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ABSTRACT 

 

Thermoelastic Properties of Particle Reinforced Composites at the Micro and Macro 

Scales. (December 2008) 

Pradeep Gudlur, B.Tech., Vidya Jyothi Institute of Technology, India; 

M.S., Texas A&M University, USA 

Chair of Advisory Committee: Dr. Anastasia Muliana 

 

 Particle reinforced composites are widely used in tires, heat exchangers, thermal 

barrier coatings and many other applications, as they have good strength to weight ratio, 

excellent thermal insulation, ease of manufacturing and flexibility in design. During their 

service life, these composites are often subjected to harsh environments, which can 

degrade the thermo-mechanical properties of the constituents in the composites, 

affecting performance and lifetime of the composites. This study investigates 

performance of particle reinforced composites subjected to coupled heat conduction and 

thermo-elastic deformation at the macro and micro levels. A micromechanical model is 

used to determine the effective thermal and mechanical properties of the homogenized 

composite by incorporating microscopic characteristics of the composites. The 

constituent‟s thermal conductivities of the composite are assumed to be functions of 

temperature and the elastic moduli to be functions of temperature and stress fields. The 

effective properties obtained from the micromechanical model represent average 

(macroscopic) properties.  The effective heat conduction and thermo-elastic responses in 
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the homogenized composites are compared with the responses of the composite with 

particles randomly distributed in the matrix (heterogeneous materials) which represent 

microscopic responses. For this purpose, two sets of finite element (FE) models are 

generated for composites with particle volume contents 12.5, 25, and 50%. The first FE 

model represents a homogenized composite panel and the effective responses from the 

micromechanical model are used as input for the material properties.  The second FE 

model mimics composite microstructure with discontinuous particles randomly 

dispersed in a homogeneous matrix. Parametric studies on effects of conductivity ratio 

between particle and matrix, degree of nonlinearity, and volume fraction on the 

temperature distribution and steady state times have been studied. For lower volume 

fractions the temperature profiles of homogenized and heterogeneous composite models 

are in good agreement with each other. But for higher volume fractions, the detailed 

model showed a wavy profile whereas the effective model showed no signs of it. When 

the nonlinearity in thermal conductivity of the particle and matrix constituents is 

increased, the steady state time significantly deviates from the ones with constant 

constituent properties. When the volume fraction of particles in the composite increases, 

the steady state is reached in less time, since the thermal conductivity of particles are 

taken larger than that of the matrix. Effects of coefficient of thermal expansion (CTE) 

ratio of particle and matrix, temperature change, and volume fraction on the 

discontinuity of stress and strain fields at the interphase of matrix and particle have been 

studied. The stresses developed were more for higher CTE ratios and the magnitude of 

discontinuity also follows the same trend. As the volume fraction increases, the stresses 
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developed and the magnitude of discontinuity also increase. Finally, sequentially 

coupled heat conduction and deformation analyses are performed on thermal barrier 

coating (TBC) systems to demonstrate the applicability of the micromechanical model in 

predicting overall thermo-elastic responses of the TBC. 
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CHAPTER I 

1.INTRODUCTION 

Particle reinforced composites are a type of composites in which particles having 

specific properties are embedded into another material (matrix) having different 

properties in such a way that the overall systems will have a combination of properties of 

both constituents. By manufacturing particle reinforced composites with different 

microstructural geometries and constituent properties, one can achieve desired responses 

of the composite. Particle reinforced composites are used in tires, heat exchangers, 

thermal barrier coatings etc., which are often exposed to extremely harsh conditions. In 

order to have the component infallible even in these conditions, it is essential to 

understand the behavior of these composites under different loading conditions in terms 

of stresses and deformations. It is also important to monitor the deformations in 

composites during a transient heat transfer (heat conduction) process. 

The overall response of the composite depends on the microscopic geometries 

and properties of the individual constituents of the composite. Hence it is necessary to 

study the influence of these microscopic characteristics on the overall macroscopic 

behavior of the composite. However, it is very complicated to incorporate the detailed 

microscopic characteristics of the composites in predicting effective (macroscopic) 

performance. Several approximate solutions based on volume averaging of individual 

constituents have been developed. This averaging technique, generally termed as 

_________________ 

This thesis follows the style of Composites Science and Technology. 
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 homogenization methods, allows us to calculate the effective properties of the 

composite from its microscopic constituents. Homogenization methods also help in 

reducing the computational time and effort. However, the main drawback of such a 

homogenization scheme is that the discontinuity of effective stress and strain fields at the 

particle and matrix interface, which plays a vital role in the debonding of the composite, 

cannot be properly quantified. 

This chapter presents a literature review on analytical and numerical works 

proposed for predicting effective thermo-elastic properties of heterogeneous materials 

followed by research objectives. 

1.1 Studies conducted on predicting effective thermo-elastic properties of a 

composite 

As it is highly difficult to determine the detailed displacement (or) stress fields, 

attempts were made to simplify the geometry and behavior of constituents in order to 

obtain effective elastic properties. Hashin et al. [1] used variational principles based on 

linear theory of elasticity to derive upper and lower bounds for effective elastic moduli 

(bulk modulus & shear modulus). They have shown that as the stiffness of one phase is 

increased with respect to other, the distance between bounds increases.  When one of the 

phases was rigid, their method gives upper bound as infinity and for an empty phase 

(porous or cavity) the lower bound goes to zero. 

Kari et al. [2] used FE method to evaluate the effective properties of randomly 

distributed spherical particle reinforced composites with periodic boundary conditions.  

For linear elastic case and for volume fraction 30%, models were generated with 



3 
 

 
 

identical spherical particles and the effective properties (E, G and µ) for different sizes 

of cubic representative volume element (RVE) were evaluated. They concluded that the 

size of RVE should be at least L = (10/3)*D, where L is size of RVE and D is the 

diameter of the particles.  By keeping size of RVE constant and volume fraction of 

particles constant at 30%, effective material properties were determined for different 

sizes of particles. There were no significant variations (only slight variations which can 

be attributed to particle-particle interactions when the size of particles is less and there 

are greater number of particles in RVE). Numerical simulations were conducted and it 

was observed that there was no significant difference in effective properties between 

random size of spherical particles and same size of spherical particles. From the 

numerical results, they concluded that effective material properties of spherical particle 

reinforced composite depend only on volume fraction. Size of particles and size of RVE 

has no significant effect on effective properties for linear case. 

Chen et al. [3] developed a model to predict effective elastic modulus and 

Poisson‟s ratio of 2D & 3D two phase composite materials. Their model comprised of a 

specimen discretized into n x n domains, which are of equal size and assigned to a 

particular constituent of the two phase (glass & epoxy) composite and each domain is 

further divided into m x m finite elements. For constant volume fraction (50%) and for 

different distributions of constituents between domains they conducted studies on the 

sensitivity of the predictions to the domain size. They found that the effective elastic 

modulus does not vary significantly with increasing element density; however, the 

computational time increases tremendously. They compared the effective elastic 
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modulus obtained from all their studies with the Hashin-Shtrikman bounds and found 

that the values were lying between these bounds. They also found that for glass inclusion 

in the epoxy matrix, the effective elastic modulus was closer to the lower Hashin-

Shtrikman bound, while the one of epoxy inclusion in glass matrix was closer to the 

upper Hashin-Shtrikman bounds. 

Cho et al. [4] have used numerical and experimental methods to determine the 

effect of inclusion on the mechanical properties of composites.  From the results, they 

conclude that as the particle size decreases, the tensile strength increases where as the 

debonding growth decreases. They also found that there would not be any effect of 

particle size on elastic modulus for the composite at micro scale or larger. But for nano 

scale, the elastic modulus increases with decrease in particle size. 

According to Kanit et al. [5], RVE size must be treated as a function of different 

parameters such as: physical property e.g. thermal conductivity, bulk modulus, shear 

modulus, mismatch of phase properties, volume fraction of particles and desired 

precision in determining the effective properties. For example, to determine the effective 

thermal property and effective mechanical property for the same microstructure of the 

composite, one has to consider different sizes of RVE. 

In order to transmit load between matrix and particles efficiently, it is highly 

important to choose the material for the interphase and its concentration carefully. Kari 

et al. [6] have evaluated the effect of interphase material properties and its volume 

fraction on the overall material behavior of the composite. By keeping the volume 

content of particles, volume content of interphase and material properties of matrix and 
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particle constant, they observed that overall properties significantly change by varying 

the elastic modulus for interphase material. By increasing the elastic modulus of 

interface the transverse modulus of the overall composite increased. They also found that 

when the volume fraction of interphase was increased by keeping all other parameters 

constant, the effective elastic and shear modulus decreased.  

Hollister et al. [7] used asymptotic expansion homogenization method to estimate 

the effective properties of composites. The effective responses reach the exact solution 

as the ratio of RVE size to global structure size goes to zero. They compared the elastic 

behavior of the asymptotic homogenization model with the homogenization model based 

on volume averages for periodic composites with finite size RVEs. The two approaches 

are comparable as the ratio of RVE size to global size goes to zero. Since the accuracy of 

predicted effective stiffness increases as the ratio goes to zero, they concluded that for 

periodic composites, the effective stiffness of the asymptotic expansion  homogenization 

theory are more accurate than that of the volume averaging schemes. 

Kaminski [8] compared the FE based homogenization method with boundary 

element (BE) homogenization method for a linear elastic glass-epoxy periodic 

composite.  Components of an effective stiffness tensor were calculated using both 

approaches and compared by plotting them against different volume fractions of fiber.  

With the increase of fiber radius, the effective stiffness tensors increase for both methods 

but the values obtained using BE method were always greater than that obtained from 

the FE method, which could be attributed to the general differences in the assumptions 

of both the methods. 
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Tszeng [9] and Segurado et al. [10] conducted virtual tests on particle reinforced 

composites to determine the effect of particle clustering on the mechanical properties of 

the composite. They concluded that cluster of particles weakly affects the overall 

behavior of the composite. It has no significant influence on the elastic modulus of the 

composite, on the stress and strain responses of the composite, and on the stress 

concentration of the particles in the composite. But with increase in degree of clustering, 

the ductility of the composites decreases as the fraction of broken particles increases. 

Clustered region starts yielding at a lower stress value than the unclustered region and 

when the particles in the cluster are very close, the chance of crack initiation at the 

particle matrix interface increases.  

On two-phase particle reinforced linear elastic composites, Drugan et al. [11] 

used variational principles to derive the effective stiffness tensor which relates the 

volumetric averages of stress and strain. For spatially varying load, the minimum size of 

RVE was quantitatively determined by comparing the obtained constant effective 

stiffness tensor with the magnitude of nonlocal term in the constitutive equation.  For a 

wide range of reinforcement types and their volume fractions and for a maximum error 

of 5% in determining the constant effective stiffness tensor, the minimum RVE size does 

not exceed 2.1 times reinforced spheres diameter. For a wide range of reinforcement 

types and concentrations, as the volume fraction of reinforcement increases, the 

minimum size of RVE required also increases. The minimum RVE size required in 

normal straining mode must be larger than that in shear straining mode, for the same 

accuracy in determining the stiffness tensor in both cases. Minimum RVE size required 
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for voids and rigid particles are greater than that of any other reinforcement type. The 

minimum RVE sizes required for voids are greater than that of rigid particles as 

discussed in Drugan [12]. 

If any one of the constituents of heterogeneous materials is nonlinear, the 

effective properties obtained through homogenization are not directly applicable. The 

nonlinear behavior has to be converted to linear elastic behavior before the 

homogenization principles can be applied on them. Levesque et al. [13] emphasizes this 

point by demonstrating a method to convert nonlinear visco-elastic material to linear 

elastic. They first use a linearization method to convert nonlinear visco-elastic behavior 

to linear visco-elastic behavior and then uses Laplace Carson transform to convert it to 

linear elastic material. Once the material is linear elastic, they use Mori-Tanaka scheme 

to homogenize the entire composite. 

Hine et al. [14] predicted thermo-elastic properties of short glass fiber reinforced 

composites using numerical simulations. With the increase in volume fraction, the 

longitudinal and transverse modulus increased linearly and the shear modulus increased 

nonlinearly.  The longitudinal Poisson‟s ratio and the longitudinal thermal expansion 

coefficient decreased slightly with increase in volume fraction. Whereas the transverse 

poisons ratio and transverse thermal expansion coefficient initially have increased 

slightly, reached a peak and then have reduced from there on. 

Aboudi [15, 16] presented an analytical solution for a two-way thermo-

mechanical coupled micromechanical analysis for multiphase composites where both 

temperature and deformation fields can influence each other. In the present work, a one 
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way thermo-mechanically coupled problem i.e., only temperature field is going to 

influence deformation field, is considered. 

Li et al. [17] investigated the effect of particle shape and particle stiffness on the 

initial yielding and overall stress-strain relationship of the composite, under various 

loadings.  Depending on the loading condition, different particle shapes have different 

effect on the overall response of the composite. For an axisymmetric loading, the 

strengthening effects are good for oblate and prolate shapes, as they give the largest 

increase in yield stress and load bearing capacity. For transverse and axisymmetric 

shearing loads, largest increment in yield stress and load bearing capacity are shown by 

the oblate shape. For longitudinal loading, spherical shapes are the best. Particle‟s 

stiffness can significantly contribute to initial yielding but not so much to the overall 

stress-strain response of the composite. 

Muliana et al. [18, 19] developed a concurrent micromechanical model for 

determining the effective properties of a particle reinforced polymeric composite with 

matrix being nonlinear visco-elastic and the solid spherical particles exhibiting linear 

elastic characteristics. A unit cell model consisting of four particles and polymer sub-

cells is generated and the micromechanical relations are developed in the sub-cells. A 

stress-strain correction scheme is developed in such a way that non-linear constitutive 

relations and the linearized micromechanical model are satisfied. Effective thermal 

conductivity and coefficient of expansion were determined, which allows simulating 

sequentially coupled heat conduction and deformation in composites. 
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1.2 Studies conducted on determining effective thermal properties of a 

composite 

Analytical and numerical models have been developed to analyze effective 

transport properties of composites. Kolodziej et al. [20] proposed a method for 

determining effective thermal conductivity for a laminated composite slab, for which the 

thermal conductivity of constituents are linear functions of temperature. Their method 

consists of using an adaptive FEM in such a way that temperature is determined on the 

nodes generated at the beginning and on the nodes additionally generated in the adaptive 

mesh. An effective medium as a single layer with relevant effective temperature and 

effective thermal conductivity was introduced. The constants which characterize their 

effective thermal conductivity in effective medium were calculated based on the facts 

that  the heat flux in effective and real medium are equal and that the temperature 

difference between effective and real medium is minimal in the least square sense.                 

Fan [21] used a microstructural approach for predicting the effective transport 

properties of two phase composites such as electrical conductivity, dielectric constant, 

magnetic permeability, thermal conductivity, and diffusion coefficient. The effective 

transport property of the overall composite depends not only on the transport properties 

of constituent phases but also on the volume fraction of constituent phases, geometrical 

distribution of phases and size of the phases. The proposed effective transport property 

was verified with bounds derived by Hashin et al. [1] and found it to be comfortably 

lying in between the upper and lower bounds. For a composite with high transport 

property of second phase, the upper bound of Hashin & Shtrikman becomes infinity and 
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for a composite with porous particle, the lower bound of Hashin & Shtikman vanishes. 

