria are among the leading cause of disability-adjusted life-year (DALY) in sub-Saharan 
(Figure 1).

Zinc deficiency increases the risk of incidence for these infectious diseases as it impairs multiple 
aspects of immune function, including barrier and non-specific immunity, specific immune com
ponents (lymphocytes, monocytes and macrophages, neutrophils, natural killer cells), and media
tors of immune function such as glucocorticoid and thymulin activity, and cytokine function 
(Bagherani & Smoller, 2016). Zinc deficiency negatively influences human body iron and vitamin 
status. It triggers synthesis of hepcidin molecule in the human gut, which decreases iron absorp
tion (Kondaiah et al., 2019). Vitamin A metabolism in humans depends on zinc-containing 
enzymes (Rahman et al., 2002). In most cases zinc deficiency is associated with insufficient intake 
or absorption of zinc from the diet, however to some extent excess losses of zinc during diarrhea 
may also contribute (Plum et al., 2010). People with gastrointestinal, chronic liver and renal, sickle 
cell and diabetes diseases are at high risk of suffering from zinc deficiency, due to reduction in zinc 
absorption and increased endogenous zinc losses (Bailey et al., 2015; Kondaiah et al., 2019). 
Pregnant and lactating women are also at risk of being zinc deficiency, due to high need of the 
mineral for the growth and development of the fetal, on the other hand lactation reduces 

Figure 1. Percentage of DALYs 
(disability-adjusted life years 
lost) attributed to 20 leading 
cause, in sub-Saharan Africa 
region by 2016. Data sourced 
from (WHO, 2018b) report on 
Global health estimates.

Philipo et al., Cogent Food & Agriculture (2021), 7: 1907954                                                                                                                                            
https://doi.org/10.1080/23311932.2021.1907954

Page 4 of 21



Figure 2. Estimates of DALYs 
attributable to 20 major health 
risks in sub-Saharan Africa 
region. Data sourced from glo
bal health risks report (WHO, 
2009).

Figure 3. Estimates of mortality 
attributable to 20 major health 
risks in sub-Saharan Africa 
region. Data sourced from glo
bal health risks report (WHO, 
2009).
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maternal zinc store (Rahman et al., 2002; Ryz et al., 2009). Due to high zinc demand for growth and 
development, children are at high risk of becoming zinc deficiency, particularly when they con
sume food with low zinc contents, as the mineral is used for cell growth and growth hormone 
metabolism (Nishi, 1996).

The global health risks on mortality and burden of disease attributable to selected major 
risks report for sub-Saharan Africa ranked zinc deficiency number 7 among the 20 leading risk 
factor causes of DALYs (Figure 2). DALYs are calculated as the sum of the years of 
life lost due to premature mortality in the population and the years lost due to disability 
for incident cases of the disease or injury. Among the leading risk factor, zinc deficiency 
accounts for 2.4% of all DALYs cases, which translates to 8.96 million in sub-Saharan Africa 
(WHO, 2009).

Zinc deficiency was ranked number 9 among the 20 leading risk factor causes of deaths in sub- 
Saharan Africa (Figure 3). It was reported that 2.2% of all deaths which translates to 249 
thousands deaths in Sub-Saharan Africa were caused by zinc deficiency (WHO, 2009).

Figure 4. Zinc prevalence in 
sub-Saharan Africa from 1990 
to 2005, data sourced from our 
world in data (Ritchie, 2017).

Table 1. The recommended dietary allowance (RDA) for zinc
Life Stage Age Males (mg/day) Females (mg/day)
Infants 0–6 months 2 (AI) 2 (AI)

Infants 7–12 months 3 3

Children 1–3 years 3 3

Children 4–8 years 5 5

Children 9–13 years 8 8

Adolescents 14–18 years 11 9

Adults 19 years and older 11 8

Pregnancy 18 years and younger - 12

Pregnancy 19 years and older - 11

Breast-feeding 18 years and younger - 13

Breast-feeding 19 years and older - 12
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In sub-Saharan Africa, zinc deficiency is mainly caused by utilization of food with low nutritional 
zinc (Kondaiah et al., 2019; World Health Organization, 2018b, 2018b). Low household income, 
poor availability of high zinc-containing animal and fish-source foods, negatively influence the 
availability, and affordability of these foods in most of the populations in sub-Saharan Africa, 
making most of them consume cereals, legumes and roots and tubers, which are low in zinc 
bioavailability (Rahman et al., 2002; Ryz et al., 2009). Additionally, there is low consumption of 
fruits and vegetables, foods rich in vitamin C, proven to increase absorption of zinc in the human 
gut (WHO, 2009). Even though bioavailability of zinc from plant foods in human gut is low, being 
negatively influenced by inhibitors that include phytic acid, tannins, dietary fibre and calcium (Hess 
& King, 2009; Liu et al., 2017). Bioavailability of zinc from plant-based foods ranges from 5.5% to 
56.5% (Hemalatha et al., 2007).

