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ABSTRACT 

 

Non-invasive Optical Detection of Epithelial Cancer Using Oblique Incidence Diffuse 

Reflectance Spectroscopy. (May 2009) 

Alejandro Garcia Uribe, B.S., Instituto Tecnológico de Morelia, Mexico 

M.S., Texas A&M University 

Co-Chairs of Advisory Committee: Dr. Jun Zou 
 Dr. Lihong Wang 

 
This dissertation describes the design, fabrication and testing of an oblique incidence 

diffuse reflectance spectrometry (OIDRS) system for in-vivo and noninvasive detection 

of epithelial cancer. Two probes were fabricated using micromachining technology, 

which plays a significant role in the probe development by enabling device 

miniaturization, low-cost fabrication and precise assembly. The fist probe was developed 

and clinically tested for skin cancer detection. This probe consists of three source fibers, 

two linear array of collection fibers and four micromachined positioning devices for 

accurate alignment of the fibers. The spatially resolved diffuse reflectance spectra from 

167 pigmented and 78 non-pigmented skin abnormalities were measured and used to 

design a set of classifiers to separate them into benign or malignant ones. These 

classifiers perform with an overall classification rate of 91%. The absorption and 

reduced scattering coefficient spectra were estimated to link the anatomic and 

physiologic properties of the lesions with the optical diagnosis. The melanoma cases 

presented larger average absorption and reduced scattering spectra than the dysplastic 

and benign ones. A second probe was designed to demonstrate the feasibility of a 
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miniaturized “side viewing” optical sensor probe for OIDRS.  The sensor probe consists 

of a lithographically patterned polymer waveguides chip and two micromachined 

positioning substrates. This miniaturize probe was used to measure twenty ex-vivo 

esophageal samples. Two statistical classifiers were designed to separate the esophageal 

cases. The first one distinguishes benign and low dysplastic from high dysplastic and 

cancerous lesions. The second classifier separates benign lesions from low dysplastic 

ones. Both classifiers generated a classification rate of 100%. 
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CHAPTER I 

INTRODUCTION 

 

Skin is a layered organ composed of the cellular, avascular epidermis and the less 

cellular, vascular collagenous dermis. Epidermal keratinocytes arise from stem cells in 

the basal layer. The basal layer of the keratinocytes interfaces with a basement 

membrane zone that distinctly separates the epidermal layer from the dermis.  Although 

the epidermis is devoid of vessels, it is nourished by capillary loops in the upper dermis.  

The epidermis follows the irregular dermal surface forming an undulating pattern of rete 

ridges [1].  The dermis is composed of fibroblasts, connective tissue, vessels and 

epidermal appendages including hair follicles, eccrine, and sebaceous glands.  There are 

also cells that traffic into the epidermis and dermis where they have specialized 

functions.  These include epidermal melanocytes and langerhans cells and dermal white 

cells such as T lymphocytes, histiocytes, and neutrophils [1]. 

 

A. Skin Cancer  

The most serious and deadly form of skin cancer is malignant melanoma. Melanomas 

account for most of the deaths from skin cancer.  The American Cancer Society 

estimates that there are more than 62,000 new cases of melanoma in the United States 

every year. About 8,000 people are expected to die of this disease each year [2]. Early 

__________ 
This dissertation follows the style of IEEE Sensors Journal. 
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detection and treatment of skin cancer can significantly improve patient outcomes. 

Dyplastic nevi are skin tumors that have atypical size, shape, and organization of cells. 

Dysplastic nevi are generally considered to be precursors of melanoma [3]. Common 

nevi are benign growths formed by a cluster of melanocytes in the basal layer of the 

epidermis or the top layers of the dermis. Based on the location of the nests of 

melanocytes in the epidermis and dermis., these are junctional nevi, compound nevi and 

intradermal nevi. 

Non-melanoma skin cancers are the most common cancers and include basal cell 

carcinomas and squamous cell carcinomas.  The American Cancer Society estimates that 

there are 1.2 million new cases of non-melanoma skin cancers each year [2]. Squamous 

cell carcinomas (SCC) arise from dividing keratinocytes of the epidermis.  They often 

arise from actinic keratoses (AK), which are characterized clinically by redness and 

scale.  Squamous carcinomas are also often recognized by hyperkeratotic crusts or scales 

or by ulceration in the later stages.  Squamous cell carcinomas may be aggressive and 

may metastasize to local nodes and beyond.  When pigmented or rapidly changing or 

growing, seborrheic keratoses (SK) may also be mistaken for melanoma.  Clinically, 

AKs, and SCC are difficult to distinguish from one another. Basal cell carcinomas 

(BCC) are thought to be derived from the keratinocytes and are characterized by islands 

or nests of basal keratinocytes invading the dermis.  They are locally invasive, slow-

growing tumors. There are several clinical and histologic subtypes of basal cell 

carcinomas.  Superficial BCCs are papulosquamous lesions characterized by red, scaly 
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raised plaques.  Pigmented BCCs have a variegated appearance and can often be 

mistaken for melanomas. 

 

B. Current Clinic Diagnostic of Skin Cancer 

In clinical practice, dermatologists use the ABCD rule (asymmetry, border, color and 

diameter) and change in the appearance of a mole or pigmented area, to spot suspicious 

skin lesions. Melanomas usually are asymmetrical, have irregular borders, have color 

variation, and have a diameter greater than 6mm.  Unfortunately, melanomas can also be 

perfectly symmetrical, have regular borders, be less than 6 mm in diameter and be of 

uniform color or no pigmented (amelanotic). After the skin check a skin biopsy is 

preformed for assessing whether the pigmented lesion is malignant or benign. 

Dermatoscopy, also called epiluminescent microscopy, uses a glass-oil interface to 

decrease the skin refraction. Dermatoscopy improves the resolution of the epidermal 

structures and increases a trained clinician’s diagnostic accuracy. Confocal microscopy 

allows visualization of internal structures in the living skin, including blood flow [4]. 

 

C. Esophageal Cancer 

The American Cancer Society estimates that cancer of the esophagus affects about 

16,470 people with about 14,280 deaths each year in the United States [2].  Esophageal 

cancer is 3 to 4 times more common among men than among women.  Because 

esophageal cancer is usually diagnosed at a late stage, most people with esophageal 
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cancer eventually die of this disease.  There are two main types of esophageal cancer: 

squamous cell carcinoma and adenocarcinoma.  The esophagus is normally lined with 

squamous cells and most squamous cell cancers occur in the mid to proximal esophagus.  

Adenocarcinomas start in columnar tissue, which can be found in the distal esophagus.  

If Barrett's esophagus occurs in an intestinal area that previously contained squamous 

cells, it could develop into adenocarcinoma.  Barrett’s esophagus occurs because of 

chronic gastroesophageal reflux from the stomach into the lower esophagus. If chronic 

gastroesophageal reflux is persistent, the acid and bile can produce injury to the lining of 

the esophagus, with specialized intestinal cells replacing the squamous cells that usually 

line the esophagus.  People with Barrett’s esophagus are at an increased risk for 

developing cancer of the esophagus.  

