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ABSTRACT 

 

Analytical Time Domain Electromagnetic Field Propagators and Closed-Form Solutions 

for Transmission Lines. 

(December 2006) 

Jaehoon Jeong, B.S., Hong-Ik University, South Korea 

Chair of Advisory Committee: Dr. Robert D. Nevels 

 

An analytical solution for the coupled telegrapher’s equations in terms of the 

voltage and current on a homogeneous lossy transmission line and multiconductor 

transmission line is presented. The resulting telegrapher’s equation solution is obtained 

in the form of an exact time domain propagator operating on the line voltage and current. 

It is shown that the analytical equations lead to a stable numerical method that can be 

used in the analysis of both homogeneous and inhomogeneous transmission lines. A 

numerical dispersion relation is derived proving that this method has no numerical 

dispersion down to the two points per wavelength Nyquist limit. Examples are presented 

showing that exceptionally accurate results are obtained for lossy single and 

multiconductor transmission lines. The method is extended to represent the general 

solution to Maxwell’s differential equations in vector matrix form. It is shown that, 

given the electromagnetic field and boundary conditions at a given instant in time, the 

free space time domain propagator and corresponding dyadic Green’s functions in 1-, 2-, 

and 3-dimensions can be used to calculate the field at all subsequent times. 
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CHAPTER I* 

INTRODUCTION 

 

1.1. Time domain techniques for lossy transmission line 

Nonuniform transmission lines appear in a variety of microwave circuits. 

Applications of nonuniform lines include impedance matching devices, impedance 

transformers, filters and directional couples. Resistive loss also plays a key role in the 

overall transmission line response and can be especially important when analyzing the 

behavior of broadband time domain signals. However, nonuniform lossy transmission 

lines are difficult to accurately characterize and simulate in the time domain as compared 

to other microwave components. There is no general analytical solution for the 

Telegraphers equations when the transmission line is dissipative and nonuniform except 

for the special case in which the line is distortionless. However, a number of numerical 

methods have been developed to solve for the time domain voltage and current on a 

lossy and/or nonuniform transmission line. 

The lumped element model (LEM) [1] is a method in which a lossy transmission 

line is represented by a cascade of infinitesimally small cells, each characterized by its 

distributed resistance, conductance, inductance and capacitance (RGLC). In a variation 

on this method, the lossy line is modeled by a combination of lumped elements and ideal 

lossless transmission lines [2]. The major advantage of LEM is that equivalent circuits 

                                                 
The journal model for this dissertation is IEEE Transactions on Microwave Theory and Techniques. 
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can be easily and quickly implemented in existing circuit simulators and extended to 

include coupled transmission lines with an arbitrary termination. This method provides 

an accurate analysis of the transmission line transient behavior when the line is 

terminated by a non-linear circuit. A drawback is that the computation speed suffers 

because the time domain response is obtained by repeated calculations carried out over a 

range of frequencies, followed by a numerical convolution (inverse Laplace 

transformation). In addition, a characteristic of lumped models is that they fail to 

accurately characterize interconnects at high frequencies. 

The Method of Characteristics (MoC), a direct time domain calculation that 

provides an analytical solution to the wave equation for the lossless case, was first used 

for transmission lines by Branin [3]. With this method the transmission line response is 

modeled as a sum of modes. For this reason it is referred to as a modal extraction 

technique. To include losses, Grudis and Chang [4] suggested a cascaded MoC model. 

The cascaded MoC performs well for a long line, though for short lines it is not as fast or 

as accurate as other methods [5]. More recently, a variation of MoC using lumped 

matrix rational approximations was proposed by Grivet-Talocia, at el. [6]. They analyze 

a lossy transmission line in the frequency domain and then apply fast Fourier 

Transforms (FFT) and convolution to recover the transient time domain response. This 

method is useful for short as well as long transmission lines, however, for some signals 

the response is degraded when the frequency points are poorly sampled by the FFT or 

the convolution spans a large time interval. Xu, et al [7] introduced an improved MoC 

technique which relies on the Laplace transform rather than on FFT’s and convolution. 
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The modified MoC is not subject to instability and requires less computation time and 

less memory than previous MoC methods. Because the MoC method requires a Taylor 

series in the frequency domain as well as a Padé approximation for the exponential terms, 

it is expected that it would be very difficult to apply in the nonuniform line case. 

Time/frequency characteristics of lossy transmission lines have been obtained 

using the finite element method (FEM) [ 8, 9, 10] and finite-difference time-domain 

(FDTD) [11, 12, 13]. Lee and Konard [8] solved the Telegrapher’s equation using FEM, 

which was shown to give accurate results for lossy structures as well as for the 

nonuniform line. Recently, Lucic, et al. [9] and You, et al. [10] developed a hybrid 

LEM-FEM method. The LEM-FEM method takes advantage of the topology of LEM 

and removes the disadvantage of an instability that can arise in FEM. FDTD based on 

Yee’s method, is the most general method for transmission line analysis. Recently, a 

modified ‘on-line FDTD’ scheme was introduced by Zhong, et al. [12] based on a semi-

implicit approximation. Although Zhong’s method improves computational accuracy 

and stability when compared to the 2nd order Yee scheme when the line is lossy, it does 

not match the broad band accuracy of the standard FDTD method. Sekine, et al. [13] 

proposed FDTD with a new boundary condition for the nonuniform transmission line. 

This method has proven to be faster than MoC and more accurate than other current 

FDTD absorbing boundary conditions for an inhomogeneous line. A drawback of FDTD 

is that it is subject to numerical dispersion [13] when the signal is propagated a 

significant number of time steps. In addition, due to the interleaving structure of FDTD, 

voltage and current are not computed at the same spatial points on the transmission line. 
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This can lead to small errors in the characterization of capacitance, inductance and 

characteristic impedance calculated from numerical results. 

Another attractive numerical technique, the Transmission Line Method (TLM) 

[14,15], belongs to the general class of differential equation time-domain numerical 

modeling methods. With TLM the transmission line is represented by a series of nodes 

connected by transmission line segments. The relationship between the incident and 

scattered voltages and currents at the nodes is determined by a scattering matrix. 

Additional elements, such as transmission-line stubs, can be added to the connecting 

nodes so that a nonuniform transmission line can be fashioned. It has been reported [15] 

that compared with standard 2nd order FDTD, the TLM method has much less numerical 

dispersion. 

 There are several specialized techniques for analyzing the nonuniform lossy 

transmission lines [ 16 , 17 ]. In [16] the authors concatenate small linearly tapered 

transmission line sections that are each represented by the exact frequency domain 

ABCD matrix. This allows a piecewise-linear approximation of the characteristic 

impedance of a general shaped nonuniform transmission line, which is a much more 

accurate representation than the piecewise constant profile used in other similar methods. 

The result, which is Fourier transformed in order to obtain the time domain response, is 

in good agreement with analytical solutions [18]. Xu, et al. applied the differential 

quadrature method (DQM) to Telegrapher’s equation in [17]. In this case the differential 

equations are discretized into a set of algebraic equations and solved in the frequency 

domain. The time domain response is obtained by inverse Laplace transform and 
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recursive convolution. It is claimed [17] that DQM-based modeling leads to higher 

computational efficiency than the conventional FEM, FDTD methods and can be easily 

applied to nonuniform and multiconductor transmission lines.  

 

1.2. Time domain techniques for multiconductor transmission line 

As VLSI attains higher operating speeds, greater miniaturization, and denser 

layouts, the need for more accurate and simpler analysis methods for multiconductor 

transmission lines has grown. A determination of the time domain response of 

multiconductor transmission lines is of particular importance in the analysis of crosstalk, 

delay, and the distortion of signals in fast digital circuit interconnections.  

 Numerical techniques for time domain analysis of multiconductor lines can be 

divided into two major categories, frequency domain convolution methods and direct 

time domain methods. The greatest value of the former lies in its ability to accurately 

handle frequency dependent losses [19].  However, frequency domain methods require 

repeated calculations over a wide frequency range along with a subsequent fast Fourier 

or Laplace transform of the frequency domain data in order to recover the time domain 

response [ 20]. Although this general approach is useful for short as well as long 

transmission lines, the greater computation speed, coding simplicity, and the fact that 

nonlinear terminations can best be described in the time domain [21] have encouraged 

the development of improved time domain methods. 

The Method of Characteristics (MoC), as mentioned Section 1.1, is also useful 

technique for analyzing multiconductor transmission lines. Li, at el [22] introduced a 
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transient analysis technique for the multiconductor line using linear transformation MoC 

[23]. By enforcing two conditions, that each transmission line is coupled only with the 

closest one and that the lines are identical and equally spaced and side effects are 

negligible, telegrapher’s equations are decoupled to apply MoC in [23]. Gao, at el [24] 

have evaluated the upper bounds on the errors caused by these two assumptions. In a 

recent paper by A. R. Chavez, at el. [19], a new modified MoC using the Norton 

equivalent models for the analysis of nonuniform multiconductor transmission lines has 

been presented. It was shown that the MoC can be extended to nonuniform structures 

and hence is suitable for the simulation of multiple coupled interconnections in 

integrated circuits and packaging. 

 Waveform relaxation (WR) techniques [25] were introduced as a substitution for 

the conventional time stepping algorithms used by circuit simulators for solving ordinary 

differential equations. Although a slow convergence rate limits its applicability to 

interconnect circuits, the WR method is useful for analysis of multiconductor lines 

having many conductors. More recently, Nakhla, at el. [26] introduced the technique of 

transverse partitioning in place of classical longitudinal partitioning thereby improving 

convergence rates and significantly reducing computational time. 

 The wavelet transform (WT) method has recently received much attention, 

especially in solving multiconductor problems [27,28]. Like the Fourier Transform (FT), 

WT is a frequency domain technique. However, as a consequence of the limited 

bandwidth of wavelet basis functions [27], the WT overcomes wide bandwidth 

requirement of the FT. Grivet-Talocia [28] introduced a new WT formulation that 
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adaptively selects a minimal number of basis functions, thus saving memory occupation 

and computing time with respect to more standard discretization schemes. 

 FDTD [29] is also general numerical method for analyzing multiconductor lines 

as well as single line. Although FDTD suffers from numerical dispersion, this method 

directly solves Telegrapher’s equations in the time domain and is easily applicable to 

multiconductor lines [30]. In a modified FDTD technique [30], each line is computed by 

FDTD and overall voltages and currents are calculated by the state variables. FDTD is 

very useful for analyzing nonuniform transmission lines that are not long in terms of 

wavelengths. 

The similarity transform method is perhaps the most frequently used technique 

[29] for analyzing multiconductor TEM lines in the time domain. With this method, 

multiconductor equations are decoupled using a similarity transform and the modal 

characteristic impedances and propagation velocities are identified. Then, Branin’s 

method and the Bergeron diagram are applied to each modal voltage and current in order 

to obtain time domain solutions. Cheldavi [31], et al. obtained a time domain solution by 

applying modal decomposition with an equivalent continuous time linear filter model of 

the coupled lines. This method gives excellent results for the nonuniform coupled line 

problem. More recently, Amirhosseini, et al. [32], directly applied the mode technique to 

Telegrapher’s equation with voltage and current expressed in terms of a product of a 

diagonal modal characteristic impedance matrix and the modal voltage vector. It was 

shown that this technique can be applied to symmetric coupled transmission lines. 

The decoupled mode technique, a purely time domain method, is commonly used 
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to analyze symmetric and lossless multiconductor quasi-TEM lines [ 33]. With this 

method a normalized voltage and current eigenvector matrix is calculated from the 

inductance and capacitance matrices. The characteristic impedance and admittance 

matrices for the voltage and current equations are then obtained using the voltage and 

current eigenvector matrix. The Weak-coupling Assumption technique [ 34 , 35 ] is 

another useful time domain method for the quasi-TEM line voltages and currents. The 

weak-coupling assumption is to ignore secondary effectx when the multiconductor 

equations are solved. Under these conditions, this method yields simple and accurate 

time domain expressions for lossless, symmetric quasi-TEM lines. 

 

1.3. Time domain Green’s function for Maxwell’s equations 

 The solution, both analytical and numerical, to boundary value problems in 

electromagnetics is often facilitated by the introduction of the free space Green’s 

function for Helmholtz equation.  

 Frequency domain dyadic Green’s functions in electromagnetics have appeared 

regularly in the literature since the original paper on aperture diffraction by Levine and 

Schwinger [36]. R. E. Collin has contributed many significant articles on the subject as 

well as a definitive historical review [37]. A comprehensive and consistent presentation 

of both antenna and scattering problems can be found in Tai [38]. Time domain forms of 

the dyadic Green’s function are much less common. Perhaps the earliest was a dyadic 

Green’s function for Helmholtz’s vector wave equation that appeared in Morse and 

Feshbach [39]. Several years later it was shown in Felson and Marcuvitz [40] that the 
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dyadic forms for the wave equation could be derived by a simple set of operations on the 

scalar Green’s function. More recently the main body of literature has tended toward 

specialized applications, for example the time-domain plane-wave representation found 

in Hansen and Yaghjian [41].  The primary objective of the majority of recent work has 

been to obtain the radiated fields due to electric or magnetic sources or due to an initial 

field known on a boundary.  

The advantages of the Maxwell equation Green’s function over the Helmholtz and 

wave equation Green’s functions are that it is a single compact expression governing 

radiation from both electric and magnetic sources as well as the propagation of the initial 

electric and magnetic field known in a volume of space or over its bounding surface. In 

addition, the derivation of this Green’s function by means of the propagator method [42] 

which, though common in quantum mechanics literature [ 43, 44], is rarely seen in 

classical electromagnetics. The propagator method has never before been applied to 

solve a dyadic equation. 

 

1.4. Research  

In this dissertation, it is focused on the Path Integral (PI) method [43]. Path 

integrals can be described as a direct application of Huygens principle, whereby the 

voltage and current are updated in a fixed time increment by application of an operator 

acting on the present time voltage and current. PI methods, which are one category of 

many types of propagator methods, have not been widely used in transmission line 

analysis, although their history extends back to a highly regarded paper by Kac [45 ]. 
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Kac’s solution is novel in that the result for a lossy line allows one to clearly delineate 

the transient response in the absence of dissipation from that with dissipation. An 

improvement on Kac’s method has been developed by Foong [ 46]. More recently 

Rubin [47] presented a PI time-domain behavioral modeling approach to analyze lossy 

multi-conductor transmission line interconnects. Rubbin used transmission and 

reflection in individual segments of a transmission line combined to form a series of 

integrals, each of which is related to a sum of trajectories of a propagated pulse. The 

solution was shown to be accurate, stable, computationally efficient, and applicable to 

time domain modeling of an interconnect. An example of a propagator method, 

described as a Symplectic Integrator (SI) [48,49], has been developed to solve the 

general 3-D Maxwell equations. The propagator in this case is an exponential operator 

whose series expansion operates on the electromagnetic field using an interleaving 

method similar to FDTD. Although not yet applied to the transmission line case, the 

results have been shown to compare favorably with those of other higher order FDTD 

methods. Recently an unconditionally stable implicit path integral time-domain method 

for the electromagnetic field was introduced [50]. In a subsequent explicit version, 

referred to here as EP (explicit propagator), it was shown that a homogeneous 

transmission line is not subject to numerical dispersion [51].  

Chapeter II presents an extension to the analysis in [51, 52 ] by including 

transmission line conductor loss. It is started in the following chapter with a derivation 

of the exact time domain matrix propagator that is the kernel for the fixed time 

increment path integral for the coupled dissipative Telegrapher’s equations. It is shown 
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that the propagator equations can be converted into a numerical expression with 

accuracy O(h5), where h is the increment between numerical grid points, and 

subsequently into a general numerical technique for analyzing an inhomogeneous 

transmission line or quasi-TEM waveguide. Results are presented in which the reflection 

coefficient (S11) computed by the EP method described here is compared with the exact 

analytical reflection coefficient available in cases where the loss is uniform and for a 

linear and an exponentially tapered inhomogeneous transmission line. As a practical 

example it is analyzed an inhomogeneous lossy microstrip line. The numerical 

dispersion produced by the EP method is compared with that of the standard, second 

order accurate, FDTD method. 

 As an extension of the analytical and numerical methods described above, 

chapter III present a time domain analytic solution methods for lossless multiconductor 

lines. In sub-section, mathematical models were developed for TEM and quasi-TEM 

lines. For TEM lines the EP method is applied in a straightforward manner and modified, 

based upon the N-mode conditions [53,54], to handle the more common quasi-TEM 

lines. The accuracy of this technique is demonstrated by several examples. Uniform and 

nonuniform, coupled dual and triple TEM and quasi-TEM lines were analyzed. 

Transient response results obtained with the EP method described here are compared 

with those of a popular commercial simulator.  

Chapter IV presents the complete Green’s function for Maxwell’s equations, 

including the source region, in a general form, which will allow solutions for given 

initial sources, application to Huygens sources, or propagation of a field initially known 
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throughout the volume of space. The general Green’s function expression is then solved 

to obtain the Maxwell equation Green’s functions for each of the three spatial 

dimensions. Examples are presented for a propagating plane wave and a radiating point 

source. The time convention used in chapter IV is exp( )j tω . 