Despite the measures being taken to alleviate zinc deficiency prevalence in sub-Saharan Africa, 
its effect among the populations showed no significant decrease (Figure 4). Thus there is a need to 
apply supplementation, food chemical fortification and currently biofortification so that there is 
a complementation of one another as there is no single existing method that can alleviate 
micronutrient deficiency in sub-Saharan Africa (Bouis & Saltzman, 2017).

3. Preventive interventions to reduce zinc prevalence in sub-Saharan Africa
There are several strategies that are used to reduce and control the effect of zinc deficiency in sub- 
Saharan Africa, these include supplementation, and food chemical fortification and recently 
biofortification (Goudia & Hash, 2015; Hemalatha et al., 2007; Vinoth & Ravindhran, 2017).

4. Zinc supplementation
Supplementation implies giving of minerals and vitamins in the form of low-cost pills, powder or 
syrups to the population groups exposed to micronutrients deficiencies. There are a number of zinc 
supplements present and used to improve human health status, these include zinc acetate, zinc 
gluconate, zinc picolinate, and zinc sulfate (Mayo-Wilson et al., 2014). Sufficient zinc intake is of 
much importance particularly to children and pregnant women, in most cases, the recommended 
dietary allowance (RDA) for zinc (NIH, 2019) as presented in (Table 1), should be achieved through 
food intake, when not met, zinc supplementation is used as an alternative.

In clinical management of diarrhea, particularly in developing countries like those found in sub- 
Saharan Africa, WHO recommends that children older than six months should be supplemented 
with zinc at a dose of 20 mg/day while infants under age of six months should be given zinc at 
a dose of 10 mg/day for 10 to 14 days (WHO, 2005). Zinc supplementation in a dose of 10 mg/day 
provided for 168 days has a significant increase in growth of children under age of 5 years (Imad A, 
2011). According to American Society for Clinical Nutrition a zinc supplement at the dose of 
400 μg/kg/day is recommended for the premature newborn (Bagherani & Smoller, 2016). Though 
zinc supplementation has been administered to children and other people in need for some 
decades, zinc deficiency is still a public health problem. Its coverage is influenced by health 
infrastructures, of which in most cases these are poor in developing world, the intervention 
needs always trained personnel and training programs for the populations, thus making it not 
cost-effective and difficult to reach poor resource population residing in rural areas (Mayo-Wilson 
et al., 2014; Stein et al., 2007). There is a need of adopting other interventions like development of 
staple food varieties rich in zinc contents, as it is cost-effective and sustainable solution to zinc 
deficiency.

5. Zinc fortification
Zinc fortification is the technique of adding zinc to food so as to improve zinc nutritional quality of 
the food for improvement of public health (Imad A, 2011; WHO, 2005). Chemical fortification of 
food can be done as mass fortification, where widely consumed foods are fortified; targeted 
fortification, where foods processed for certain population category, for instance, complementary 
foods for children and populations with HIV, diabetics etc.; market-driven fortification, this involves 
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food processors fortifying foods available in the market (Allen et al., 2006). The most commonly 
used fortificants of zinc food fortification are zinc oxide and zinc sulfate with zinc oxide being more 
preferred, as it is the most cheapest fortificants compared to others (Jha & Warkentin, 2020; WHO, 
2005). In sub-Saharan Africa, zinc fortification is mostly applied to maize and wheat flour, whereas 
until 2017 a total of ten countries that include; Burundi, Kenya, Malawi, Mozambique, Nigeria, 
Rwanda, South Africa, Tanzania, Uganda, and Zimbabwe had mandatory zinc fortification of maize. 
While fourteen countries, which include: Burundi, Cameroon, Djibouti, Ghana, Kenya, Liberia, 

Figure 5. Recommended zinc 
levels for fortification of wheat 
and maize flour in sub-Saharan 
Africa, data sourced from 
Global Fortification Data 
Exchange (Global Fortification 
Data Exchange, 2020a).