 

D. Current Clinic Diagnostic of Esophageal Cancer 

Upper endoscopy is the most important tool for diagnosing esophageal cancer.  It is a 

procedure involving the use of a gastroscope, which is one type of endoscope specially 

designed for gastroenterology applications. A biopsy can be taken through the 

endoscope for histology to determine whether cancer is present.  People with strong risk 

factors for esophageal cancer should have periodic endoscopic biopsies.  It is now 

recommended that the patient with Barrett's esophagus have four quadrant biopsies at 

every one or two centimeter intervals along the entire length of the Barrett's lining.  The 

reason for taking four quadrant biopsies is that sampling all four walls of the esophagus 

decreases the odds of missing a small area of abnormal cells that can only be seen by 
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histologic analysis and not through the endoscope.  The current recommendation for 

patients who have a stable diagnosis of negative for dysplasia, confirmed by two 

endoscopic biopsy surveillance procedures, is that they come back every 3 years for 

follow-up endoscopic biopsy surveillance.  For patients who have a stable diagnosis of 

low-grade dysplasia, confirmed by two endoscopic biopsy surveillance procedures, it is 

recommended that they return yearly for endoscopic biopsy surveillance until they have 

a set of biopsies in which no dysplasia is detected.  All biopsies that reveal dysplasia are 

suggested to be submitted for re-interpretation by an expert pathologist due to problems 

with inconsistencies in interpreting histology.  The intensive biopsy may also increase 

the chance of bleeding and discomfort to the patients. For these and other reasons, most 

patients who develop esophageal adenocarcinoma are not in a cancer surveillance 

program.  As a result, endoscopic biopsy surveillance has not favorably impacted the 

mortality of this disease. In summary, esophageal cancers are very difficult to diagnose 

at the early and curable stage.  Endoscopic surveillance is the only procedure to monitor 

possible development of esophageal cancers for people with strong risk factors.  

However, its effectiveness is largely hampered by the complexity and cost of the 

procedure, as well as possible complication and discomfort caused by the intensive 

biopsy.  Sampling error of biopsy is also an issue.  Although the use of more intensive 

biopsy protocols could reduce the sampling error, it inevitably results in even more 

complex and costly procedures.  Therefore, it is highly necessary to investigate new 

endoscopic biopsy techniques to greatly reduce the complexity and cost of the 
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surveillance procedures.  The new biopsy techniques should be less invasive (to reduce 

the bleeding and discomfort), fast and simple to use [5]. 

 

E. Non-Invasive Optical Methods  

Non-invasive methods for optical and spectroscopic methods for tissue diagnosis have 

been utilized for a number of organ systems, including the skin [6-15], gastrointestinal 

tract [16-20], cervix [21-24], and breast [25-27].  Much work has been done using 

fluorescence spectroscopy to detect incipient disease states on the premise that 

fluorescence, because it is a manifestation of the biochemical environment of the cell, 

should be a specific indicator of cellular alterations due to disease [28].  A number of 

recent reports have found that light scattering or reflectance measurements, either alone 

or in conjunction with fluorescence and Raman spectroscopy, are capable of 

distinguishing pathologic changes. It is likely that by restricting, or targeting, the area of 

tissue scanned by the light probe, either by appropriate selection of the incident 

wavelength or by the physical configuration of the light delivery and collection system, 

that the specificity of elastic scattering measurement systems can be improved. This 

approach partly overcomes one of the greatest perceived weaknesses of single-channel 

elastic scattering spectroscopy, i.e., that the fundamental optical properties of absorption 

and scattering are not individually resolved.  Because of the highly turbid nature of 

biological tissues, the bulk optical transport properties of tissue may be only slightly 

changed by a localized pathological process, thus reducing the sensitivity of scattering 

and absorption as specific measures of disease. Therefore, it appears that further 
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evaluation of scattering and reflectometry measurements may be productive for skin 

applications and other epithelial types of tissue.  The measurement of tissue optical 

properties, such as scattering and absorption using diffuse reflectance, appears to be a 

useful approach for the detection of superficial lesions and generally involves simpler 

instrumentation than other optical methods. 
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CHAPTER II 

OBLIQUE INCIDENCE DIFFUSE REFLECTANCE SPECTROSCOPY 

 

A. Light Interaction in a Scattering and Absorbing Media 

When light is incident on the surface of a semi-infinite (optically thick) medium (e.g. 

biological tissue), part of the incident light will be directly reflected (specular 

reflectance) and the remaining will transmit into and interacts with the media (Fig. 1). 

 

 

Fig. 1. Light interaction in a scattering and absorbing media. 

 

Normal-incidence reflectometry can separate the two effects but only with 

absolute measurements of the multiple-scattered reflected light (diffuse reflectance), 

which are difficult to obtain reliably in a clinical setting.  Different from normal-

Absorption 

Incident 
Light  

Specular 
Reflectance 

Diffuse Reflectance 

Media 

Scattering 
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incidence reflectometry, OIDRS breaks the symmetry in the diffuse reflectance pattern.  

The Figs. 2 and 3 shows the diffuse reflectance pattern on the surface of a sample for 

normal and oblique incidence respectively.   
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Fig. 2. Single wavelength normal incidence diffuse reflectance pattern. 

 

The scattered light that escapes from the medium surface forms the diffuse 

reflectance.  To characterize small section of the sample, the detectors used to collect the 

diffuse reflectance is placed in a fixed position close to the light source (e.g. 1~2 mm 

away).  However, since the optical transport mean free path (Lt') is a function of the 

wavelength of the incident light, when a wide spectrum of light is used, the location of 

the detectors may fall within or outside the range of Lt' at different wavelength.  When 

the detectors fall outside the range of Lt', the absorption and scattering optical properties 
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of the medium can be directly calculated from the diffuse reflectance using a 

straightforward diffusion-theory based analytical model [29]. However, this model 

would fail in regions near the light source (e.g. within the range of Lt'). In this case, the 

Monte Carlo simulation can be conducted to deduce the absorption and scattering optical 

properties of the medium in an inverse problem by comparing and matching the 

simulation results with the actual measurements [30]. Monte Carlo simulation is very 

inefficient and slow when used in such iterative manner. An alternative is to the 

scaleable Monte Carlo method [31] in conjunction with the diffusion-theory based 

analytic model for the extraction of the absorption and reduced scattering properties 

from the diffuse reflectance spectra. 
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Fig. 3. Single wavelength oblique incidence diffuse reflectance pattern. 
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Fig. 4. (a) normal incidence diffuse reflectance along the x direction for y=1.0 cm; (b) 

oblique incidence diffuse reflectance along the x direction for y=1.0 cm. 

 

 

B. Diffusion Theory 

The radiative transport equation (RTE) is an analytical model for photon transport in 

scattering and absorbing media such as biological tissues [32]. The RTE is an energy 

conservation equation for the radiance described by 
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where ),ˆ,( tsrL r  is the radiance, which is defined as the amount of energy which, at 

position rr , flows per second through a unit area perpendicular to the unit vector ŝ . The 

parameters µa is the absorption coefficient, µs is the scattering coefficient and c is the 

velocity of light in the medium. The function )ˆ'ˆ( ssp •  is the scattering phase function. 

The product Ω• dssp )ˆ'ˆ(  represents the probability of being scattered into Ωd  around the 

direction ŝ  given that it enters into the volume element from the direction 'ŝ . The term 

),ˆ,( tsrS r
 represents the source [33]. Although a general solution to the radiative 

transport equation is not easy to obtain analytically or numerically, a solution to the 

diffusion equation, a simplified version of the full transport equation under the diffusion 

approximation, can be found more easily. The diffusion equation is described by 

 
( ) ( ) ( ) ( )trStrDtr
t

tr
c a ,,,,1 2 rrr

r

=Φ∇−Φ+
∂

Φ∂ µ  (2.2) 

where Φ is the fluence rate. The fluence rate Φ is the total radiance integrated over the 

entire 4π solid angle: 

 ( ) ( )∫ Ω=Φ
π4

,'ˆ,, dtsrLtr rr
 (2.3) 

The parameter µs’ is the reduced scattering coefficient and D is the diffusion coefficient 

defined by  

 ( )'3
1

sa
D µµ +

=  (2.4) 

for the steady-state diffusion equation becomes: 

 ( ) ( ) ( )rSrDra
rrr

=Φ∇−Φ 2µ  (2.5) 
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for an isotropic point source ( ) ( )rrS rr δ=  in an infinite media the solution to steady-state 

diffusion equation is  

 ( ) ( )r
Dr

r effµ
π

−=Φ exp
4

1r
 (2.6) 

where the effective attenuation coefficient µeff =(µa /D)1/2. The diffuse reflectance R(r) 

on the surface of the semi-infinite scattering medium for an incident pencil beam can 

approach by converting it into a new problem of double sources in an infinite medium 