Chapter V concludes this dissertation with a summary and discussion of the 

research accomplishments and recommendations for further studies. 
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CHAPTER II 

TIME DOMAIN ANALYSIS OF LOSSY TRANSMISSION LINE 

A solution to the coupled telegrapher’s equations for the voltage and current on a 

lossy transmission line is presented. The resulting expression is obtained in the form of 

an exact time domain propagator operating on the line voltage and current. An 

application of Simpson’s rule on an integral appearing in the propagator yields a simple 

numerical representation of the propagator that is accurate on the order of 5h , where h  

is the numerical increment between grid points. A numerical dispersion relation is 

derived proving that this method has no numerical dispersion. Examples are presented 

showing that exceptionally accurate results are obtained for both lossy and general 

nonuniform lossy transmission lines. The method is also applicable to many types of 

practical waveguide structures including the inhomogeneous microstrip line for which 

results are also presented in this chapter. 

 

2.1. Telegrapher’s equations for lossy transmission line 

The transmission line equations in the time domain with distributed inductance L , 

distributed capacitance C , voltage V , and current I and including the distributed line 

impedance R  and conductance G  are, 

V IC GV
t z

∂ ∂
= − −

∂ ∂
                                                        (1) 
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I VL RI
t z

∂ ∂
= − −

∂ ∂
                                                (2) 

where the transmission line lies along the z-axis. A useful form for this set of 

equations is obtained by isolating the time derivative on the left hand side thereby 

creating the vector-matrix equation 

1

1

G
V C C z V
I R It

L z L

∂⎡ ⎤
⎢ ⎥∂⎡ ⎤ ⎡ ⎤∂ ⎢ ⎥= −⎢ ⎥ ⎢ ⎥∂∂ ⎢ ⎥⎣ ⎦ ⎣ ⎦
⎢ ⎥∂⎣ ⎦

                                   (3) 

Eqn. (3) can be conveniently expressed as a single equation 

 F SF
t

∂
=

∂
                                  (4) 

where the voltage-current vector F  and operator matrix S  are defined by 

 [ ]F TV I=                                                (5) 

1

1
S

G
C C z

R
L z L

∂⎡ ⎤
⎢ ⎥∂= − ⎢ ⎥

∂⎢ ⎥
⎢ ⎥∂⎣ ⎦

                            (6) 

 

2.2. The propagator  

A solution to (4) can be obtained by first finding the propagator matrix ( , )K z t that 

satisfies [42] 

( , ) ( , )K S Kz t z t
t

∂
=

∂
                                 (7) 
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with initial condition 

0
lim ( , ) ( ')K I
t

z t z z
→

= −d                                    (8) 

where d is the Dirac delta function, 'z  is the initial position of the voltage and 

current at time 0t = , and I  is the identity matrix. A solution to (7), subject to (8), is 

( ')SK te z z= −d                                  (9) 

Eqn. (9) can be expressed as a spectral integral by expanding the exponential in a 

power series and by replacing the delta function by its Fourier integral representation as 

follows, 

( ) ( )2 2 12!
2

K 1 S S zjk z z
zt t e dk

∞
′−

−∞

= + + + ⋅ ⋅ ⋅ ∫p
        (10) 

After the term by term operations in (10) are carried out, the series is returned to 

exponential form producing 

[ ]1 exp ( ')
2

SK f t
z ze jk z z dk

∞

−∞
= −

π ∫             (11) 

S

z

f
z

jkG
C C
jk R
L L

⎡ ⎤
⎢ ⎥

= − ⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

                                   (12) 

The exponential S f te can be converted to a standard 2×2 transition matrix A  via 

the modal matrix method [55]. First the eigenvalues 1,2l  of S f  are found by extracting 

the roots of det 0I S f⎡ ⎤− =⎣ ⎦l , which in this case is 
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det 0

z

z

jkG
C C

jk R
L L

⎡ ⎤+⎢ ⎥
=⎢ ⎥

⎢ ⎥+⎢ ⎥⎣ ⎦

l

l
                                    (13) 

giving 

( ) ( )2 2
1,2 1 1 1 1

2 2
G R
C L

= − ± − − −∓l c c              (14) 

( ) ( 2 2 )p zv k G C R L= −c  

Next an eigenvector is constructed by selecting one column of 1I S fadj ⎡ ⎤−⎣ ⎦l  and 

one column of 2I S fadj ⎡ ⎤−⎣ ⎦l . These are 

the respective first and second columns of the modal matrix 

                                 
0 0

2 21 1 1 1M

Z Z

j j

− −⎡ ⎤
⎢ ⎥

= − − + −⎢ ⎥
⎢ ⎥
⎣ ⎦

c c
c c

                             (15) 

Even though this is a lossy transmission line, in the above equations it has been 

convenient to define the terms 0L C Z  and 1pv LC= , which are respectively the 

characteristic impedance and phase velocity of a lossless transmission line. The modal 

matrix and its inverse along with a diagonalized exponential eigenvalue matrix are 

combined to form the matrix product 

1

2

10

0
SA M M

t
t

t

e
e

e
−

⎡ ⎤
⎢ ⎥= =
⎢ ⎥⎣ ⎦

l

l
                               (16) 

The matrix multiplications in (16) produce a transition matrix A  with the 
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following elements  

2 2
2 2

11 2 2

sin
cos

p z lat
p z l

p z l

tv k kbA e tv k k
v k k

−

⎧ ⎫⎡ ⎤−⎪ ⎪⎢ ⎥⎣ ⎦ ⎡ ⎤= − + −⎨ ⎬⎢ ⎥⎣ ⎦−⎪ ⎪
⎩ ⎭

 

2 2

12 0 2 2

sin p z lat
z

z l

tv k k
A jk Z e

k k
−

⎧ ⎫⎡ ⎤−⎪ ⎪⎢ ⎥⎣ ⎦= − ⎨ ⎬
−⎪ ⎪

⎩ ⎭

 

12
2 1 2

0

AA
Z

=  

2 2
2 2

22 2 2

sin
cos

p z lat
p z l

p z l

tv k kbA e tv k k
v k k

−

⎧ ⎫⎡ ⎤−⎪ ⎪⎢ ⎥⎣ ⎦ ⎡ ⎤= + −⎨ ⎬⎢ ⎥⎣ ⎦−⎪ ⎪
⎩ ⎭

                           (17) 

where 2 2l
p p

G Rk Cv Lv
⎛ ⎞= −⎜ ⎟
⎝ ⎠

 and 1
2

G Ra
C L

⎛ ⎞= +⎜ ⎟
⎝ ⎠

, 1
2

G Rb
C L

⎛ ⎞= −⎜ ⎟
⎝ ⎠

 

The propagator equation expressed in terms of the matrix A  now becomes 

[ ]1 1 1 2

2 1 2 2

1 ex p
2

K z z
A A

jk z d k
A A

 ∞

− ∞

⎡ ⎤
= ⎢ ⎥π ⎣ ⎦

∫                  (18) 

with 'z z z− . Each of the integrals in (18) can be evaluated analytically (see 

APPENDIX A for details). The resulting propagator is 

11 12

21 22
K

K K
K K

⎡ ⎤
= ⎢ ⎥

⎣ ⎦
                                 (19) 

( ) ( )11 2

at

p p
eK z tv z tv

− ⎧
= + + −⎨

⎩
d d  
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                       ( ) ( )
( ) ( )

( ) ( )

22
1

22
0 22

p
p

p
p p

p

bJ z tv
vb bJ z tv bt

v v z tv

⎫⎡ ⎤
⎪−⎢ ⎥

⎡ ⎤ ⎪⎢ ⎥⎣ ⎦− − +⎢ ⎥ ⎬
⎢ ⎥ ⎪⎣ ⎦ −

⎪
⎭

 

( ) ( )
( ) ( )

( ) ( )

22
1

12 0 222

pat p
p p

p
p

bJ z tv
ve bK Z z tv z tv z

v z tv

−

⎧ ⎫⎡ ⎤
−⎪ ⎪⎢ ⎥

⎪ ⎪⎢ ⎥⎣ ⎦= − + − − −⎨ ⎬
⎪ ⎪−
⎪ ⎪
⎩ ⎭

d d  

12
21 2

0

KK
Z

=  

( ) ( )22 2

at

p p
eK z tv z tv

− ⎧
= + + −⎨

⎩
d d  

( ) ( )
( ) ( )

( ) ( )

22
1

22
0 22

p
p

p
p p

p

bJ z tv
vb bJ z tv bt

v v z tv

⎫⎡ ⎤
⎪−⎢ ⎥

⎡ ⎤ ⎪⎢ ⎥⎣ ⎦+ − +⎢ ⎥ ⎬
⎢ ⎥ ⎪⎣ ⎦ −

⎪
⎭

    (20) 

In order to ensure causality, the Bessel functions 0J  and 1J  of the first kind and of 

the zero and first order respectively are restricted by the requirement pz tv≤ .  

 

2.3. Explicit solution form 

The purpose of the propagator is to evolve an initial previous time voltage and 

current distribution (V(z), I(z)) into the present time voltage and current (V(z,t), I(z,t)) , 

over a fixed time interval t . Mathematically this operation is a spatial convolution of the 
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propagator with the initial voltage and current [42], as expressed by  

( , ) ( ')
'

( , ) ( ')
K

V z t V z
dz

I z t I z
∞

−∞

⎡ ⎤ ⎡ ⎤
= ⋅⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦
∫                            (21) 

Inserting Eqns. (20)  into (21) yields the fixed time increment explicit path integral 

solution, 

( ) ( )

( ) ( )

( ) ( )

( ) ( )

( ) ( )

0

22
1

22

22
0

22
1

0 22

( ) ( ) ( ) ( )

( ') '

( , )
2 ( ') '

( ') '

p

p

p

p

p

p

p p p p

p
z tv p

z tv
p

at

z tv
pz tvp p

p
z tv p

z tvp
p

V z tv V z tv Z I z tv I z tv

bJ z tv
v

b t V z dz
z tv

eV z t b bJ z tv V z dz
v v

bJ z tv
vbZ z I z dz

v z tv

+

−

−

+

−

+

−

⎧ ⎡ ⎤+ + − − + − −⎣ ⎦
⎡ ⎤

−⎢ ⎥
⎢ ⎥⎣ ⎦+

−

= ⎡ ⎤⎨
− −⎢ ⎥

⎢ ⎥⎣ ⎦
⎡ ⎤

−⎢ ⎥
⎢ ⎥⎣ ⎦+

−

∫

∫

∫

⎫
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪⎪ ⎪

⎬
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪⎩ ⎭

(22) 

 

( ) ( )

( ) ( )

( ) ( )

( ) ( )

( ) ( )

0

22
1

22

22
0

22
1

220

1( ) ( ) ( ) ( )

( ') '

( , )
2

( ') '

1 ( ') '

p

p

p

p

p

p

p p p p

p
z tv p

z tv
pat

z tv
pz tvp p

p
z tv p

z tvp
p

I z tv I z tv V z tv V z tv
Z

bJ z tv
v

bt I z dz
z tv

eI z t
b bJ z tv I z dz

v v

bJ z tv
vb z V z dz

Z v z tv

+

−
−

+

−

+

−

⎡ ⎤+ + − − + − −⎣ ⎦

⎡ ⎤
−⎢ ⎥

⎢ ⎥⎣ ⎦+
−

= ⎡ ⎤
+ −⎢ ⎥

⎢ ⎥⎣ ⎦
⎡ ⎤

−⎢ ⎥
⎢ ⎥⎣ ⎦+

−

∫

∫

∫

⎧ ⎫
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎨ ⎬
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎩ ⎭

(23) 
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for the transmission line equations. 

 An expression convenient for numerical calculation is obtained by evaluating the 

integrals in (22) and (23) by a 3-point integration rule with the interval ptv  between 

numerical points. An application of the properties of Bessel functions as described in 

APPENDIX B yields the final set of equations, 

( ) ( )

( )

( ) [ ]

2

2

0

1 0

( , ) 1 ( ) ( )
2 3 6

1 ( ) ( )
6

4
( ) ( ) ( )

3

at

p p

p p

bt bteV z t V z tv V z tv

bt
Z I z tv I z tv

bt
I bt I bt V z

− ⎧⎡ ⎤⎪ ⎡ ⎤⎢ ⎥− + + + −⎨ ⎣ ⎦⎢ ⎥⎪⎣ ⎦⎩
⎡ ⎤

⎡ ⎤⎢ ⎥− + + − −⎣ ⎦⎢ ⎥⎣ ⎦
⎫

+ − ⎬
⎭

         (24) 

( ) ( )

( )

( ) [ ]

2

2

0

1 0

( , ) 1 ( ) ( )
2 3 6

1 1 ( ) ( )
6

4
( ) ( ) ( )

3

at

p p

p p

bt bteI z t I z tv I z tv

bt
V z tv V z tv

Z

bt
I bt I bt I z

− ⎧⎡ ⎤⎪ ⎡ ⎤⎢ ⎥+ + + + −⎨ ⎣ ⎦⎢ ⎥⎪⎣ ⎦⎩
⎡ ⎤

⎡ ⎤⎢ ⎥− + + − −⎣ ⎦⎢ ⎥⎣ ⎦
⎫

+ + ⎬
⎭

         (25) 

where oI  and 1I  are 0 and 1st order modified Bessel functions of the first kind. 

Notice that the present time voltage, or the present time current, is found by taking 

simple sum and difference combinations of the previous time voltage and current 

amplitudes. Therefore, given only the total voltage and current distribution on the lossy 

transmission line at any point in time, (24) and (25) will automatically filter out the 
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positive and negative traveling waves and, through successive time steps, provide the 

complete succeeding time response of the transmission line.  

If , 0R G → , then , 0a b →  and (24) and (25) reduce to the lossless transmission 

line equations [51], 

{ }0
1( , ) ( ) ( ) ( ) ( )
2 p p p pV z t V z tv V z tv Z I z tv I z tv⎡ ⎤ ⎡ ⎤= + + − − + − −⎣ ⎦ ⎣ ⎦         (26) 

0

1 1( , ) ( ) ( ) ( ) ( )
2 p p p pI z t I z tv I z tv V z tv V z tv

Z
⎧ ⎫

⎡ ⎤ ⎡ ⎤= + + − − + − −⎨ ⎬⎣ ⎦ ⎣ ⎦
⎩ ⎭

       (27) 

Similarly for a distortionless (LG=RC) transmission line 1 0
2

G Rb
C L

⎛ ⎞= − =⎜ ⎟
⎝ ⎠

 and 

(24) and (25) reduce to the lossless case Eqns. (26) and (27), but with a multiplying 

factor ate− .    

In the following section, examples are given that demonstrate the accuracy of the 

above formulas as well as their low level of numerical dispersion. It will also be shown 

that these equations can be used to analyze the lossy inhomogeneous line. 

 

2.4. Discrete implementation 

In deriving the equations in the above section it was assumed that successive 

calculations of the voltage and current took place at the times 0 and t. For the numerical 

method, where the current and voltage are calculated at many successive instances in 

time, it is more convenient to set this time interval between successive calculations to a 

constant t t′= −t , where t  is the time at which the calculation is being made and t′  is 
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the time of the immediately previous calculation of voltage and current on the line. This 

change is implemented by making the replacement t →t  in the above equations. Also, 

on a homogeneous transmission line the velocity v  is constant so the product of the time 

increment and the velocity defines the numerical spatial increment pv zΔt . These 

substitutions in (24) and (25), give a set of equations that are convenient for numerical 

calculation,  

( ) ( ) [ ]

( ) [ ]

( ) [ ]

2

2

0

1 0

( , ) 1 ( ) ( )
2 3 6

1 ( ) ( )
6

4
( ) ( ) ( )

3

a b beV z t V z z V z z

b
Z I z z I z z

b
I b I b V z

− ⎧⎡ ⎤⎪⎢ ⎥= − + + Δ + − Δ⎨
⎢ ⎥⎪⎣ ⎦⎩

⎡ ⎤
⎢ ⎥− + + Δ − − Δ
⎢ ⎥⎣ ⎦

⎫
+ − ⎬

⎭

t t t

t

t
t t

  (28) 

( ) ( ) [ ]

( ) [ ]

( ) [ ]

2

2

0

1 0

( , ) 1 ( ) ( )
2 3 6

1 1 ( ) ( )
6

4
( ) ( ) ( )

3

a b beI z t I z z I z z

b
V z z V z z

Z

b
I b I b I z

− ⎧⎡ ⎤⎪⎢ ⎥= + + + Δ + − Δ⎨
⎢ ⎥⎪⎣ ⎦⎩

⎡ ⎤
⎢ ⎥− + + Δ − − Δ
⎢ ⎥⎣ ⎦

⎫
+ + ⎬

⎭

t t t

t

t
t t

             (29) 

In (28) and (29), the characteristic impedance 0Z  is evaluated at the point z , 

while the contributions from the previous time voltage and current are taken from the 

points z  and z z± Δ . 
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2.5. Three uniform T.L. 