But the approach presented by Fan [21] works well even in these two extreme cases. 

Hence in terms of range of applicability and accuracy of prediction, this approach is 

superior to that of Hashin et al. [1]. 

In order to understand the overall effective thermal conductivity of the composite 

and the parameters that affect it, Yin and Tu [22] have studied two dimensional PTFE 

(Poly Tetra Floro Ethylene) composites with randomly distributed circular graphite 

particles. Their numerical work has yielded the fact that the effective conductivity for 

random distribution of particles is lower than that of uniform distribution of particles. 

This means that while fabricating the composite, the inclusion particles should be 

dispersed as uniform as possible to have a better effective conductivity of the composite.  

They also observed that as the number of particles increases, the effective thermal 

conductivity value for random distribution increases gradually and approaches the value 

of uniform distribution, i.e. for higher volume fraction the random distribution can be 

treated as a uniform distribution. As the conductivity ratio increases i.e., as the 

conductivity of particles increase, they observed that the effective conductivity of 

composite is at first increasing and reaches an asymptotic value. Improvement in 

effective conductivity can be made by increasing the conductivity ratio up to a certain 

degree. 

Apparent properties are defined as those under essential (displacement or 

temperature), natural (traction or heat flux), mixed or periodic boundary conditions 

applied to finite size material domains (windows). Apparent property of a periodic 
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composite under periodic boundary condition is the effective property of that composite. 

Jiang et al. [23, 24, 25] describe the effects of boundary conditions, mismatch between 

constituent properties (modulus ratio or conductivity ratio) and window size (or scale) 

on apparent properties of 2D periodic composites with circular inclusions, for elastic, 

elasto-plastic and thermal properties. They concluded that apparent properties under 

mixed and periodic boundary conditions are equal. For elastic, elasto-plastic and thermal 

cases, they have shown that the effective properties obtained under periodic boundary 

condition are bounded above by that obtained under essential boundary condition and 

below by that obtained under natural boundary condition. The distance between bounds 

can be increased by increasing the mismatch between phases or by decreasing the 

window size. For soft inclusion case, the effective properties were closer to that of the 

upper bound (essential boundary condition) whereas for stiff inclusion case, the value 

was closer to that of the lower bound (natural boundary condition). 

Kim et al. [26] have developed a boundary element method for determining the 

effective conductivity of a composite material. The method can be used for both periodic 

and random distribution of particles for arbitrary shapes. They demonstrate the method 

by determining the effective conductivities of Simple cubic, Face-centered cubic & 

Body-centered cubic arrays of spheroids and cubes for different volume fractions.  In 

this method, even without knowing the temperature field beforehand, one can determine 

effective conductivity.  

Hasselman [27] determined the effect of cracks on the thermal conductivity of 

the composite. Cracks formed in the composite lead to reduced strength and stiffness of 
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the composite. Cracked particles can be treated as voids, as their load transfer capacity 

will be negligible. The effect of cracks on thermal conductivity of the composite 

depends on the orientation of the cracks to the direction of heat flow. Thermal 

conductivity of the composite decreases drastically, if all the cracks developed are 

perpendicular to the direction of heat flow. However there will be no effect on thermal 

conductivity if all the cracks are parallel to the direction of heat flow. For any other 

arrangement of these cracks, thermal conductivity value lies between these two cases.  

1.3 Research objectives 

Determination of effective thermo-elastic properties and predicting the overall 

behavior of composites has been a long standing subject of study. Studies on effective 

mechanical properties of composites have been extensively done, while prediction of 

effective thermal properties has received less attention. Furthermore, coupled transient 

analyses of heat conduction and deformation at the composite microstructures are rarely 

done. Different thermal and mechanical properties in the constituents of composites 

often lead to significant mismatches in the stress/strain at the interphases between the 

inclusion and matrix constituents. These mismatches potentially cause debonding at the 

interlayers, reducing lifetime of the composites. The goals of this study are to determine 

the effective thermo-elastic properties of particle reinforced composites and to analyze 

the effect of different microscopic parameters on the overall behavior of these 

composites under different thermal and mechanical stimuli. This study considers a 

composite system made of linear elastic spherical particles and nonlinear elastic matrix. 

The thermal conductivities of both particle and matrix are assumed to degrade with 
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temperature field. The elastic moduli of the constituents are stress and temperature 

dependent. 

CHAPTER II presents the micromechanical model for determining effective 

thermal conductivity of homogenized composites. The effective thermal properties 

determined with the help of micromechanical model are validated against analytical 

methods available in literature. To verify the accuracy of the micromechanical model, 

performance of the homogenized composites is compared with the ones of 

heterogeneous (detailed microstructure) composites. For this purpose, two FE meshes 

are generated. The first FE mesh uses the micromechanical model to predict effective 

properties and the second FE mimics the detailed microstructure of the composite. The 

responses of both FE models with particle volume contents 12.5, 25 and 50% are 

compared for different thermal stimuli. A parametric study is conducted on volume 

fraction of particles, conductivity ratio and degree of nonlinearity to determine the 

influence of these parameters on steady state time and temperature fields during transient 

heat conduction. 

CHAPTER III presents the micromechanical relations to determine the effective 

thermo-mechanical properties. The FE meshes generated in CHAPTER II, one for 

determining effective properties using the micromechanical model and the other for 

representing the detailed microstructure of the composite, are used to analyze responses 

of composites subjected to coupled heat conduction and thermo-elastic deformation. The 

temperature profiles determined in CHAPTER II are used as prescribed conditions along 

with the mechanical boundary conditions. The effective thermo-elastic properties are 
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also validated against analytical methods available in literature. Parametric studies are to 

be conducted to determine the effects of CTE ratio of particle and matrix, volume 

fraction and temperature changes on the magnitude of discontinuity in stress and strain at 

the particle matrix interphase, which is vital for quantifying the debonding of the 

composite. For this purpose, FE model with detailed composite microstructures are used. 

CHAPTER IV presents the application of micromechanical model to determine 

effective thermo-mechanical responses of composite structures, such as thermal barrier 

coatings (TBC). Developing a detailed microstructural model to determine the responses 

at the micro and macro scales is highly complicated and requires extensive 

computational time. The simplified micromechanical model is used to determine 

effective properties of homogenized composites. The example considered here consists 

of a rectangular laminate structure having metal substrate bonded to functionally graded 

plates, with varying particle concentration through the thickness of the layers. Both 

mechanical and thermal stimuli are applied on this composite structure and the behavior 

of the structure at macro scale is obtained.  

  CHAPTER V presents the conclusion and future scope of the project. 
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CHAPTER II 

2.HEAT CONDUCTION IN PARTICLE REINFORCED 

COMPOSITES 

 “Heat is a form of energy that flows from a body at high temperature to a body 

at low temperature”. Temperature gradient is the driving potential for the heat to flow. 

According to Rajput [28], the molecules of a substance are made up of one or more 

atoms which will be constantly translating, rotating and vibrating with respect to each 

other, resulting in kinetic energy. Kinetic energy of a substance increases with increasing 

temperature, which increases the agitation of the molecule to pass this energy to a 

neighboring molecule with lesser kinetic energy. There are three modes of heat transfer 

mechanisms and practical problems often involve a combination of these three modes. 

Conduction is a transfer of heat between two regions of the same substance or 

between two different substances that are in physical contact.  It occurs only between 

matters of same phases, i.e. between solids or liquids or gases. Conduction is greater in 

solids as the molecules or atoms are closely packed.  As the spacing between molecules 

increases, there are lesser chances of collision between molecules such as in liquids and 

gases. Thus, liquids and gases have lower conductance compared to solids. Convection 

is a mode of heat transfer in which heat is transferred by virtue of motion of fluids. It 

occurs when a fluid flows over a surface of solid or another liquid and energy (heat) 

transfer takes place either from fluid to the surface or from surface to the fluid. The heat 

flow does not depend on material properties of the surface but it depends on the fluid 

properties and the surface shape over which fluid is flowing. Heat transmitted as 
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electromagnetic waves is called radiation. It requires no medium for propagation and can 

even travel through vacuum. During radiation, heat travels at the same speed as the light 

waves and exhibit reflection, diffraction and interference.  

This chapter discusses a micromechanical model developed by Khan et al. [29] 

for determining effective thermal conductivities of particle reinforced composites. The 

responses from the micromechanical model represent homogenized composite media. 

These responses are compared with the ones obtained from particles dispersed in 

homogeneous matrix that represent heterogeneous composite microstructures. For this 

purpose, two sets of FE meshes are generated for composites at different particle volume 

contents i.e., 12.5%, 25%, and 50%. The first FE represents a homogeneous composite 

panel, which is used along with the micromechanical model to determine the effective 

thermal conductivity of the composite. Whereas the second FE mesh, mimics a more 

realistic composite microstructure with particles randomly distributed in matrix. For both 

cases an ABAQUS user material subroutine UMATHT is used to input the variation of 

thermal conductivity with temperature. A parametric study is conducted to determine the 

influence of different conductivity ratios of particle and matrix, volume fraction of 

particles in matrix and degree of nonlinearity in thermal conductivity on the temperature 

distribution and steady state times. 

2.1 Analytical and numerical solutions of heat conduction in homogeneous media 

According to Fourier‟s law, “the rate of heat flow through a homogeneous solid 

is directly proportional to the area of the section at right angles to the direction of heat 

flow, and to the gradient of temperature with respect to length of path of flow.” It is 
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applicable to all solids, liquids and gases. Rate of heat transfer is given by, 
dT

Q KA
dx

; where K is the thermal conductivity of the solid, A is the cross-sectional area of the 

solid and dT is the temperature difference between two ends which are at a distance dx . 

The thermal conductivities of materials depend on the material molecular structure, 

temperature, moisture content, density of material, etc. For most metals, except 

Aluminum and Uranium, thermal conductivity decreases linearly with increase in 

temperature. For liquids, thermal conductivity decreases with increase in temperature 

whereas for gases it increases with increase in temperature. Thermal conductivity for 

porous materials depends on type of liquid or gas present in voids. 

The rate of change of heat stored in a system is equal to the sum of net heat 

conducted into the system and the internal heat generated by the system. This results in 

the following Fourier‟s equation: 

T T T T
(KA ) (KA ) (KA ) Ag Ac (2.1)

x x y y z z t  

when the thermal conductivity of material is assumed constant, Eq. (2.1) becomes: 

2 2 2

2 2 2

2 2 2

2 2 2

2 2 2

2 2 2

T T T T
K g c

tx y z

T T T g c T
(2.2)

K K tx y z

T T T g 1 T K
(where, )

K t cx y z

where c is the thermal capacity; and is the thermal diffusivity of the material. If 

internal source of heat generation is absent then g 0and Eq. (2.2) reduces to: 
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2 2 2

2 2 2

T T T 1 T
(2.3)

tx y z

 

Analytical solution for a heat conduction problem that involves simple geometry 

or when the material properties are constant can be easily obtained. For more complex 

structures and nonlinear material properties, numerical methods such as Finite difference 

and Finite element (FE) methods are often used to obtain the solution. In this study, the 

FE method is used. 

Consider a solid at temperature T which is surrounded by a fluid medium at 

temperature T and having a heat transfer coefficient h (W/m
2
K). The solid is generating 

internal energy at the rate of g (W/m
3
). Consider one dimensional heat transfer. The 

energy equation is given as: 



2

2

2

2

Heat generatedConvection
Rateof energystoredConduction

T T
KA Ph(T T ) Ag Ac (2.4)

tx

T T
KA PhT PhT Ag Ac (2.5)

tx

T T
Ac [KA ] PhT Ag PhT (2.6)

t x x

 

 

We assume a solution of the form
n

j j

j 1

T(x, t) T (t) (x) , where the temperatures 

T(x, t)  represent the spatial approximation of T for any time „t‟ and „n‟ indicates the 

number of nodes in  a finite element. Here we have divided the problem into element in 

space and element in time. This is called decoupled formulation. A weak form for the 

space part can now be obtained. It is noted that weak form can be written only for 
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element in space but not for element in time. Consider an element a bx , x as shown 

in Fig. 2.1.  

 

Fig. 2.1. Axial element 

 

Weak form is obtained using weighted residual method which states that the 

weighted integral over the element a bx , x is zero. If w is the weight function then 

b

a

b

a

x

x

x

x

a 1 b 2

T T
0 w Ac KA PhT Ag PhT dx

t x x

T w T
Acw KA PhwT wAg wPhT dx

t x x

w(x )Q w x Q (2.7)

a b

1 2

x x x x

dT dT
where,Q (t) KA ;Q (t) KA (2.8)

dx dx

 
Though 1Q and 2Q are evaluated at ax x and bx x from Eq. (2.8), they are not 

constants yet as they still are dependent on time. 

Substituting 
n

j j

j 1

T(x, t) T (t) (x)  and iw (x) into Eq.  (2.7), gives 

en n
je e e e e

ij j ij i i

j 1 j 1

e e e e e e

T
K T M F Q

t

K T M T F Q (2.9)
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b

a

b

a

b

a

a b

x

je i

ij i j

x

x

e

ij i j

x

x

e

i i i

x

1 2

x x x x

dd
where,K KA Ph dx

dx dx

M Ac dx

F (Ag Ph T )dx

dT dT
Q (t) KA ;Q (t) KA

dx dx

 

Eq. (2.9) is called Semi-discrete FE model. To solve differential equation in time 

domain, Forward Difference method or Newmark‟s method can be used. Detailed 

formulation can be found in Reddy [30]. The solution obtained by FE method is an 

approximate one. It depends on the chosen mesh size, time increment, and chosen 

tolerance. Thus it is necessary to validate its responses. In this study, the temperature 

profiles during transient heat conduction in a homogeneous medium obtained using FE 

analyses will be compared to the analytical solution.  

Consider a square plate as shown in Fig. 2.2 of length „L=4‟, and it is initially at 

a temperature of i =303. The plate is subjected to the following prescribed boundary 

conditions: 

i

L

T(x, y,0) T 303

T(4, y, t) T 803 (2.10)

T(0, y, t)
0

x  
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Fig. 2.2 Square plate 

 

The transient behavior of the plate until it reaches steady state temperature can be 

observed by calculating the temperature distribution as a function of location(x,y) and 

time (t). The thermal conductivity and thermal diffusivity of the plate are taken as 1.3 

W/mk and 0.622 m
2
/s. Both analytical and numerical models are developed to solve heat 

conduction in the above plate. The temperature distribution is plotted at selective times 

until the plate reaches steady state. Fig. 2.3 shows the comparison of the temperature 

distribution from the analytical and numerical model. 