 ( ) ( )
0

,

=∂
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−=
zz

zrDrR  (2.7) 

Normal-incidence reflectometry can separate the two effects but only with 

absolute measurements of the multiple-scattered reflected light (diffuse reflectance), 

which are difficult to obtain reliably in a clinical setting.  Different from normal-

incidence reflectometry, OIDRS breaks the symmetry in the diffuse reflectance pattern 

(Fig. 3).  The spatially resolved steady-state diffuse reflectance for oblique incidence can 

be calculated using a modified two-source diffusion theory approximation with one 

positive source located below the sample surface and one negative located above the 

sample surface [34, 35].  The resolved steady-state diffuse reflectance a particular 

wavelength is described by 
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where ρ1 and ρ2 are the distances between the source point and the observation point on 

the skin surface.  Rs is specular reflection, 'a  is albedo, and  ∆z is the distance between 

the virtual boundary and the tissue depth and zb is the distance between the virtual 

boundary and the surface of the sample. The distance from the point of incidence to the 

positive point source ds = 3D.  For oblique incidence the diffusion coefficient is  

 ( )'35.03
1

sa
D

µµ +
=  (2.9) 

the depth of the positive point source (∆z) is given by 

 )cos(3 tDz α=∆  (2.10) 

and the shift of the point sources in the x direction (∆x) is 

 
'35.0

)sin(

sa

tx
µµ

α
+

=∆  (2.11) 

where αt is the angle of light transmission into the tissue (Figs. 5 and 6). Using simple 

geometrical transformations the absorption and reduced scattering coefficients can be 

calculated by 

 
)sin(3
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t
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x
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µ
µ

∆
=  (2.12) 

 a
t

s x
µαµ 35.0)sin(' −

∆
=  (2.13) 

The diffusion equation assumes that the reduced scattering coefficient is much 

larger than the absorption. The source and detector must also be separated in space to 

allow that the light is diffuse when it reaches the detector. Diffusion theory is accurate 
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only when the distance between the source and the detectors is comparable to the 

transport mean free path Lt'.   

 

 

 

 

Fig. 5. Schematic of the modified two-source approximation of oblique incidence based 

on diffusion theory. 
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Fig. 6. Schematic of the incidence plane. 

 

C. Scaleable Monte-Carlo 

The diffusion theory model cannot accurately predict the diffuse reflectance near to the 

source (before the diffusion regime). This problem can be solved by using scaleable 

Monte-Carlo for these cases. First, a single reference initial Monte Carlo simulation was 

run with a fixed anisotropy factor g.  [36-42].  The scaleable simulation is possible 

because the Monte Carlo simulation results for given reference values of the index of 

refraction (n), anisotropy factor (g), absorption coefficients (µa) and scattering 

coefficient (µs) can be used to calculate the diffuse reflectance for a different set of 

ρ1 

ρ2 

∆x 

r zb 

∆z 

∆z+zb 

Positive point source Media 

x y 

z 

αi 

αt 

Oblique incident 
light  

Negative point source



 17

absorption coefficients by applying Beer's law.  The results may also be scaled for all 

scattering coefficients (µs) while n and g are held constant because different µs values 

change only the distances between the interaction points on the photon paths through the 

tissue.   Kienle and Patterson [43] demonstrated that different anisotropy factors do not 

significantly influence the reflectance if g is close to unity (g > 0.8) as long as µa and µs' 

are the same.  For biological tissue, g is usually greater than 0.9.  We will initially fix g 

at 0.9 in the single Monte Carlo simulation.  If the time-resolved diffuse reflectance Rr(x, 

y, t) computed for reference parameters µar and µsr is obtained using a single Monte 

Carlo simulation, the time-resolved diffuse reflectance R(x, y, t) for any new parameters, 

µa and µs', and the corresponding steady-state diffuse reflectance, can be calculated by  

 ( ) ( ) ⎥
⎦
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where c is the speed of light in vacuum and n is the index of refraction of the tissue.  The 

pre-calculated results from the single Monte Carlo simulation for the reference 

parameters will be saved in a computer file. R(x, t) is obtained by first scaling in the y 

direction. The corresponding steady-state diffuse reflectance is calculated by 

 ∫
∞

=
0

),()( dttxRxR  (2.14) 

The above equation for R(x) is used to fit the experimentally measured diffuse 

reflectance.  We will repeat this process for different values of g in the range form 0.7 to 

0.95 to obtain the best estimate for the optical properties.  
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The selected Monte-Carlo technique used the is the delta-scattering for photon 

tracing [41, 44].  Drs. Lihong Wang and S. L. Jacques developed a Monte Carlo 

software for modeling photon transport in biological tissues [41]. This software has been 

used in this dissertation for predicting the light distribution in biological tissue. The 

algorithm is briefly summarized in [45] as follows:  

The interaction coefficient of the ith tissue type, defined as the sum of µa and µs, is 

denoted by µi.   

1. Define an upper-bound interaction coefficient µm, where µm ≥ µi for all i.  In 

this study, µm was set to the maximum µi among all tissue types. 

2. Select a step size R between two consecutive interactions based on the upper-

bound interaction coefficient: R = − ln(ξR) / µm, where ξR was a uniformly 

distributed random number between 0 and 1 (0 < ξR ≤ 1).  Then, determine the 

tentative next collision site rk' by rk' = rk-1 + R uk-1, where rk-1 was the current 

site, and uk-1 was the direction of the flight.  The direction of the flight was 

determined according to the probability distributions of the deflection (polar) angle 

and azimuth angle at each interaction site.  

3. Play a rejection game: Get another random number ξa, which was uniformly 

distributed between 0 and 1 (0 < ξa ≤ 1). 

a. If ξa ≤ µi(rk')/µm, i.e., with a probability of µi(rk')/µm, accept this point as a real 

interaction site (rk = rk'). 

b. Otherwise, do not accept rk' as a real interaction site but select a new path 

starting from rk' with the unchanged direction uk-1 (i.e., set rk-1 = rk' and return to 
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Step 2). 

At each real interaction site, a fraction µa/(µa + µs) of the photon packet is absorbed, and 

the rest is scattered. 
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CHAPTER III 

EXPERIMENTAL SYSTEM 

 

A. Sensor Probe Design  

To conduct OIDRS measurement on human skins, we have developed a hand-held fiber 

optical sensor probe to facilitate convenient and robust data collection in a clinical 

environment (Fig. 7).   The main parameters to consider are: 

1) Center-to-center distance between detectors (collection fibers): the center-to-center 

distance is critical to ensure a suitable spatial density of the detectors to capture the 

profile of the diffuse reflectance for the extraction of optical absorption and scattering 

properties. 

2) Source-detector distance:  Since the diffuse reflectance signal decreases rapidly away 

to the source. The detector array should be placed close to the source to increase the 

signal to noise ratio (SNR). 

3) Number of detectors: Increasing the number of detectors is expected to collect more 

useful optical information, however at the expense of more complex system. The 

number or detector that can be couple to the input port of the imaging the spectrograph is 

limited to 20. 

4) Diameter of the collection fibers the area of the detector of proportional to the amount 

of light collected from the surface of the sample, increasing the signal to noise ratio. But 

a larger collection fiber would reduce the number of them that can be used in the 

imaging spectrograph.  
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The 100 µm collection arrays provides good signal to noise ratio. The center-to-center 

distance of 100 µm, ensures the need resolution of the profile of the diffuse reflectance 

to calculate the optical properties. 