Fig. 1(a) shows three uniform concatenated transmission line sections each of 

which can have any set of parameters. For the results presented in Fig. 1(b) and 1(c), the 

distributed inductance and capacitance are L=0.166 H/mm and C=66.67 pF/m in all 

three sections and only the center section is lossy. The conductance G is set to zero in 

each section, resulting in 
2
Ra
L

= , 
2
Rb
L

= −  with a characteristic impedance 

2
02

R j LZ
j C
+

=
w

w
 in the center section and 01 03 0Z Z Z L C= = = in the two end 

sections. Figs. 1(b)-(c) show the S-parameter 11S = Γ  obtained by discrete Fourier 

transformation (DFT) of the time domain reflected wave on the first transmission line 

section calculated using a Gaussian pulse excitation in the propagator formulas (28) and 

(29). A comparison is made with the exact result obtained by evaluating the exact 

frequency domain expression [56] 

 

d

Z03 Z02 Z01 

 

(a) 

Fig. 1 (a) Three concatenated transmission lines sections. Each section has the same set 
of distributed parameters L, G, and C, but R is zero on the two outside sections and non-
zero on the center section. S11 versus frequency comparison between exact results and 
numerical calculations based on the EP method with (b) a low-loss and (c) a high-loss 

center section. 
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Fig. 1 Continued. 
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2

12 21
2

12 211

d

d
e
e

Γ + Γ
Γ =

+ Γ Γ

g

g                                                   (30) 

where 02 01
12

02 01

Z Z
Z Z

−
Γ =

+
, 12 21Γ = −Γ , ( )2R j L j C= +g w w . 

A range of results representative of low loss, 2R =0.1, 0.5, 1 Ω/m and high loss, 

2R =10, 50, 100 Ω/m, distributed resistances are shown in Figs. 1(b) and 1(c). The lossy 

line section has a length 0.2d m= . In order to apply the EP equations (28) and (29), the 

center transmission line section is subdivided into 20 cells each of width 0.01z mΔ = . 

The EP and exact results show excellent agreement over the frequency range 0 6GHz− . 

Greater accuracy or bandwidth can be achieved by using more and smaller segments. 

 

2.6. Linear taper T.L. 

In Fig 2(a) the center section is a linearly tapered lossless transmission line. The 

linear taper is determined by   

( )02 01( ) 1 , 0Z z Z qz z d= + ≤ ≤                           (31) 

where 01 25Z = Ω , 03 275Z = Ω , 0.1d m= , and 1100q m−= .  

Consistent with (31) the inductance and capacitance of the center transmission line 

section are 2 1(1 )L L qz= +  and 2 1 /(1 )C C qz= +  where 1 83.33 /L nH m= , 

1 0.133 /C nF m= . The S-parameter 11S  is compared with the analytical solution [16, 57], 

           01
11

01

in

in

Z ZS
Z Z

−
= Γ =

+
                              (32) 
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(b) 

Fig. 2. (a) Lossless transmission line with a linear taper and (b) S11 versus frequency 
comparison between exact results with numerical calculations based on the EP method. 
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where                                           02

02
in

AZ BZ
CZ D

+
=

+
                              (33) 

[ ]1 1 0 2 0 2 1 1( ) ( ) ( ) ( )
2

oA J u Y u J u Y u
q

= −
pb

 

( )[ ]01 1 2 1 1 1 1 1 21 ( ) ( ) ( ) ( )
2

oB j Z qd J u Y u J u Y u
q

= − + −
pb

 

[ ]0 1 0 2 0 2 0 1
01

( ) ( ) ( ) ( )
2

oC j J u Y u J u Y u
qZ

= −
pb

 

( )[ ]0 1 1 2 1 2 0 11 ( ) ( ) ( ) ( )
2

oD qd J u Y u J u Y u
q

= − + −
pb

                      (34) 

with  o pv=b w , 1 ou q= b , ( )2 11u qd u= + ,   

( )nJ x  is the Bessel function of the first kind of order n , ( )nY x  is the Bessel 

function of the second kind of order n  and w  is the radian frequency. The phase 

velocity, determined by 2 21pv L C= , is the same in all three transmission line sections. 

Fig 2(b) shows the exact result given above compared with that obtained by the EP 

method. As shown in 2(b), excellent agreement with the exact result is observed when 

the EP method results were calculated with the linear transmission line section 

subdivided into 80 cells. As before, more cells on the same length of line will give 

agreement over a wider frequency range. 

 

2.7. Exponential taper T.L. 

  A lossy transmission line that is also nonuniform due to an exponential taper in 
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the distributed parameters in the center section is pictured in Fig 3(a).  
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(b) 

Fig. 3. (a) Exponential tapered lossy transmission line with (b) S11 versus frequency 
comparison between exact results and EP method numerical calculations. 
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As before the conductance of all three transmission line sections is zero. In the 

center section ( ) ( )2 1 3 1exp / lnR R z d R R⎡ ⎤= ⎣ ⎦ , ( ) ( )2 1 3 1exp / lnL L z d L L⎡ ⎤= ⎣ ⎦  and 

( ) ( )2 1 3 1exp / lnC C z d C C⎡ ⎤= ⎣ ⎦  with 1 0.166 /L H m= m , 3 0.25 /L H m= m , 

1 66.66pF /C m= , 3 44.44pF /C m= , 1 0.1 /R m= Ω  and 3 0.5 /R m= Ω . The length of the 

tapered section is 0.20 m. 

This exponentially tapered line has an analytical solution for the reflection 

coefficient [18] 

2
03

11
01

1 1 ln
4

d ZeS
d Z

− ⎛ ⎞−
Γ = = ⎜ ⎟

⎝ ⎠

g

g
             (35) 

where ( )( )2 2 2R j L j C= +g w w . The characteristic impedance of each section is 

again determined by ( ) ( )0n n n nZ R j L j C= + w w  where 1,2,3n = . For the EP results 

shown in Fig. 3(b) the center transmission line section is discretized into 50 cells of 

width 0.004 m. Fig. 3(b) shows a comparison between the EP method, Eqn. (28) and 

(29), and analytical solution, Eqn. (35). There is excellent agreement up to 6 GHz, but as 

before agreement over a wider frequency band can be achieved by subdividing the 

nonuniform center section into more cells. 

 

2.8. Numerical dispersion 

A numerical dispersion relation for the EP method can be obtained by first placing 

Eqns. (26) and (27)  in the indexed form,  
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1 1 1 10
1 1 1 1

1
2 2

n n n n n
i i i i i

ZV V V I I− − − −
+ − + −⎡ ⎤ ⎡ ⎤= + − −⎣ ⎦ ⎣ ⎦       (36) 

1 1 1 1
1 1 1 1

0

1 1
2 2

n n n n n
i i i i iI I I V V

Z
− − − −

+ − + −⎡ ⎤ ⎡ ⎤= + − −⎣ ⎦ ⎣ ⎦       (37) 

Here n  represents the time step and i  the spatial step. Voltage and current waves 

propagating through the numerical lattice can be expressed as  

( )
0

pj n ki vn
iV V e −= w t t

                            (38) 

( )
0

pj n ki vn
iI I e −= w t t

                                       (39) 

where k is numerical propagation constant. Substituting these expressions into  

(36) and (37) gives 

0 0 0 0cos( ) sin( )j
p pV e V k v jZ I k v= +wt t t   (40) 

0
0 0

0
cos( ) sin( )j

p p
ZI e I k v j k v
V

= +wt t t   (41) 

Next, substituting (41) into (40) results in a numerical propagation constant  

p
k

v
=
wt
t                                          (42)  

If pv t is equated to zΔ  then pv c=  the velocity of a wave in a homogeneous 

medium. However, this definition is not always convenient when the numerical region 

contains a variety a dielectric materials or expedient when attempting to maintain 

numerical stability.  
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Fig 4. A Gaussian pulse propagated 15m, comparison between FDTD and EP methods. 
(a) 1s = (b) 0.5s = , and (c) 0.25s =  

For these reasons it can be set,  

   p
zv

s
Δ

=t                                        (43) 
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where in principle s can be any number. Substituting (43) into  (42) gives the 

numerical dispersion relation 

k s sk
c

= =
w

                                              (44) 

This result says that the numerical space propagation constant is directly 

proportional to the physical space propagation constant. Similarly, from (43) the 

numerical space phase velocity pv  is proportional to the physical space phase velocity 

according to  

1
pv c

s
=                                   (45) 

Fig. 4 shows a Gaussian pulse that has propagated approximately 15m in a 

transmission line modeled with EP and 2nd order FDTD method lattices. 

Here 0.167 /L H m= m , 66.67 /C pF m= , 0.5 /R m= Ω , and 0G = .  The incident 

Gaussian pulse is formed by 

( ) ( )( )2 2
sV t = exp t 5− − k k                                  (46) 

where t  is the time step and 10=k . The numerical space grid size is 

0.167 /L H m= m 0.1z mΔ =  and three different time steps ( 1s = , 0.5s = , and 0.25s = ) 

are used. The pulse does not reach the numerical boundary in any of these examples.  

The results in Fig. 4(a) show that neither method is subject to numerical dispersion 

when 1s = , the magic time step. However, as seen in Fig 4(b) and 4(c), significant 

numerical dispersion is observed with the FDTD method, while there is little or no 

dispersion in the EP method. This is consistent with dispersion relation derived above in 
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(44) which shows that for the homogeneous lossless case the EP method produces a 

numerical expression that has no dispersion, faithfully propagating all frequencies up to 

the Nyquist limit, two numerical points per wavelength.  

With both the FDTD and EP methods the voltage and current at each spatial grid 

point are found by using the previous time field at that point along with the two adjacent 

grid points. It is clear from Fig. 4 that the FDTD results can be improved by using higher 

order methods, which typically require more spatial and/or time points. However, the 

excellent results obtained here and in simulations we have carried out over much greater 

distances and time periods indicate that a higher order EP method is not needed.    

 

2.9. Compatibility between EP and FDTD in magic time step 

Voltage and current for the EP method are introduced in the indexed form,  

 1 1 1 10
1 1 1 1

1
2 2

n n n n n
i i i i i

ZV V V I I− − − −
+ − + −

⎡ ⎤ ⎡ ⎤= + − −
⎣ ⎦ ⎣ ⎦

 (47) 

 1 1 1 1
1 1 1 1

0

1 1
2 2

n n n n n
i i i i iI I I V V

Z
− − − −

+ − + −
⎡ ⎤ ⎡ ⎤= + − −
⎣ ⎦ ⎣ ⎦

 (48) 

Here n  represents the time step and i  the spatial step. The voltages and currents 

along the transmission lines can be written as 

 
n nn

i i i
V V V+ −= +  and 

n nn
i i i

I I I+ −= +  (49) 

 0
V VZ
I I

+ −

+ −= = −  (50) 
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Applying (49) to (47) , it can be expressed 

 

1 1 1 1

1 1 1 1

1 1 1 10
1 1 1 1

1
2

2

n n n nn
i i i i i

n n n n

i i i i

V V V V V

Z I I I I

− − − −+ − + −
+ + − −

− − − −+ − + −
+ + − −

⎛ ⎞= + + +⎜ ⎟
⎝ ⎠

⎛ ⎞− + − −⎜ ⎟
⎝ ⎠

 (51) 

Using (50), it becomes 

 

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

1 1

1 1

1
2

1
2

n n n nn
i i i i i

n n n n

i i i i

n n

i i

V V V V V

V V V V

V V

− − − −+ − + −
+ + − −

− − − −+ − + −
+ + − −

− −− +
+ −

⎛ ⎞= + + +⎜ ⎟
⎝ ⎠

⎛ ⎞− − − +⎜ ⎟
⎝ ⎠

= +

 (52) 

The current can be found from (48), (49), and (50) in the same way. 

 
1 1

1 1

n nn
i i i

I I I
− −− +

+ −
= +  (53) 

Eqn. (53) can be shown in time-spatial numerical grid with Fig. 5. 

1n −

n

i1i − 1i +

I

I I
tΔ

sΔ
 

 

Fig. 5 Current ( )n
iI  expression in time-spatial numerical grid.  
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Zero components  
1 1

0
n n

i i
V V

− −+ +− =  and 
1 1

0
n n

i i
V V

− −− −− =  are added in (52). 

 
1 1 1 1 1 1

1 1

n n n n n nn
i i i i i i i

V V V V V V V
− − − − − −− + + + − −

+ −
= + + − + − (54)  

 
 

We can rearrange (54) and apply (50)  

1 1 1 1 1 1

1 1
1 1 1 1 1 1

0 0 0 01 1

1 1 1 1 1 1
0 1 1

n n n n n nn
i i i i i i i

n n n n n n

i i i i i i

n n n n n n

i i i i i i

V V V V V V V

V V Z I Z I Z I Z I

V V Z I I I I

− − − − − −− + − + − +
+ −

− − − − − −− + − + − +
+ −

− − − − − −− + − + − +
+ −

= + + − − +

= + − − + +

⎡ ⎤⎛ ⎞= + − + − +⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

(55) 

 
 

1V  is represented to single voltage expression using (52). 

1n −

n

1
2

n −

2
tΔ

2
sΔ

i
1
2

i +
1
2

i −1i − 1i +

I

I I

 

2
tΔ

2
sΔ

i
1
2

i +
1
2

i −1i − 1i +

I

I I

 
(a)                                                                          (b) 

Fig. 6 (a) Imaginary grid points with 1
2

i ±  and 1
2

n −  (b) Equivalent expression for n
iI  

= 0 = 0 

= V1 = I1 = I2 
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1 1 1

1
n n n

ii i
V V V V

− − −− += + =  (56) 

Due to (47) and (48), we don’t need to calculate 1
2

i ±  and 1
2

n −  in the EP method. 

However, we assume if there are imaginary points with 1
2

i ±  and 1
2

n −  , n
iI can be 

expressed by 
1
2
1
2

n

i
I

−−

+
 and 

1
2

1
2

n

i
I

−+

−
 shown in Fig. 6 at the magic time step ( ov t sΔ = Δ ).  

 

1 1
1 1

2 2
1 11 1
2 2

n nn nn
i i i i i

I I I I I
− −− −− + − +

+ − + −
= + = +

 (57) 

1n −

n

1
2

n −

2
tΔ

2
sΔ

i
1
2

i +
1
2

i −1i − 1i +

I I

1I2I

 

 
Fig. 7 Computation for 1I  and 2I  

According to (57), 1I  and 2I can be expressed as shown in Fig. 7. 

 
1

1 1
2

1 11
2

 =
nn n

i i i
I I I I

−− −− +
+ +

+ =  (58) 
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1n −

n

1
2

n −

2
tΔ

2
sΔ

i
1
2

i +
1
2

i −1i − 1i +

,V I

EPV

,V I

 

 
1

1 1
2

2 11
2

 =
nn n

i i i
I I I I

−− −− +
− −

+ =  (59) 

In magic time step, characteristic impedance ( )0Z  can be calculated 

 0
o

L t tZ
C Cv t C z

Δ Δ
= = =

Δ Δ
 (60) 

 

i
1
2

i +
1
2

i −1i − 1i +

V

FDTDV

II

 
   (a)EP                                                                  (b) FDTD 

Fig  8 Two different expressions (EP and FDTD) for voltage ( )n
iV  in magic time step. 

Substituting (56), (58), (59) and (60) into (55), it shown to 

 
1 1

1 2 2
1 1
2 2

n nn n
i i i i

tV V I I
C z

− −−

+ −

⎡ ⎤Δ ⎢ ⎥= − −
Δ ⎢ ⎥⎣ ⎦

 (61) 

Using similar mathematical process, current also can be calculated 

 
1

1 1 12
1 1
2 2

n n n n
i i i i

tI I V V
L z

− − − −

+ −

⎡ ⎤Δ ⎢ ⎥= − −
Δ ⎢ ⎥⎣ ⎦

 (62) 
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It is shown that (61) and (62) are same with voltage and current equations of FDTD [11].  

Based on  (47) and (61), it is drawn in Fig. 8. Solid and dash arrows represent 

voltage and current, respectively. Fig. 8 shows there are two different expressions 

( n
EP iV  and n

FDTD iV ) for voltage ( )n
iV  in magic time step.  

 

2.10. Tapered microstrip line 

The EP method can be used to analyze standard TEM mode transmission lines 

such as the coaxial cable and stripline, as well to the quasi-TEM microstrip line and co-

planar waveguide. As an example, results obtained with the EP approach presented here 

are compared to those of a popular commercial circuit simulator (ADS) [58] for a non-

uniform microstrip line shown in Fig. 9(a) with a width taper given by 

( )0( ) 1 ,  0 zw z w pz d= + ≤ ≤                                    (63) 

where ( )1 0 1p w w d= − , 0 0.5w mm= , 1 1.5w mm= , =0.1  d mm , and 0.5h mm= , 

0.02s mm= . The microstrip has a copper conductor ( 75.8 10 /S m= ×s ), an alumina 

substrate 9.7r =e , and a loss tangent 42 10−× . The microstrip line width given in (63) is 

incorporated into the effective dielectric constant ( ee ) and characteristic impedance 

( cZ ) at each point on the nonuniform line using the following [18]: 

( ) ( ) ( )
( )

1 2
1 1 121 0.217 1

2 2
r r

e r
h sz

w z w z h

−
⎛ ⎞+ −

= + + − −⎜ ⎟⎜ ⎟
⎝ ⎠

e ee e         (64) 
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( ) ( ) ( )
0 0 1

c
e a

Z z
z C z

=
m e
e

                                       (65) 

where om and oe are the permeability and permittivity of air respectively, and 

h

w1

εr

s
w0

w(z)

h

w1

εr

s
w0

w(z)

 

(a) 

znzn-1 zn+1

Δzn-1 Δzn

wn-1
wn

 

(b) 

Rs+
-

Vs (t) d
Rl

V1 V2

z
 

(c) 

Fig. 9 (a) Geometry of tapered microstrip line, (b) its modeling and (c) its applied circuit 
for transient simulation. (d) Response at node 1 and (e) Response at node 2. 
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Fig. 9 Continued. 
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( ) ( ) ( )
0 1.393 0.667 ln 1.444a

w z w z
C z

h h
⎡ ⎤⎛ ⎞

= + + +⎢ ⎥⎜ ⎟
⎢ ⎥⎝ ⎠⎣ ⎦

e             (66) 

For the EP numerical method, the lengths nzΔ  and widths nw  for each of n 

microstrip sub-segments are determined by  

( ) ( )n p n e nz v z c zΔ =t t e                                    (67) 

( )n nw w z=                                                (68) 

where c speed of light= .   