Analytical Solution 

This is a 1D problem i.e., heat is conducted along x-direction and from Fourier‟s 

law of heat conduction the governing equation of this problem is given by: 

               
2

2

T(x, t) T(x, t)
(2.11)

t t
                                                                     

The procedure described by White [31], has been used to obtain the temperature 

distribution in the rectangular plate. Let us assume a solution of the following form 
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 T(x, t) R(x, t) S(x) (2.12)  

Substituting (2.12) in (2.11) gives: 

  

2 2

2 2

2 2

2 2

R(x, t) S(x) R(x, t) S(x)

t t x x

R(x, t) R(x, t) S(x)
(2.13)

t x x

     

Eq. (2.13) can be split into transient problem: 
2

2

R(x, t) R(x, t)

t x
 & steady state 

problem: 
2

2

S(x)
0

x
  

Using the boundary condition in Eq. (2.10), the steady state solution is  = 803  

The transient Solution is assumed as: R(x, t) F(x).G(t)                                      (2.14) 

Substituting Eq. (2.14) in the governing equation, we get: 

2t

1 2G(t) c.e and F(x) c sin x c cos x; where isa cons tan t (2.15)  

Applying boundary conditions to Eq. (2.15), the following solutions are obtained:  

1

n

n

n 2 n 2

n nn 1

n

n n

2t

c 0; (2n 1)
2L

F (x) c cos x c cos (2n 1) (n 1,2,3,....)
2L

T(x, t) c cos ( x)e 803 (2.16)

[ 1 ]
where (2n 1) ; c 2000. ; L 4; 0.622 (2.17)

2L (2n 1).

  

0 
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The analytical results were compared with the numerical results at different times 

and at different locations as shown in the following diagram. 

 Numerical Solution 

A FE mesh of a square plate of dimensions 4x4 is generated with Continuum 

Plane stress elements (CPS4). The material properties used are k=1.37w/mk; 

density=2.58e-06 kg/m
3
 and specific heat=810000 J/Kg

o
K. Boundary and initial 

conditions as given in Eq. (2.10) are used. Transient heat transfer analysis is conducted 

until the plate reaches a steady state temperature.  

 

Fig. 2.3. Temperature distribution for 20 elements per edge of the square plate 
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Convergence Studies  

(a) Effect of Refining the Mesh  

Fig. 2.3 shows the temperature distribution for 20 elements per edge (seeds) of the 

square plate. As the accuracy of the FE method depends on how fine the mesh is, a study 

has been conducted by increasing the number of elements per edge or in other words 

decreasing the element size in the mesh. Figs. 2.4 and 2.5 shows 30 and 80 elements per 

edge of the square plate.  

 

 

Fig. 2.4. Temperature distribution for 30 elements per edge of the square plate 
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Fig. 2.5. Temperature distribution for 80 elements per edge of the square plate 

 

The difference between numerical solution and the analytical solution was less in 

Fig. 2.4 than that in Fig. 2.3; and the difference is not so significant between Fig. 2.3 and 

2.4. Hence for our case, 30 elements per edge (seeds) gives good enough result and any 

further increase in refining the mesh would require more computational time and effort 

but would not yield significant difference in the results. 

(b) Effect of Initial Time Increment 

           The effect of initial increment time on steady state time has been studied for a 

mesh of 30 seeds (element size of 0.1333x0.1333) and a tolerance of 1e-2 to reach 

steady state. Table 2.1 shows the influence of initial time increment on the time taken to 

reach steady state. For an initial time increment of 15 sec, the steady state has been 

reached in 150 seconds whereas for an initial time increment of 5 second the steady state 
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has been reached in 115 seconds. A difference of approximately 23% has been observed 

in steady state times. Whereas for initial increments of 0.05 and 0.01, steady state time 

was attained in 90.9 seconds. This means that convergence has been achieved in terms of 

steady state times, at 0.05 seconds. Hence the minimum initial increment of 0.05 has to 

be used and anything less than this would result in unnecessary computational effort and 

time when speaking in terms of steady state times. 

 

Table 2.1. Influence of initial time increment on steady state time 

Initial Time Steady state time taken 

15 150 

5 115 

1 96 

0.1 91.4 

0.05 90.9 

0.01 90.9 

 

(c) Effect of Tolerance 

The effect of tolerance on steady state time and temperature has been studied for 

a mesh of 30 seeds (element size of 0.1333x0.1333) and an initial increment of 1 second. 

From Table 2.2 it can be seen that for a tolerance of 1e-3, the temperature at the far end 

is within 1% of the temperature of the source (803), however the computational time 

involved in this was high. Whereas a tolerance of 1e-2 reduces this problem by allowing 
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the temperature at the far end to be within 10% of source‟s temperature. Hence it can be 

concluded that tolerance of 1e-2 is a good choice for this problem. 

 

 

Table 2.2. Influence of tolerance on steady state time & temperature at farthest end 

Tolerance Steady state time 

Temperature at the farthest 

distance 

5 

1 

1e-1 

1e-2 

1e-3 

28 

45 

71 

96 

121 

754.011 

792.674 

802.045 

802.903 

802.99 

 

 

 

 

2.2 Heat conduction in composites 

No single material has all the desired and required properties for a particular 

application. Hence two or more materials are often engineered or intelligently combined 

to achieve specific properties for a particular application. Composites are usually made 

up of two constituents viz., matrix (continuous medium) and reinforcement 

(discontinuous medium). Reinforcements are made up of particles or fibers or sheets 

belonging to the same material or different material, which are dispersed in matrix 

constituents. Matrix acts as medium by which externally applied loads are transmitted to 
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the reinforcements. The matrix not only keeps the reinforcement in a set place, but also 

prevents catastrophic failure due to reinforcement breakage. Typically, materials for 

reinforcing constituent and matrix constituent are chosen in such a way that matrix 

material imparts ductility and toughness to the composite whereas the reinforcing 

material imparts stiffness and hardness to the composite. By varying the arrangement of 

reinforcement in the matrix, its volume fraction in the composite and material for 

reinforcement and matrix, the desired strength and the thermo-mechanical properties of 

the composite can be achieved.  

This study focuses on composites having solid spherical particles. As the particle 

and matrix constituents have different material properties, analyzing heat conduction in 

this type of composites becomes more complicated. It is almost impossible to obtain 

closed form solution of temperature profile in the composite microstructures during heat 

conduction, especially when particles are randomly distributed in the matrix. One can 

only obtain solution for simple or a simplified composite system like one-dimensional 

heat transfer in a multi-layered composite. In addition to measuring temperature profiles 

in the composite system, it is desired to quantify effective thermal conductivity of 

composite systems.  

Rule of mixtures has been widely used to determine the bounds for the effective 

thermal conductivity of the composites. According to the rule of mixtures, the upper and 

lower bounds are determined by two types of composite arrangements. The first one 

assumes that heat is transferred through the thickness (perpendicular direction) as shown 

in Fig. 2.6 and the second one assumes that heat is transferred in parallel direction as 
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shown in Fig. 2.7. The effective thermal conductivity obtained in both approaches is 

discussed as follows: 

Case (1) 

Consider the composite system made of materials A and B (shown in Fig. 2.6)  

If there is no temperature drop at the interface (i.e., if there is perfect contact between the 

two materials), then the amount of heat flowing in the two layers is equal which is given 

in the following equation: 

  

 

A 1 2 A
1 2

A A

B 2 3 B
2 3

B B

K A(T T ) QL
Q (T T ) (2.18)

L K A

K A(T T ) QL
Q (T T ) (2.19)

L K A

  

 

 

Fig. 2.6. Heat conduction in composite slab perpendicular to the direction of flow 

            

  1 2 3T T T  ;           
A A

th

A

L
R ;

AK      
B B
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B

L
R ;

AK   
eq

th
A B

th thR R R       

where Rth is the thermal conduction resistance. Combining both (2.18) and (2.19), gives: 
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A B
1 3

BA

1 3)

A B

BA

Q
L L

T T
AK AK

(T T
Q (2.20)

L L

AK AK
 

but,               
1 3)

eq

(T T
Q (2.21)

L

AK

 

where, 
A B

L L L and 
eqK  is the effective thermal conductivity for the composite. 

By comparing (2.20) and (2.21), we get the equivalent thermal conductivity for 

the composite as    
A B

eq

A B B A

K K L
K (2.22)

K L K L
 

And the heat flux is obtained as    1 3 1 3

A B

BA eq

T T T T
Q

L L L
AK AK AK

 

Case (2)   

Consider the composite system made of materials A and B as shown in Fig. 2.7. 

For this case the temperature gradient for both the layers should be equal; however the 

heat flow is different for both the cases. 
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Fig. 2.7. Heat conduction in composite slab parallel to the direction of flow 

 

The total heat flowing in the composite is equal to the sum of heats flowing in individual 

layers, which is: 

eq
th

eq

BA

BA

1 2 1 2 1 2
eq BA

th thth

B BA A
eq

B A

eq BA
th thth

L
where R

AK

where L L L

Q Q Q

T T T T T T

R RR

(K L K L )L
K

L L

1 1 1

R RR

 

eq BAK K KEffectiveThermalConductivity, (2.23)  

And the heat flux is obtained as    1 2

eq

T T
Q

L

AK
 

From Eqs. (2.22)-(2.23), we can clearly see that thermal conductivity depends on the 

arrangement of layers and the direction of heat flow and the properties of each 

constituent. 
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Cases (1) and (2) present heat conduction in simple composite media consisting of 

two layered constituents. In most composite systems, the effective thermal conductivity 

is not as simple as the above cases. It is necessary to understand different heterogeneities 

in composites and their influence on the thermal behaviors: 

1. Effect of inclusions: In general, as the size of the particles increases, the thermal 

conductivity increases as noted by Geiger et al. [32]. However, for larger particles, 

there is more chance of particle cracking and load carrying capacity of these cracked 

particles decreases to zero and can be effectively treated as voids as discussed by 

Chawla et al. [33]. Different particle shapes have different effects on the overall 

response of the composite.  

2. Effect of voids: The transport properties of void are very negligible compared to that 

of solid or liquid. Thermal conductivity for porous materials depends on type of 

liquid or gas present in voids. Conductivity of the composite decreases with increase 

in porosity. 

3. Effect of moisture and temperature: Conductivity increases with increase in 

moisture content (amount of water absorbed) in the composite. Thermal conductivity 

of most materials decrease with increasing temperature. Specific heat also increases 

with increase in moisture content (as water has good specific heat) for most 

materials, as shown experimentally by Santos [34]. 

4. Effect of cracks: Cracks formed in the composite lead to reduced strength and 

stiffness of the composite. Cracked particles can be treated as voids, as their load 

transfer capacity will be negligible. Hasselman [27] studied the effect of cracks on 
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thermal conductivity of the composite and found that it depends on the orientation of 

the cracks to the direction of heat flow. Thermal conductivity of the composite 

decreases drastically, if all the cracks developed are perpendicular to the direction of 

heat flow. However there will be no effect on thermal conductivity if all the cracks 

are parallel to the direction of heat flow. For any other arrangement of these cracks, 

thermal conductivity value lies between these two cases.  

It is very complicated to study the effects of all these heterogeneities mentioned above 

on the overall response of the composite. The present study considers perfectly solid 

spherical particles bonded to matrix system and randomly distributed. It is assumed that 

the composite is free of pores, moisture and cracks. The overall thermal behaviors 

depend on the temperatures. Micromechanical model is used to obtain effective thermal 

conductivity of composites. The results are compared with the responses of detailed 

microstructures of composite using FE analyses. 

2.3  Effective thermal conductivity of particle reinforced composites 

The micromechanical model formulated by Muliana et al. [18, 19] was used for 

the determination of effective thermal conductivity.  Their model consisted of an RVE 

which is reduced to unit cell by virtue of symmetry, with four particle and matrix sub-

cells. Each sub-cell is assumed to be homogeneous and sub-cell 1 is occupied entirely by 

Particle whereas sub cells 2, 3, 4 are occupied by Matrix, as shown in Fig. 2.8. The total 

volume of the unit cell is assumed to be unity. If length of the subcell1 is assumed to be 

b then the volume of all the sub cells are given as 

(1) 3 (2) 2 (3) (4)
V b , V b (1 b), V b(1 b), V (1 b) (2.24)
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N

( )

1

V V  =1, where number of sub cells, N=4 

It is assumed that temperature gradient varies spatially in each sub-cell and volume 

averaging of properties was adopted to determine the effective thermal conductivity. 

        

 

Fig. 2.8. Representative volume element and division of unit cell into sub cells 

 

Volumetric average of a quantity is defined as the ratio of integral of that 

quantity over a region to the volume of that region. Average temperature gradient and 

heat flux are given as:
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(α)

N N
(α) (α) (α) (α) (α)

i i k i

α=1 α=1V

1 1
= (x )dV V

V V
(2.25)  

(α)

N N
(α) (α) (α) (α) (α)

i k ii

α=1 α=1V

1 1
q = q (x )dV V q (2.26)

V V
 

The average heat flux and the average temperature gradient are related by 

Fourier‟s law of heat conduction, 
t t

ij j

t

i (2.27)q = -K
 

It is noted that the thermal conductivities of particles and matrix are allowed to 

change with temperatures, resulting in nonlinear problems. To solve the heat conduction 

in the composite, numerical method and iterative solution are used.  

The heat flux at current time is obtained by, 
 t  t-Δt  t

i i i+ q =q dq  

Temperature gradient at current time is obtained by 
 t  t-Δt  t

i i iT T + T= d  

where the incremental heat flux and temperature gradient are related as,
t

ij

t t

ji ddq -K
 

The micromechanical relations Khan et al. [29], Muliana [19] are derived by 

assuming continuity of temperatures and heat flux at the interphase, resulting in the 

following equations: 

t (1),t (2),t(1) (2)
i i i(1) (2)

(3),t (4),t
i i

1
d v d +v d =d =d (2.28)

V V
=  

t (A),t (3),t (4),t (A),t (1),t (2),t(A) (3) (4)
i i i i i i id d d

1
ddq v q +v q +v q ;dq q =dq (2.29)

V
==  

where V
 (A)

 =V
 (1)

 +V
 (2) 
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Using micromechanical relations and constitutive relation in each sub-cell, 

effewtive thermal conductivity and responses of equivalent homogeneous fictitious 

material can be obtained. The advantages of homogenization method are: it allows 

predicting effective responses of composite by incorporating microstructural constituent 

information, it is possible to incorporate nonlinear (temperature) dependent properties of 

the constituents due to the external stimuli, and it is computationally efficient and 

accurate. The homogenization method is useful for material and structural design. The 

main drawback of such a homogenization scheme is that the discontinuity of stress and 

strain fields at the particle and matrix interface, which plays a vital role in the debonding 

of the composite, cannot be properly quantified. 

2.4 Verification of the effective thermal conductivity 

 
 

 

Fig. 2.9. FE meshes of effective and detailed model 
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A homogenized composite panel of 4µmx4µmx1µm as shown in Fig. 2.9(a) is 

developed. The length of each element in the mesh is 0.4µm. DC3D8 elements in 

ABAQUS are used to model the mesh. Different volume fractions are incorporated for 

the same geometry and mesh using a user subroutine. The inputs to the user subroutine 

are volume fraction and thermal conductivities for the particle and matrix which are 

temperature dependent. The effective conductivity assumes homogeneous media, thus it 

is necessary to compare the response with the ones of detailed composite microstructure.  