The sensor probe consists of three source fibers and two linear arrays of 

collection fibers for capturing the spatial distribution of diffuse reflectance (Rd(x)). The 

effective probe testing area is limited to 2×2 mm2 to ensure that the measured area does 

not include the surrounding normal skin even for the smallest skin lesions. Among the 

three source fibers, two are used for oblique incidence (delivering light onto the skin 

surface at an oblique angle (α) of 45o. Since the OIDRS measurement is usually 

performed in a dark environment to reduce the effect of the background light, the center 

normal incidence source fiber is used to illuminate area of interest on the skin to ensure 

the accurate placement of the sensor probe. Although only one oblique incidence fiber 

and one linear array of collection fibers are necessary for an OIDRS measurement, two 

oblique incidence fibers and two arrays of collection fibers are used for multiple data 

collections from the same location on the skin to ensure a reliable and robust 

measurement [46, 47]. 
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Fig. 7. Schematic design of the OIDRS probe. 

 

For the source fibers, optical fibers with a diameter of 200 µm are used to 

provide enough incident light to ensure high signal-to-noise ratio (SNR) of the 

measurement, especially for dark-color skins. For the collection fibers, each of the two 

linear arrays consists of 10 fibers with a diameter of 100 µm and a center-to-center pitch 

of 200 µm.  Based on our previous simulation, at least 10 data points are needed for a 

span of 2 mm to achieve a good spatial resolution for the estimation of the optical 

absorption and scattering properties with good accuracy.  The 100 µm diameter of the 

collection fibers is expected to provide satisfactory SNR for the measurement of diffuse 

reflectance.  The use of smaller collection fibers will result in lower SNR and the use of 

bigger collection fibers would unnecessarily increase the size of the probe or lower the 

spatial resolution of data sampling. The two collection fiber arrays are separate from the 

incidence fibers by 1 mm.  This is because the estimation of the absorption and 

45o oblique 
source fiber 

Collection fiber array A 

Collection fiber array B

1 mm

x 
y 



 23

scattering coefficients from the measured diffuse reflectance is based on the Diffusion 

Theory, which is accurate only when the distance between the detector and the source is 

greater than one mean free path Lt' = 1/(µa+µs'), typically about 0.1 cm for biological 

tissues [32].  Although larger separation could be used, it will unnecessarily increase the 

overall size of sensor probe.   

 

B. Sensor Probe Fabrication 

To ensure the accuracy of the OIDRS measurements, the source fibers and collection 

fibers need to be precisely aligned with respect to each other and fixed in their own 

positions.  This can be achieved with a compact mechanical positioning device.  

However, due to the small size and dense arrangement of the fibers, it is very difficult 

and costly to fabricate the mechanical positioning device using conventional machining 

methods.  To address this issue, we have developed straightforward micromachining 

processes to achieve successful fabrication of the positioning devices in an efficient and 

low-cost manner. 

To achieve accurate alignment of the collection fibers, two micromachined 

positioning devices were fabricated.  Each positioning device consists of a silicon 

substrate with a linear array of V-grooves created with silicon bulk etching (Fig. 8).  

When an optical fiber (with cylindrical cross-section) is placed in a V-groove, the center 

axis of the optical fiber can “automatically” align with the symmetric plane of the V-

groove.  Thus, the accurate positioning of each collection fiber in the array can be 

readily achieved to ensure reliable and uniform performance of the sensor probe.  To 
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fabricate the positioning device, silicon nitride was deposited on a {100} silicon wafer.  

Photolithography and reactive ion etching was conducted to pattern the silicon nitride 

layer, which serves as a hard mask for silicon bulk etching.  Silicon bulking etching was 

performed in potassium hydroxide solution to form the V-grooves (130µm wide and 200 

µm apart). 

For aligning the source fibers, two other micromachined positioning devices 

were fabricated.  Since the need of guiding structures for the oblique incidence fibers 

(45o) precludes the fabrication of V-grooves with silicon bulk etching, SU-8 resist 

(MicroChem, MA) was used for the fabrication of the guiding structures on a silicon 

substrate (Fig. 8).  SU-8 is preferable for this process as it can be directly used to form 

structures over 100 µm in thickness, which results in a very simple and low-cost 

fabrication process.  To fabricate the SU-8 guiding structure, a silicon substrate is first 

cleaned and backed at 200oC for 5 minutes.  SU-8 100 resist was spun on the cleaned 

silicon substrate at calibrated spinning rate for 40 seconds to reach a final thickness of 

about 100 µm.  A soft bake was conducted at 65oC for 10 minutes and then at 95oC for 

30 minutes, which was followed by a UV (ultraviolet) exposure of a dosage of about 520 

mJ/cm2.  After the exposure, the wafer was baked at 65oC for 1 minute and then at 95oC 

for 10 minutes to selectively cross-link the exposed part of the SU-8 film.  The 

development of exposed SU-8 film was conducted for a few minutes until unexposed 

region was completely removed.  During the SU-8 processing, a slow temperature 

ramping was used to minimize the internal stress build-up and also the resulting crack 
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formation within the SU-8 film, which would significantly reduced the mechanical 

strength and stability of the guiding structures. 

 

 

Fig. 8. Micromachined positioning devices for alignment and assembly of optical fibers 

in the OIDRS probe: (b) For the incidence fibers; (a) For the collection fibers. 

 

 

After the fabrication of the micro positioning devices was complete, the entire 

OIDRS sensor probe was assembled.  First, both the source and collection fibers were 

fixed into their own guiding structures (Fig. 9).  Since the thickness of the SU-8 guiding 

structure is 100 µm, two positioning devices were placed face-to-face to accommodate 

the source fibers (with a diameter of 200 µm).  For the collection fibers, one positioning 

device and one cover substrate were used to hold them in place.  After all the fibers were 

 (a)

 (b)
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assembled, the positioning devices were stacked and glued together with epoxy (Fig. 

10).   

 

Fig. 9. Probe assembly. 

 

Since the thickness of the silicon wafer used for the fabrication of the positioning 

devices is around 500 µm, the required 1 mm spacing between the source and collection 

fibers were readily obtained.  To improve the efficiency of incidence and collection of 

the fibers, the head of the assembled probe was polished with sand papers.  During the 

45o 

SU-8 

Si 

Collection array A 

Collection array B



 27

polishing, care was taken to avoid any possible damage to the fibers.  Finally, the 

assembled probe was placed in an aluminum probe holder for testing (Fig. 10). 

 

 

 

Fig. 10. (a) Schematic of the probe front view. (b) Complete probe. 
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C. Experimental Setup 

The complete experimental setup consists of white light source (halogen lamp) for 

multiple-wavelength measurement, multiplexer, imaging spectrograph, CCD camera, 

and personal computer (Fig. 11).  Before an OIDRS measurement is conducted, the three 

source fibers of the sensor probe are connected to the output of the light source via SMA 

connectors.  The proximal end of each collection fiber is fitted with SMA 905 

connectors and then connected to the input of the spectrograph through a custom-made 

interface.  The optical multiplexer allows the light delivery, to the area of interest, 

through only one source fiber at a time.  After the sensor probe gets into contact with the 

skin, white light is delivered through one of the source fibers and the diffuse reflectance 

is then captured by the collection fibers.  The collection fibers are coupled with the 

imaging spectrograph that generates an optical spectrum for each fiber.  The CCD 

camera collects the spectral-images from the wavelength range of 455 to 765 nm.  The 

spectral images represent the steady-state diffuse reflectance spectra from each 

collection fiber, which are stored in the computer for further analysis.  This system is 

capable of capturing one frame of spectral image in a fraction of a second. 
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Fig. 11. Schematic of the oblique incidence diffuse reflectance spectroscopy system. 

 

Before the actual OIDRS measurement was conducted, the entire system was 

calibrated using a liquid reference solution (phantom) consisting of polystyrene micro-

spheres as scattering elements and Trypan blue as absorber [48].   
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Fig. 12. Expected and estimated absorption and reduced scattering spectra of a liquid 

reference solution. 