Figure 6. Quantity and propor
tion of industrially processed 
wheat and maize in mandatory 
maize and wheat zinc fortifica
tion countries in sub-Saharan 
Africa, data sourced from 
Global Fortification Data 
Exchange (Global Fortification 
Data Exchange, 2020b).
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Malawi, Mozambique, Nigeria, South Africa, Tanzania, Togo, Uganda, and Zimbabwe had manda
tory zinc fortification of wheat flour (Global Fortification Data Exchange, 2020a). The levels of zinc 
added to wheat and maize flour varied from one country to another, with range of 15–95 and 
15–50 mg/kg respectively (Figure 5).

Despite the facts that zinc fortification results into high and faster food zinc content increment 
to the satisfactory level, the intervention has not been successful in sub-Saharan Africa as it was 
expected. The technique requires infrastructure to develop fortificants, ability of consumers to buy 
or access to markets, and most grains are milled by small-scale millers in both urban and the 
villages (Ferrão et al., 2017). For instance, the proportion of industrially processed maize, which is 
a staple food in the region, is very low (Figure 6). In Tanzania only 2.5% and 33.1% of the 
population consume fortified maize and wheat flour respectively, whereas in Uganda 6.5% and 
8.5% of the population consume fortified maize and wheat flour respectively (Global Fortification 
Data Exchange, 2020b). Based on the fact that, zinc deficiency prevalence is still high in the region, 
there is a need to include other sustainable, friendly and affordable interventions, like biofortifica
tion which can reach easily resource-poor populations for alleviation of this public health problem.

6. Zinc biofortification
The process of increasing zinc concentration to plant-edible parts can be done through agronomic 
practices and plant breeding (Jha & Warkentin, 2020; Menguer, 2014)

7. Agronomic practices
Agronomic biofortification is the practice of enriching mineral contents of the edible part of plants 
via soil, foliar fertilizers and inoculation with soil beneficial microorganisms(Global Fortification 
Data Exchange, 2020a; Mayo-Wilson et al., 2014). In most cases zinc mineral fertilizer is applied as 
zinc chelates (contain approximately 14% zinc), zinc sulphate (25–36% zinc) and zinc oxide (70–
80% Zinc), where zinc sulphate is the widely used zinc mineral fertilizer (Chattha et al., 2017; Global 
Fortification Data Exchange, 2020b; Menguer, 2014).

Zinc mineral fertilizers are applied to soils when there is poor phytoavailability of zinc mineral 
(Ramzan et al., 2020). Application of zinc mineral fertilizer increases its availability, uptake by 
plants and contents in plant-edible parts (Aciksoz et al., 2011). A number of studies revealed 
increase in plants zinc content after zinc soil fertilization. An increase of up to 75.2% in wheat grain 
zinc content was reported after zinc soil fertilization in China (Wang et al., 2016). Rice grain zinc 
increase of up to 92.6% was reported in India, after basal soil zinc sulphate application at 
maximum tillering and flowering stage (Saha et al., 2017). In common bean 100% increase in 
seed zinc content was reported in Brazil when zinc sulphate was applied as a soil fertilizer 
(Cambraia et al., 2019). Application of zinc sulphate as foliar fertilizer increased wheat grain zinc 
content by 47.8–83.0% whereas an increase of upto 27% in rice grain zinc content was reported as 
a result of zinc sulphate foliar fertilizer application (Chattha et al., 2017; Saha et al., 2017). A non- 
significant to significant increase of up to 14.7% in grain zinc concentration was reported in 
common beans as a result of foliar zinc sulphate fertilizer application(Cambraia et al., 2019; 
Wang et al., 2016). Zinc increment in grains among other factors influenced by the variety type 
of the crop used and zinc soil status (Aciksoz et al., 2011; Saha et al., 2017). Zinc fertilization in 
crops apart from increasing grain zinc contents it reduces phytic acid an anti nutritional factor that 
negatively influences absorption of monovalent and divalent positively charged ions, thus increase 
bioavailability of zinc in human gut (Hoppler et al., 2014). (Aciksoz et al., 2011; Chattha et al., 2017) 
reported a decrease of about 30% in phytic acid contents in rice and wheat grains after application 
of zinc sulphate fertilizer. Some more examples are given in Table 2.