For that reason, a detailed FE model is developed with 4µmx4µm as shown in Fig. 

2.9(b) and is made of fixed particle size, randomly distributed particles (glass) and 

matrix (epoxy). Fig. 2.9(b) shows the distribution of 12.5% volume fraction of particles 

distributed in the matrix randomly and similar models are developed for 25% and 50% 

volume fractions of particles. DC2D4 and DC2D3 (Continuum Plane Stress elements 

with 4 and 3 nodes) are the element types used to generate the mesh. 

Transient thermal analysis is conducted on the detailed and effective model meshes, 

with temperature boundary condition at one of their ends and the temperature 

distribution throughout their lengths are noted. A parametric study is conducted by 

varying the volume fractions of particle in the matrix
fV 12.5%,25%,50% and by 

varying the thermal conductivity ratio P M(K / K 6.84,50,200,1000,0.02) between 

particle and matrix for both the models. Thermal conductivities of the particles and 

matrix vary linearly with changes in temperatures, given as: 

o P

P P ref

o M

M M ref

K K r (T T ) (2.30)

K K r (T T )
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A parametric study is conducted by varying the 
Pr & 

Mr  
values for different 

conductivity ratios and volume fractions. Their steady state times and temperature 

distributions were compared.  

Tables 2.3 to 2.7 compare the steady state times of effective and detailed models, 

for different conductivity ratios ( o o

P MK / K ). The conductivity of the matrix is 

maintained at o

MK 1.9W / mK  and the conductivity of particle is varied to obtain 

different ratios. Table 2.3 and 2.4 shows the steady state times for 

o o

P MK / K 6.84&50 . As the volume fraction is increased, the time taken to reach 

steady state has decreased. As the particle (higher conductivity constituent) 

concentration increases, the effective thermal conductivity of the composite increases 

and as a result it takes less time to reach steady state. It is also observed that as the 

degree of nonlinearity increases, time taken to reach steady state increases. 

Table 2.5 and 2.6 shows the comparison of steady state times for effective and 

detailed model for conductivity ratios 200 and 1000. It can be observed there is no 

significant difference in the steady state times for Table 2.5 and Table 2.6 which is 

similar to the steady state time in Table 2.4. This behavior could be attributed to the fact 

that, the effective conductivity might have already reached a maximum value at the 

conductivity ratio of 200 (as proven later in the chapter) and by increasing the 

conductivity of the particle any further would not result in any significant difference in 

effective conductivity and thereby there would be no significant difference in steady 

state times. A more detailed discussion is given in the last part of CHAPTER II. 
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Table 2.3. Comparison of steady state times of effective & detailed model for K
o
P /K

o
M 

=6.84 

 

 

  

K
o

P /K
o
M =6.84 

K
o

P =13 w/mk, 

K
o
M= 1.9w/mk 

Vf 

KP (T) =  K
o

P  +r
P
(T-Tref) 

KM (T) =  K
o
M +r

M
(T-Tref) 

Steady state time 

 

Effective 

Model 

Detailed 

FE model 

12.5 

r
p
= 0;r

M
=0 34 34 

r
p
= -0.05;r

M
=-0.02 43 43 

r
p
= -0.1;r

M
=-0.04 64 64 

r
p
= -0.15;r

M
=-0.06 148 149 

25 

r
p
= 0;r

M
=0 30 30 

r
p
= -0.05;r

M
=-0.02 38 38 

r
p
= -0.1;r

M
=-0.04 56 55 

r
p
= -0.15;r

M
=-0.06 131 130 

50 

r
p
= 0;r

M
=0 23 24 

r
p
= -0.05;r

M
=-0.02 28 29 

r
p
= -0.1;r

M
=-0.04 39 40 

r
p
= -0.15;r

M
=-0.06 94 95 
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Table 2.4. Comparison of steady state times of effective & detailed model for K
o
P /K

o
M 

=50 

 

 

  

K
o

P /K
o
M =50 

K
o

P =95 w/mk, 

K
o
M= 1.9w/mk 

Vf 

KP (T) =  K
o

P  +r
P
(T-Tref) 

KM (T) =  K
o
M +r

M
(T-Tref) 

Steady state time 

 

Effective 

Model 

Detailed 

FE model 

12.5 

r
p
= 0;r

M
=0 33 33 

r
p
= -0.05;r

M
=-0.02 42 42 

r
p
= -0.1;r

M
=-0.04 63 63 

r
p
= -0.15;r

M
=-0.06 147 148 

25 

r
p
= 0;r

M
=0 28 27 

r
p
= -0.05;r

M
=-0.02 35 35 

r
p
= -0.1;r

M
=-0.04 53 52 

r
p
= -0.15;r

M
=-0.06 129 128 

50 

r
p
= 0;r

M
=0 18 19 

r
p
= -0.05;r

M
=-0.02 23 23 

r
p
= -0.1;r

M
=-0.04 34 34 

r
p
= -0.15;r

M
=-0.06 89 89 
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Table 2.5. Comparison of steady state times of effective & detailed model for K
o
P /K

o
M 

=200 

 

 

 

K
o

P /K
o
M =200 

K
o

P=380 w/mk 

K
o
M= 1.9w/mk 

Vf 

KP (T) =  K
o

P  +r
P
(T-Tref) 

KM (T) =  K
o
M +r

M
(T-Tref) 

Steady state time 

 

Effective 

Model 

Detailed FE 

model 

12.5 

r
p
= 0;r

M
=0 32 33 

r
p
= -0.05;r

M
=-0.02 42 42 

r
p
= -0.1;r

M
=-0.04 63 63 

r
p
= -0.15;r

M
=-0.06 147 147 

25 

r
p
= 0;r

M
=0 27 27 

r
p
= -0.05;r

M
=-0.02 35 35 

r
p
= -0.1;r

M
=-0.04 53 52 

r
p
= -0.15;r

M
=-0.06 129 128 

50 

r
p
= 0;r

M
=0 18 18 

r
p
= -0.05;r

M
=-0.02 23 22 

r
p
= -0.1;r

M
=-0.04 33 33 

r
p
= -0.15;r

M
=-0.06 89 88 
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Table 2.6. Comparison of steady state times of effective & detailed model for K
o
P /K

o
M 

=1000 

 

 

 

Table 2.7 shows the steady state times for conductivity ratio 0.02 i.e., the 

conductivity of the matrix is taken to be more than that of the particle. As the 

K
o

P /K
o
M=1000 

K
o

p=1900w/mk 

K
o
M= 1.9w/mk 

Vf 

KP (T) =  K
o

P  +r
P
(T-Tref) 

KM (T) =  K
o
M +r

M
(T-Tref) 

Steady state time 

 

Effective  Detailed  

12.5 

r
p
= 0;r

M
=0 32 32 

r
p
= -0.05;r

M
=-0.02 42 42 

r
p
= -0.1;r

M
=-0.04 63 63 

r
p
= -0.15;r

M
=-0.06 147 147 

25 

r
p
= 0;r

M
=0 27 27 

r
p
= -0.05;r

M
=-0.02 35 35 

r
p
= -0.1;r

M
=-0.04 52 52 

r
p
= -0.15;r

M
=-0.06 129 128 

50 

r
p
= 0;r

M
=0 18 18 

r
p
= -0.05;r

M
=-0.02 22 22 

r
p
= -0.1;r

M
=-0.04 33 33 

r
p
= -0.15;r

M
=-0.06 89 88 
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conductivity of the major constituent in the composite is more, the effective conductivity 

of the composite is going to be very high when compared to all other previous cases and 

hence the composite takes very less time to reach steady state. 

 

Table 2.7. Comparison of steady state times of effective & detailed model for K
o
P /K

o
M 

=0.02 

K
o

P /K
o
M=0.02 

K
o

P =1.9w/mk 

K
o
M = 95w/mk 

Vf 

KP (T) =  K
o

P  +r
P
(T-Tref) 

KM (T) =  K
o
M +r

M
(T-Tref) 

Steady state time 

 

Effective  Detailed  

12.5 

r
p
= 0;r

M
=0 5 5 

r
p
= -0.05;r

M
=-0.02 5 6 

r
p
= -0.1;r

M
=-0.04 5 5 

r
p
= -0.15;r

M
=-0.06 5 5 

25 

r
p
= 0;r

M
=0 6 6 

r
p
= -0.05;r

M
=-0.02 6 6 

r
p
= -0.1;r

M
=-0.04 6 6 

r
p
= -0.15;r

M
=-0.06 6 6 

50 

r
p
= 0;r

M
=0 7 8 

r
p
= -0.05;r

M
=-0.02 7 8 

r
p
= -0.1;r

M
=-0.04 7 8 

r
p
= -0.15;r

M
=-0.06 7 9 
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From the above studies, it is observed that: 

1) At constant volume fraction, as the nonlinearity in thermal conductivity of the 

particle and matrix constituents increases, the steady state time significantly deviates 

from the ones with constant constituent properties. 

2) As the volume fraction of particles in the composite increases, the steady state is 

reached in less time, since the thermal conductivity of particles are taken larger than 

that of the matrix. 

3) As the conductivity ratio increases and for volume content of particle constant, the 

effective thermal conductivity reaches an asymptotic value. 

 

The temperature distribution during transient heat transfer analysis is also 

monitored. Fig. 2.10 shows the contour plots of temperature distribution for effective 

and detailed model for 12.5% volume fraction of particles in the composite having 

conductivity ratio 6.84. A good agreement is observed between the models for different 

magnitudes of nonlinearity. 
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                                             303K 313K 320K 328K  330K
 
333K  

Fig. 2.10. Contour plots of temperature distribution for effective and detailed model for 

K
o
P/K

o
M=6.84; Vf=12.5 % 
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Figs. 2.11 to 2.22 show the temperature profiles for the homogenized composite 

and detailed microstructural composite at different times until the composite reaches 

steady state. For lower volume fractions (12.5 and 25%), the temperature profiles of both 

the models are in good agreement with each other. But for higher volume fractions 

(50%), deviation has been observed between the models. The detailed model showed a 

wavy profile for temperature but the effective model showed no signs of it. The cause 

for this could be attributed to two reasons:  

- At higher volume fractions, there is a chance that particle-particle interactions could 

contribute to the effective conductivity and thereby to the temperature distribution. 

This could be the reason for the wavy behavior in detailed model. As these 

interactions are not possible in effective model, it has not shown any change in its 

temperature profile. 

- The mesh used to represent the detailed model might not be fine enough to produce 

temperature profile identical to that of the effective model. 
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Case (1) K
o

P /K
o
M=6.84(K

o
P=13, K

o
M=1.9) 

(a) Vf =12.5% 

 

 

Fig.2.11. Temperature distribution along the slab for Vf =12.5% and K
o

P 

/K
o
M=6.84(K

o
P=13, K

o
M=1.9) 
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(b) Vf =25% 

 

 

 

Fig.2.12. Temperature distribution along the slab for Vf =25% and K
o
P 

/K
o
M=6.84(K

o
P=13, K

o
M=1.9) 
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(c) Vf =50% 

 

 

 

Fig.2.13. Temperature distribution along the slab for Vf =50% and K
o
P 

/K
o
M=6.84(K

o
P=13, K

o
M=1.9) 
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Case (2) K
o

P /K
o
M=50(K

o
P=95, K

o
M=1.9) 

(a) Vf =12.5% 

 

Fig. 2.14. Temperature distribution along the slab for Vf =12.5% and K
o

P 

/K
o
M=50(K

o
P=95, K

o
M=1.9) 
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(b) Vf =25% 

 

 

 

Fig. 2.15. Temperature distribution along the slab for Vf =25% and K
o
P 

/K
o
M=50(K

o
P=95, K

o
M=1.9) 
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(c) Vf =50% 

 

 

 

Fig. 2.16. Temperature distribution along the slab for Vf =50% and K
o
P 

/K
o
M=50(K

o
P=95, K

o
M=1.9) 
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Case (3) K
o

P /K
o
M=200(K

o
P=380, K

o
M=1.9) 

(a) Vf =12.5% 

 

Fig. 2.17. Temperature distribution along the slab for Vf =12.5% and K
o

P 

/K
o
M=200(K

o
P=380, K

o
M=1.9) 

  



54 
 

 
 

(b) Vf =25% 

 

 

Fig. 2.18. Temperature distribution along the slab for Vf =25% and K
o
P 

/K
o
M=200(K

o
P=380, K

o
M=1.9) 
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(c) Vf =50% 

 

 

Fig. 2.19. Temperature distribution along the slab for Vf =50% and K
o
P 

/K
o
M=200(K

o
P=380, K

o
M=1.9) 
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Case (4) K
o

P /K
o
M=1000(K

o
P=1900, K

o
M=1.9) 

(a) Vf =12.5% 

 

Fig. 2.20. Temperature distribution along the slab for Vf =12.5% and K
o

P /K
o
M=1000 

(K
o

P=1900, K
o

M=1.9) 
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(b) Vf =25% 

 

 

Fig. 2.21. Temperature distribution along the slab for Vf =25% and K
o
P /K

o
M=1000 

(K
o

P=1900, K
o

M=1.9) 
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(c) Vf =50% 

 

 

Fig. 2.22. Temperature distribution along the slab for Vf =50% and K
o
P /K

o
M=1000 

(K
o

P=1900, K
o

M=1.9) 

 



59 
 

 
 

The effective thermal conductivity obtained using the present micromodel was 

compared with the apparent properties presented in Jiang et al. [25]. Apparent properties 

are defined as those under essential (displacement or temperature), natural (traction or 

heat flux), and mixed or periodic boundary conditions applied to finite size material 

domains (windows). The apparent conductivities obtained under Mixed boundary 

condition and Periodic boundary condition are equal and will always be bound by 

apparent conductivities obtained from Essential and Natural boundary conditions. For a 

periodic composite, apparent conductivity under Periodic boundary condition will be the 

Effective conductivity of the composite. For a particle volume fraction of 35% 

periodically distributed in a matrix having unit conductivity, Jiang et al. [25] determined 

the apparent conductivities under different boundary conditions for various conductivity 

ratios ranging from 0.001 to 1000. 