 

The absorption coefficient spectra of trypan blue were measured by collimated 

transmission before mixing it with the polystyrene micro-spheres.  The reduced 
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scattering coefficient of the microspheres was calculated using the Mie theory [49].  The 

“expected values” of the absorption and reduced scattering coefficients of the liquid 

reference solution can be varied by controlling the concentration of absorbing and 

scattering chemicals. To conduct the calibration, the sensor probe was placed on the 

surface of the reference solution. The absorption and reduced scattering spectra were 

extracted for each diffuse reflectance measurement and averaged to obtain the 

“estimated values”.  The system was calibrated by measuring several optical reference 

phantoms.  Each collection channel is compensated by a k-factor (transmission) that 

matches the “estimated” diffuse reflectance to their expected values [48]. Fig. 12 shows 

the system validation by comparing the expected and estimated absorption and reduced 

scattering spectra of a liquid optical reference solution. 

 

D. In-Vivo Measurement of Optical Properties  

The OIDRS system is used to collect the steady-state spatially resolved diffuse 

reflectance spectra Rd(x, λ) from human skin on the arm (Fig. 13).  The main absorbers 

of human skin are hemoglobin and melanin. The extinction coefficients of melanin oxy-

hemoglobin and deoxy-hemoglobin are shown in Fig. 14.   

The extinction coefficient is the absorbance (of light) per unit path length and per 

unit  of concentration (cm–1 mMoles–1). The lower reflectance points at the wavelengths 

550 and 575 nm correspond to local stronger absorption caused by oxy-hemoglobin [50]. 

 

 



 32

0
0.05

0.1
0.15 500

600
700

0.4

0.6

0.8

1

Wavelength λ [nm]

Diffuse reflectance Rd (x, λ) from array A

x [cm]

R
el

at
iv

e 
va

lu
e

0
0.05

0.1
0.15 500

600
700

0.4

0.6

0.8

1

Wavelength λ [nm]

Diffuse reflectance Rd (x, λ) from array A

x [cm]

R
el

at
iv

e 
va

lu
e

 

Fig. 13. Sample spatio-spectra diffuse reflectance data collected from human skin. 

 

The absorption and scattering coefficients are calculated independently for each 

wavelength λ, using the corresponding diffuse reflectance along the x axis.  An example 

of the estimated absorption coefficient spectra µa(λ) and scattering coefficient spectra 

µs’(λ) are shown in Fig. 15.  
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Fig. 14.  Extinction coefficient of oxyhemoglobin, deoxyhemoglobin and melanin. The 

spectral difference between the two forms of hemoglobin can be used to assay 

the blood oxygen saturation by computing the relative concentration values of 

the two forms. 

 

The optical properties of the skin can differ largely  depending on race, age, and 

location on the body [51]. Our results match closely with those obtained previously in 

ex-vivo measurements presented in [52, 53] and the in-vivo measurements presented in 

[54]. 

 



 34

500 550 600 650 700 750
0

0.2

0.4

0.6

0.8

1

µ a
[c

m
-1

]

Wavelength [nm]

Absorption coefficient spectra

500 550 600 650 700 750
0

5

10

15

µ
s` [

cm
-1

]

Wavelength [nm]

Reduced scattering coefficient spectra

500 550 600 650 700 750
0

0.2

0.4

0.6

0.8

1

µ
[c

m
-1

]

Wavelength [nm]

coefficient 

500 550 600 650 700 750
0

5

10

15

µ
s` [

cm
-1

]

Wavelength [nm]

500 550 600 650 700 750
0

0.2

0.4

0.6

0.8

1

µ a
[c

m
-1

]

Wavelength [nm]

Absorption coefficient spectra

500 550 600 650 700 750
0

5

10

15

µ
s` [

cm
-1

]

Wavelength [nm]

Reduced scattering coefficient spectra

500 550 600 650 700 750
0

0.2

0.4

0.6

0.8

1

µ
[c

m
-1

]

Wavelength [nm]

coefficient 

500 550 600 650 700 750
0

5

10

15

µ
s` [

cm
-1

]

Wavelength [nm]  

Fig. 15. Example of the estimated absorption and scattering coefficient from human 

skin. 

  

The absorption coefficient can be used to estimate important physiological 

parameters related to the disease state such as the concentration of oxy-hemoglobin, 

deoxy-hemoglobin and its oxygen saturation (StO2) [55].  For example, the absorption 

spectra µa(λ) is related to the concentration of the absorbers by 
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  abgmelmeldeoxydeoxyoxyoxya CCC µλελελελµ +++= )()()()(  (3.1) 

where εoxy(λ), εdeoxy(λ), and εmel(λ) are the known extinction coefficients of oxy-

hemoglobin, deoxy-hemoglobin, and melanin at certain wavelength (λ), Coxy, Cdeoxy, and 

Cmel are the concentrations (mMoles) of oxy-hemoglobin, deoxy-hemoglobin, and 

melanin, and µabg is the absorption caused by other local tissue components.  The oxygen 

saturation (StO2) can be determined as 

 )/(2 deoxyoxyoxy CCCStO +=  (3.2) 

For the example provided in Fig. 15, the estimated concentrations are Coxy=0.0063 

mMoles, Cdeoxy=0.0038 mMoles with an oxygen saturation StO2=0.62%.     
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CHAPTER IV 

SKIN CANCER DETECTION 

 

The human skin is a heterogeneous media and its optical properties can vary 

significantly even between close sites.  Recent study has suggested the close relationship 

between the stage of skin diseases (e.g. skin cancers) and the optical (absorption and 

scattering) properties of the affected skin area [56-59].  Thus, the development of in-vivo 

methods to accurately characterize localized optical properties of human skins can 

potentially assist in the diagnosis and treatment of its diseases [60-62].  Skin cancer is 

the most common form of cancer, with about a million new cases estimated in the U.S. 

each year [2].  Melanoma is the most dangerous type of skin cancer and is the leading 

cause of death among the skin diseases.  

 

A. OIDRS Image Database 

The data collection was performed at the University of Texas M.D. Anderson Cancer 

Center in Houston. First, the physician would identify the lesion(s) of interest scheduled 

for biopsy.  The measurement from each lesion was repeated four times, the probe was 

repositioned to obtain images from different locations and orientations to average out the 

effect of structural anisotropy.  This process was repeated for the neighboring healthy 

skin. The collected OIDRS images were divided into two abnormality groups. The 

pigmented group included the following two cancerous, dysplastic and benign 

subgroups:  
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(1) melanoma in situ and invasive melanoma (M). 

(2) mild dysplastic nevi (DN1), moderate dysplastic nevi (DN2), severe 

dysplastic nevi (DN3). 

(3) common Nevi,(CN), actinic keratosis (AK,) seborrheic keratosis (SK). 

The non-pigmented group consisted of the following two cancerous and benign 

subgroups:  

(1) basal cell carcinomas (BCC) and squamous cell carcinomas (SCC). 

(2) actinic keratosis (AK,) seborrheic keratosis (SK). 

Data was collected from 167 pigmented and 78 non-pigmented skin lesions. The 

pigmented group includes 16 lesions histopathologically diagnosed as melanoma. Tables 

I and II show types and number of lesions for the pigmented and non-pigmented group 

respectively. 

 

Table I. Pigmented skin lesions. 

Type of lesion # 

Melanoma (M) 16 

Severe dysplastic nevi (DN3) 8 

Moderate dysplastic nevi (DN2) 61 

Mild dysplastic nevi (DN1) 30 

Common nevi (CN)  31 

Actinic keratosis (AK) 5 

Seborrheic keratosis (SK) 16 

Total 167 

 



 38

 

Table II. Non-pigmented skin lesions. 