With a low loss transmission line the phase velocity is approximately a constant 

because the product of inductance and capacitance is a constant. Constant phase velocity 

results in a constant sub-segment length given by  pz vΔ =t . For the microstrip line the 

different lengths of the sub-segments given in Eqn. (67) are due to a phase velocity pv  

that changes with position, which is in turn attributed to the non-uniform effective 

dielectric constant ee .  The microstrip voltage and current equations are adjusted to 

account for the different sub-section lengths shown in Fig. 9(b) as follows:  

( ) ( ) [ ]

( ) [ ]

( ) [ ]

2

1

2

0 1

1 0

( , ) 1 ( ) ( )
2 3 6

1 ( ) ( )
6

4
( ) ( ) ( )

3

a

n n n n n

n n n n

n

b beV z t V z z V z z

b
Z I z z I z z

b
I b I b V z

−

−

−

⎧⎡ ⎤⎪⎢ ⎥= − + + Δ + − Δ⎨
⎢ ⎥⎪⎣ ⎦⎩

⎡ ⎤
⎢ ⎥− + + Δ − − Δ
⎢ ⎥⎣ ⎦

⎫
+ − ⎬

⎭

t t t

t

t
t t

     (69) 
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( ) ( ) [ ]

( ) [ ]

( ) [ ]

2

1

2

1
0

1 0

( , ) 1 ( ) ( )
2 3 6

1 1 ( ) ( )
6

4
( ) ( ) ( )

3

a

n n n n n

n n n n

n

b beI z t I z z I z z

b
V z z V z z

Z

b
I b I b I z

−

−

−

⎧⎡ ⎤⎪⎢ ⎥= + + + Δ + − Δ⎨
⎢ ⎥⎪⎣ ⎦⎩

⎡ ⎤
⎢ ⎥− + + Δ − − Δ
⎢ ⎥⎣ ⎦

⎫
+ + ⎬

⎭

t t t

t

t
t t

             (70) 

The inhomogeneous microstrip line section is terminated at each end by 

impedance matching resistive loads ( 10 , 100s lR R= Ω = Ω ) as shown in Fig. 9(c). 

The microstrip is excited by a pulse having a Gaussian time domain voltage 

distribution, Eqn. (46) , where 104 10−= ×k . The simulation duration is 10 ns with a 

time step 10 ps=t . Ten numerical points, which corresponds to ten cascaded uniform 

transmission-line sections, are used to obtain the EP method results and numerical 

FORTRAN code showed in APPENDIX D. The voltage response at the input and output 

points of the non-uniform transmission line section is shown in Fig. 9(d) and 9(e). Good 

agreement with the results obtained with ADS is observed in both cases. However, 

because ADS is a time domain simulation based on lumped elements, its assumptions 

and simplifications are valid primarily at low frequencies. EP provides a much more 

rapid calculation. 

 

2.11. Summary 

A highly accurate and general approach for time domain analysis of lossy 

inhomogeneous transmission lines has been described in this chapter. The EP method 
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presented here is an exact solution to the lossy Telegrapher’s equations based on the 

Modal Matrix technique. Simpson’s rule is applied to produce a remarkably accurate 

numerically compatible result. Both lossy and general nonuniform lossy transmission 

lines examples show that this method is not only simple and efficient, but also an 

accurate technique for analyzing lossy nonuniform transmission lines with minimal 

numerical dispersion. In addition, it is shown that this method is compatible with Finite-

Difference Time-Domain (FDTD) in magic time step.  
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CHAPTER III 

TIME DOMAIN ANALYSIS OF MULTICONDUCTOR 

TRANSMISSION LINE 

Time domain analytical and simple closed-form solutions to the coupled 

telegrapher’s equations for the voltage and current on a lossless multiconductor 

transmission line are presented. The resulting expressions are obtained in the form of 

exact time domain propagators operating on the line voltage and current. Time domain 

numerical methods are developed and examples are presented showing that 

exceptionally accurate results are obtained for uniform and nonuniform; coupled and 

triple; strip and microstrip lines.  

 

3.1. Multiconductor line equations for TEM lines 

The transmission line equations in the time domain for N coupled TEM lines are, 

[ ] [ ] [ ]C V I
t z

∂ ∂
= −

∂ ∂
                                 (71) 

                [ ] [ ] [ ]L I V
t z

∂ ∂
= −

∂ ∂
                                 (72) 

where the transmission lines lie along the z-axis. The column vectors [ ]V  and [ ]I  

defined the voltages and currents on the conductors. [ ]L  and [ ]C  are the N×N matrices 

of the per-unit-length inductance and capacitance with, 
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[ ][ ] 2
1 I
p

L C
v

=                               (73) 

where pv  is the phase velocity and I  is the identity matrix. 

 A compacted form for Eqns. (71) and (72) is obtained by gathering the time 

derivative on the left hand side and capacitance and inductance matrices on right, 

[ ]
[ ]

[ ] [ ]

[ ] [ ]

[ ]
[ ]

1

1

0

0

C
V Vz
I It L

z

−

−

∂⎡ ⎤
⎢ ⎥⎡ ⎤ ⎡ ⎤∂∂ ⎢ ⎥= −⎢ ⎥ ⎢ ⎥∂∂ ⎢ ⎥⎣ ⎦ ⎣ ⎦
⎢ ⎥∂⎣ ⎦

                       (74) 

which can be conveniently expressed as a single equation 

F S F
t

∂
=

∂
                                (75) 

where F  is the voltage-current vector and S  is the operator matrix in (74) 

[ ] [ ]F TV I⎡ ⎤= ⎣ ⎦                            (76) 

[ ] [ ]

[ ] [ ]

1

1

0

0
S

C
z

L
z

−

−

∂⎡ ⎤
⎢ ⎥∂⎢ ⎥= −

∂⎢ ⎥
⎢ ⎥∂⎣ ⎦

                       (77) 

A solution to (75) can be obtained by first finding the propagator matrix ( , )K z t  

that satisfies [42] 

( , ) ( , )K S Kz t z t
t

∂
=

∂
                           (78) 

with initial condition 
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0

lim ( , ) ( ')K I
t

z t z z
→

= −d                                (79) 

where δ is the Dirac delta function, 'z  is the initial position of the voltage and 

current at time 0t = . A solution to (78), subject to (79), is 

( ')SK te z z= −d                                  (80) 

Eqn. (80) be expressed as a spectral integral by expanding the exponential in a 

power series and by replacing the delta function by its Fourier integral representation as 

follows, 

( ) ( )2 2 12!
2

K 1 S S zjk z z
zt t e dk

∞
′−

−∞

= + + + ⋅⋅⋅ ∫p      (81) 

After the term by term operations in (81) are carried out, the series is returned to 

exponential form producing 

[ ]1 exp ( ')
2

SK f t
z ze jk z z dk

∞

−∞
= −

π ∫                 (82) 

[ ] [ ]
[ ] [ ]

1

1

0

0
S z

f
z

jk C

jk L

−

−

⎡ ⎤
⎢ ⎥= −
⎢ ⎥⎣ ⎦

                                (83) 

The exponential S f te can be converted to a standard 2N×2N transition matrix A  

via the modal matrix method [55]. First, the eigenvalues 1,...,2Nl  of S f  are found by 

extracting the roots of det 0I S f⎡ ⎤− =⎣ ⎦l , which in this case is 

[ ]
[ ]

1

1
det 0

I

I
z

z

jk C

jk L

−

−

⎡ ⎤
⎢ ⎥ =
⎢ ⎥⎣ ⎦

l

l
                      (84) 
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By using (73) in (84) we obtain the eigenvalues 

1 2 ...... N z p ajk v= = = =l l l l                         (85) 

1 2 2......N N N z p bjk v+ += = = = −l l l l                             (86) 

Next, selecting N-columns of eigenvectors each from I Sa fadj ⎡ ⎤−⎣ ⎦l  and 

I Sb fadj ⎡ ⎤−⎣ ⎦l  respectively, forms the modal matrix.  

[ ] [ ]1 1
M

I Ip p

C C
v v

− −⎡ ⎤−
= ⎢ ⎥

⎢ ⎥⎣ ⎦
                         (87) 

The modal matrix and its inverse along with a diagonalized exponential eigenvalue 

matrix are combined to form the matrix product 

[ ]
[ ]

10

0

S I
A M M

I

a
f

b

t
t

t

e
e

e
−

⎡ ⎤
⎢ ⎥= =
⎢ ⎥
⎣ ⎦

l

l                     (88) 

The matrix multiplications in (88) produce a transition matrix A  with the 

following  

( ) ( )[ ]

( )[ ] ( )
cos sin

sin cos

I
A

I

p z p p z

p p z p z

v k t jv v k t L

jv v k t C v k t

⎡ ⎤−
⎢ ⎥=
⎢ ⎥−⎣ ⎦

                       (89) 

Each of the integrals in (82) can be evaluated analytically. The resulting 

propagator is 

( ) ( ){ } ( ) ( ){ }[ ]

( ) ( ){ }[ ] ( ) ( ){ }
1
2

I
K

I

p p p p p

p p p p p

z v t z v t v z v t z v t L

v z v t z v t C z v t z v t

⎡ ⎤+ + − − + − −
⎢ ⎥= ⎢ ⎥− + − − + + −⎢ ⎥⎣ ⎦

d d d d

d d d d
     (90) 
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where 'z z z− . 

The purpose of the propagator is to evolve an initial previous time voltage and 

current distribution ( ) ( )( ),V z I z⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦  into the present time voltage and current 

( ) ( )( ), , ,V z t I z t⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦ , over a fixed time interval t. Mathematically this operation is a 

spatial convolution of the propagator with the initial voltage and current [42], as 

expressed by  

[ ]
[ ]

[ ]
[ ]

( , ) ( ')
'

( , ) ( ')
K

V z t V z
dz

I z t I z
∞

−∞

⎡ ⎤ ⎡ ⎤
= ⋅⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦
∫               (91) 

Inserting Eqns. (90) into (91) yields the final solution, 

[ ] [ ]1 1( , ) ( ) ( ) ( ) ( )
2 2p p p p pV z t V z v t V z v t v L I z v t I z v t⎡ ⎤ ⎡ ⎤= + + − − + − −⎣ ⎦ ⎣ ⎦    (92)

[ ] [ ]1 1( , ) ( ) ( ) ( ) ( )
2 2p p p p pI z t I z v t I z v t v C V z v t V z v t⎡ ⎤ ⎡ ⎤= + + − − + − −⎣ ⎦ ⎣ ⎦     (93) 

Notice that final solution sets for multiconductor TEM lines are derived by entirely 

analytical process. Eqn. (92) and (93) that the present time voltage, or the present time 

current, is found by taking simple sum and difference combinations of the previous time 

voltage and current amplitudes. If we consider transmission line having single conductor, 

then (92) and (93) reduce to the equations [51], 

{ } { }0
1 1( , ) ( ) ( ) ( ) ( )
2 2p p p pV z t V z tv V z tv Z I z tv I z tv= + + − − + − −       (94) 

{ } { }
0

1 1 1( , ) ( ) ( ) ( ) ( )
2 2p p p pI z t I z tv I z tv V z tv V z tv

Z
= + + − − + − −      (95) 
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where 0Z L C  and 1pv LC= .  

 

3.2. Multiconductor line equations for quasi -TEM lines 

It is difficult to find eigenvalues and eigenvectors of S f  because quasi-TEM lines 

like microstrip line are not satisfied with (73). However, it is known that the 

inhomogeneous structure lines are related as 

 2
0

1 IoL C
v

⎡ ⎤ ⎡ ⎤ =⎣ ⎦ ⎣ ⎦                                          (96) 

where 0v  is the phase velocity and oC⎡ ⎤
⎣ ⎦  is the static capacitance matrix of the 

structure with an air-filled interface.  

 N-fundamental modes of propagation for a symmetrical multi-conductor 

microstrip line can be obtained under the assumption TEM propagation [53].  In order to 

derive the fundamental modes of propagation, it is necessary to find eigenvalues 

( ), , .....a b c nl l l l  and eigenvectors ( )a b c nx , x , x .....x  of [ ]C . The eigenvalues 

( ), , .....o o o o
a b c nl l l l  and eigenvectors ( )a b c nx , x ,x .....xo o o o  of oC⎡ ⎤

⎣ ⎦  will be needed to obtain 

N-fundamental modes. From the eigenvectors N-possible voltage modes can be defined 

[59]. The modal capacitances and the static capacitances for the same structure with an 

air-filled substrate are  

, , .....a b c nC C C C  and , , .....o o o o
a b c nC C C C                       (97) 

It is known that following simple relations are always satisfied  
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det .....

det .....

a b c n

o o o o o
a b c n

C C C C C

C C C C C

⎧ ⎡ ⎤ = × × × ×⎪ ⎣ ⎦
⎨

⎡ ⎤ = × × × ×⎪ ⎣ ⎦⎩

                          (98) 

 Characteristic impedances and phase velocities for the fundamental mode are 

defined below  

0
0

0
0

0
0

1 ,

1 ,

1 ,

o
a

a ao aa a

o
b

b bo bb b

o
n

n no nn n

CZ v v
Cv C C

CZ v v
Cv C C

CZ v v
Cv C C

= =

= =

= =

                                 (99) 

Using the Eqn. (96),  Eqn. (83) for quasi-TEM lines can be converted  

1

2
0

0

0
S

z
f a

z

jk C

jk v C

−⎡ ⎤⎡ ⎤ ⎡ ⎤
⎣ ⎦ ⎣ ⎦⎢ ⎥= − ⎢ ⎥⎡ ⎤ ⎡ ⎤⎢ ⎥⎣ ⎦ ⎣ ⎦⎣ ⎦

                              (100) 

It gives the eigenvalues ( )1 2 3 2, , ..... Nl l l l  and eigenvectors ( )1 2 3 2x , x , x .....x N  

of S f by same procedures of TEM line. 

                              
1 1

2 2

x
x

x

x
x

x

a a
z a

a

a a
z a

a

Eigenvalue Eigenvector

Z
jk v

Z
jk v

⎧ ⎡ ⎤
= ⇒ =⎪ ⎢ ⎥

⎪ ⎣ ⎦
⎨

−⎡ ⎤⎪ = − ⇒ = ⎢ ⎥⎪
⎣ ⎦⎩

l

l
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3 3

4 4

2 1 2 1

2 2

x
x

x

x
x

x

x
x

x

x
x

x

b b
z b

b

b b
z b

b

n n
N z n N

n

n n
N z n N

n

Z
jk v

Z
jk v

Z
jk v

Z
jk v

− −

⎧ ⎡ ⎤
= ⇒ =⎪ ⎢ ⎥

⎪ ⎣ ⎦
⎨

−⎡ ⎤⎪ = − ⇒ = ⎢ ⎥⎪
⎣ ⎦⎩

⎧ ⎡ ⎤
= ⇒ =⎪ ⎢ ⎥

⎪ ⎣ ⎦
⎨

−⎡ ⎤⎪ = − ⇒ = ⎢ ⎥⎪
⎣ ⎦⎩

l

l

l

l

                       (101) 

The modal matrix can be calculated by eigenvectors 

[ ]1 2 2 1 2M x x x x

x x x x

x x x x

N N

a a a a n n n n

a a n n

Z Z Z Z
−=

⎡ ⎤− −⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
= ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥

⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎣ ⎦

        (102) 

Inverse modal matrix is 

T T

T T

1

T T

T T

1 1

1 1

1
2

1 1

1 1

x x

x x

M

x x

x x

a a
a a

a a
a a

n n
n n

n n
n n

p Z

p Z

p Z

p Z

−

⎡ ⎤⎡ ⎤
⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥⎣ ⎦
⎢ ⎥

⎡ ⎤⎢ ⎥
−⎢ ⎥⎢ ⎥

⎢ ⎥⎢ ⎥⎣ ⎦
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎡ ⎤
⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥⎣ ⎦
⎢ ⎥

⎡ ⎤⎢ ⎥
−⎢ ⎥⎢ ⎥

⎢ ⎥⎢ ⎥⎣ ⎦⎣ ⎦

                                       (103) 

where 2xn np = and Txn is transverse matrix of xn . 