The effective conductivity from the micromechanical model was compared with 

that presented in Jiang et al. [25] and a good match was found between the two. The 

corresponding results are presented in the Table 2.8. It is also seen from the table that the 

effective thermal conductivity values lie in between the lower and upper bounds of 

apparent conductivities i.e., the conductivities under natural and essential boundary 

conditions respectively. 
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Table 2.8. Comparison of effective conductivity values for different conductivity ratios 

Conductivity 

ratio 

(Kp/KM) 

Apparent 

conductivity 

obtained by 

using 

Natural B.C 

Apparent 

conductivity 

obtained by 

using Periodic 

or Mixed B.C 

Effective 

conductivity 

(determined 

form 

micromechanical 

model ) 

Apparent 

conductivity 

obtained by 

using 

Essential B.C 

0.001 0.0048 0.4821 0.504 0.5264 

0.01 0.0458 0.489 0.5103 0.5327 

0.1 0.3217 0.5546 0.57099 0.5927 

10 1.689 1.803 1.8612 3.113 

100 1.879 2.044 2.14614 21.86 

1000 1.902 2.074 2.18135 208.8 

 

This study also investigates the effect of KP/KM ratio on the effective thermal 

conductivity of composites. As the conductivity ratio increases or in other words as the 

conductivity of particles increase, Yin and Tu [22] observed that the effective 

conductivity of composite at first increases and then reaches an asymptotic value. This 

means that improvement in effective conductivity can be made by increasing the 

conductivity ratio only to a particular point. Similar observation is shown for effective 

conductivity obtained using the present micromechanical model. Fig. 2.23 shows the 

variation of effective conductivity with the conductivity ratio. It is evident from the 

graph that effective conductivity reached its maximum at / 200P MK K when PK

=380W/mk and MK =1.9W/mk and after that the increase approach an asymptotic value. 
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Fig. 2.23. Effective conductivity values for different conductivity ratios at Vf =12.5% 

 

 

 

  



62 
 

 
 

CHAPTER III 

3.THERMO-ELASTIC DEFORMATION IN HETEROGENEOUS 

MEDIA 

When composites are subjected to temperature changes, thermal stresses are 

developed in the microstructural constituents, i.e., reinforcement and matrix, due to 

difference in their thermal expansion properties, even when there are no external 

mechanical stimuli. For example, manufacturing processes of particle reinforced 

composites often involves high temperatures followed by rapid cooling to room 

temperature. Non negligible thermal stresses can influence both mechanical and thermal 

properties of the composites affecting overall behavior of the composite. Furthermore, 

different thermal and mechanical properties of the constituents cause discontinuities at 

the interphases between particles and matrix, which potentially induce debonding at the 

interphases. 

To predict the overall mechanical performance of composites while at the same 

time monitoring nonlinear stress and temperature dependent constituent‟s responses, 

various homogenization methods have been proposed. Homogenization schemes rely on 

several assumptions to simplify the complex microstructural characteristics of 

composites. Thus, some fundamental characteristic or behavior at the microstructural 

levels may not be properly quantified when using homogenization methods. The 

advantage of using homogenization schemes is it allows predicting effective composite 

performance by incorporating microstructural information, such as volume contents, 

constituent properties and microstructural arrangement, which is essential for material 
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and structural design. However, the main drawback of such a homogenization scheme is 

that the discontinuity of effective stress and strain fields at the particle and matrix 

interface, which plays a vital role in the debonding of the composite, cannot be properly 

quantified 

This chapter presents analysis of nonlinear thermo-elastic deformation in particle 

reinforced composites due to coupled heat conduction and mechanical loadings. The 

thermo-elastic material properties of the particle and matrix constituents are allowed to 

change with temperature and effective stress. Micromechanical model developed by 

Muliana and Kim [18] is used to incorporate this nonlinear thermo-elastic behavior and 

also to calculate the effective thermo-elastic properties of the entire composite. The 

responses from the micromechanical model that results in a homogenized medium are 

compared with the ones generated from detailed particle reinforced composite 

microstructures. For this purpose, two sets of FE meshes are generated for composites at 

different particle volume contents i.e., 12.5%, 25%, and 50%. The first FE represents a 

homogeneous composite panel, which is used along with the micromechanical model to 

determine the effective thermo-elastic properties of the composite. Whereas the second 

FE mesh, mimics the detailed composite microstructure with particles randomly 

distributed in matrix. In both the FE models an ABAQUS user material subroutine 

UMAT is used to input the variation of properties with temperature and stress. 

Sequentially coupled thermo-mechanical analyses are conducted for the two FE meshes 

generated for different volume fractions and their displacements in the two models are 

compared. Heat conduction in composites, discussed in CHAPTER II, is used as input to 
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prescribe the temperature fields during transient heat transfer analyses. A parametric 

study is conducted to investigate the effects of different CTE ratios, temperature 

changes, degree of nonlinearity, and volume fraction on the magnitude of discontinuity 

of effective stress and strain at the particle and matrix interphase. 

3.1 Constitutive relations for thermo-elastic problem with isotropic constituents 

Total strain is the sum of mechanical and thermal strains and for small 

deformation gradient problem is written as:    
t T,t M,t

ij ij ij (3.1)  

Thermal strain is given by:  

T,t t

ij 0 ij(T T ) (3.2)  

And mechanical strain is given by:  

M,t t t

ij ij kk ij

1
e

3
(3.3)  

Where the deviatoric and volumetric component of mechanical strain are:  

t t t t

ij 0 0 ij

1
e g ( ,T )J S

2
(3.4)

t t t t

kk 0 0 kk

1
g ( ,T )B

3
(3.5)

 

Where 0 0J and B are the instantaneous elastic shear and bulk compliances respectively 

and are given by: 

0

0

2(1 )
J

E
 and 

0

0

3(1 2 )
B (3.6)

E  
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And 0E is the instantaneous elastic modulus (under axial loading) and 0g is the 

instantaneous nonlinear elastic compliance and is a measure of reduction or increase in 

compliance as a function of temperature and effective stress. As the problem is 

nonlinear, we need to solve the constitutive equation within an incremental formulation 

and perform iteration. The strain at current time can be obtained by: 

t t dt t
ij ij ij (3.7)d

t t t t t t t

ij 0 0 kk 0 0 kk ij

1 1
d g ( ,T )J .dS g ( ,T )B .d (T).dT

2 3
(3.8)

 

Where the quantities at the previous converged time are indicated by a 

superscript t-dt and the increment quantities at the current time are indicated by a prefix 

„d‟. To determine strain at current time, we need to know increment of strain (
t

ijd ). 

When a stress tensor is given as independent variables, Eq. (3.8) can be used to 

determine the corresponding strain tensor. When a strain tensor is given as independent 

variables, to calculate the corresponding stress tensor, iteration is performed as the 0g
 

parameter is also a function of effective stress. In the later case, to calculate initial value 

(trial) of 0g , it is assumed that trial t dt t
0 0g g ( ,T ) . With the trial trial

0g , one can 

calculate 
t

ijd using Eq. 3.8. The correct stress-strain tensor at current time is solved by 

minimizing residual tensor, which is defined as: 

t t t M,t
ij ij kk ij ij (3.9)

1
R d d d

3
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Once convergent solution is achieved, consistent tangent stiffness matrix is 

obtained by taking the inverse of partial derivative of incremental strain with respect to 

incremental stress:

t

ijt

ijkl M,t

kl

d
C (3.10)

d
 

3.2 Micromechanical model for particle reinforced composites 

This study uses a previously developed micromechanical model of Muliana et al. 

[18] the average stress and strain over a volume ' 'V  for a representative volume element 

can be written as 

ij ij

V

1
dV

V

 

ij ij

V

1
dV (3.11)

V
 

The micromechanical relations derived by Muliana et al. [18] and Khan et al. 

[29] have been summarized here. Perfect bonding along sub cell‟s interface is assumed 

for determining these micromechanical relations. Effective stress and strain are related 

by the following constitutive equation: 

ij ijkl kl kl oC (T T ) ij ijkl kl ij oor S (T T ) (3.12)  

The average stresses in a unit cell model: 

(α)

N N
(α) (α) (α) (α) (α)

ij ij k ij

α=1 α=1V

1 1
= (x )dV V (3.13)

V V
 

The average strains in a unit cell model: 

(α)

N N
(α) (α) (α) (α) (α)

ij ij k ij

α=1 α=1V

1 1
= (x )dV V (3.14)

V V
 



67 
 

 
 

In each sub-cell, stress and strain are related by: 

ij ijkl kl kl oC (T T ) ij ijkl kl ij oor S (T T ) (3.15)

 

where T in each sub-cell has to be determined by solving the transient heat 

conduction equation. The total stress and strain at current time t are given by 

t t-Δt t

ij ij ij+σ =σ dσ     and     
t t-Δt t

ij ij ijε +=ε dε (3.16a)                                                                              

(α),t (α),t-Δt (α),t
ij ij ijσ σ +dσ=  and  (α),t (α),t-Δt (α),t

ij ij ijε ε +dε (3.16b)=
                                                            

Homogenized incremental stresses and strains are related by: 

 ij ijkl kl kld C d d T (3.17)
 

The displacement compatibility results in: 

 (1) (1) (2) (2) (3) (4)

ij ij ij ij ij(1) (2)

1
d V d V d d d

V V
(3.18a)

                         

(1) (1) (2) (2) (3) (3) (4) (4)

ij ij ij ij ijd V d V d V d V d (3.18b)
                                      

The stress continuity condition gives: 

t

ij
(A) (A),t (3) (3),t (4) (4),t

ij ij ij

(A),t (1),t (2),t

ij ij ij=

dσ =V dσ +V dσ +V dσ for i j (3.19)

dσ =dσ dσ
 

t

ij
(1),t (2),t (3),t (4),t

ij ij ij ijd d d d d for i j (3.20)  

Using the micromechanical relations in Eqs. (3.19)-(3.20) and constitutive relation in Eq. 

(3.16), effective stress and strain relations in Eq. (3.17) can be written as: 
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(A) A A (3) 3 3 (4) 4 4

ij ijkl kl ijkl kl ijkl kl ijkl kl

ijkl kl kl

T
d C d V C V C V C

V

C d d T
    

 

where ijklC is the effective tangent stiffness and kl is the effective coefficient of thermal 

expansion given by 

1

ijkl (A) A A (3) 3 3 (4) 4 4

kl ij ijkl kl ijkl kl ijkl kl

C
V C V C V C (3.21)

V
 

where (A) (A) (1) (1) (2) (2)

ij ij ij ij(A)

1
V V

V
(3.22)  

and 

1

A (1) 1 1 (2) 2 1

ijkl ijkl ijkl(A)

1
C (V (C ) V (C ) (3.23)

V  

 

3.3 Verification of effective properties 

The effective properties obtained by micromechanical model are first compared 

with the upper and lower bounds of Voigt and Reuss models and also the compared with 

the ones from Mori-Tanaka model. For isotropic material, the stiffness matrix is given 

by 
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1 0 0 0

1 0 0 0

1 0 0 0E
C (3.24)

0 0 0 1 2 0 0(1 )(1 2 )

0 0 0 0 1 2 0

0 0 0 0 0 1 2

 

M P M PConsider E 2710.03; E 72000; 0.35; 0.25
 

Hence stiffness of matrix can be obtained from Eq. (3.24) as 

M

4349.43 2342 2342 0 0 0

2342 4349.43 2342 0 0 0

23422 2342 4349.43 0 0 0
C (3.25)

0 0 0 2007.42 0 0

0 0 0 0 2007.42 0

0 0 0 0 0 2007.42

 

And stiffness of particle is obtained as 

P

86400 28800 28800 0 0 0

28800 86400 28800 0 0 0

28800 28800 86400 0 0 0
C (3.26)

0 0 0 57600 0 0

0 0 0 0 57600 0

0 0 0 0 0 57600
 

 

Comparison of Effective Model Results with Voigt and Reuss’s Bounds 

eq f p f mAccording toVoigt 'smodel,Effectivestiffness,C V C (1 V )C (3.27)
 

 
f f

eq p m

V (1 V )1
According to Re uss mod el, Effective stiffness, (3.28)

C C C
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For Vf = 12.5% 

From Voigt‟s model: 

V

eq

14605.75 5649.25 5649.25 0 0 0

5649.25 14605.75 5649.25 0 0 0

5649.25 5649.25 14605.75 0 0 0
C

0 0 0 8956.5 0 0

0 0 0 0 8956.5 0

0 0 0 0 0 8956.5

 

From our effective model, we obtained stiffness as: 

eff

5337.8 2850.7 2850.7 0 0 0

2850.7 5324.8 2843.2 0 0 0

2850.7 2843.2 5324.8 0 0 0
C

0 0 0 2276.3 0 0

0 0 0 0 2276.3 0

0 0 0 0 0 2276.3
 

 

From Reuss model,

 

R

eq

4932.615 2649.776 2649.776 0 0 0

2649.776 4932.615 2649.776 0 0 0

2649.776 2649.776 4932.615 0 0 0
C

0 0 0 2282.83 0 0

0 0 0 0 2282.83 0

0 0 0 0 0 2282.83
 

 

R V

eq eff eqIt isclear from above that C C C
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For Vf = 25% 

From Voigt‟s model: 

V

eq

24862.07 8956.5 8956.5 0 0 0

8956.5 24862.07 8956.5 0 0 0

8956.5 8956.5 24862.07 0 0 0
C

0 0 0 15905.57 0 0

0 0 0 0 15905.57 0

0 0 0 0 0 15905.57

 

 

And from our effective model: 

eff

6896 3635 3635 0 0 0

3635 6875 3622.1 0 0 0

3635 3622.1 6875.5 0 0 0
C

0 0 0 2621.4 0 0

0 0 0 0 2621.4 0

0 0 0 0 0 2621.4
 

 

From Reuss Model: 

R

eq

5696.5 3050.67 3050.67 0 0 0

3050.67 5696.5 3050.67 0 0 0

3050.67 2649.776 5696.5 0 0 0
C

0 0 0 2645.83 0 0

0 0 0 0 2645.83 0

0 0 0 0 0 2645.83
 

 

R V

eq eff eqClearly C C C
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For Vf = 50% 

From Voigt‟s model: 

V

eq

45374.72 15571 15571 0 0 0

15571 45374.72 15571 0 0 0

15571 15571 45374.72 0 0 0
C

0 0 0 29803.71 0 0

0 0 0 0 29803.71 0

0 0 0 0 0 29803.71

 

 

From effective model: 

eff

12519.2 6328 6328 0 0 0

6328 12478.4 6301.1 0 0 0

6328 6301.1 12478.4 0 0 0
C

0 0 0 3763.4 0 0

0 0 0 0 3763.4 0

0 0 0 0 0 3763.4
 

 

From Reuss Model: 

R

eq

8253.24 4373.59 4373.59 0 0 0

4373.59 8253.24 4373.59 0 0 0

4373.59 4373.59 8253.24 0 0 0
C

0 0 0 3879.65 0 0

0 0 0 0 3879.65 0

0 0 0 0 0 3879.65
 

 

R V

eq eff eqTherefore, C C C
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Hence for all the volume fractions considered (Vf=12.5,25 &50%), the effective 

stiffness values always lie between the Voigt and Reuss estimates of stiffness  which 

form upper and lower bound respectively. It is observed that the shear components of the 

stiffness matrix are slightly under the lower bounds. 