Although mineral zinc fertilization has quick advantage on increasing zinc content in edible parts 
and cause reduction in phytic acid, it was also reported to reduce grain iron content, thus leads to 
insufficiency grain iron contents (Saha et al., 2017). Zinc fertilization had challenges to resource 
poor farmers of sub-Saharan Africa as many of them cannot afford buying zinc fertilizers every 
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season for increased grain zinc contents from their harvests. There is a need of adopting another 
cost-effective methods like genetic biofortification, which will easily reach resource-poor farmers 
through planting and consuming varieties that will have increased grain zinc contents as they 
grow.

8. Genetic zinc biofortification
Genetic zinc biofortification refers to the development of crop varieties which accumulate high zinc 
contents to their edible parts as they grow and has increased bioavailability of the mineral to 
consumers (Goudia & Hash, 2015; Ram et al., 2016). Zinc biofortification started with rice in 1995 in 
Asia (Gregorio et al., 2000) whereas in common bean it was reported in 1999 in South America 
(Welch & Graham, 2004). Compared to other interventions which require continual financial 
expenditure, genetic zinc biofortification is cost-effective and can easily reach rural and resource 
poor populations (Slamet-Loedin et al., 2015). Furthermore, farmers can plant and re-plant zinc 
biofortified varieties at zero cost and consume them for alleviating zinc deficiency among human 
populations (Swamy et al., 2016). The developed varieties can be evaluated for adaptation, stability 
and genotype by environment interaction into many other environments, thus expanding the 
benefits of initial investment (Philipo et al., 2020a; Ritchie, 2017).

Staple food crops, which include maize, rice, sorghum and legumes, have been the main focus 
for zinc biofortification in sub-Saharan Africa (Nestel et al., 2006). In contrast to other staple food 
crops, common bean has relatively higher seed zinc content, thus a good crop for genetic 
biofortification (Blair, 2013). In cereals including maize zinc is more localized in embryo and 
aleurone layer, whereas in common bean the mineral is highly concentrated in endosperm 
(Figure 7). In most cases cereal grains are consumed after milling, the process which removes 

Table 2. Some examples of food crops in which zinc grain have been increased through 
biofortification
Crop Agronomic 

Biofortification
Genetic 

Biofortification
Genetic engineering References

Cereals

Rice Application of Zn- 
fertilizer (ZnSO4) 
Increased Zn grain 
content by 27 %

Increased grain 
zinc contents by 
66 %

Over expression of NAS 
Increased grain zinc 
concentration by 3-folds

(Borrill et al., 
2014a; 
HarvestPlus, 
2014)

Maize Application of Zn- 
fertilizer (ZnSO4) 
Increased Zn grain 
content by 9 %

Increase of up to 
52.0 % in grain 
zinc content was 
reported

Over expression of ZmZIP5 led 
to increased Zn contents in 
vegetative tissues, but not in 
mature seeds

(Cakmak & 
Kutman, 2018; Li 
et al., 2019)

Wheat Application of Zn- 
fertilizer (ZnSO4) 
Increased Zn grain 
content by 83 %

Increased grain 
zinc contents by 
66 %

Over expression of TaYSL3-2A, 
TaYSL12-2A, TaYSL6, 9 are 
reported to increase zinc 
concentration in wheat

(HarvestPlus, 
2014; Rashid 
et al., 2019; 
Kamaral et al., 
2020)

Legumes

Common bean Application of Zn- 
fertilizer (ZnSO4) 
Increased Zn grain 
content by 35 %

Increase of up to 
89.0 % in seed 
zinc content was 
reported

Limited information (Zemolin et al., 
2016)

Soybean Application of Zn- 
fertilizer (ZnSO4) 
Increased Zn grain 
content by 105 %

Increase of up to 
52.6 % in seed 
zinc content was 
reported

Limited information (Ramamurthy 
et al., 2014; 
Oliveira et al., 
2019)

Cowpea Application of Zn- 
fertilizer (ZnSO4) 
Increased Zn grain 
content by 27 %

Increase of up to 
50.0 % in seed 
zinc content was 
reported

Limited information (Umar, 2014); 
Bett et al., 2017)
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zinc highly concentrated parts (embryo and aleurone) leaving endosperm which has very low zinc 
concentration (Cakmak & Kutman, 2018). On the other hand, common bean grains are consumed 
as whole making the crop a good source of plant-based zinc and thus good for genetic biofortifica
tion (Jha & Warkentin, 2020).