Type of lesion # 

Basal cell carcinoma (BCC) 35 

Squamous cell carcinoma (SCC) 21 

Actinic keratosis (AK) 17 

Seborrheic keratosis (SK) 5 

Total 78 

 

 

B. OIDRS Image Analysis 

OIR Image analysis was performed to identify those image features that differed 

significantly for cancerous and benign abnormalities.  It should be noted that due to the 

highly nonlinear relationship between image features and optical properties, a difference 

in image features should not be interpreted to mean the same level of difference in 

optical properties.  In our first preliminary analysis, we concentrated on identifying the 

differences in image features, not those in optical properties.  In our second preliminary 

analysis, presented in Section C5, we examined differences in physiological properties. 

The following steps were involved in the analysis of the spatio-spectral images: 1) Image 

preprocessing to remove noise and artifacts; 2) Extraction of various image features; 3) 

Feature selection to obtain effective image features; 4) Feature conditioning to combine 

all effective image features into one image feature; 5) Classification to categorize 

different abnormalities based on the combined image feature. 



 39

C. Data Preprocessing 

Before each OIDRS image was stored, background subtraction was performed to remove 

the dark room camera system noise.  The filtered spatio-spectral images were then 

calibrated against the k-factor (transmission correction) of each fiber.  Appropriate k-

factors were determined by matching the measured reflectance profile of a phantom with 

known optical properties to the theoretical profile at a particular wavelength [63].  Fig. 

16 shows a typical spatio-spectral OIDRS image. 

 

 

Fig. 16. A sample spatio-spectral OIDRS image before normalization. 
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D. Image Feature Extraction 

A wide collection of image features, including the wavelet decomposition, and principal 

components have been tested for their effectiveness in separating different types of 

abnormalities [64].  The study based on continuous wavelet transform (CWT) has shown 

a good separability between the classes [65].  The continuous wavelet transform (CWT) 

of a function f(t) with respect to an analyzing ψ wavelet function, is defined as follows 

[66]: 

 dt
a

bttf
a

abWf ⎟
⎠
⎞

⎜
⎝
⎛ −

ψ= ∫
∞

∞−

ψ )(1),(    0>a  (4.1) 

The parameter b is called the translation parameter. This parameter indicates the 

position or location of the wavelet function. The parameter a is called the dilatation 

parameter. The inverse of this parameter 1/ a can be regarded as a measure of frequency. 

This transform to be reversible the wavelet must satisfies the admissibility condition. 

That is. 

 ∞<
ω

ωψ
= ∫

∞

∞−

ψ dtC
2)(ˆ

 Where Ψ̂ is the Fourier transform of Ψ  (4.2) 

By changing b and a, the transform Wfψ(b,a) can be presented as a so-called time-scale 

plot. region (sub-image) search algorithm (RSA) that was developed in [64, 65] was 

used to find the wavelength ranges corresponding to the highest levels of separation. Fig. 

17 illustrates the corresponding time-scale plot using the Morlet wavelet and the RSA 

algorithm 
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Fig 17. Time-scale plot using the Morlet wavelet and the RSA algorithm. 
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E.  Feature Selection and Conditioning 

This stage of the image analysis involved identifying those image features that possessed 

relatively non-overlapping distributions for benign and cancerous cases.  A genetic 

algorithm (GA) was used to find the most effective combination of extracted wavelet 

features. This GA is capable of searching a high dimensional feature space efficiently. 

Basically, the GA maximizes a fitness function, corresponding to the product of the 

Fisher distance (FD) and the area under the Receiver Operating Characteristic (ROC) 

curve in our case, by carrying out three stochastic types of searching operations: 

population, crossover, and mutation [67]. Fig. 18 shows the steps involve in genetic 

algorithm. The Fisher distance is given by  

 FD=|µb -µc|/(σb
2 +σc

2)1/2 (4.3) 

where µb and µc denote the class means, and σb and σc are the class variances.  The ROC 

curve shows sensitivity versus (1 – specificity) [68].  Sensitivity indicates the percentage 

of correctly identified positives (true positives) and specificity the correctly identified 

negative cases, thus (1 – specificity) is the false alarm rate.  A ROC area close to one 

indicates a good separation of benign and cancerous cases.  Before feeding the above 

effective image features into a classifier, they were passed through two conditioning 

modules to remove their correlation and to reduce their dimensionality to one. For 

convenience this combined image feature is termed CIF. 
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Fig. 18.Genetic algorithm. 

 

The correlation among the features was removed by the following transformation 

 ( )µ−=
−

xAx 1ˆ  (4.4) 

where x denotes a feature vector whose components are the selected features, µ indicates 

the mean vector and 

 A1=(e1, e2, … eq)t (4.5) 
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where ei’s represent the eigenvectors of the covariance matrix, and q the number of 

features. Covariance matrix Cov and mean vector µ are computed as: 

 ( )( )t
n

p
pp xx

n
Cov µµ −−= ∑

=1

1  (4.6) 

 p

n

p

x
n ∑

=

=
1

1µ  (4.7) 

The reduction of the dimensionality greatly helps the classification task. The 

dimensionality was reduced by first computing the between-class scatter matrix (SB) and 

the within-class scatter matrix (Sw) as follows [69]: 
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where  

 ( )( )
t

Cx
ii

i

i xxS ∑
∈

−

−−=
ˆ
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and µi is the mean of the ith class Ci and ni the number of samples in that class. The 

following separability measure J was then used to reduce the dimensionality  

 J=Trace (Sw
–1SB) (4.11) 

This was achieved by multiplying the transpose of the non-zero eigenvector A2 of the 

matrix (Sw
–1SB) with the feature vectors. Since it is a two-class problem, there existed 

only one non-zero eigenvalue. The set of features are combined into one feature 
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generating the same separability measure J.  For a two-class problem this final feature 

has a dimensionality one. 

 

F. Classification 

Statistical Bayes classifiers [69-72] were designed to classify two subgroups of classes at 

a time within the pigmented group and the non-pigmented group. This procedure was 

repeated for the all the subgroups until the desired categories were achieved. Fig. 19 

illustrates the procedure for the pigmented lesions.  

 

 

Fig. 19. Classification of the pigmented skin lesion. 

 

For the pigmented lesion group, the first and most important classifier separates 

the malignant lesion subgroup (including invasive melanoma, melanoma in situ and) 
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from the benign lesion subgroup (including actinic keratosis, seborrheic keratosis, 

common nevi), and precancerous subgroup (mild, moderate and severe dysplastic nevi). 

 

 

Fig. 20. Results of the first classifier for pigmented lesion: training dataset. This first 

classifier uses 110 lesions for training and 57 lesions for testing.  

 

The Bayes decision rule for the minimization of the probability of error is as 

follows:  for a feature vector x, decide class 1 if P(class 1 / x) > P(class 2 / x); otherwise 

decide class 2. Using our 1-dimension combine Image feature (CIF) and assuming a 



 47

Gaussian distribution, the decision rule simplifies to: decide class 1 if g(class 1) > 

g(class 2); otherwise, decide class 2. Where 

 g(class 1) = - ln (σ1) - (xCIF - µ1)2 / σ1 (4.12) 

and 

 g(class 2) = - ln (σ2) - (xCIF - µ2)2 / σ2 (4.13) 

µ1, and µ1 denotes the class means and σ1 and σ2 the class variances.   

 

 

Fig. 21. Results of the first classifier for pigmented lesion: testing dataset. 
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As shown in Fig. 20. This classifier for the training data set performs with 100% 

sensitivity and 89% specificity. The Fig. 21 shows the scatter plot for the testing set with 

sensitivity of 83% and a specificity of 88%. The overall classification rates are 89% and 

88% for the training and testing set, respectively. 

 

 

Fig. 22. Results of the second classifier for pigmented lesion: training dataset.  

 

A second classifier was designed to distinguish the benign common nevi actinic 

keratosis and seborrheic keratosis from mild dysplastic nevi, moderate dysplastic nevi 

and severe dysplastic nevi. A total of 100 lesions were used for training and 51 lesions 
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were for testing. The overall classification rates are 91% for the training set and 90% for 

the testing set. Figs. 22 and 23 show the scatter plots for the training and testing set 

respectively. 