 

Comparison of Effective Properties with Mori-Tanaka Method 

         Effective properties determined form the micromechanical model are compared 

with those obtained from Mori-Tanaka‟s method. Figs.3.1 to 3.4 shows the comparison 

for effective elastic modulus, Poisson‟s ratio, bulk and shear modulus respectively. At 

lower volume fractions, the effective properties obtained from the micromechanical 

model are in good agreement with those obtained from Mori-Tanaka method. As the 

volume fraction increases, the difference between effective properties from both the 

methods increases, with micromechanical model resulting in higher estimates of 

properties than Mori-Tanaka‟s method. The difference at higher volume contents are due 

to the effect of particle-particle interaction, which is not considered in the present 

micromodel. 
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Fig. 3.1. Comparison of effective elastic modulus of micromodel with Mori-Tanaka  

 

 

 
 

Fig. 3.2. Comparison of effective Poisson‟s ratio of micromodel with Mori-Tanaka 



75 
 

 
 

 

Fig. 3.3. Comparison of effective bulk modulus of micromodel with Mori-Tanaka 

 

 

 

Fig. 3.4. Comparison of effective shear modulus of micromodel with Mori-Tanaka 

 



76 
 

 
 

The responses of the homogenization model are now compared with the ones of 

detailed microstructure of the composite. Two sets of FE meshes are generated for 

composites at different particle volume contents, i.e. 12.5%, 25%and 50%. The first FE 

mesh represents a homogeneous composite panel, which uses the micromechanical 

model to obtain the effective thermo-elastic properties. The second FE mimics detailed 

composite microstructure with particles randomly distributed in matrix. 

Consider a square composite panel of 4µmx4µm as shown in Fig 3.5. The 

following boundary and initial conditions are prescribed: 

0 refT(X,Y,0) T T 0 X 4and 0 Y 4  

1T(4,Y, t) T 0 Y 4 (3.29)
                                                                               

 

                       x 0t (4,Y, t) 40MPa   and  
yt (X, 4, t) 0     

                         x yu (0,Y, t) 0 and u (X,0, t) 0      

 

 

Fig. 3.5. Square composite panel 
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A sequentially coupled thermo-mechanical analysis is conducted. The basic 

assumption of such a type of analysis is that only the temperature field can influence the 

mechanical field but not vice versa. Hence temperature field can be determined 

independent of stress distribution. A heat transfer analysis is conducted with temperature 

dependent thermal conductivity for both the particle and matrix, as discussed in section 

2.4. The temperature distribution thus obtained is brought into the stress analysis. 

Particles are assumed to be isotropic and linearly elastic; whereas matrix is assumed as 

isotropic and nonlinear elastic material. It is assumed that the elastic modulus of the 

matrix is dependent on stress and temperature as shown in Eqs. (3.30 a)-(3.30 b) 

 

o

m m S T mE ,T f f E (3.30a)                                                                               

B

0

m

0
TS ref; T T (3.30b)f e f 1 A

        

 

A detailed model of 4µmx4µm, with randomly distributed solid spherical 

particles of fixed diameter 0.4µm for volume fractions 12.5, 25 and 50% are developed. 

The mesh shown in Fig. 3.6 is for 12.5% volume fraction of particles. For the stress 

analysis the boundary conditions described in Eq. (3.29) are used. The mesh is made up 

of CPS3 and CPS4 elements. The material properties used for particle and matrix 

constituents are given in Table 3.1. 
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Fig. 3.6. Detailed mesh representing volume fraction 12.5% 

 

Table 3.1. Properties of particle and matrix of the composite 

Material Properties Values 

Particle 

Young‟s Modulus, E (MPa) 72000 

Poisson‟s ratio, ν 0.22 

CTE α (
0
K

-1
) 5x10

-6
 

Heat capacity ρC (J/m
3
K) 2.0898 

Conductivity K
0

p (W/mK) 13 

Matrix 

Young‟s Modulus, E (MPa) 2710.03 

Poisson‟s ratio, ν 0.35 

CTE α (
0
K

-1
) 6x10

-6
 

Heat capacity ρC (J/m
3
K) 1.47 

Conductivity K
0

M (W/mK) 1.9 
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A FE model of homogenized composite as shown in Fig. 3.7 is generated. The 

length of each element in the mesh is 0.4µm. Sequentially coupled analysis is performed 

on the model. Thermal conductivity and elastic modulus for particle and matrix are 

assumed the same way as done for detailed model.  Thermal analysis is performed as 

discussed in section 2.4. For structural analysis the elements are made up of C3D8 

elements. The homogenized model developed was used to calculate effective properties 

for thermal conductivity, Poisson‟s ratio, CTE and elastic modulus for different volume 

fractions. For all the other properties like density and specific heat, rule of mixtures have 

been used to find out the effective properties for each volume fraction. 

 

 

Fig. 3.7. Effective model mesh representing volume fraction 12.5% 

Heat capacity per unit volume of composite is assumed as: 

f p p f m mC V C 1 V C (3.31)  
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Density of the composite is given as:  

f p f mV 1 V (3.32)  

Comparison of Detailed Model with Effective Model  

The displacements obtained with effective model are compared with that of the 

detailed FE microstructural model as shown in the Figs. 3.8 (a) to 3.10 (b).  The 

following nonlinear parameters are used for the two FE models: 

P Mr 0.02; r 0.05; 0 1e 5;A
   0B 5000

 

Fig. 3.8 (a) to Fig. 3.10 (a) shows the plots for axial displacement in x direction 

(U1) for both detailed and effective models for different volume fractions; and Fig. 3.8 

(b)-3.10 (b) show the plots for transverse displacement in y direction (U2). As expected, 

the axial displacement (U1) values for all the plots increases as the time progresses due 

to the mechanical load initially acting, and continues to increase further due to the 

thermal strains developed along with the deformation due to load. The transverse 

displacement (U2), at first decreases because of the load acting in the axial direction (due 

to the effect of Poisson‟s ratio) and then increases because of the temperature effect. 

          The axial and transverse displacements for the detailed microstructural and 

effective models are in good agreement with each other for lower volume fractions.  At 

higher volume fractions because of particle-particle interactions, mismatches are 

observed in the transverse displacement for composite with 50% volume content as 

shown in Fig 3.10 (b). This is due to the fact that the effective responses 

micromechanical model does not incorporate particle interactions. 
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(a) 

 

(b) 

Fig. 3.8. Axial and transverse displacement plots for effective and detailed model for 

volume fraction 12.5% 
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(a) 

 

(b) 

Fig. 3.9. Axial and transverse displacement plots for effective and detailed model for 

volume fraction 25% 
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(a) 

 
 

(b) 

Fig. 3.10. Axial and transverse displacement plots for effective and detailed model for 

volume fraction 50% 
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3.4 Parametric studies on Discontinuity of stress and strain 

In particle reinforced composites, as there is a sudden transition of properties 

from particle to matrix, it is expected that the interphase between particle and matrix 

experiences a jump in the magnitude of effective stress and strain. This jump in 

magnitude or discontinuity of effective stress and strain has an important role in the 

debonding between particles and matrix. In the present section, a study has been 

conducted on understanding the discontinuity of stress and strain at the interphase and 

the influence of various parameters, such as CTE ratio of particle and matrix, volume 

fraction of particles, temperature difference and degree of non-linearity on the 

discontinuities. The detailed model mesh as shown in Fig. 3.6 is used to study the stress 

discontinuity at the particle-matrix interphase. In order to study the influence of various 

parameters on the discontinuity of stress and strain at the particle-matrix interphase, the 

following procedure is followed. 

The entire composite panel is assumed to be at a temperature of 303K initially. In 

the next step, the entire composite panel is brought to a temperature of „T‟ by uniformly 

heating it. In the final step, a traction boundary condition of 40MPa is applied. Because 

of the difference in CTE for matrix and particle, the particles and matrix exhibit different 

thermal deformations. As displacement continuity at the bonded interphase has to be 

maintained, the mismatches in thermal deformation results in thermal stresses in the 

constituents and jump discontinuities in the stress values at the interphase. A parametric 

study is conducted to observe the influence of volume fraction of particles, CTE ratio, 

degree of nonlinearity and temperature change on the discontinuity of stress and strain. 
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Influence of Temperature changes and CTE ratio on Discontinuity 

A parametric study is conducted by varying temperature changes ( T 50, 80, 

100, and 300
0
K) and the CTE ratio between particle and matrix P M/ 0.01, 0.1,1  

for composites with volume fraction of particles 12.5%. The von Mises stresses are 

monitored at three different locations, shown in Fig. 3.11. 

 

 

Fig. 3.11. Contour plot for von Mises for volume fraction 12.5% at location 1 

 

The nodes P, Q and R are chosen in such a way that  

P is inside the particle,  

R is inside the matrix and  

Q is on the matrix-particle interface.  
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We expect two distinct values of stress at the point Q. The difference between 

these values is represented by symbol , which is the magnitude of discontinuity in 

stress at a particular node. Tables 3.2 to 3.5 present the thermal stresses and combined 

thermal and mechanical stresses at locations P,Q and R for composites with various 

P M/ ratios and temperature changes. As expected, thermal stress occurs when the 

CTE of particles and matrix are different. These values increase with increasing 

temperature changes and CTE ratio. Significant thermal stresses are observed in case d, 

where T 300and P M/ 0.01 . The addition of thermal stress will eventually 

affect the overall or total stresses in the microstructural constituents. The difference in 

P and M increases jump discontinuity in stresses at the interphase. For example at

T 300 , when P M/ 1 , jump discontinuity is shown to be 12.29MPa, with

P M/ 0.01 , the jump discontinuity increases to 14.56MPa. 
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Case (1) DTEMP=50 

Table 3.2. Influence of CTE ratio for a temperature change of 50
0
K 

CTE ratio node 

Thermal Stress 

(MPa) 

Combined Stress 

(Thermal+ Mechanical) 

(MPa) 

(α)p/(α)M =1; 

(α)p  =  6e-06; 

(α)M  = 6e-06 

 

P 

Q 

Q 

R 

0.779452E-12 

0.74887E-12 

1.76124E-12 

1.56525E-12 

0 

15.5786 

16.4167 

4.12316 

5.59984 

12.293 

(α)p/(α)M=0.1; 

(α)p= 0.6e-06; 

(α)M  = 6e-06 

 

P 

Q 

Q 

R 

5.84267E-01 

5.79269E-01 

8.36927E-01 

7.83483E-01 

0.257 

15.8937 

16.7439 

3.71674 

5.22183 

13.027 

(α)p/(α)M=0.01; 

(α)p= 0.06e-06; 

(α)M  = 6e-06 

 

P 

Q 

Q 

R 

6.42686E-01 

6.3719E-01 

9.20606E-01 

8.61818E-01 

0.283 

15.9261 

16.7773 

3.68214 

5.18852 

13.095 
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Case (2) DTEMP=80 

Table 3.3. Influence of CTE ratio for a temperature change of 80
0
K 

CTE ratio node 

Thermal Stress 

(MPa) 

Combined Stress 

(Thermal+ Mechanical) 

(MPa) 

(α)p/(α)M =1; 

(α)p  =  6e-06; 

(α)M  = 6e-06 

 

P 

Q 

Q 

R 

1.15406E-12 

1.18104E-12 

2.81829E-12 

2.50426E-12 

0 

15.5787 

16.4168 

4.12312 

5.5998 

12.293 

 

(α)p/(α)M= 0.1; 

(α)p=0.6e-6; 

(α)M  = 6e-06 

 

P 

Q 

Q 

R 

9.3464 

9.2667 

1.3388 

1.25331 

0.412 

16.09 

16.9467 

3.52669 

5.03575 

13.42 

 

(α)p/(α)M=0.01; 

(α)p= 0.06e-06; 

(α)M  = 6e-06 

 

P 

Q 

Q 

R 

1.02809 

1.01933 

1.47264 

1.3786 

0.453 

 

16.1432 

17.0016 

3.48322 

4.99202 

 

13.51 
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Case (3) DTEMP=100 

Table 3.4. Influence of CTE ratio for a temperature change of 100
0
K 

CTE ratio node 

Thermal Stress 

(MPa) 

Combined Stress 

(Thermal+ Mechanical) 

(MPa) 

(α)p/(α)M =1; 

(α)p  =  6e-06; 

(α)M  = 6e-06 

 

P 

Q 

Q 

R 

1.48964E-12 

1.58798E-12 

3.52712E-12 

3.1378E-12 

0 

15.5788 

16.4169 

4.12309 

5.59977 

12.29 

(α)p/(α)M=0.1; 

(α)p= 0.6e-06; 

(α)M  = 6e-06 

 

P 

Q 

Q 

R 

1.16816 

1.15822 

1.67327 

1.56642 

0.515 

16.2237 

17.0846 

3.42391 

4.93154 

13.66 

(α)p/(α)M=0.01; 

(α)p= 0.06e-06; 

(α)M  = 6e-06 

 

P 

Q 

Q 

R 

1.28494 

1.27402 

1.84054 

1.72301 

0.566 

16.2913 

17.1542 

3.37993 

4.88603 

13.77 
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Case (4) DTEMP=300 

Table 3.5. Influence of CTE ratio for a temperature change of 300
0
K 

CTE ratio node 

Thermal Stress 

(MPa) 

Combined Stress 

(Thermal+ Mechanical) 

(MPa) 

(α)p/(α)M =1; 

(α)p  =  6e-06; 

(α)M  = 6e-06 

 

P 

Q 

Q 

R 

2.16426E-12 

2.00791E-12 

3.83184E-12 

3.40558E-12 

0 

15.5795 

16.4178 

4.12284 

5.5995 

12.29 

(α)p/(α)M =0.1; 

(α)p  = 0.6e-06; 

(α)M  = 6e-06 

 

P 

Q 

Q 

R 

3.49999 

3.47084 

5.01283 

4.69274 

1.54 

17.6725 

18.5649 

3.88575 

5.07459 

14.67 

(α)p/(α)M=0.01; 

 

(α)p = 0.06e-06 

 

(α)M  = 6e-06 

 

P 

Q 

Q 

R 

3.8497 

3.81774 

5.51361 

5.16155 

1.695 

17.9057 

18.8014 

4.23311 

5.26256 

14.56 
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Influence of Degree of nonlinearity and Volume fraction on Discontinuity 

  The effect of linearity and nonlinearity in elastic modulus and thermal 

conductivity of the constituents on the magnitude of discontinuity in stress and strain is 

examined. The composites with volume fraction of particles 12.5%, 25% and 50% are 

subjected to temperature changes 300K. To include the thermal stress effects in the 

overall nonlinear responses, composites with 
p m/ 0.01and1 are also studied. 

(a) Vf = 12.5%  

The stress and strains are monitored at the particle, interphase and matrix regions 

indicated by A, B, C respectively as shown in Fig 3.12.  

 

 

Fig. 3.12. Contour plot of von Mises at volume fraction 12.5% at location 2 

 

         Tables 3.6 and 3.7 present the measured strains and stresses at these three 

locations. It is seen when (α)p/(α)M =1, the thermal stress is absent but significant jump in 
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the radial stain is observed. As discussed above, the interphase maintain displacement 

continuity condition without imposing strain continuity.  