In sub-Saharan Africa, common bean production ranks number one among grain legume crops 
cultivated (FAOSTAT, 2015), the production trend of the crop has been increasing with a sharp 
slope particularly in eastern Africa (Figure 8), showing the potential of the crop in genetic bioforti
fication for the sub-Saharan African population.

Common bean is the most consumed grain legume in sub-Saharan Africa, with its consumption 
per capita per year increase year after year (Figure 9), therefore genetic zinc biofortification of 

Figure 7. Distribution of Zn in 
maize (A) and common bean 
(B), visualized with dithizone as 
a Zn-sensing dye that develops 
a red complex with Zn. The 
intensity of the red color is 
associated with the Zn content.

Figure 8. Production quantity of 
common bean among sub- 
regions of sub-Saharan Africa, 
data sourced from (FAOSTAT, 
2018).
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common bean will be of high impact in reduction of zinc deficiency among population residing in 
the region.

Globally the target for genetic zinc biofortification in common bean has been to develop 
cultivars with 40% more seed zinc contents without compromising farmers and consumers 
preferred agronomic properties (Blair, 2013). In most cases common bean genetic zinc bio
fortification in sub-Saharan Africa has been treated as secondary mineral after iron regardless 
of the potential of zinc to human health (Ritchie, 2017; Yu et al., 2019). In this region, common 
bean zinc biofortification have been implemented in Democratic Republic of Congo (DRC), 
Ethiopia, Rwanda, Sudan and Uganda (FAOSTAT, 2018; Petry et al., 2015). The programme 
resulted into 50% increase in seed zinc contents, though the primary focus was breeding for 
high seed iron content (Ugen et al., 2009). Nine (6-bush and 3-climber type) high zinc- 
containing bean varieties have been released in these countries (FAOSTAT, 2018; Yu et al., 
2019). Zinc biofortified common bean varieties have been reported to retain zinc concentra
tion up to 99.4% after undergoing preparations for home recipes (Hummel et al., 2020). Thus 
there is a need of practicing genetic zinc biofortification by treating zinc as a primary mineral 
and not only focusing on collecting and assessing high iron-containing genotypes for zinc 
contents (Blair, 2013; FAOSTAT, 2018). Several studies have revealed that there is no signifi
cance correlation between iron and zinc mineral in grains (Liu et al., 2017; Philipo et al., 2020a; 
Ugen et al., 2009). Even though there are some zinc biofortification programmes going on in 
sub-Saharan Africa, there is limited information on the effect of zinc biofortified varieties on 
nutritional zinc status of the target populations. Thus there is a need for conducting genetic 
zinc biofortification in common bean in many countries that grow the crop, for domestic and 
export so that benefits of high zinc-containing bean varieties can reach many populations of 
sub-Saharan Africa the benefit of reducing nutritional zinc deficiency. Common bean genetic 
zinc biofortification can be done through several methods which include, conventional breed
ing, marker-assisted breeding and genetic engineering.

Figure 9. Common bean supply 
per capita per year among sub- 
regions of sub-Saharan Africa, 
data sourced from (FAOSTAT, 
2014).
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8.1. Conventional breeding
Conventional plant breeding is the process of generating cultivars with traits of interest through crossings 
of closely related individual plants followed by field or pot evaluation and empirical selection of the 
crosses (Hummel et al., 2020; De Valença et al., 2017). For genetic zinc improvement, cultivars with 
contrasting grain zinc contents are crossed, in order to transfer loci associated with high grain zinc 

Table 3. Some of the identified QTLs and DNA markers associated with high seed zinc contents 
in some legumes
Crop QTL associated with high 

seed zinc content
Marker (SSR/SNP) 

linked with the QTL
Source 

genotype
References

Common 
bean

QZnDaAA6.2 6 V1001B G4825 (Matthew W Blair 
et al., 2010)QZnDaAA8.1 H1201A G14519

QZnPaAA6.1 BM158 G14519

QZnPaAA8.2 H1201A G4825

QZnPoAA2.1 PV15 G4825

QZnPoAA3.1 BMd1 G4825

QZnPoAA6.1 BM158 G14519

QZn_contDaAA1.1 W0901B G14519

Zn-AAS2c PV11 G21242 (Matthew W Blair 
et al., 2011)Zn-AAS7c BM239 G21242

Zn-AAS8c BM165 G21242

Zn-ICPa3 I161G G19833 (M. W. M. W. Blair 
et al., 2009)Zn-ICPa7 M125D G19833

Zn-ICPa11 BMd33 G19833

Zn-ICPb3 L064D G19833

Zn-ICPb9 AK067G G19833

Zn-ICPb11.1 BMd27 G19833

Zn-ICPb11.2 K126G G19833

Zn-AASb3 F702G G19833

Zn-AASb6.1 DA39 DOR364

Zn-AASb6.2 AK061D DOR364

Zn-AASb11.1 Bng91 G19833

Zn-AASb11.2 BMd27 G19833

Zn-AASb11.3 K126G G19833

Zn_cont2.1 PV109 Cerinza (Matthew W. Blair & 
Izquierdo, 2012)Zn_cont5.1 BM155 Cerinza