Using the modal matrix and its inverse, transition matrix A can be solved by 



52 
 
 
 

following 

[ ] [ ]
[ ] [ ]

1

2

11 121

21 22

0 0
A A0
A A0

0 0

SA M Mf

N

t

t

t

e

e

e

−

⎡ ⎤
⎢ ⎥

⎡ ⎤⎢ ⎥
= = = ⎢ ⎥⎢ ⎥

⎣ ⎦⎢ ⎥
⎢ ⎥
⎣ ⎦

l

l

         (104) 

The matrix multiplications in (104) produce a transition matrix A  with the 

following elements  

[ ] ( ) [ ]

[ ] ( ) [ ]

[ ] ( ) [ ]

[ ] [ ]

11

12

21

22 11

cos
A A

sin
A A

sin
A A

A A

n
i z

i
ii a

n
i i z

i
ii a

n
i z

i
i ii a

v k t
p

jZ v k t
p

j v k t
Z p

=

=

=

=

−
=

−
=

=

∑

∑

∑

                                      (105) 

where , , ,...,i a b c n=  and  

[ ] [ ]
T

T
T

01A
0

x
x x x x

x

i

i i i

t
i

i i i i it t t
i

e

e e e
− −

⎡ ⎤ ⎡ ⎤
⎢ ⎥= − =⎢ ⎥
⎢ ⎥ ⎢ ⎥−+ ⎣ ⎦⎣ ⎦

l

l l l          (106) 

The resulting propagator is 

[ ] [ ]
[ ] [ ]

11 12

21 22

K K
K K

K
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

                       (107) 

with  

[ ] ( ) ( ) [ ]11
1K A
2

n
i i

i
ii a

z v t z v t
p=

+ + −
= ∑

d d
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[ ] ( ) ( ) [ ]

[ ] ( ) ( ) [ ]

[ ] [ ]

12

21

22 11

1K A
2

1K A
2

K K

n
i i

i i
ii a

n
i i

i
i ii a

z v t z v t
Z

p

z v t z v t
Z p

=

=

+ − −
= −

+ − −
= −

=

∑

∑

d d

d d
 

Inserting (107) into (91), time domain solutions for quasi-TEM line having N-

conductors are 

[ ] [ ] [ ]
[ ]

( ) ( )A1( , )
2 ( ) ( )

n i ii

i i i ii a

V z v t V z v t
V z t

p Z I z v t I z v t=

⎧ ⎫+ + −⎪ ⎪= ⎨ ⎬
− + − −⎪ ⎪⎩ ⎭

∑             (108)

[ ] [ ] [ ]

[ ]

( ) ( )
A1( , ) 1 ( ) ( )2

i in
i

i iii a
i

I z v t I z v t
I z t

V z v t V z v tp
Z=

⎧ ⎫+ + −
⎪ ⎪= ⎨ ⎬− + − −⎪ ⎪
⎩ ⎭

∑             (109) 

Notice that these expressions for multiconductor quasi-TEM lines are computed by 

summing the N-fundamental mode voltages and currents. In the following section, 

examples are given that demonstrate the accuracy of this result. 

 

3.3. Uniform coupled strip lines  

For the numerical method, the time increment between initial time ( t′ ) and the 

present time ( t ) is chosen to be a constant t t′= −t . This change is implemented by 

making the replacement t →t  in the above equations. The numerical spatial increment 

is defined by pv zΔt where the velocity pv  is constant. These substitutions in (92) and 

(93) , give a set of equations that are convenient for numerical calculation,  



54 
 
 
 

[ ] [ ] [ ][ ]1 1( , ) ( ) ( ) ( ) ( )
2 2 pV z V z z V z z v L I z z I z z= + Δ + − Δ − + Δ − − Δt    (110)

[ ] [ ] [ ][ ]1 1( , ) ( ) ( ) ( ) ( )
2 2 pI z I z z I z z v C V z z V z z= + Δ + − Δ − + Δ − − Δt        (111) 

Fig. 10(a) shows cross section of uniform coupled strip lines. The coupled strip 

line have dimension 10w m= m , 20s m= m , 5t m= m , 2 25h m= m , and 3.5r =e . All 

metallic parts are assumed to be perfect conductors. The elements of the capacitance 

matrix [ ]C , obtained by using the formulation in [18,60], are  
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(b) 

Fig. 10 (a) Geometry of uniform coupled strip lines, (b) its applied circuit for transient 
simulation. (c) responses at node Vne1 and Vfe1 and (d) responses at node Vne2 and Vfe2. 
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Fig. 10 Continued. 
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[ ] 1.476465 -0.0500974
-0.0500974 1.476465

C pF cm
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

                    (112) 

and the inductance matrix [ ]L  from (73) is 

[ ] 2.640550 0.0895955
0.0895955 2.640550

L nH cm⎡ ⎤
= ⎢ ⎥

⎣ ⎦
                    (113) 

The coupled strip lines have equal lengths ( 6d cm= ) and are terminated at each 

end by impedance matching resistive loads ( 1 2 10S SZ Z= = Ω , 1 2 100L LZ Z= = Ω ) as 

shown in Fig. 10(b). The strip line is excited by a pulse having a Gaussian time domain 

voltage distribution 

( ) ( )( )2 2
sV t = exp t 5− − k k                                     (114) 

where 104 10−= ×k . The simulation duration is 10 ns with a time step 10 ps=t . 

Results obtained with the direct time domain EP approach presented here are 

compared to those of a commercial circuit simulator (ADS) [58]. The voltage response 

at the near ends ( 1 2,ne neV V ) and far ends ( 1 2,fe feV V ) are shown in Fig. 10(c) and (d). 

Good agreement with the results obtained with ADS is observed in both cases.  

 

3.4 Non-uniform coupled strip lines 

In Fig 11(a) the signal lines are nonuniform due to a linear taper. The linear taper 

is determined by  

( )
( )

0

0

( ) 1

( ) 1 ,  0 z

w z w pz

s z s qz d

= +

= + ≤ ≤
              (115) 
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where ( )1 0 1p w w d= − , ( )1 0 1q s s d= − , 0 10w m= m , 1 20w m= m , 

0 20s m= m  , 1 10s m= m , and =0.1d mm . The thickness ( t ) of conductors, substrate 

height ( 2h ), and permittivity ( re ) are are the same as in the uniform transmission line 

example Fig. 10(a). Fig. 11(b) shows the numerical modeling of nonuniform coupled 

strip lines. The lengths zΔ , widths mw  and separation distance ms  for each of m strip 

sub-segments are determined by  

p rz v cΔ =t t e                                             (116) 

( )0 1m mw w pz= +                                               (117) 

( )0 1m ms s qz= +                                               (118) 

where speed of lightc = . The [ ]mC  and [ ]mL  matrix elements are determined as 

follows [61]: 

[ ] 11 12

21 22

C C

C C
m m

m m
mC

⎡ ⎤
= ⎢ ⎥

⎢ ⎥⎣ ⎦
 and [ ] 11 12

21 22

m m

m m
m

L L
L

L L

⎡ ⎤
= ⎢ ⎥

⎢ ⎥⎣ ⎦
                  (119) 

where 
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11 22

12 21

11 22

12 21
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m m
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m m
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L L Z Z
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⎝ ⎠
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e

e

e
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and [18] 
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(b) 

Fig. 11 (a) Nonuniform coupled strip lines and its applied circuit for transient simulation, 
(b) numerical modeling, (c) responses at node Vne1 and Vfe1 and (d) responses at node 

Vne2 and Vfe2. 
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Fig. 11 Continued. 
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Once [ ]mC  and [ ]mL are calculated, EP approach is used to compute transient 

response of Fig. 11(a). The EP coupled strip voltage and current equations incorporate 

the different sub-section lengths shown in Fig. 11(b) as follows:  

[ ] [ ]

[ ][ ]

1( , ) ( ) ( )
2

1 ( ) ( )
2

m m m

p m m m

V z V z z V z z

v L I z z I z z

= + Δ + − Δ

− + Δ − − Δ

t
        (120)

[ ] [ ]

[ ][ ]

1( , ) ( ) ( )
2

1 ( ) ( )
2

m m m

p m m m

I z I z z I z z

v C V z z V z z

= + Δ + − Δ

− + Δ − − Δ

t
        (121) 

For the time domain simulation, nonuniform coupled strip lines are connected by 

loads ( 1 2 10S SZ Z= = Ω , 1 2 100L LZ Z= = Ω ). The input signal is again the Gaussian 

voltage distribution given by Eqn. (114). In Fig. 11(c,d), voltages at the near ( 1 2,ne neV V ) 

and far ( 1 2,fe feV V ) ends of the transmission line show excellent agreement with the ADS 

generated frequency domain results.  

 

3.5. Three asymmetric coupled strip lines 

Fig. 12 shows an example of three asymmetric coupled strip lines. The strip has 
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substrate height ( 1.5h mm= ), permittivity ( 3.5r =e ), line width 

( 1 1.5w mm= , 2 2.0w mm= , and 3 3.5w mm=  ), separation distance ( 1 1.0s mm= and 

2 0.5s mm= ), conductor thickness ( 0.01t mm= ) and length ( 9.0d cm= ) as shown in Fig. 

12(a). Using these dimensions in the [62], we obtain the self and mutual inductances and 

capacitances 
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(b) 

Fig. 12 (a) Asymmetric three coupled strip lines, (b) its applied circuit for transient 
simulation, (c) responses at node Vne1 and Vfe1, (d) responses at node Vne2 and Vfe2 , and 

(e) responses at node Vne3 and Vfe3 
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Fig. 12 Continued. 
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Fig. 12 Continued. 

 

[ ]
3.282 0.3281 0.04416
0.3281 2.692 0.3547

0.04416 0.3547 1.903
L nH cm

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

                  (122) 

[ ]
1.201 0.1463 0.0006074
0.1463 1.501 0.2762

0.0006074 0.2762 2.097
C pF cm

− −⎡ ⎤
⎢ ⎥= − −⎢ ⎥
⎢ ⎥− −⎣ ⎦

      (123) 

For time domain simulation the strip lines are excited by a Gaussian pulse and 

terminated by resistive loads ( 1 2 3 50S S SZ Z Z= = = Ω , 1 2 3 100L L LZ Z Z= = = Ω ) as 

shown in Fig. 12(b). The EP method transient response on the near ( 1 2 3, ,ne ne neV V V ) and 
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far ( 1 2 3, ,ne ne neV V V ) ends of the transmission line are shown in Fig 12(c, d, e). Many time 

domain methods such as ADS and the fundamental modes technique do not provide 

general solutions for asymmetric lines.   

 

3.6. Uniform coupled microstrip lines 

A time domain numerical method is obtained by replacing the time step 0 t→ by a 

time increment t  and the numerical spatial increment i iv zΔt , Eqn. (108) and (109) 

become 

[ ] [ ] [ ]
[ ]

( ) ( )A1( , )
2 ( ) ( )

n i ii

i i i ii a

V z z V z z
V z

p Z I z z I z z=

⎧ ⎫+ Δ + − Δ⎪ ⎪= ⎨ ⎬
− + Δ − − Δ⎪ ⎪⎩ ⎭

∑t           (124)

[ ] [ ] [ ]

[ ]

( ) ( )
A1( , ) 1 ( ) ( )2

i in
i

i iii a
i

I z z I z z
I z

V z z V z zp
Z=

⎧ ⎫+ Δ + − Δ
⎪ ⎪= ⎨ ⎬− + Δ − − Δ⎪ ⎪
⎩ ⎭

∑t           (125) 

As an example, if there are two symmetric microstrip conductors, there will be two 

fundamental propagating modes ( ,i a b= ). The capacitance matrix and the static 

capacitance matrix for the same structure with an air-filled interface are 

[ ] 11 12

12 11

C C
C C

C
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

  and 11 12

12 11

C C

C C

o o
o

o o
C

⎡ ⎤
⎡ ⎤ = ⎢ ⎥⎣ ⎦ ⎢ ⎥⎣ ⎦

                         (126) 

The eigenvalues and corresponding eigenvectors of the capacitance matrix are 

found by solving [ ]( ) 0I xC− =l , which gives 
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11 12

11 12

1
1

1
1

x

x

a a

b b

Eigenvalue Eigenvector

C C

C C

⎧ −⎡ ⎤
= − ⇒ =⎪ ⎢ ⎥

⎪ ⎣ ⎦
⎨

⎡ ⎤⎪ = + ⇒ = ⎢ ⎥⎪ ⎣ ⎦⎩

l

l

                        (127) 

From the eigenvectors xa  and xb  we obtain the following conditions for each of 

the two possible voltage modes: 

1 2

1 2

mode :
mode :

a a

b b

a V V
b V V

− = −

− =
                                      (128) 
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(b) 

Fig. 13 Electric field distributions of coupled microstirp for (a) a-mode (b) b-mode.  
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where 1aV  and 2aV  are the modea −  excitation voltages in the 1st and 2nd 

conductors respectively and 1bV  and 2bV  are the modeb −  applied voltages in 1st and 2nd  

line. Fig. 13 shows a sketch of the electric field lines for the two fundamental modes 

given by (128). When there are two symmetric lines, the modea −  and modeb −  are 

referred to as the odd-mode and even-mode, respectively [60]. Now suppose that the 

charges of the conductors are related to the line potentials and capacitances by  

[ ] [ ] [ ]Ci iQ V= ⋅                                                (129) 

For the modea − , we obtain the modal capacitances 

1
11 12

1
C Ca

a

Q
V

= −                                          (130) 

2
11 12

2
C Ca

a

Q
V

= −                                          (131) 

and similarly for the modeb − , 

1
11 12

1
C +Cb

b

Q
V

=                                           (132) 

2
11 12

2
C +Cb

b

Q
V

=                                          (133) 

These are the redefined fundamental mode capacitances from the N-voltage modes. 

From these equations one gets 

11 12C CaC = −                                                 (134) 

11 12C +CbC =                                                  (135) 
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Also, in the same way we can calculate the modea −  and modeb − capacitances of 

oC⎡ ⎤
⎣ ⎦ , 

11 12C Co o o
aC = −                                               (136) 

11 12C +Co o o
bC =                                                (137) 

The characteristic impedances ( ,a bZ Z ) and phase velocities ( ,a bv v ) for each 

mode can be obtained from Eqns.  (99).  

The eigenvalues ( )1 2,l l  and eigenvectors ( )1 2x , x  of S f  are defined in Eqn. 

(101). Transient matrix A , Eqn. (104) can be calculated using modal matrix Eqn.(102) 

and its inverse matrix Eqn. (103) 

[ ] [ ]
[ ] [ ]

11 12

21 22

A A
A A

A
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

                                                  (138) 

[ ] ( ) [ ] ( ) [ ]

[ ] ( ) [ ] ( ) [ ]

[ ] ( ) [ ] ( ) [ ]

[ ] [ ]

11

12

21

22 11

cos cos
A A A

sin sin
A A A

sin sin
A A A

A A

a z b z
a b

a b

a a z b b z
a b

a b

a z b z
a b

a a b b

v k t v k t
p p

jZ v k t jZ v k t
p p

j v k t j v k t
Z p Z p

= +

− −
= +

− −
= +

=

 

where 2a bp p= = ,  

[ ] 1 1
A

1 1a
−⎡ ⎤

= ⎢ ⎥−⎣ ⎦
 and [ ] 1 1

A
1 1b

⎡ ⎤
= ⎢ ⎥

⎣ ⎦
                                (139) 
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The resulting propagator is 

[ ] [ ]
[ ] [ ]

11 12

21 22

K K
K K

K
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

                                     (140) 

with the matrix elements 

[ ]
( ) ( ) [ ]

( ) ( ) [ ]
11

A1 2K
2

A
2

a a
a

b b
b

z v t z v t

z v t z v t

⎧ ⎫+ + −
⎪ ⎪⎪ ⎪= ⎨ ⎬

+ + −⎪ ⎪+⎪ ⎪⎩ ⎭

d d

d d  

[ ]
( ) ( ) [ ]

( ) ( ) [ ]
12

A1 2K
2

A
2

a a
a a

b b
b b

z v t z v t
Z

z v t z v t
Z

⎧ ⎫+ − −
⎪ ⎪⎪ ⎪= − ⎨ ⎬

+ − −⎪ ⎪+⎪ ⎪⎩ ⎭

d d

d d  

[ ]

( ) ( ) [ ]

( ) ( ) [ ]
21

A
21K

2
A

2

a a
a

a

b b
b

b

z v t z v t
Z

z v t z v t
Z

⎧ ⎫+ − −
⎪ ⎪
⎪ ⎪= − ⎨ ⎬

+ − −⎪ ⎪+⎪ ⎪⎩ ⎭

d d

d d  

[ ] [ ]22 11K K=  

Finally, the time domain solutions for coupled quasi-TEM line are  

[ ]

[ ] [ ]

[ ] [ ]

[ ] [ ]

[ ] [ ]

A
( ) ( )

2
A

( ) ( )1 2( , )
2 A

( ) ( )
2
A

( ) ( )
2

a
a a

b
b b

a a
a a

b b
b b

V z v t V z v t

V z v t V z v t
V z t

Z
I z v t I z v t

Z
I z v t I z v t

⎧ ⎫
+ + −⎪ ⎪

⎪ ⎪
⎪ ⎪

+ + + −⎪ ⎪⎪ ⎪= ⎨ ⎬
⎪ ⎪− + − −⎪ ⎪
⎪ ⎪
⎪ ⎪− + − −⎪ ⎪⎩ ⎭

                      (141)
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[ ]

[ ] [ ]

[ ] [ ]

[ ] [ ]

[ ] [ ]

A
( ) ( )

2
A

( ) ( )
21( , ) A2 ( ) ( )

2
A

( ) ( )
2

a
a a

b
b b

a
a a

a

b
b b

b

I z v t I z v t

I z v t I z v t
I z t

V z v t V z v t
Z

V z v t V z v t
Z

⎧ ⎫
+ + −⎪ ⎪

⎪ ⎪
⎪ ⎪

+ + + −⎪ ⎪
⎪ ⎪= ⎨ ⎬
⎪ ⎪− + − −
⎪ ⎪
⎪ ⎪
⎪ ⎪− + − −⎪ ⎪⎩ ⎭

                      (142) 

The two-conductor quasi-TEM transmission line equations reduce to those of the 

TEM transmission line case, where  

0
a b p

r

vv v v= = =
e

                                          (143) 

1 1
a

p a
Z

v C
=   and  

1 1
b

p b
Z

v C
=                                 (144) 

due to a b
ra a

a b

C C

C C
= = e .  