 

Table 3.6. Effect of CTE ratio on stress and strain discontinuity at volume fraction 

12.5% for a temperature change of 300
0
K and for a linear case (E

P
=72000; E

M
=2710.03; 

K
P
=13; K

M
=1.9) 

CTE ratio Node 

Radial 

Strain 

E11 

Hoop Strain 

E22 

Thermal  

Stress 

(MPa) 

Combined 

Stress 

(Thermal+ 

Mechanical) 

(MPa) 

(α)p/(α)M =1; 

(α)p  =  6e-06; 

(α)M  = 6e-06 

A 

B 

B 

C 

2.07E-03 

2.08E-03 

9.57E-03 

9.79E-03 

1.76E-03 

1.77E-03 

1.74E-03 

0.83E-03 

0 

0 

0 

0 

19.01 

19.78 

21.09 

21.36 

 

1.31 

 

(α)p/(α)M =0.01; 

(α)p  = 0.06e-06; 

(α)M  = 6e-06 

A 

B 

B 

C 

0.36E-03 

0.38E-03 

12.58E-03 

12.83E-03 

-0.016E-03 

-0.007E-03 

-0.039E-03 

-1.176E-03 

5.17 

5.64 

8.74 

9.08 

24.07 

25.38 

28.84 

29.61 

 

3.45 
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Table 3.7. Effect of CTE ratio on stress and strain discontinuity at volume fraction 

12.5% for a temperature change of 300
0
K and for a nonlinear case (temperature and 

stress dependent properties) 

CTE ratio Node 

Radial 

Strain 

E11 

Hoop Strain 

E22 

Thermal  

Stress 

(MPa) 

Combined Stress 

(Thermal+ 

Mechanical) 

(MPa) 

(α)p/(α)M =1; 

(α)p  =  6e-06; 

(α)M  = 6e-06 

A 

B 

B 

C 

2.09E-03 

2.11E-03 

10.06E-03 

10.29E-03 

1.76E-03 

1.76E-03 

1.745E-03 

0.94E-03 

0 

0 

0 

0 

20.22 

21.17 

22.31 

22.66 

1.14 

 

(α)p/(α)M =0.01; 

(α)p  = 0.06e-06; 

(α)M  = 6e-06 

A 

B 

B 

C 

0.39E-03 

0.42E-03 

13.42E-03 

13.73E-03 

-0.024E-03 

-0.027E-03 

-0.59E-03 

-1.214E-03 

6.24 

6.80 

9.59 

10.12 

26.33 

27.92 

30.95 

31.85 

3.04 
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(b) Vf = 25%  

Fig. 3.13 shows the contour of von Mises stress for 25% volume fraction of 

particles. The thermo-elastic analyses are performed both for linear and nonlinear 

constituent properties.  

 

 

Fig. 3.13. Contour plot of von Mises at volume fraction 25% 

 

The nodes D, E and F are chosen in such a way that  

D is inside the particle,  

F is inside the matrix and  

E is on the matrix-particle interface.  

Tables 3.8 and 3.9 present strains and stresses for the linear and nonlinear cases. 

It is observed that the stress discontinuities are more significant for composites with 
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volume fraction 25% as compared to the one with 12.5%. This is due to the particle 

interactions that may exist in the measured locations, as can be seen in Fig 3.13. 

 

Table 3.8. Effect of CTE ratio on stress and strain discontinuity at volume fraction 25% 

for a temperature change of 300
0
K and for a linear case 

CTE ratio Node 

Radial 

Strain 

E11 

Hoop Strain 

E22 

Thermal  

Stress 

(MPa) 

Combined Stress 

(Thermal+ 

Mechanical) 

(MPa) 

(α)p/(α)M =1; 

(α)p  =  6e-06; 

(α)M  = 6e-06 

D 

E 

E 

F 

2.10E-03 

2.14E-03 

6.17E-03 

7.14E-03 

1.75E-03 

1.75E-03 

-0.39E-03 

0.62E-03 

0 

0 

0 

0 

21.04 

24.54 

14.16 

14.37 

10.38 

 

(α)p/(α)M =0.01; 

(α)p  = 0.06e-06; 

(α)M  = 6e-06 

D 

E 

E 

F 

0.40E-03 

0.47E-03 

6.49E-03 

8.23E-03 

-0.052E-03 

-0.061E-03 

-1.437E-03 

-0.475E-03 

6.39 

7.93 

6.39 

5.44 

27.33 

32.33 

18.99 

18.24 

13.34 
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Table 3.9. Effect of CTE ratio on stress and strain discontinuity at volume fraction 25% 

for a temperature change of 300
0
K and for a nonlinear case 

CTE ratio Node 

Radial 

Strain 

E11 

Hoop 

Strain E22 

Thermal  

Stress 

(MPa) 

Combined Stress 

(Thermal+ 

Mechanical) 

(MPa) 

(α)p/(α)M =1; 

(α)p  =  6e-06; 

(α)M  = 6e-06 

D 

E 

E 

F 

2.11E-03 

2.17E-03 

6.09E-03 

7.30E-03 

1.75E-03 

1.75E-03 

-0.66 E-03 

0.56E-03 

0 

0 

0 

0 

22.30 

26.08 

17.45 

14.92 

8.62 

 

(α)p/(α)M =0.01; 

(α)p  = 0.06e-06; 

(α)M  = 6e-06 

D 

E 

E 

F 

0.43E-03 

0.5E-03 

6.20E-03 

8.401E-03 

-0.045E-03 

-0.061E-03 

-2.004E-03 

-0.684 E-03 

6.99 

8.38 

10.03 

6.41 

29.17 

34.22 

25.87 

19.29 

8.35 
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(c) Vf = 50%   

The von Mises contour plot for volume fraction 50% is as shown below in Fig. 3.14. 

  

 

Fig. 3.14. Contour plot of von Mises at volume fraction 50% 

 

The nodes G, H and I are chosen in such a way that  

G is inside the particle,  

H is on the matrix-particle interface and  

I is inside the matrix (also an interphase node for an adjacent particle)  

Stress and strain discontinuity is studied at the particle matrix interphase. For 

50% volume fraction of particles, the particles are very close to each other. Hence the 

thermal stresses resulting from the mismatch of CTE contribute a good amount to the 

total stress. Tables 3.10 and 3.11 present the influence of CTE ratio on stress and strain 

discontinuity for linear and nonlinear cases when the volume fraction of particles is 

50%. When CTE ratio is 1, the thermal stresses are of the order of 10
-15

 where as when 
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the CTE ratio is 0.01, the thermal stresses are absent. The magnitude of discontinuity of 

stress is less for a nonlinear case than the linear elastic case. For example (from table 

above), the  value for CTE ratio of 0.01 at node H was 14.62MPa where as for a 

nonlinear case it reduced to 13.05MPa.  

 

Table 3.10. Effect of CTE ratio on stress and strain discontinuity at volume fraction 50% 

for a temperature change of 300
0
K and for a linear case 

CTE ratio Node 

Radial 

Strain 

E11 

Hoop Strain 

E22 

Thermal  

Stress 

(MPa) 

Combined Stress 

(Thermal+ 

Mechanical) 

(MPa) 

(α)p/(α)M =1; 

(α)p  =  6e-06; 

(α)M  = 6e-06 

G 

H 

H 

I 

I 

2.13E-03 

2.22E-03 

8.92E-03 

7.33E-03 

1.96E-03 

1.71E-03 

1.77E-03 

0.87E-03 

1.28E-03 

1.76E-03 

0 

0 

0 

0 

0 

24.23 

30.05 

19.36 

15.23 

14.96 

10.68 

 

0.2748 

(α)p/(α)M =0.01; 

(α)p  = 0.06e-06; 

(α)M  = 6e-06 

G 

H 

H 

I 

I 

0.44E-03 

0.58E-03 

11.01E-03 

8.83E-03 

0.19E-03 

-84.19E-06 

-24.88E-06 

-534.62E-06 

-287.56E-06 

7.85E-06 

7.077 

10.35 

8.022 

6.466 

6.262 

31.10 

40.31 

25.69 

19.63 

19.38 

 

14.62 

0.25 



99 
 

 
 

Table 3.11. Effect of CTE ratio on stress and strain discontinuity at volume fraction 50% 

for a temperature change of 300
0
K and for a nonlinear case 

CTE ratio Node 

Radial 

Strain 

E11 

Hoop Strain 

E22 

Thermal  

Stress 

(MPa) 

Combined 

Stress 

(Thermal+ 

Mechanical) 

(MPa) 

(α)p/(α)M =1; 

(α)p  =  6e-06; 

(α)M  = 6e-06 

G 

H 

H 

I 

I 

2.12E-03 

2.21E-03 

8.64E-03 

7.29E-03 

1.95E-03 

1.71E-03 

1.76E-03 

0.88E-03 

1.27E-03 

1.74E-03 

0 

0 

0 

0 

0 

23.93 

29.57 

19.16 

15.76 

15.01 

 

10.4 

 

0.75 

(α)p/(α)M =0.01; 

(α)p  = 0.06e-06; 

(α)M  = 6e-06 

G 

H 

H 

I 

I 

0.43E-03 

0.56E-03 

0.01E-03 

8.75E-03 

0.19E-03 

-91.96E-06 

-43.661E-06 

-707.33E-06 

-376.71E-06 

10.95E-06 

6.88 

9.68 

9.32 

6.79 

6.95 

30.40 

38.94 

25.89 

20.27 

19.06 

13.05 

 

1.20 
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The following observations are summarized from the above parametric studies: 

1) CTE ratio: For all the volume fractions and for both linear and nonlinear cases, as 

expected the thermal stresses increase the overall stress in the composite. The 

thermal stress increases with increasing temperature changes and the CTE ratios 

between particle and matrix. 

2) Volume Fraction: For all the CTE ratios studied, as the volume fraction increases, 

the stresses developed also increases, which may be due to the particle interactions. 

The magnitude of  also increases with volume fraction. 

3) Degree of Nonlinearity: For all the CTE ratios and for all volume fractions studied, 

the stress developed was more with nonlinearity in elastic moduli then the linear 

elastic case. However,  the magnitude of discontinuity was more for a linear case 

than the nonlinear case. 

For all the cases considered, the magnitudes of discontinuity for radial strains are 

more pronounced than the one of hoop strains. Hoop strains show mild discontinuities. 
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CHAPTER IV 

4.COUPLED HEAT CONDUCTION AND THERMO-ELASTIC 

ANALYSIS OF THERMAL BARRIER COATING 

The thermal efficiency of a gas turbine engine increases with increase in 

operating temperatures. Hence they are usually made up of different Ni based super 

alloy compositions, as discussed by Pusch [35] and Kulkarni [36]. For aerospace and 

other applications, the gas turbine engines need to be operated at an operating 

temperature of 1700
0
C or above, where as the melting point of most of the super alloys 

is less than 1300
0
C. To prevent them from melting and to protect them from the 

damaging effects of heat, an advanced material system called “Thermal Barrier Coating 

(TBC)” is used now-a-days.  

TBC‟s are made of materials with low thermal conductivity that coats a substrate 

of less thermal resistance in order to protect it from damaging effects of heat. They are 

designed in such a way that they not only reduce the temperature of the substrate via 

reducing the heat transfer through the coating layers, but also protect it from hot 

corrosion and oxidation as the material is prone to these damaging effects when 

subjected to thermal and mechanical loads simultaneously at high temperatures. Fig. 4.1 

illustrates typical TBC systems. 
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Fig. 4.1. Thermal barrier coating 

 

The materials for TBCs should have  

- Low thermal conductivity (to reduce the amount of heat transferred to the 

substrate or to maximize the temperature drop). 

- High melting point 

- High resistance to thermal shock and mechanical erosion, as discussed by Hass 

[37]. 

- Thermal expansion same or approximately equal to that of the substrate 

(otherwise there is a chance of debonding between the TBC and the substrate 

resulting in exposing the surface of the metal substrate to extremely high 

temperatures). 

Ceramic overcoats form good TBCs, as they have very low thermal conductivity.  

But the thermal expansion coefficient of ceramics is significantly less when compared to 
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that of metal substrate. In order to reduce the debonding effect between the TBC and 

substrate, an additional layer called bond coat is commonly used.  As discussed by 

Kulkarni [36] and Hass [37], bond coat is usually an Aluminum-rich layer of the form 

(MCrAlY) where M represents metal and is usually Nickel or Cobalt. As it is an Al-rich 

layer, it protects the metal substrate from oxidation by forming Aluminium oxide. 

Different thermal expansion coefficients between layers in TBCs often lead to stress 

concentrations at the interface layers leading to debonding. To reduce stress 

discontinuities, functionally graded concept is used between the ceramic and metallic 

zones in the TBCs. 

Functionally graded materials (FGMs) are composites in which the distribution 

of the constituents is spatially varied in a controlled manner to obtain the desired spatial 

variation of macroscopic properties. The use of FGMs in TBCs can effectively separate 

a region of high temperature with a region of low temperature. A typical functionally 

graded material used for Thermal barrier applications is as shown in the Fig 4.2. It 

usually consists of 3 zones viz. Ceramic zone, Ceramic-metallic zone and metallic zone. 
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Fig. 4.2. Functionally graded thermal barrier coating 

 

Ceramic zone is usually made up of Yttrium Stabilized Zirconia (YSZ). It has 

very low conductivity and acts as a good insulating material. Hence, the maximum drop 

in temperature is observed in this zone. Ceramic-metallic zone consists of ceramic 

particles embedded in a metallic matrix. The region nearer to the ceramic phase consists 

of more ceramic particles and the concentration of ceramic particles gradually decreases 

towards the metallic zone. The primary purpose of this layer is to ensure that the 

transition of thermo-mechanical properties is gradual from ceramic zone to metallic zone 

and thus prevents any spallation or delamination between these zones.  

This chapter demonstrates the capability of the integrated micromechanical 

model and FE analyses in simulating coupled heat conduction and thermo-elastic 

deformation of TBCs. An example of TBC is considered and the micromechanical 

model is used to determine the effective thermal and mechanical properties of particle 
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reinforced composites used in TBCs under thermal stimuli. The TBC system considered 

consists of rectangular plates piled one over the other in such a way that the layers with 

higher ceramic concentration are bonded to the metal substrate via the lower ceramic 

concentration layers. Sequentially coupled heat conduction and stress analysis are 

performed. The purpose is to quantify thermal stresses developed during temperature 

changes in a composite system having different layers of materials like in TBCs. 

Fig. 4.3 illustrates a TBC layup which can be used for insulating purposes at 

extremely high temperatures. It consists of six layers which are piled up as shown in the 

figure. The first bottom layer is made up of metal substrate (like Inco HX) where as the 

2nd layer is made up of NiCrAlY matrix reinforced with YSZ (Yttrium Stabilized 

Zirconia) particles with volume fraction 4%. From 2
nd

 layer to 6
th
 layer, the 

concentration of YSZ particles increases gradually with 3
rd

, 4
th
, 5

th
 & 6

th
 layers 

containing 25%, 50%, 75% & 88% of YSZ particles, respectively.  
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Fig. 4.3. Geometry of TBC plate 

 

TBCs are manufactured by either Electronic beam vapor deposition process (EB-

PVD) or Air Plasma (APS) methods. The fabrication temperature of TBC in these 

manufacturing methods is around 427
0
C, as discussed in Zhu et al. [38]. From this 

temperature, they are rapidly cooled to room temperature before they can be put into use 

for thermal insulation applications. Because of this rapid cooling, residual stresses would 

develop which could result in premature failure of the composite. Sequentially coupled 

heat conduction and thermo elastic analysis are performed on the TBC layup to simulate 
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the cooling down process before applying other external stimuli. FE analyses with 

integrated micromechanical model are used. The FE mesh is shown in Fig 4.4 and it is 

made up of DC3D8 and C3D8 elements for the thermal and structural analysis, 

respectively. The following steps are followed to conduct the thermal and mechanical 

analysis: 

- Initially all the nodes are assumed to be at a temperature of 427
0
C. 