 

 

Fig. 23. Results of the second classifier for pigmented lesion: testing dataset. 

 

For the non-pigmented group. A single classifier separates basal cell carcinomas 

(BCC) and squamous cell carcinomas (SCC) from actinic keratosis (AK,) seborrheic 

keratosis (SK). A total of 53 lesions were used to train the classifiers and 25 lesions were 

used for testing. The designed classifier generated an overall classification rate of 95% 
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with 97% sensitivity and 91% specificity. The Figs. 24 and 25 show the classification 

results for non-pigmented lesion. 

 

 

Fig. 24. Results of the design dataset for the non-pigmented lesions. 
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Fig. 25. Results of the testing dataset for the non-pigmented lesions. 
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CHAPTER V 

ANALYSIS OF OPTICAL PROPERTIES OF SKIN LESIONS 

 

In our second analysis, we computed the absorption spectra (µa) and the reduced 

scattering spectra (µs') from the in-vivo diffuse reflectance data and used them to extract 

appropriate physiological parameters of the skin lesions.  This analysis was meant to 

provide an understanding of the physiological origins associated with different types of 

skin abnormalities.   
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Fig. 26. Absorption coefficient spectra of common nevi, dysplastic nevi 

and melanoma. 
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Figs. 26 and 27 show the average absorption coefficient spectra (µa) and reduced 

scattering coefficient spectra (µs') for melanoma, dysplastic and common nevi, 

respectively [73].  The error bars represent the standard deviations for each type of skin 

abnormality. 
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Fig. 27. Reduced scattering coefficient spectra of common nevi, dysplastic 

nevi and melanoma. 

 

The absorption coefficient spectra can be used to extract the following 

physiological parameters: concentration of hemoglobin (Chb), concentration of 
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oxygenated (Cox) and deoxygenated hemoglobin (Cde), and oxygen saturation of 

hemoglobin (SO2).  These parameters are considered important because they are 

believed to be related to the disease state of lesions [74-76].  the reduced scattering 

spectra can be used to estimated the size distribution f(φ), where φ is the scatterer size.  

The steps involved in the analysis are as shown in Fig. 28. 

 

 

Fig. 28. Steps involved in the analysis of physiological properties. 

 

We assume that cell nuclei are the primary scatterers [77, 78]. Since these 

scatterers are considerably larger than the wavelengths under consideration, the more 

general Mie theory rather than Rayleigh theory must be used [79].  The reduced 

scattering coefficient is a function of the wavelength, the diameter of the cell nuclei, and 

the relative refractive index.  For this reason, one can estimate the size distribution f(φ) 

from the reduced scattering spectra using the inverse Mie theory [80-82].   
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where µs'(λ) is the reduced scattering spectrum of the tissue; Cs is the total volume 

concentration of the scatterers; Qs() is the scattering efficiency; φ is the diameter of the 

scatterers; n is the relative index of refraction of the scatterers, λ is the wavelength, g() is 

the scattering anisotropy [83]. It has been shown that the diameter of a non-dysplastic 

cell nuclei is typically 5–10 µm, whereas dysplastic nuclei can be as large as 20 µm 

across in epithelial lesions [62].  This can explain the higher scattering coefficient for the 

melanoma cases shown in Fig. 27. 

Table III and IV summaries the results for the physiological parameters extracted 

from the optical properties presented in [65, 73].  This table shows that the cancerous 

lesions have lower oxygen saturation than the benign lesions.  The lower oxygen 

saturation in cancer lesions can be related to several factors including (1) malignant 

progression (2) tumor death and necrosis, (3) intratumoral hemorrhage with blood 

stagnation, (4) abnormal blood supply and distribution and (4) metabolic abnormalities 

[75, 84]. This table also indicates that the expected value of the size distribution of 

scatterers E[φ] in the malignant cases is larger than in the benign cases. 

 

Table III. Average concentration of hemoglobin and oxygen saturation. 

 Chb (mM) StO2 (%) 

Common Nevi 0.00220 +/- 0.00144 0.49 +/- 0.13 

Dysplastic Nevi 0.00348 +/- 0.00141 0.48 +/- 0.12 

Melanoma 0.00456 +/- 0.00264 0.44 +/- 0.18 
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Table IV. Average size nuclei for pigmented and non pigmented lesion. 

Parameter Non-pigmented lesion Pigmented lesions 

 Carcinoma Keratosis Dysplastic nevi Common nevi 

E[φ] [µm] 20.4 ±7.5 6.3 ± 5.5 15.7 ± 8.8 9.0 ±4.8 

 

The optical parameters plotted in Figs. 26 and 27 and the physiological 

parameters listed in Table III and IV indicate a general common trend in each category 

of skin lesion.  However, the similar mean values or the large (overlapping) variances 

existing among different categories implies that due to the biological variability, 

accurate classification of skin lesions based on a single physiological or resulting optical 

parameter will be almost impossible. A comprehensive approach which combines most 

or all of the “effective” features would provide a feasible way to achieve accurate 

diagnosis.  This explains that measuring and signal processing of the diffuse reflectance 

spectra of skin. 

 

Table V.  Relative difference of the concentration of hemoglobin and oxygen saturation 

compared with the normal surrounding skin. 

 ∆Chb ∆SO2 (%) 

Common Nevi -0.00121 -0.035 +/- 0.22 

Dysplastic Nevi 0.00117 -0.06 +/- 0.26 

Melanoma 0.00134 -0.16 +/- 0.25 
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 The optical properties of human skin vary significantly between individuals, 

dependent on race, age, and sun exposure. In order to have a better understanding of the 

relationship between of the physiological parameters extracted from the optical 

properties it is important to subtract the information for the surrounding normal skin. 

The Table V shows the relative difference of the concentration of hemoglobin and 

oxygen saturation by subtracting the parameters from the skin lesion from the ones from 

the surrounding skin. The melanoma case presented significantly lower oxygen 

saturation (-16%) than the surrounding healthy skin, which is indication of hypoxia.  
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CHAPTER VI 

MEMS-BASED OBLIQUE-INCIDENCE OPTICAL  

SPECTROSCOPIC ENDOSCOPY 

 

A. Esophageal Endoscopy 

Endoscopy is the main tool for diagnosing esophageal cancer.  It is a procedure 

involving the use of a gastroscope, which is one type of endoscope specially designed 

for gastroenterology applications.  A gastroscope consists of a flexible tube with a light 

guide for illumination, an objective lens and camera for video capture, an air/water 

nozzle for cleaning the lens, and an instrument channel to accept a series of accessories 

for biopsy and other treatment purposes (Fig. 29).  Once inserted into the GI tract, the 

flexible tube can be rotated along its axis and its distal end can have a 2-way angulation 

for efficient examination of esophagus and other portions of the GI tract.  A biopsy can 

be taken through the endoscope for histology to determine whether cancer is present.  

 

 

Fig. 29. End view of the GI endoscope. 