Substituting (143) into  (141) and (142), solutions Eqns. (141) and (142)will 

convert 

[ ]
[ ] [ ]( )

[ ] [ ]( )

1 A A ( ) ( )1 2( , )
12 A A ( ) ( )
2

a b p p

a a b b p p

V z v t V z v t
V z t

Z Z I z v t I z v t

⎧ ⎫⎡ ⎤+ + + −⎪ ⎪⎣ ⎦⎪ ⎪= ⎨ ⎬
⎪ ⎪⎡ ⎤− + + − −⎣ ⎦⎪ ⎪⎩ ⎭

              (145)

[ ]
[ ] [ ]( )

[ ] [ ]

1 A A ( ) ( )
21( , ) A A12 ( ) ( )

2

a b p p

a b
p p

a b

I z v t I z v t
I z t

V z v t V z v t
Z Z

⎧ ⎫⎡ ⎤+ + + −⎪ ⎪⎣ ⎦⎪ ⎪= ⎨ ⎬⎛ ⎞⎪ ⎪⎡ ⎤− + + − −⎜ ⎟ ⎣ ⎦⎪ ⎪⎝ ⎠⎩ ⎭

              (146) 
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Sum between [ ]A
2

a  and [ ]A
2

b  can be calculated by (139). 

[ ] [ ]( ) 2
1 A A
2

Ia b+ =                                             (147) 

where 2I  is 2 2X  identity matrix.Using (144), we can calculate second coefficient 

matrix of (145) and (146) 

[ ] [ ]( ) [ ] [ ] [ ] [ ]1A A1 1 1 1A A
2 2

a b
a a b b p

p a b p
Z Z C v L

v C C v
−⎛ ⎞

+ = + = =⎜ ⎟
⎝ ⎠

     (148) 

[ ] [ ] [ ] [ ]( ) [ ]A A1 A A
2 2

pa b
a a b b p

a b

v
C C v C

Z Z
⎛ ⎞

+ = + =⎜ ⎟
⎝ ⎠

               (149) 

These (147), (148), and (149) lead that quasi-TEM line solutions (141) and (142) 

reduce to the TEM line solutions (92) and (93), respectively.  

Fig. 14(a) shows an example of two coupled microstrip lines. The microstrip has a 

substrate height ( 10h m= m ), permittivity ( 9.8r =e ), line width ( 10w m= m ), separation 

distance ( 10s m= m ), conductor thickness ( 5t m= m ) and length ( 0.1d m= ).The 

characteristic impedances ( 32.0308aZ = Ω , 48.7293bZ = Ω ) and phase velocities 

( 81.4007 10av m s= × , 81.1269 10bv m s= × ) for each mode are obtained using Line 

Calculator [58]. The circuit topology for transient simulation of coupled microstrip lines 

is represented in Fig. 14(b). The coupled microstrip lines are terminated by the resistive 

loads 1 2 50S SZ Z= = Ω  and 1 2 100L LZ Z= = Ω . A Gaussian pulse, Eqn. (114), is applied 

as an input signal. According to Eqn. (128), the individual transmission line voltage  
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Fig. 14 (a) Geometry of coupled microstrip lines, (b) its applied circuit for transient 
simulation, (c) Sets of voltage sources for the fundamental modes, responses at (d) Vne1 

and Vfe1 and (e) Vne2 and Vfe2. 
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sources are related to the fundamental modal voltages by 

1 1

2 2 1 1

1 line :

2 line : 0

st
a b s

nd
a b a b

V V V

V V V V

+ =

+ = − + =
                       (150) 

Eqn. (150) then gives the modal voltages 

1 1 2 2,
2 2
s s

a b b a
V VV V V V= = = = −                             (151) 

shown in Fig.14(c). So by superposition, the excitation of line 1 in Fig. 14(b) can be 

treated as the sum of the a- and b- mode excitations shown in Fig.  14(c).  

In Fig 14(d, e), the EP method transient voltage responses at the near ( 1 2,ne neV V ) 

and far ( 1 2,fe feV V ) ends of each transmission line is shown and compared with results 

obtained using ADS commercial software. Excellent agreement is observed in both cases 

confirming the accuracy of the EP method.  

 

3.7. Three coupled microstrip lines having different widths 

Now consider three coupled microstrip transmission lines having different 

conductor widths as shown in Fig.  15(a). The microstrip has a substrate height 

( 1.524h mm= ), permittivity ( 4.65r =e ), line width ( 1.524w mm= , 1 0.762w mm= ), 

separation distance ( 0.254s mm= ), conductor thickness ( 0.0356t mm= ) and length 

( 30.48d cm= ).  

Using the LINPAR [62], we obtain the capacitance matrix  
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1.056 0.3305 0.03524
0.3305 0.9547 0.3305

0.03524 0.3305 1.056
C pF cm

− −⎡ ⎤
⎢ ⎥⎡ ⎤ = − −⎢ ⎥⎣ ⎦
⎢ ⎥− −⎣ ⎦

                 (152) 

0.3532 0.1364 0.02369
0.1364 0.3504 0.1364

0.02369 0.1364 0.3532

aC pF cm
− −⎡ ⎤

⎢ ⎥⎡ ⎤ = − −⎢ ⎥⎣ ⎦
⎢ ⎥− −⎣ ⎦

                (153) 

Applying the same procedure as in (126)-(137), we obtain the eigenvalues 

11 1
2, 0 ,

1 1 1

x x xa b cu
u

⎡ ⎤
⎡ ⎤ ⎡ ⎤ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥= = = −⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦ ⎢ ⎥

⎣ ⎦

                        (154) 

where 1.5177u =  and modal capacitances 

0.5192, 1.0912, 1.4563

0.1468, 0.3769, 0.5331

a b c

a a a
a b c

C C C pF cm

C C C pF cm

= = =

= = =
                (155) 
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Fig. 15 (a) Geometry of three coupled microstrip lines, (b) its applied circuit for transient 
simulation, (c) Sets of voltage sources for the fundamental modes, (d) Voltage responses 

at Vne1 and Vfe1, (e) Vne2 and Vfe2 and (f) Vne3 and Vfe3 
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Fig. 15 Continued. 
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Fig. 15 Continued. 
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Fig. 15 Continued. 

According to (99) and (101), the modal characteristic impedances and phase 

velocities are 

8

8

8

120.7539 , 1.5951 10

51.9770 , 1.7631 10

37.8299 , 1.8152 10

a a

b b

c c

Z v m s

Z v m s

Z v m s

= Ω = ×

= Ω = ×

= Ω = ×

                          (156) 

[ ]
[ ]
[ ]

T

T

T

A , 4.3034

A , 2.0000

A , 3.7366

x x

x x

x x

a a a a

b b b b

c c c c

p

p

p

= =

= =

= =

                                    (157) 

From the eigenvectors xa , xb , and xc , we can derive the following three possible 

voltage modes [53]: 
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2
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1 3 2

2
1 3

mode :

mode : , 0
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a
a a

b b b

c
c c

Va V V
u

b V V V
u Vc V V

− = =

− = − =

⋅
− = − =

                                   (158) 

For the time domain numerical simulation, the microstrip lines are terminated by 

resistive loads 1 2 3 50S S SZ Z Z= = = Ω  and 1 2 3 100L L LZ Z Z= = = Ω  as shown in Fig. 

15(b). The applied input signal is defined in Eqn. (114). Following (158), each 

fundamental mode is represented a set of three voltage sources, as shown in Fig. 15(c) 

[53]. In Fig. 15(d,e,f), the transient responses at near ends ( 1 2 3, ,ne ne neV V V ) and far ends 

( 1 2 3, ,fe fe feV V V )found by the EP method are compared with those obtained using ADS 

circuit simulator. In each case there is high degree of accuracy. 

 

3.8. Non-uniform coupled microstrip lines 

Fig. 16(a) shows two nonuniform coupled microstrip transmission lines. The 

widths ( )w z  and separation distances ( )s z  are respectively defined by (115). The 

microstrip has substrate height ( 10h m= m ), and permittivity ( 9.8r =e ).  

The numerical model for the set of nonuniform microstrip lines is shown in Fig. 

16(b). The lengths ,m izΔ , widths ,m iw  and separation distances ,m is  for each of m strip 

sub-segments are determined by 

( ), ,m i i m iz v zΔ t                                               (159) 
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( ), ,m i m iw w z=                                                  (160) 

( ), ,m i m is s z=                                                   (161) 

where ( mode)i a a= −  and ( mode)b b − .  

The voltage and current on each of the m sub-segments, obtained from Eqns. (124) 

and (125), is 
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(b) 

Fig. 16 (a) Geometry of nonuniform coupled microstrip lines, (b) its numerical modeling, 
(c) Sets of voltage sources for the fundamental modes, (d) Voltage responses at Vne1 and 

Vfe1, and (e) Vne2 and Vfe2  
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Fig. 16 Continued. 
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Fig. 16 Continued. 
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⎩ ⎭

∑t      (163) 

The phase velocity ( , ,,m a m bv v ) and characteristic impedance ( , ,,m a m bZ Z ) for 

each mode are found in [63] and [64]. The inhomogeneous coupled microstrip lines are 

terminated by resistive loads ( 1 2 50S SZ Z= = Ω , 1 2 100L LZ Z= = Ω ) as shown in Fig 

11(a). A Gaussian pulse, given in (114), serves as the source for the numerical 
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simulation. Each mode source is the same as that given in (128), and shown in Fig 16(c). 

Ten numerical points, which corresponds to ten cascaded uniform transmission-line 

sections, are used to obtain the propagator and ADS method results. The voltage 

response at the near and far ends of the non-uniform transmission line section is shown 

in Fig. 16(d,e). Good agreement with the results obtained with ADS is observed in both 

cases. 

 

3.9. Summary  

As an extension of the analytical and numerical methods described chapter II, this 

chapter presents analytical and simple closed-form solutions to the lossless 

multiconductor transmission line. Mathematical models were developed for TEM and 

quasi-TEM lines. Both techniques shows that the present time voltage (current) is found 

by taking simple sum and difference combination of the previous time voltage and 

current amplitdude. The set of solution for quasi-TEM lines can be reduced to solution 

of TEM lines when the phase velocity and impedauce of each mode are identical.  These 

explicit sets of equations are simple to implement numerically and has been shown to 

give good results with TEM lines and with quasi-TEM lines.  
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CHAPTER IV 

TIME DOMAIN GREEN’S FUNCTION AND PROPAGATOR FOR 

MAXWELL’S EQUATIONS * 

The free space time domain propagator and corresponding dyadic Green’s function 

for Maxwell’s differential equations are derived in 1-, 2-, and 3-dimensions using the 

propagator method. The propagator method reveals terms that contribute in the source 

region, which to our knowledge have not been previously reported in the literature 

(Section 1.3). It is shown that these terms are necessary to satisfy the initial condition, 

that the convolution of the Green’s function with the field must identically approach the 

initial field as the time interval approaches zero. It is also shown that without these terms, 

Huygen’s principle cannot be satisfied. To illustrate the value of this Green’s function 

two analytical examples are presented, that of a propagating plane wave and of a 

radiating point source. An accurate propagator is the key element in the time domain 

path integral formulation for the electromagnetic field. 

 
 

4.1. Maxwell’s equations 

In a homogeneous region the time domain Maxwell curl equations in terms of the 

electric and magnetic field intensities, E  and H , and the electric and magnetic current 

                                                 
* © 2004 IEEE. Parts of this chapter are reprinted, with permission, from R. Nevels and J. Jeong, “The 
Time Domain Green’s Function and Propagator for Maxwell’s Equations,” IEEE Trans. Antennas 
Propagat., vol. 52, No.11, pp. 3012-3018, Nov. 2004.  
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densities Je  and Jm  are given by 

E H Jet
= ∇× −

∂e
∂

                                           (164) 

H E Jmt
= −∇× −

∂m
∂

                                            (165) 

where ,m e  are respectively the permeability and permittivity in a homogeneous 

region. Eqns. (164) and (165) can be expressed as the general matrix equation 

F S F J
t

− ⋅ = −
∂
∂

                                        (166) 

which has a vector field F and vector current J , defined by 

F
T

x y z x y zE E E H H H⎡ ⎤= ⎣ ⎦ , [ ]/ /J J J T
e m= e m  (167) 

and S  is a 6×6 matrix of differential operators, symbolically represented by 

10

1 0
S

⎡ ⎤∇×⎢ ⎥
⎢ ⎥=
⎢ ⎥− ∇×⎢ ⎥⎣ ⎦

e

m

                                                (168) 

 

4.2. Time domain Green’s function and propagator 

The goal is to solve Eqn. (166) to find the field ( , )F r t . To this end a free space 

dyadic Green’s function ( , | , )G r rt t′ ′ , a 6×6 matrix of elements, must be found. Once G  

is known, the present time field ( , )F r t  is determined by [42] 
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( , ) ( , | , ) ( , ) ( , | , ) ( )

ˆ ( , | , ) ( , )

F r G r r J r r G r r F r r

n G r r F r s

o

o

t

o o
v t v

t

s
s t

t t t t dt d t t d

t t t dt d

+

′

+

′ ′ ′ ′ ′ ′ ′ ′ ′= ⋅ + ⋅

′ ′ ′ ′ ′ ′⎡ ⎤+ × ⋅⎣ ⎦

∫ ∫ ∫

∫ ∫
        (169) 

The first integral above is the contribution to the present time field due to the 

current ( , )J r t . Generally the time ot  is taken to be the turn on time of the current J , but 

( , )F r t ot  can be −∞ .The second integral is the present time field contribution due to the 

initial field ( , ) ( )F r F ro ot  prescribed for a volume of space at ot . The third integral in 

(169) accounts for the contribution from the field on the surface s bounding the volume 

of space in which the present time field is to be found. Extending the volume to infinity 

causes this term to go to zero due to the radiation condition. For convenience the field 

vector in this expression is modified by the addition of the medium parameters 

according to, 

F
T

s x y z x y zE E E H H H⎡ ⎤= − − −⎣ ⎦e e e m m m   (170) 

If all that needs to be known is the time evolution of the field, then given the initial 

field throughout space, it is sufficient to find a dyadic propagator ( , | , )K r rt t′ ′  that 

determines the present time field through  

( , ) ( , | , ) ( )F r K r r F r ro o
v

t t t d
′

′ ′ ′= ⋅∫                   (171) 

  The propagator can be obtained by solving the homogeneous equation  
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0 ,K S K t t
t

∂ ′− ⋅ = >
∂

                               (172) 

subject to 

( , | , ) ( )K r r I r rt t′ ′ ′ ′= −d ,    (at time t t ′= ),        (173) 

0K → ,     as  r → ∞                         (174) 

Eqn. (172) along with the conditions (173) and (174) form what is known as the 

propagator method [42].  The propagator is a solution to the homogeneous equation 

(172), therefore it is not the Green’s function, which is a solution to the inhomogeneous 

equation  

( ) ( )G S G I r r t t
t

∂ ′ ′− ⋅ = − −
∂

d d              (175) 

The relationship between the propagator and the Green’s function is (see 

APPENDIX C) 

( , | , ) ( ) ( , | , )G r r K r rt t U t t t t′ ′ ′ ′ ′= −                   (176) 

where the unit step function, 

0,
( )

1,
t t

U t t
t t

′<⎧′− = ⎨ ′>⎩
                            (177) 

enforces causality. Although the dyadic Green’s function can be found using an 

eigenfunction expansion method [38], eigenfunction expansion can be tedious, not to 

mention the necessity of acquiring specialized knowledge of several indigenous rules 

and procedures. For these reasons a much more straightforward plan is to solve (172) 

subject to (173) and (174) with the additional requirement that causality is enforced 
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through (176). 