Zn_cont5.2 BMd28 Cerinza

Zn_cont7.1 PV35 G10022

Chickpea CaqZn2.1 SNP110 ICC 8261 (Das et al., 2015)

CaqZn3.1 SNP208 ICC 8261

CaqFZ4.1 SNP300 ICC 8261

CaqFZ5.1 SNP413 ICC 8261

CaqFZ7.1 SNP471 and SNP472 ICC 8261

Pea Zn-Ps2.1 TP31957 Aragorn (Ma et al., 2017)

Zn-Ps3.1 TP2567 Kiflica

Zn-Ps5.1 TP61763 Kiflica

Zn-Ps7.1 TP44143 Kiflica

Zn-Ps7.2 TP60315 Kiflica
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content from a high zinc-containing genotype (cultivated or wild related species) into a cultivar with low 
grain zinc content (M. W. Goudia & Hash, 2015; M. W. Blair et al., 2009). Conventional genetic zinc 
biofortification for crops is only possible when there is existence of genetic variation in zinc contents 
for the target crop gene pool (Acquaah, 2013; Blair, 2013). For easy adoption of the zinc biofortified 
varieties, one of the parents involved in developing crosses should have farmers and consumers preferred 
traits (Beintema et al., 2018).

Conventional breeding has been employed in developing most of the high zinc-containing bean 
varieties released to date in several sub-Saharan African countries (Mukamuhirwa et al., 2015; WHO, 
2005). The technique has been successful in common bean due to a natural genetic variation in seed 
zinc content that ranges from 25 to 60 ppm (Blair, 2013). The release of high zinc-containing varieties 
developed via conventional breeding has taken quite a number of years due to large environment 
influence on the trait and recovering of the farmers and consumers preferred traits like seed color, 
size, growing type (bush or climber) and taste (Mukamuhirwa et al., 2015; Yu et al., 2019). Some more 
examples on zinc biofortification of the crops are presented in Table 2. Therefore there is a need for 
using advanced selection methods like molecular markers for accuracy, reduced time and number of 
field evaluation, thus shortening the period for release of high zinc-containing varieties for improved 
zinc nutritional status of bean consumers in sub-Saharan Africa.

8.2. Plant marker-assisted breeding
Molecular marker-assisted plant breeding is the process of developing plant varieties through the use of 
DNA marker(s) associated with traits of interest, together with linkage maps, genomics and bioinfor
matics (Jiang, 2013). The DNA markers associated with the trait(s) of interest are used for indirect 
selection of those trait(s) particularly quantitative traits e.g., pest resistance, drought and poor soil fertility 
tolerance, quality traits (micronutrients, aroma, taste), as these are difficult to select under conventional 
breeding (Bouis & Welch, 2010; Jiang, 2013). Selection of individual plants from a segregating and/or non- 
segregating population involves two main stages. First, design and validation of DNA markers associated 
with the trait(s) of interest in parents and second, use of the validated DNA markers to select individual 
plants from a target breeding population at early seedling stage, based on the presence of markers 
associated with trait(s) of interest (Diapari et al., 2015; Lim et al., 2014). The advantages of applying 
molecular markers-assisted breeding (MAB) over conventional breeding in improving plant traits, includ
ing grain zinc contents are, first decreased selection time, as plants with traits of interest are selected at 
early developmental stage and leaving away those without trait of interest (Jiang, 2013). Second, 
selection under MAB can be done in any environment, making easy for selection of traits with low 
heritability which require favorable conditions for selection e.g., drought tolerance, heat tolerance and 
disease resistance (Oblessuc et al., 2012). Third, traits controlled by recessive alleles can be easily 
selected by co-dominance DNA markers like SSR and SNP whereas in conventional breeding selection 
of these traits would require selfing of test crossing (Bernardo, 2008).