 59

B. Side-view Probe Design and Fabrication 

For OIDRS measurements, the sensor probe needs to be in contact with the tissue 

surfaces of interest. As shown in Fig. 30, the skin probe assumes a “front viewing” 

configuration, in which the sensor head is in line with the direction of the 

source/collection fiber bundles.  All the collection fibers remain straight and thus can be 

arranged in a dense manner with suitable spacing for capturing the spatial distribution of 

the diffuse reflectance.  To accommodate the 45o bending of the source fiber for oblique 

incidence, a large outer dimension of the probe (15×10×150 mm3) is used to prevent 

sharp bending of the source fibers.  For in-vivo skin testing, the “front viewing” 

configuration and the relatively large size of the probe are desirable for hand-held 

applications. However, for inner-body applications (e.g. esophagus), this configuration 

and dimension of sensor probe becomes an issue.  First, to conduct effective and 

efficient in-vivo measurement inside human body, the OIDRS probe has to be mounted 

onto a medical endoscope for manipulation and targeting. Current medical endoscope 

can only accept tool attachments with 2~5 mm in diameter.  The current OIDRS probe is 

too bulky for this purpose.  Second, while the “front viewing” configuration is ideal for 

skin applications, it will be difficult to use it to conduct in-vivo measurements in the 

tight inner-body cavities. A “side viewing” configuration is preferred, in which the 

sensor head is oriented in a perpendicular position with respect to the axis of the fiber 

bundles (Fig. 31). However, this inevitably requires a sharp 90o turn for all the collection 

fibers within very tight space, which would cause significant light loss and leakage (thus 
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cross-talk between adjacent collection channels) and also possible mechanical fracture of 

the fibers.  

 

 

Fig. 30. Schematic of OIDRS probe configuration: (a) front viewing and 

(b) side viewing. 

 

To solve this problem, we have applied MEMS technologies to develop a 

prototype of a new miniaturized “side-viewing” OIDRS probe [85].  As shown in Fig. 

31, the new probe design consists of three substrates.  The first substrate serves as the 

positioning device to guide the source fiber for a 45o oblique `incidence.  To avoid the 

detrimental effects of direct sharp bending of the collection fiber array, a second 

substrate with microfabricated polymer waveguides is used for collecting the diffuse 

reflectance.  The four side walls of curved polymer waveguides are coated with highly 
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reflective layers to prevent possible light leakage and cross-talk of the waveguides (Fig. 

32). To interface the waveguides to OIDRS image capture and processing setup, a third 

substrate with bulk-etched V-groves is used to align the straight interconnection fiber 

bundles with exactly the same pitch of that of the polymer waveguides (Fig. 32). The 

assembled sensor head and the complete probe are shown in Figs. 33 and 34, 

respectively.  The outer dimension of the probe head is 5×5×30mm3.  In contrast, the 

previously developed “front viewing” skin probe has an outer dimension of 

15×10×150mm3. 

 

 

Fig. 31. Schematic of the “side-viewing” OIDRS probe assembly. 
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(a)    (b) 

 (c) 

Fig. 32. Micromachined silicon positioning substrates for the OIDRS probe: (a) Source 

fiber guide; (b) Collection waveguide substrates; and (c) Interconnection fiber 

guide. 

 

 

 

Fig. 33. An assembled probe head. 
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Fig. 34. Complete probe. 

 

C. Ex-Vivo OIDRS Measurement of Esophageal Lesions 

The fabricated “side viewing” OIDRS probe was connected to a previously developed 

image acquisition system and calibrated using a standard liquid phantom with known 

optical properties.  After the calibration, the entire OIDRS system was used to conduct 

ex-vivo measurement of fresh esophageal biopsy samples at the Barrett’s Esophagus 

Endoscopy Unit of Mayo Clinic (Rochester, MN).  Each sample is approximately ~7 to 

8 mm in diameter (Fig. 35).  A total of 20 samples were measured.  The measurement 

was done at the center of the sample and within 5 minutes after the biopsy was 

performed.  The samples were later histopathologically analyzed following the standard 

procedure at Mayo Clinic.  The 20 esophageal samples were found to consist of 8 

benign, 6 low dysplastic, 4 highly dysplastic and 2 cancerous lesions. 
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1 cm 
 

Fig. 35. Esophageal biopsy sample. 

 

Fig. 36 illustrates the average OIDRS data (after normalization by the light 

source) for each type of lesions. The collected data was used to design two classifiers. 

The first one separates benign and low dysplastic from high dysplastic and cancerous 

lesions. The second classifier distinguishes benign lesions from low dysplastic ones. Due 

to its small number, cancerous cases were combined with the high dysplastic ones. 

 

D. Classification of Esophageal Lesions 

Because of the limited number of samples, a bootstrap-based Bayes classifier [86] was 

used for each group based on the effective features for that group.  The leave-one-out 

method was used for testing.  Using this method, one sample from a lesion group was 

left out, and the bootstrap samples were generated separately for each class using the 

remaining samples. 
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(d) 
 

Fig. 36.  Average spatio-spectra OIDRS image from the fresh esophageal biopsy 

samples. (a) benign; (b) low dysplastic; (c) high dysplastic and (d) cancerous. 

 

The classifier was tested with the left-out sample, and the classification (hit or 

miss) was recorded. The procedure was repeated by reinserting the removed sample, 
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taking out a different sample, and regenerating new bootstrap samples, until each of the 

lesion samples had been individually removed and the classifier tested with all of the 

left-out samples. Both designed classifiers generated a classification rate of 100% (Figs. 

37 and 38). 

 

 

Fig. 37. Classification results of esophageal biopsy samples: benign/low 

dysplastic vs. high dysplastic/cancerous. 
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Fig. 38. Classification results of esophageal biopsy samples: benign vs. low dysplastic.  

 

E. Ex-Vivo Optical Properties 

The reduced scattering and absorption coefficient spectra were calculated from each 

sample. Figs. 39 and 40 show the average optical properties for the benign, low 

dysplastic and high dysplastic/cancerous cases.  It shows that a higher average scattering 

coefficient spectra for the high dysplastic and cancerous cases than for low dysplastic 

and benign ones.  The higher scattering coefficient for the group form by the high 
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dysplastic and cancerous cases can be explained by the larger average effective size of 

the scattering centers.  Enlarged nuclei are primary cellular indicators of cancer, 

dysplasia and cell in most human tissues.  The absorption spectra show lower oxygen 

saturation for the malignant lesion than the benign ones.  The lower oxygen saturation 

can be related to several factors including: tumor death and necrosis; abnormal blood 

supply and distribution; and metabolic abnormalities [75]. 

 

 

Fig. 39.  Average reduced scattering absorption coefficient spectra, low dysplastic and 

high dysplastic/cancerous esophageal biopsy samples. 
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Fig. 40. Average absorption coefficient spectra, low dysplastic and high 

dysplastic/cancerous esophageal biopsy samples. 
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CHAPTER VII 

SUMMARY AND CONCLUSIONS 

 

An oblique incidence diffuse reflectance spectroscopy system has been developed and 

tested for non-invasive optical detection of epithelial cancer. Two micro-machined 

sensor probes has been designed and developed using micromachining technology. The 

first prone was designed for skin applications and the second one for esophageal 

applications. The device miniaturization and fabrication precision provided by 

micromachining ensure reliable and repeatable high performance of the probe.  The 

results indicate that it is reliable for use to estimate the optical properties of the different 

types of tissues.  The data from skin lesion was collected in-vivo. Several statistical 

classifiers were designed to separate cancerous skin lesions from the benign or 

precancerous counterparts. The classifier designed for the non-pigmented skin group 

separates carcinoma from the benign lesion with overall 97% sensitivity and 91% 

specificity and classification rate of 95%. The first statistical classifiers designed for 

pigmented skin lesion separates malignant melanoma from the benign and precancerous 

lesions with a performance of 100% sensitivity and 89% specificity for the training set 

and sensitivity of 83% and a specificity of 88% for the testing set. The second classifier 

was designed to separate the benign lesion form the precancerous one with an overall 

classification rates of 91% and 90% for the training and testing sets respectively.  The 

second probe was developed with side-view capability. This probe was tested with ex-

vivo esophageal lesion. Two classifiers were designed for this part of the study. The first 
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one distinguishes benign and low dysplastic from high dysplastic and cancerous lesions. 

The second classifier separates benign lesions from low dysplastic ones. Both classifiers 

performed with a classification rate of 100%. The information provided by this system 

can potentially be used to assist the photodynamic therapy, and in-vivo and non-invasive 

diagnosis skin, esophageal and other organs pathologies. 
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