 To solve (172), K  is expressed as a Fourier integral in terms of its spectral (or 

phase-space) dependence k , 

( , | , ) ( , , , ') k rK r r K k r kj
pt t t t e d

∞
⋅

−∞

′ ′ = ∫                     (178) 

where in Cartesian coordinates ˆ ˆ ˆk x y zx y zk k k= + +  and the differential 

k x y zd dk dk dk=  are in terms of the spatial frequency components , ,x y zk k k  and, in the 

exponent, ˆ ˆ ˆr x y zx y z= + + . Substituting (178) into (172) yields 

0k rK
S K kp j

p p e d
t

∞
⋅

−∞

⎡ ⎤∂
− =⎢ ⎥

∂⎢ ⎥⎣ ⎦
∫              (179) 

where the 6×6 matrix operator S p , the spectral domain dual of (168), can again be 

expressed symbolically, in this case in terms of algebraic quantities, by 

10
( )

1 0

k
S k

k
p

⎡ ⎤×⎢ ⎥
⎢ ⎥=
⎢ ⎥− ×⎢ ⎥⎣ ⎦

e

m

                                (180) 

Eqn. (179) yields the time dependence of K p : 

0
K

S Kp
p pt

∂
− =

∂
                                    (181) 

By substitution it can be shown that a solution to (181) is 

SK Kpt
p oe=                                            (182) 
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Substituting (182) into (178), enforcing (173) and using the standard Fourier 

transform representation of the delta function then gives 

( )
( )

3
1( )

2
S k r k r rK k r r kpt j j

oe e d e d
∞ ∞

′ ′⋅ ⋅ −

−∞ −∞

′= − =∫ ∫d
p

        (183) 

Equating coefficients of exp( )k rj ⋅  in (183), and substituting the result into (182), 

yields 

( )3
1

2
S k rK p j

p e e ′− − ⋅= t
p

                                   (184) 

Here, for brevity, we write t t′= −t , which is the time increment between the 

initial and present time. Finally, substituting (184) into (178) yields the propagator  

( )
( )

3
1

2
S k r rK kp je e d

∞
′⋅ −

−∞

= ∫ t
p

                       (185) 

The exponential matrix term S pe t  can be expanded in the power series 

2 32 32! 3!S I S S Sp
p p pe = + + + + ⋅⋅⋅t t t t               (186) 

When the matrices on the right hand side of (186) are summed, a new 6×6 

“evolution operator” matrix ( ),S A kpe t=t  is created. The power series formed by 

summing the components of the A  matrix yield surprisingly simple closed form 

expressions:  

( )2 2 2 2
11 44 cos( )x y zA A k k k kc k⎡ ⎤= = + +⎣ ⎦t  
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( )2 2 2 2
22 55 cos( )y x zA A k k k kc k⎡ ⎤= = + +⎣ ⎦t  

( )2 2 2 2
33 66 cos( )z x yA A k k k kc k⎡ ⎤= = + +⎣ ⎦t  

[ ] 2
12 21 45 54 1 cos( )x yA A A A k k kc k= = = = − t  

[ ] 2
13 31 46 64 1 cos( )x zA A A A k k kc k= = = = − t  

[ ] 2
23 32 56 65 1 cos( )y zA A A A k k kc k= = = = − t  

2 2
15 24 42 51 sin( )zA A A A jk kc k= − = − = = −h h h t  

2 2
16 34 43 61 sin( )yA A A A jk kc k= − = − = =h h h t   

2 2
26 35 53 62 sin( )xA A A A jk kc k= − = − = = −h h h t  

14 25 36 41 52 63 0A A A A A A= = = = = =                                                    (187) 

where 2 2 2 2
x y zk k k k= + +  and 1c = me  and =h m e  are respectively the phase 

velocity and intrinsic impedance of the homogeneous medium.  

The evolution operator matrices, A , for the 1- and 2-dimensional cases can be 

found by respectively setting two and one of the spectral variables , ,x y zk k k  in (187) to 

zero. Unfortunately, the 3-dimensional propagator, which now has the form 

( )( , | , ) ( , ) k r rK r r A k kjt t t e d
∞

′⋅ −

−∞

′ ′ = ∫                                  (188) 

once evaluated, can not be readily reduced to the 1- or 2-D propagators. For this 

reason the 1-, 2- and 3-D cases are presented separately below. 
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4.3. One-dimensional Green’s functions ( )1G  

Consider the case in which 0x yk k= = . Because this is a one-dimensional field, 

zk k→ , ( ) ( )31 2 1 2→p p  and 

F
T

x yE H⎡ ⎤= ⎣ ⎦                              (189) 

Eqn. (188) becomes  

( )1 ( )
cos( ) sin( )

1
sin( ) cos( )2

K z
z z

jk z z
z

z z

k c j k c
e dkj k c k c

∞
′−

−∞

−⎡ ⎤
⎢ ⎥= −⎢ ⎥
⎢ ⎥⎣ ⎦

∫
t h t

t tp
h

       (190) 

The four matrix elements in brackets are the 1-D forms of the 11A , 15A , 51A , and 

55A  components of (187) above. The integrals in eqn. (190) can be easily evaluated, 

giving 

( ) ( )1 1( )
[ ( ) ( )] [ ( ) ( )]( )

[ ( ) ( )] / [ ( ) ( )]2

G K
z z z z

z z z z

U
c c c cU

c c c c

=

+ + − − + − −⎡ ⎤
= ⎢ ⎥− + − − + + −⎣ ⎦

t
d t d t h d t d tt
d t d t h d t d t

 (191) 

where  δ  represents the Dirac delta function, and for brevity we have defined 

z z z′= − .  

 Because the spatial dependence of the 1-D Green’s function is entirely contained 

in delta functions, Eqn. (169) can be easily evaluated giving 

   

( )
( )

[ ( ) ( )] [ ( ) ( )], ( )
, [ ( ) ( )]/ [ ( ) ( )]2

xo xo yo yox

y xo xo yo yo

E z c E z c H z c H z cE z t U
H z t E z c E z c H z c H z c

+ + − − + − −⎡ ⎤⎡ ⎤
= ⎢ ⎥⎢ ⎥ − + − − + + −⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

t t h t tt
t t h t t

(192) 
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where a zero in the subscript designates the initial fields. This result, which is the 

D’Alembert solution for a set of coupled functions, can be interpreted as follows: The 

field at time t at a point z in 1-D is determined by simple algebraic combinations of the 

fields that existed at the previous time t ′  at the points z c z z± ± Δt . Even though 

(192) appears to be a numerical expression, it is in fact an exact solution to (169) and 

can be applied at the Courant limit without numerical dispersion [51]. 

 

4.4. Two-dimensional Green’s functions ( )2G  

As an example, take the 2-D TM to z case where all fields are zero except , ,z xE H  

and yH . Expressed succinctly as the field vector 

F
T

z x yE H H⎡ ⎤= ⎣ ⎦                                (193) 

Setting yH zk  to zero and replacing ( ) ( )3 21 2 1 2→p p , (2)
33 11A A→ , (2)

34 12A A→ , 

(2)
35 13A A→ , (2)

43 21A A→ , (2)
44 22A A→ , (2)

45 23A A→ , (2)
53 31A A→ , (2)

54 32A A→ , 

(2)
55 33A A→  in equations (187) results in the creation of a 3 3×  2-D evolution operator 

matrix (2)A . Each element of the evolution operator matrix determines a corresponding 

2-D propagator matrix element (2)
mnK , obtained by evaluating (188). For example  

( )
( ) ( ) ( )(2)

11 2
1 cos

2
yx

x y

jk y yjk x x
x y

k k

K kc e e dk dk
∞ ∞

′−′−

=−∞ =−∞

= ∫ ∫ t
p

       (194) 

where 2 2
x yk k k= + , when evaluated results in the Green’s function 
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( )
( )

( ) ( )

( )

(2) (2)
11 11 32 2 2 22

( )( )
2

c c U cUG U K
c c

⎧ ⎫
⎪ ⎪− −⎪ ⎪= = −⎨ ⎬
⎪ ⎪− ⎡ ⎤−⎪ ⎪⎣ ⎦⎩ ⎭

d t r t t rtt
p t r t r

               (195) 

The remaining terms of the Green’s function matrix, which are evaluated with the 

help of identities found in [65,66], are: 

( ) ( )
( ) ( )

( )

( ) ( )

2
12 32 2 2 2 2

( ) sin
2

c U cUG
c c

⎧ ⎫
⎪ ⎪− −⎪ ⎪= −⎨ ⎬
⎪ ⎪− ⎡ ⎤−⎪ ⎪⎣ ⎦⎩ ⎭

d t r r t rh t f
p t r t r

                        (196) 

( ) ( )
( ) ( )

( )

( ) ( )

2
13 32 2 2 2 2

( ) cos
2

c U cUG
c c

⎧ ⎫
⎪ ⎪− −⎪ ⎪= − +⎨ ⎬
⎪ ⎪− ⎡ ⎤−⎪ ⎪⎣ ⎦⎩ ⎭

d t r r t rh t f
p t r t r

               (197) 

(2) (2) 2
21 13G G= h                                                                             (198) 

( ) ( )
( )

( ) ( )

( )

( ) ( )

( ) ( )

2 2
2

22 32 2 2 22

2 2 22 2

( ) ( )cos ( )sin
2 2

cos 2 1
2

c c U cU UG
c c

U c

c c c

⎧ ⎫
⎪ ⎪− −⎪ ⎪= + −⎨ ⎬
⎪ ⎪− ⎡ ⎤−⎪ ⎪⎣ ⎦⎩ ⎭

⎧ ⎫
⎪ ⎪−⎪ ⎪− +⎨ ⎬

⎡ ⎤⎪ ⎪− + −⎢ ⎥⎪ ⎪⎣ ⎦⎩ ⎭

d t r t t rd r t f t f
pr p t r t r

f t r
p r t r t t r

 (199) 
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( ) ( ) ( ) ( )
( )

( ) ( )

( )

( )

( ) ( )

2
23 32 2 2 22

2 2 22 2

( )sin 2
2 2 2 2

1

U c c U c
G

c c

U c

c c c

⎧
⎪ − −⎪= + −⎨
⎪ − ⎡ ⎤−⎪ ⎣ ⎦⎩

⎫
⎪− ⎪− − ⎬

⎡ ⎤ ⎪− + −⎢ ⎥ ⎪⎣ ⎦ ⎭

t f d r d t r t t r
p r t r t r

t r
r t r t t r

   (200) 

(2) (2) 2
31 13G G= h                                                                                        (201) 

(2) (2)
32 23G G=                                                                                                    (202) 

( ) ( )
( )

( ) ( )

( )

( ) ( )

( ) ( )

2 2
2

33 32 2 2 22

2 2 22 2

( ) ( )sin ( )cos
2 2

( )cos 2 1
2

c c U cU UG
c c

U U c

c c c

⎧ ⎫
⎪ ⎪− −⎪ ⎪= + −⎨ ⎬
⎪ ⎪− ⎡ ⎤−⎪ ⎪⎣ ⎦⎩ ⎭

⎧ ⎫
⎪ ⎪−⎪ ⎪+ +⎨ ⎬

⎡ ⎤⎪ ⎪− + −⎢ ⎥⎪ ⎪⎣ ⎦⎩ ⎭

d t r t t rd r t f t f
pr p t r t r

t f t r
p r t r t t r

(203) 

Although these equations are in a relatively compact analytical form, unfortunately 

they have the awkward property of being non-integrable across the singularities at 0=r  

and c=r t .  Away from the singularities these expressions are well defined, but this is 

of little consequence in evaluating (188). It must therefore be concluded that for all 

practical purposes the 2-D time domain Maxwell equation Green’s functions cannot be 

used to analytically obtain 2-D electromagnetic field solutions. However, it is noted that 

it is possible to solve Eqn. (188) numerically provided the 2-D Green’s functions are left 

in integral form [50]. 
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4.5. Three-dimensional Green’s functions ( )3G  

The 3-D Green’s function is found by evaluating all components of the 6 6×  

propagator matrix Eqn. (188). For example 

 

( )

( )
( ) ( ) ( )

2 2 2
3

11 3 2
0

2

2 3 2

2

2

cos1
2

sgn( ) ( )( ) 2 ( ) ( ) 3( )1
4 4

( ) 2 ( ) ( ) ( ) ( ) ( )
4 4 4

k r r k
x y z jk k k kc

K e d
k

R U c Rc R R c R x x
R R R

c R R c R x x c R c R
R R RR

∞
′−

⎡ ⎤+ +
⎢ ⎥=
⎢ ⎥
⎣ ⎦

⎡ ⎤⎡ − ⎤ ′+ − + − −
= + −⎢ ⎥⎢ ⎥

⎢ ⎥⎣ ⎦ ⎣ ⎦

′ ′ ′ ′ ′ ′+ − − − − + −⎡ ⎤ ⎡ ⎤+ − −⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

∫ it

p

td t d d t
p p

d t d d t d t d t
p p p

 (204) 

where  

ˆ ˆ ˆ( ) ( ) ( ) ( )r r x y zx x y y z z′ ′ ′ ′− = − + − + − ,  

( ) ( ) ( )
1 22 2 2R x x y y z z⎡ ⎤′ ′ ′= − + − + −

⎣ ⎦  

1, 0
sgn( )

1, 0
R

R
R

+ >⎧
= ⎨ − <⎩

                              (205) 

By rejecting nonphysical solutions, where 6 6× 0R < , we get 

2
(3)
11 2 3 2

2

2

( ) ( ) ( ) ( ) 3( )1
4 4

( ) ( ) ( ) ( )
4 4

c R R U c R U R x xK
R R R

c R R x x c R
R RR

⎡ ⎤′− − − − − −⎡ ⎤= + −⎢ ⎥⎢ ⎥⎣ ⎦ ⎢ ⎥⎣ ⎦

′ ′ ′ ′− − − −⎡ ⎤− +⎢ ⎥⎣ ⎦

d t d t
p p

d t d d t
p p

       (206) 

Arguments concerning which terms from (204) should be retained in (206) have 

both a mathematical and physical basis. Because of the initial condition 0>t  and the 
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physical requirement 0R > , unit step and delta functions with the argument ( )c R+t  in 

(204) do not contribute to the volume integrals in (169) and are therefore dropped. 

Removal of factors of 2 in front of the unit step and delta functions acting at the origin is 

suggested by the spatial symmetry of the expression in (204) and can be justified by 

applying the mathematical identities   

( ) ( ) / , ( ) ( ) ( ) / 2R R R U R R R′ = − =d d d d     (207) 

The components of the 3-D Green’s function matrix in compact form are  

22
(3) (3)
11 44 2

3( )1 x x x xG G L S T
RR

⎡ ⎤′ ′− −⎛ ⎞= = − + +⎢ ⎥ ⎜ ⎟
⎝ ⎠⎢ ⎥⎣ ⎦

 

22
(3) (3)

5522 2
3( )1 y y y yG G L S T

RR

⎡ ⎤′ ′− −⎛ ⎞= = − + +⎢ ⎥ ⎜ ⎟
⎝ ⎠⎢ ⎥⎣ ⎦

 

22
(3) (3)
33 66 2

3( )1 z z z zG G L S T
RR

⎡ ⎤′ ′− −⎛ ⎞= = − + +⎢ ⎥ ⎜ ⎟
⎝ ⎠⎢ ⎥⎣ ⎦

 

(3) (3) (3) (3)
12 21 45 54 2 2

3( )( ) ( )( )x x y y x x y yG G G G L S
R R
′ ′ ′ ′− − − −⎡ ⎤ ⎡ ⎤= = = = − +⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

 

(3) (3) (3) (3)
13 31 46 64 2 2

3( )( ) ( )( )x x z z x x z zG G G G L S
R R
′ ′ ′ ′− − − −⎡ ⎤ ⎡ ⎤= = = = − +⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

 

(3) (3) (3) (3)
23 32 56 65 2 2

3( )( ) ( )( )y y z z y y z zG G G G L S
R R
′ ′ ′ ′− − − −⎡ ⎤ ⎡ ⎤= = = = − +⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

 

(3) (3) (3) (3)2 2
15 24 42 51

z zG G G G P
R

′−
= − = − = =h h h  

(3) (3) (3) (3)2 2
16 34 43 61

y yG G G G P
R

′−
= − = − = = −h h h   
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(3) (3) (3) (3)2 2
26 35 53 62

x xG G G G P
R

′−
= − = − = =h h h  

(3) (3) (3) (3) (3) (3)
14 25 36 41 52 63 0G G G G G G= = = = = =                                                    (208) 

where 

2 3
( ) ( ) ( ) ( )( )

4 4
c R R U c R U RL U

R R
− − − − −⎡ ⎤= +⎢ ⎥⎣ ⎦

d t d tt
p p

                          (209) 

( ) ( )( )
4

c R RS U
R

′ ′− − −⎡ ⎤= ⎢ ⎥⎣ ⎦
d t dt

p
                                                    (210) 

( ) ( )
4

U c RT
R

′ −
=

t d t
p

                                                                            (211) 

2
( ) ( )( )

44
c R c RP U

RR
′− −⎡ ⎤= +⎢ ⎥⎣ ⎦

d t d tt
pp

                                                    (212) 

Eqns. (208) for the free space Maxwell equation Green’s function can also be 

expressed in the compact dyadic form as 

11 12

21 22

G G
G

G G
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

                               (213) 

with  

11 22
( ) [ ( ) ( )]
4 4

G G Ic R U c R U R
R R

′ − − − −
= = − − ∇∇

d t t
p p

                           (214) 

2
12 21

( )
4

G G Ic R
R
−

= − = ∇×
hd th

p
                                                    (215) 

where I  is the identity matrix  and ( )U t  has been suppressed. The term ( )U R−  

in (214) does not appear in the Maxwell equation Green’s function reported elsewhere 
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( e.g. [40]). It will be shown below that ( )U R−  is not needed if the field is due entirely 

to a current element, the case considered in [40]. However, it must be retained when the 

field is determined from an initial field distribution, as is the case for the second and 

third integrals in (169). 

This completes the derivation of the 1-, 2- and 3-D free space dyadic Green’s 

functions for Maxwell’s equations. In the following section it is shown that the above 

equations satisfy the limiting conditions given in (173) and (174). Examples are 

presented in which the propagated field is found given an initial field and the radiated 

field is determined given an initial current. 

 

4.6. Verification and examples 

The Green’s functions above can be verified by showing that the initial condition, 

Eqn. (173), and the radiation condition, Eqn. (174) are satisfied. The radiation condition 

presents only a few difficulties. In 1-D the delta function components acting at infinity 

yield no contribution. In 2- and 3-D pervasive 1/ r  and 1/ R  multipliers cause each term 

to go to zero as the causal radius approaches infinity.  