In plants, seed zinc content is controlled by many genes involved in uptake from soils, up the plant 
transport and distribution within the plant parts (Bernardo, 2008; Oblessuc et al., 2012). There several 
identified and validated DNA markers and quantitative trait loci (QTLs) that are associated with high seed 
zinc contents in common beans (Acquaah, 2013; Waters & Sankaran, 2011). Marker-assisted breeding for 
seed zinc improvement in common bean have been applied in South America, where several DNA 
markers and QTLs linked to high seed zinc contents were identified followed by selection of individual 
plants from breeding segregating populations (Hemalatha et al., 2007; Borrill et al., 2014a; Matthew 
Wohlgemuth Matthew Wohlgemuth Blair et al., 2016). In most cases, studies on common bean seed zinc 
content genetic bases have relied on linkage and quantitative trait locus (QTL) analysis using biparental 
populations, which has shallow resolution due to little number of recombination events and thus results 
into genetic markers which are cross specific and show only fractions of genetic variability underlying the 
common bean high seed zinc content (Hemalatha et al., 2007; M. W. M. W. Blair et al., 2009). Some of the 
QTLs associated with grain zinc contents and their linked markers found in some grain legumes are 
presented in Table 3. Due to advancement in plant molecular studies, it is of most important to apply 
other molecular techniques like Genome Wide Association Study (GWAS) in studying the genetic 

Philipo et al., Cogent Food & Agriculture (2021), 7: 1907954                                                                                                                                            
https://doi.org/10.1080/23311932.2021.1907954

Page 14 of 21



differences underlying seed zinc contents in common bean. In GWAS, diverse germplasm of a crop is used 
to scan the whole genome and thus gives a clear picture of the candidate genes responsible for 
expression of the trait of interest (Cichy et al., 2009; White et al., 2009). In sub-Saharan Africa, there is 
limited information on application of marker-assisted breeding in improving seed zinc content in com
mon bean, thus adoption of the technique is of much importance for reduced time in development of zinc 
biofortified varieties.

8.3. Genetic engineering
Plant genetic engineering is the practice of manipulating genetic makeup of the plant through genome 
editing and/or transfer of gene(s) from a closely related or distant organism aimed at developing superior 
plant varieties with traits of interest (Contreras-Soto et al., 2017; Upadhyaya et al., 2016). The advance
ment in DNA knowledge and biotechnology has enabled studies on plant genome, identification and 
validation of several genes controlling plant agronomic and biochemical traits including grain micronu
trient contents (Masuda et al., 2013; Zang et al., 2017). In the process of transferring genes coding for 
traits of interest, the identified and validated gene(s) are isolated from the source organism and 
transferred into tissues of the target plant via DNA microparticle bombardment or Agrobacterium 
tumefaciens mediated transfer (Dias & Ortiz, 2012; C. C. Zhang et al., 2016). Transferring genes into 
unrelated species (e.g., from bacteria to plants) is called transgenesis, while transferring from similar 
species or sexually compatible species (e.g., from wild to cultivated varieties) is called cisgenesis (P. Byrne, 
2014; Upadhyaya et al., 2016). The plant developed from transgenesis is known as transgenic while that 
from cisgenesis is called a cisgenic (Acquaah, 2013). The benefits of employing plant genetic engineering 
over conventional breeding in improving plant traits, including grain zinc contents are, first it is the fastest 
method of developing varieties, though it needs high initial financial investment (Keshavareddy et al., 
2018). Second, genes from a distant species can be isolated and used to improve another plant species, 
thus can be applied even when there is no genetic variation in the trait of interest (Connorton et al., 2017). 
Third, only the genes of interest are transferred to the plant to be modified whereas in conventional 
breeding there is transfer of even the unwanted genes during artificial hybridization (Borrill et al., 2014b). 
Fourth, the technique can be used to develop plant varieties with reduced uptake of unwanted metals 
from the soils (Slamet-Loedin et al., 2015).

Gene transfer technique has been used in developing several plant varieties with increased grain zinc 
contents (Bernardo, 2008; WHO, 2005). Over expression of nicotianamine synthase (NAS) encoding 
genes, resulted into increase in grain zinc content of transgenic rice by 2–3 folds (Borrill et al., 2014b), 
whereas over expression of a metal transporter (HvMTP1) encoding genes in barley led to 25 % increase 
barley cis-genic grain (Menguer et al., 2018). To date, there is limited information on seed zinc content 
increase by gene transfer techniques in common bean, though the already identified and validated 
transporters and genes involved in grain zinc accumulations in other crops can be used to develop 
transgenic or bean plants with increased seed zinc contents (Connorton et al., 2017; Oblessuc et al., 
2012). The limited information is reported to be due to very long common bean genetic transformation 
protocol, poor reproducibility and in vitro regeneration, though the transcriptional networks involved in 
Zn uptake Phvul.011G035700/bZIP23-like factors and those involved in root to shoot transportation 
Phvul.003G086500/OPT3-like factors have been identified (Connorton et al., 2017; Menguer et al., 2018).