T(x,y,z,0) 427 7.5 x 7.5; 5.375 y 5.375&0 z 8  

- Constant temperature boundary condition is applied on all the faces of the composite 

layup , which can be written as: 

0T( 7.5, y, z, t) T(x, 5.375, z, t) T(x, y,0, t) T(x, y,8, t) 30 C

7.5 x 7.5; 5.375 y 5.375&0 z 8  

    Where t (=10 sec) is the time period for which the cooling is performed on the 

composite system. 

- For heating the composite, a constant temperature boundary condition is used on the 

top surface of 6
th

 layer for a time period of 13 seconds, after the cooling period ends. 

T(x,5.375,z, t) 1300 t 11  

The heat conduction process is monitored until this period of time. Thermal stresses are 

also monitored during the heating and cooling process. 

- During the cooling and heating periods, the following mechanical constraints are 

also applied 

x y zu ( 7.5, y, z, t) u (x, 5.375, z, t) u (x, y,0) 0

7.5 x 7.5; 5.375 y 5.375&0 z 8
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Fig. 4.4. Finite element mesh of a TBC plate and thickness of layers 

 

The material properties used in the TBC plate are taken from Seo et al. [39] and 

are as listed in the following tables. Table 4.1, Table 4.2 and Table 4.3 give the material 

properties of metal substrate, 100%NiCrAlY and 100%YSZ at various temperatures. 
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Table 4.1. Material properties of metal substrate 

Temperature 

(
0
C) 

Conductivity 

(W/mmK) 

Elastic 

modulus 

(MPa) 

Expansion 

(/
0
C) 

Specific 

Heat 

(J/Kg
o
C) 

Density 

(kg/mm
3
) 

Poissons 

ratio 

20 90.5e-3 207e03 1.27e-05 460 8880e-9 0.312 

400 65.3e-3 182e03 1.64e-05 460 8880e-9 0.312 

800 73.9e-3 150e3 1.8e-05 460 8880e-9 0.312 

 

Table 4.2. Material properties of 100% NiCrAlY 

Temperature 

(
0
C) 

Expansion 

(/
0
C) 

SpecificHeat 

(J/Kg
o
C) 

Density 

(kg/mm
3
) 

Poissons 

ratio 

20 1.4e-05 600 7320e-9 0.3 

400 2.4e-05 600 7320e-9 0.3 

800 4.7e-05 600 7320e-9 0.3 

1200 7.1e-05 600 7320e-9 0.3 

 

Table 4.3. Material properties of 100%YSZ 

Temperature 

(
0
C) 

Expansion 

(/
0
C) 

Specific Heat 

(J/Kg
o
C) 

Density 

(kg/mm
3
) 

Poisson's 

ratio 

20 7.2e-06 600 6037e-9 0.25 

400 9.4e-06 600 6037e-9 0.25 

800 1.6e-06 600 6037e-9 0.25 

1200 2.2e-06 600 6037e-9 0.25 
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Matrix (NiCrAlY) is assumed to be nonlinear elastic, (i.e., dependent on 

temperature) and the particle (YSZ) is assumed to be linear elastic: 

2
M P (4.1)E 0.0258T 80T 200000 and E 52e03 Mpa  

Conductivity of both particle and matrix are assumed to degrade linearly with 

temperature: 

9 3 6 2
M (4.2)K 10 T 4*10 T 0.003T 4.222 and

9 3 6 2
P (4.3)K 10 T 2*10 T 0.001T 1.531  

These nonlinearities are accommodated through a user subroutine, and the 

material properties for each layer (for varying YSZ concentration) can be obtained with 

the help of the same subroutine. Micromechanical model is used to determine the 

effective properties of each layer and thereby the overall response of the composite, as 

discussed in CHAPTERS II and III. The responses from the coupled heat conduction and 

thermo-elastic deformation in the studied TBC are discussed as follows. 

 

4.1  Temperature profiles 

During the cooling period, a constant temperature boundary condition is applied 

on all the outer surfaces of the composite, in order to cool it to room temperature from 

fabricating temperature (427
0
C).  The purpose of doing this is to investigate the thermal 

stresses developed within layers in the TBC during the cooling down process. This 

process is done for a time period of 10 seconds. After the cooling down process is 

completed, a constant temperature boundary condition is applied on outer surface of 

88% YSZ layer during the heating process for a time period of 13 seconds, after the 
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cooling period ends. Fig. 4.5 shows the contour plot through the thickness of all layers 

during heating process at t=23 seconds, and Fig.4.6 shows temperature distribution 

through the thickness during the cooling and heating process. From Fig. 4.6, at t=10 sec 

the entire composite is approximately at 30
0
C. At the end of heating process i.e., when 

t=23 sec, the outer surface of 88% YSZ layer has reached 1300
0
C where as the metal 

substrate is at a temperature of 180
0
C. Maximum temperature drop is observed in 88% 

YSZ layer, as expected. 

 

 

 

Fig. 4.5. Contour plot of temperature during heating process at t=23 sec 
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Fig. 4.6. Temperature distribution through the thickness of TBC layers during cooling 

and heating steps 

 

 

4.2  Stress distribution 

  The contour stress plots shown in Fig.4.7 (a) and Fig.4.8 (a) are at the initial time 

increments in the cooling period and the contour stress plots shown in Fig.4.7 (b) and 

Fig.4.8 (b) are at t=23 sec during heating step. Stress distribution plots through the 

thickness of various layers at different times for both cooling and heating periods are as 

shown in Fig.4.9 to Fig.4.12.   

The longitudinal stress (S11), transverse stress (S33) and shear stress (S12) values 

during both cooling and heating steps are observed to be higher in metal substrate than 
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the ceramic layers. When the TBC is cooled, as the thermal expansion coefficient is 

higher for the metal substrate than that of ceramic, it tries to contract more than the 

ceramic layer but the ceramic layer prevents it from contracting. Thus tensile stresses 

develop in the metal substrate and compressive stresses develop in the ceramic. This fact 

can be seen in both the contour profiles shown in Fig. 4.7 and Fig. 4.8. 

 

 

 

 

Fig. 4.7. Longitudinal stress contour plot for (a) cooling process and (b) heating 

process 
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Fig. 4.8. Transverse stress contour plot for (a) cooling process and (b) heating 

process 

 

Fig. 4.8(a) shows that the residual stresses developed in the metal substrate 

during the initial cooling period are very high when compared to the other layers. This 

cause can be attributed to the fact that thermal expansion coefficient is higher for metal 

substrate. During the heating period, when composite is heated the stresses developed in 

metal substrate are more than that in ceramic. As the TBC is heated, the metal substrate 

tries to expand more than the ceramic as it has higher CTE. Because of this compressive 

stress develops in metal and tensile in ceramic. This is the reason for the stresses to 

decrease from the cooling step to heating step in the metal substrate.  However, as the 

young‟s modulus of the metal substrate is higher than ceramic, it offers more resistance 

to deformation and develops more stresses. This increase in stress combined with the 
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residual stresses developed in the cooling step ensures that the stresses in metal substrate 

are tensile and higher than ceramic. Even though the thermal effect (because of heating) 

tries to reduce these stresses, the reduction is not significant enough to make the tensile 

stresses in metal substrate to become compressive, for the time period monitored.  

Fig 4.9(a) shows the longitudinal stress distribution plot through the thickness of 

different layers, for the cooling period. During the initial times, the residual stress 

developed in the metal substrate is very high and it gradually reduces as time progresses 

in the cooling period (as the composite reaches steady state temperature). Fig 4.9(b) 

shows the longitudinal stress distribution plot through the thickness of various layers in 

the heating step.  It can be seen that the stress developed is increasing, as the time 

progresses in the heating period. 

Discontinuity in stresses (S11, S22 & S12) is observed at all the interphases between 

layers. But the maximum discontinuity is observed at the metal substrate and 

96%NiCrAlY layer. This fact can be seen in Fig. 4.9 to 4.12. As time progresses in the 

heating period, the discontinuity at this interphase is also increasing.  The discontinuity 

at this interphase is very high and hence the possibility of debonding at this interphase is 

high.  

 

 

 



116 
 

 
 

 

(a) 

 

(b) 

Fig. 4.9. Longitudinal stress (S11) distribution through the thickness of TBC layers for 

(a) cooling and (b) heating period 
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(a) 

 

(b) 

Fig. 4.10. Transverse stress (S22) distribution through the thickness of TBC layers for (a) 

cooling and (b) heating period  
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(a) 

 

(b) 

Fig. 4.11. Transverse stress (S33) distribution through the thickness of TBC layers for (a) 

cooling and (b) heating period 
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(a) 

 

(b) 

 Fig. 4.12. Shear stress (S12) distribution through the thickness of TBC layers for (a) 

cooling and (b) heating period 
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CHAPTER V 

5.CONCLUSIONS AND FUTURE RESEARCH  

5.1 Conclusions 

A micromechanical model is used to determine effective (macroscopic) thermal 

and mechanical properties of particle reinforced composites. The micromechanical 

model is implemented in FE framework for analyzing coupled heat conduction and 

thermo-elastic deformation of a homogenized composite medium. The responses from 

the micromechanical model are compared with the ones generated from particles 

dispersed in homogeneous matrix, which represents more realistic composite 

microstructures.  For that reason, a FE model that represents detailed particles randomly 

dispersed in a homogeneous matrix is generated. Sequentially coupled thermo-

mechanical analyses are conducted for the two FE meshes for different volume fractions 

and the temperature, stress, and displacement fields in both models are compared. For 

both the cases ABAQUS user material subroutines UMATHT and UMAT are used to 

input the variation of thermal conductivity with temperature and elastic modulus with 

stress and temperature, respectively. Parametric studies on effects of conductivity ratio 

between particle and matrix, degree of nonlinearity, and volume fraction on the 

temperature distribution and steady state times have been studied. 

From the above studies, it has been observed that at constant volume fraction, as 

the nonlinearity in thermal conductivity of the particle and matrix constituents increases, 

the steady state time significantly deviates from the ones with constant constituent 

properties. When the volume fraction of particles in the composite increases, the steady 
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state is reached in less time, since the thermal conductivity of particles are taken larger 

than that of the matrix. As the conductivity ratio increases while keeping constant 

volume fraction of particles, there has not been any significant difference in the effective 

thermal conductivities. The temperature profiles are compared for the homogenized and 

heterogeneous composite models at different times until the composite reaches steady 

state. For lower volume fractions (12.5 and 25%), the temperature profiles of both 

models are in good agreement with each other. But for higher volume fractions (50%), 

deviation has been observed between the models. The detailed model showed a wavy 

profile for temperature but the effective model showed no signs of it. The cause for this 

could be attributed to the fact that particle-particle interactions at higher volume 

fractions cannot be neglected and as effective model does not take into account these 

interactions, it deviates from the heterogeneous model behavior.  

The effective thermo-elastic properties from the micromechanical model are 

compared with those of FE microstructural heterogeneous model. As expected, the axial 

displacement values for all the cases increases along with distance from the fixed end as 

the time progresses during the transient heat transfer analysis and continues to increase 

due to the stress and temperature dependency of the elastic modulus of matrix and the 

thermal strains developed in structural analysis. Transverse displacement initially 

decreases due to Poisson‟s ratio and then increases because of the temperature effect.  

The effective and heterogeneous model profiles for the axial and transverse 

displacements are in good agreement with each other for lower volume fractions.  At 
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higher volume fractions because of particle-particle interactions, mismatches are 

observed in the transverse displacement for composite with 50% volume content.  

In particle reinforced composites, as there is a sudden transition of properties 

from particle to matrix, it is expected that the interphase between particle and matrix 

experiences a jump in the magnitudes of stress and strain. This jump discontinuity of 

stress and strain has an important role in the debonding between particles and matrix. A 

study has been conducted on understanding the discontinuity of stress and strain at the 

interphase and the influence of various parameters like CTE ratio of particle and matrix, 

volume fraction of particles, temperature difference and degree of non-linearity on the 

discontinuities. The detailed FE microstructural model has been used to study the 

effective stress discontinuity at the particle-matrix interface. The entire composite panel 

is uniformly heated to a temperature from its initially uniform temperature and then a 

static uniaxial load is applied. Because of the difference in CTE for matrix and particle, 

the particles and matrix exhibit different thermal deformations. As displacement 

continuity at the bonded interphase has to be maintained, the mismatches in thermal 

strains results in thermal stresses in the constituents and jump discontinuities in the stress 

values at the interphase.  

A parametric study is conducted by varying temperature changes ( T 50, 80, 

100, and 300
0
K) and the CTE ratio between particle and matrix P M/ 0.01, 0.1,1  

for composites with different volume fraction of particles. The von Mises stresses are 

monitored at the interphase of particle and matrix and two distinct values of stress are 

expected at the interphase nodes. The difference between these values represents the 
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magnitude of discontinuity in stress at that particular node. For all the volume fractions 

and for both linear and nonlinear thermo-elastic cases, as expected the stresses 

developed were more when the difference in thermal expansions were higher and the 

magnitude of discontinuity also follows the same trend. As the volume fraction increases 

keeping all other parameters constant, the stresses developed also increases. The 

magnitude of discontinuity also increases with volume fraction. For all the CTE ratios 

and for all volume fractions studied, the stress developed was higher with nonlinearity in 

the elastic modulus and thermal conductivity of the constituents involved than when 

linear constituent properties are assumed. However, the magnitude of discontinuity 

observed was higher for a linear case than the nonlinear case. 

To demonstrate the applicability of the micromechanical model in simulating 

overall thermo-mechanical responses of larger scale of composite systems, sequentially 

coupled analysis has been performed on an example of functionally graded thermal 

barrier coatings (TBCs). A rectangular layup consisting of a metal substrate bonded to 

functionally graded plates is considered with gradually increasing ceramic particles in 

the metallic matrix for each layer.  

5.2 Future research 

The current study focuses on the determination of effective properties and the 

influence of various parameters at the microscale on the macroscopic behavior of the 

particle reinforced composites, but has been limited to only linear and nonlinear elastic 

cases. Further study can be conducted by extending the mechanical responses to include 

viscoelastic constitutive models. 
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In the present study only one way thermo-mechanically coupled analyses has 

been performed where in only the thermal field is assumed to influence the mechanical 

field. Further study can be conducted to include two way thermo-mechanically coupled 

analyses, i.e. both thermal and mechanical fields contributing to each other, can be 

analyzed. 

It is also possible to extend the proposed micromechanical analysis approach to 

study other multi-field effects, such as coupled thermo-electro-mechanical responses in 

piezoelectric composites. 
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