Recently genome editing has been advocated as a precision breeding technique and a compliment to 
conventional genetic engineering gene transfer as it does not necessarily involve transformation (Castro 
Guerrero et al., 2016; Sperotto & Ricachenevsky, 2017). Genome editing involves several molecular 
biological methods, which include zinc-finger nucleases (ZFNs), transcription activator-like effector 
nucleases (TALENs) (Vinoth & Ravindhran, 2017), and recently clustered regularly interspaced short 
palindromic repeats (CRISPR)/Cas systems (Contreras-Soto et al., 2017; Mao et al., 2019). These methods 
use sequence-specific engineered nucleases, which when induced results into identification of specific 
DNA sequences and give rise to double-stranded breaks (DSBs) (Y. Y. Zhang et al., 2018). The endogenous 
repair systems of plants correct the DSBs either by no homologous end joining (NHEJ), which can lead to 
the insertion or deletion of nucleotides causing gene knockouts, or by homologous recombination (HR), 
which can result into gene replacements and insertions (Mao et al., 2019). The DSBs repair outcomes are 
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predictable and thus selection of mutations with benefits to plant breeding can be done (Veillet et al., 
2020). In most cases, genome editing techniques have been used in improving plants abiotic tolerance 
and biotic resistance traits with very few studies focusing on food nutritional quality (Ding et al., 2018; 
Veillet et al., 2020). For example, target genome editing of OsERF922 gene in rice using CRISPR/Cas9 
technique resulted into development of rice with enhanced blast resistance (Y. Y. Zhang et al., 2018), 
whereas drought tolerance wheat was developed by editing TaDREB2 and TaERF3 genes (Ansari et al., 
2020). Likewise, CRISPR/Cas9 genome editing was used in editing of soybean E1 gene and developed 
early flowering mutants (Han et al., 2019). There is limited information in common bean genome editing 
particularly for grain zinc improvement, though there are several genes identified to control different 
traits (agronomic, biotic and abiotic stress response and grain quality) (Ansari et al., 2020; Sperotto & 
Ricachenevsky, 2017; Veillet et al., 2020). The genome editing experiences acquired from many success
ful researches in improving a number of traits of interest in plants can be used in editing the genome of 
common bean and many other crops for enhancing grain zinc content.

9. Conclusion
Zinc is essential for normal functioning of human immune system and growth during childhood. 
Deficiency of this mineral is mostly caused by consumption of food with low zinc contents. Zinc 
deficiency is among the leading micronutrient deficiency in sub-Saharan Africa. Though zinc 
supplementation and fortification, have been in place for decades now, zinc deficiency is still 
a public health problem in sub-Saharan Africa thus a need for cost-effective intervention to 
compliment the already existing methods for alleviating zinc deficiency in the region, as there is 
no single method that has proved to control zinc deficiency.

Genetic zinc biofortification particularly of staple food is the most current cost-effective intervention in 
controlling zinc deficiency in sub-Saharan Africa. Development of high zinc containing common bean 
varieties, which is the mostly cultivated and consumed grain legume in sub-Saharan Africa, is the best 
approach. Unlike cereals which need to milled before being consumed and thus ending up losing high zinc 
containing parts (embryo and aleurone layer), common bean grain is consumed whole, providing 
sufficient zinc to consumers. Among the current strategies of genetic zinc biofortification, marker- 
assisted breeding is the best, as high zinc containing varieties can be developed precisely and within 
a very short time compared to conventional breeding. Development of high zinc-containing plant 
varieties by genetic engineering is the precise method, this method lacks acceptability in most of the sub- 
Saharan African countries due to fear of the unknown and thus no zinc biofortified variety developed by 
this technique have been released in the region. High zinc-containing bean varieties can easily reach 
resource-poor farmers and consumers particularly in remote areas of sub-Saharan Africa compared to 
supplementation and fortification which need advanced infrastructures to operate.
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