 Showing that the initial condition is satisfied is more problematic. In 1-D the 

condition 0c →t  readily leads to the expected delta functions in the diagonal 

components and to off diagonal components that are zero in the Green’s function matrix 

in (191). In 2-D, the problem of a singularity intersecting and delta function prevents any 

realistic conclusions. In 3-D as 0c →t  all off diagonal terms in (208) go to zero due to 

cancellation of like delta functions and the fact that all unit step functions vanish in the 
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limit. All diagonal terms become delta functions as expected. For example 

lim(3)
11 20

( ) ( )
4 4c

R RG
R R→

′
⎯⎯⎯→ − =t

d d
p p

                  (216) 

which is unity when integrated over a spherical volume of radius R. 

As an example of an application of (169), assume that there is no initial current 

and that the initial field is a plane wave with unity amplitude 

( ) ( )cos cos cosxoE t kz t kr= − = −w w q                    (217) 

with /yo xoH E= h . The first integral in (169) is eliminated due to lack of an initial 

current and the last integral goes to zero as the surface enclosing the volume of space 

under consideration approaches infinity. The second integral becomes  

( )(3) (3)
11 15( , ) ( , | , ) ( , | , ) / ( , )r r r r r r rx xo

v

E t G t t G t t E t d
′

′ ′ ′ ′ ′ ′ ′= +∫ h     (218) 

Inserting the Green’s function components into (218) and expressing the resulting 

equation in spherical coordinates with oc rt , ot t= −t , and a tw  gives 

( )

( )

2 2
2 3

2 2

2

( ) ( ) ( ) ( )( , ) 1 3sin cos
4 4

( ) ( ) ( )sin cos
4 4

( ) ( ) cos cos cos
44

r o o
x

v

o o

o o

r r r U r r U rE t
r r

r r r r r
r r

r r r r a kr dv
rr

′

′ ′ ′ ′⎧ − − − − −⎡ ⎤ ′ ′= + −⎨⎢ ⎥′ ′⎣ ⎦⎩

′ ′ ′ ′ ′ ′− + −⎡ ⎤ ′ ′− +⎢ ⎥′ ′⎣ ⎦
′ ′ ′− − ⎫⎡ ⎤ ′ ′ ′ ′+ + −⎬⎢ ⎥′′⎣ ⎦ ⎭

∫
d d q f

p p
d d dq f

p p
d d q q

pp

(219) 

The result, after tedious calculation, is 
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               (220) 

This example demonstrates that the free space dyadic Green’s function propagates 

a plane wave a distance determined by the product of the time increment and the free 

space medium velocity, i.e. oz c= t . The first term in brackets in (220) results from 

evaluating the first delta function in brackets in (219). The delta function and unit step at 

the origin in (219) yields no contribution to the integral. The terms in the second line on 

the right hand side (RHS) of (220) arise from the unit step in the first bracketed term of 

(219). The delta function derivatives in the second bracket and the following term in 

(219) contribute the third and fourth lines respectively on the RHS of (220). The two 

delta functions in the third bracketed term in (219) respectively produce the fifth and 

sixth lines of (220). The manner in which the terms in (220) cancel is significant and 

will be discussed in the following section.   
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As a second application of the Maxwell equation Green’s function, consider an 

impulsive electric current density ( ) ( )J p re t= d d  and no initial field in the infinite 

volume of space. This current gives rise to the space- and time-dependent electric field  

11( , ) ( , | 0,0)E r G r pt t= ⋅                                 (221) 

where the Green’s functions are as given in (208) with the replacements oz c= t  

and R r→ . In compact dyadic form 11( , | 0,0)G r t  can be expressed as  

( )11 2 3
( ) ( ) ( ) ( )( , | 0,0) 3

4 4
( ) ( ) ( )

4 4

G r I rr

rr I

ct r r U ct r U rt
r r

ct r r ct r
r r

− − − − −⎡ ⎤= − +⎢ ⎥⎣ ⎦
′ ′ ′− + −⎡ ⎤− +⎢ ⎥⎣ ⎦

d d
p p

d d d
p p

      (222) 

In the following section we address the physical implication of some of the terms 

appearing in the examples above.  

 

4.7. Summary 

In a sense, there are no surprises in the 1-D and 2-D Green’s functions. The 1-D 

Green’s function yields a present time field that depends only upon the previous time 

field that existed on the causal boundary z c±Δ = ± t . This is the D’Alembert solution for 

coupled equations. It has long been known [39] that the 2-D time domain Green’s 

function for Helmholtz equation, which contains a delta function singularity coinciding 

with a pole, is a non-integrable expression. The 2-D time domain Maxwell equation 

dyadic Green’s functions, Eqns. (195)-(203), have terms with this same ill defined 

mathematical behavior, which obviates physical interpretation.  
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However, the elements of the 3-D Green’s function in (208) contain several 

interesting features that are revealed by the two examples in the section above. In the 

first example, that of a radiating current source, virtually all of the components of (3)
11G  

and (3)
15G  are needed in order to propagate the field. In this example the unit step ( )U r−  

and delta function ( )rd  do not contribute to the answer, but a / 3−p  term produced by 

( )U ct r−  is cancelled by a / 3p  produced by the source region term ( )r′d .  This 

shows that the source region terms are a necessary part of the Green’s function in the 

propagator equation, the second integral in (169). The same conclusion can be drawn by 

a similar investigation of the third integral in Eqn. (169), which is a mathematical 

description of Huygens’ principle 

 In the second example above, that of a radiating dipole, all components of the 

resulting field are causal, thereby restricting energy traveling outward from the source to 

the velocity c as expected. However, after being turned on at 0t = , the field due to the 

source region terms is confined to the position of the contributing source. In this case it 

can be said that these terms interact only with non-radiating currents, that is, currents 

whose effect is not felt in the radiated field. From this example it can be concluded that 

when finding the field radiated by current sources, which is accomplished with the first 

integral in (169), it is not necessary to include the source region terms. 
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CHAPTER V 

SUMMARY AND RECOMMENDATIONS 

5.1. Summary 

An exact formulation for the time domain voltage and current on a lossy 

transmission line and multiconductor transmission line has been presented. It is shown 

that the set of analytical expressions in terms of voltage and current reduce to a set of 

numerical equations that are easily implemented and easily extended to the nonuniform 

transmission line case. In addition, the method is extended to solve for Maxwell’s 

equations. 1-D, 2-D, and 3-D Green’s functions are evaluated separately and verified 

with initial condition and radiation condition. 

In chapter II, a numerical dispersion relation was derived showing that the EP 

method is not subject to numerical dispersion. A special feature of this method is that it 

is accurate to O(h5), where h is the spatial numerical grid increment, whereas 2nd order 

FDTD is accurate to O(h2). Both methods are explicit techniques requiring a knowledge 

of the voltage and current at only three previous time spatial points. The primary reason 

for this improvement is that the FDTD method is based upon a numerical discretization 

of the transmission line differential equations, while EP is a numerical evaluation of the 

exact propagator solution to the coupled set of transmission line equations. 

Accuracy is also gained with the EP method because voltage and current are 

calculated at each point in the numerical grid, whereas with the FDTD method voltage 
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and current are calculated at alternate grid points as prescribed by the Yee interleaving 

scheme. This translates to an increased computational burden placed on the EP method 

because the number of calculations of voltage and current is doubled and in the initial 

time step some special functions must be evaluated. However, as demonstrated with the 

examples, the advantage of this method is that exceptionally accurate results can be 

obtained even with very few grid points in the lossy transmission line section both for 

low and high loss as well as for the short and long line cases. It should also be noted that 

because the EP method voltage and current are computed at each numerical grid point 

and because there is no numerical dispersion, characterization of the line capacitance, 

inductance, characteristic impedance, and device parameters is more accurate than with 

the FDTD interleaving method. It is concluded that the EP method presented here is an 

accurate and viable alternative to other time domain methods. 

In chapter III, it was demonstrated that the proposed technique is general time 

domain analytical solution applicable to both the TEM line and quasi-TEM line. For the 

TEM lines, the propagator for N-conductor coupled lines is derived using the propagator 

method and relying on the property ([ ][ ] 2I pL C v= ) of homogeneous structures. The 

present time voltages and currents are found through a spatial convolution of the 

propagator with the initial voltage and current. A simple closed-form time domain 

solution was obtained for coupled homogeneous TEM lines. This exercise demonstrates 

that the propagator method can be directly applied to Telegrapher’s equations giving a 

closed form analytical solution for the coupled transmission lines.  

 Results were presented in terms of the time domain line voltage on a uniform 
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coupled stripline, confirming the validity of the proposed EP numerical model. The 

nonuniform coupled stripline example showed that the set of analytical expressions in 

terms of voltage and current for coupled transmission lines reduce to a set of numerical 

equations that are easily implemented and easily extended numerically to the 

nonuniform transmission line case. The asymmetric three coupled stripline example is 

evidence that the EP analytical/numerical method is valid for any type of lossless N 

conductor coupled TEM transmission lines. 

First, the eigenvalues and eigenvectors of the N x N coupling capacitance matrix 

for an N-conductor coupled line is used to find the N-mode inductance and capacitance 

vectors for air and dielectric substrates. This step is an expansion of the procedure for 

obtaining the even and odd mode voltages and currents from the eigenvalues and 

eigenvectors of the 2 x 2 capacitance matrix for a 2-conductor line. Next, the 

corresponding characteristic impedance and phase velocity for each mode are calculated 

from the N-mode capacitances. Finally, a 2N x 2N propagator matrix is found and an 

explicit numerical algorithm is developed to evaluate the EP equations. A direct time 

domain numerical method such as the one presented here does not require multiple 

frequency domain calculations that must be Fourier Transformed to the time domain. 

This is the case for most of the popular commercial transmission line codes. 

 A simulation of two uniform coupled microstrip lines is presented, confirming 

the validity of the proposed model. From the three coupled microstrip line example, it is 

noted that the propagator technique presented here is valid for any type of symmetrical 

lossless quasi-TEM line. In addition, it is shown that the set of analytial expressions in 
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terms of voltage and current reduce to a set of numerical equations that are easily 

implemented and easily extended to the nonuniform transmission line case 

In chapter IV, the propagator method has been used to obtain the time domain 

dyadic Green’s functions for Maxwell’s equations in 1-, 2-, and 3-dimensions in free 

space. The propagator method is shown to be a straightforward procedure, relying on 

familiar differential and integral calculus. It is expected that in order to solve boundary 

value problems in electromagnetics, it will be necessary to create a propagator method 

that incorporates features of the eigenfunction expansion method. However, by using the 

propagator method one can calculate the fields directly, thereby avoiding potentials, 

which are a primary component of the eigenfunction expansion method.  

 In the 3-D case the source region Green’s function terms, ( ), ( ), ( )r r U r′ −d d , to 

our knowledge have not been previously reported in the Section 1.3. That these terms are 

a necessary part of the Maxwell equation Green’s function was demonstrated by 

allowing the time increment to approach zero thereby producing the expected identity 

dyadic, which could not be obtained otherwise. It was also shown by example that a 

given initial field, in our case a plane wave, can be accurately propagated only if the 

source region terms are included in the Green’s function expression.  

Additionally, it was also discovered that when finding the field due a current 

source, that portion of the field produced by the source region terms is confined to the 

source location. Therefore, when calculating or computing the field radiated by a current 

source, the source region terms need not be included in analytical or numerical methods 

involving the 3-D Green’s function because they only interact with the non-radiating 
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portion of the source current. 

 

5.2. Recommendations for future research 

Since resistance and conductance for real microwave circuit area are played an 

important role in a multiconductor transmission line, it must be included in the 

propagator and it is suggested as a next step. Although it is difficult to find general 

solution in multiconductor lossy transmission line due to its complexty in operation 

matrix, it is possible to solve this problem if single lossy transmission line technique is 

applied.  

Analysis of asymmetric coupled transmission lines in an inhomogenous medium is 

second area needing research. It seems that there is no problem in TEM line. Because 

fundamental N-mode concept can’t be applied to asymmetric case in quasi-TEM line, it 

is important to find new modified mode concept to calculate eigenvalue and eigenvector 

of operator matrix. 

It is also suggested to apply absorbing boundary condition (ABC) in 

electromagnetic field. At the boundary, to match plane wave of arbitrary incidence, 

polarization, and frequency, perfect matched layer (PML) is essential to adapt for 

propagator method.  Moreover, proposed technique for electromagnetic field is ideal 

case. Therefore, it must include conductivity and resistivity in Maxwell’s equation and 

find new Green’s functions.  
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APPENDIX A 

 

Eqn. (18) is evaluated by using some lesser known forms of the Fourier Transform 

[67]  
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and the properties of Bessel function 0 0 1 1( ) ( ), ( ) ( )J x J x J x J x− = − = − . 

Combinations of (224) and (225) produce 11K  and 22K . 12K  is found by first 

expressing 12A  in the differential form 

{ }2 2
12 0

1 cosat
p z l

p z

dA jZ e tv k k
tv dk

− ⎡ ⎤= −⎢ ⎥⎣ ⎦
  (226) 

and then applying (223) and (225) in succession. 21K  can be found in the same 

way. 
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APPENDIX B 

 

In order to obtain (24) and (25), the integrations in (22) and (23) are performed by 

Simpson’s numerical integration rule  

( ) ( ) ( ) ( ) ( ) ( )
5

4' ' 4
3 90

x h

x h
h hf x dx f x h f x h f x f

+

−
≅ + + − + −⎡ ⎤⎣ ⎦∫ x       (227) 

Note that this Simpson’s rule requires only a 3 point interval, shown in Fig. 17, 

and has an error bound ( ) ( )
5

4

90
h f− x , where h is the distance between grid points, 

(4)f is the 4th derivative of the function of integration and x  is any value in 

( ),x h x h− + . 

x x h+x h−

( )'f x

'x  

 

h
 

Fig. 17 Illustration of Simpson’s integration rule. 

 Because 1h , higher order terms are neglected in the numerical expression.  

Also, the following Bessel properties are used to obtain the terms in Eqns. (22) and 

(23) 
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( ) ( )
0

1lim 1
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J x x v
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                   (228) 

( ) ( )0 0J jx I x=                                 (229) 

( ) ( )1 1J jx jI x=                                 (230) 

where Γ  is Gamma function and 0I , 1I  are zero and first order modified Bessel 

functions repectively. Eqn. (228) is valid only when v  is fixed integer.  

As an example of the construction of the numerical equations, after Simpson’s rule 

is applied the fifth term of (22) becomes, 
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From the equation (228), 
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Also, in (231)  
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Inserting (232) and (233) into (231) gives  

( ) ( )2

1
4

( ) ( ) ( ) ( )
6 3p p

bt bt
Fifth term V z tv V z tv I bt V z⎡ ⎤+ + − +⎣ ⎦      (234) 

The other terms in (24) and (25) can be constructed in the same way. 
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APPENDIX C 

 

The most common technique for finding the dyadic Green’s function for Eqn. 

(166) is the eigenfunction expansion method [38]. This requires an inhomogeneous 

differential equation with the left hand side given in (172), but with a Dirac delta forcing 

function. That the causal part of the propagator is a solution to such an inhomogeneous 

equation can be shown as follows: A unit step multiplier, ( )U t t′− , is inserted in (172) 

yielding,  

( ) ( ) 0
K

S K
U t t

U t t
t

′∂ −
′− ⋅ − =

∂
                 (235) 

When the time derivative is carried out and (173) and (176) are incorporated into 

the result, the traditional Green’s function inhomogeneous differential equation   

( ) ( )G S G I r r t t
t

∂ ′ ′− ⋅ = − −
∂

d d                   (236) 

readily follows. In essence the unit step ensures causality of the Green’s function. 
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 APPENDIX D 

 

 module lossy_TL 
 
! All variables used in this program are defined in this module. 
! All subroutine including main part must have 'use lossy_TL'. 
! nx = cell size 
! nt = time step 
! Vs = a source 
 
 implicit none 
 
 integer :: i,n,k,nx_end 
 integer,parameter :: nx=300,ns=1601      
 integer,parameter :: nx_start=30,nx_end1=200 
 integer,parameter :: nx_source=15,nx_collect=nx_start-1 
 integer,parameter :: nt=1000                !time step 
 integer,parameter :: dbl=selected_real_kind(p=14,r=200) 
 integer,parameter :: db=selected_int_kind(8) 
 real(kind=dbl):: di,nn,h,skin_dept,t 
 real(kind=dbl),dimension(nx)::ds,sum 
 real(kind=dbl),dimension(nx):: AA,vi,vi1,w,alpac,alpad,alpa,A,B 
 real(kind=dbl),dimension(nx)::Zc,Ra,La,Ca,Ga 
 real(kind=dbl)::mu,ro,er1,er2,sigma,rho 
 real(kind=dbl)::ep1,ep2,Rm,loss_tang 
 real(kind=dbl),dimension(nx)::f,C0,ee,ee_f,fb,fa,mo,mc,m 
 real(kind=dbl),dimension(nx):: LR,R11,R22 
 real(kind=dbl):: pi,beta,dtd,dx,dy,temp,df,omega,dt 
 real(kind=dbl) :: I0,I1,Zs,Zl,ds_air,eta,w0,w1 
 real(kind=dbl),dimension(nx) :: V_in,V_tot,Vs,I_in,I_tot,Is 
 real(kind=dbl),dimension(nx) ::V_in_u,V_tot_u,Vs_u,I_in_u,I_tot_u 
 real(kind=dbl),dimension(ns) ::dR,dR1,drr,freqs,R1 
 integer :: ip,nsnap,iplot(50) 
 integer, parameter :: nsnap=50             !number of snapshot    
 real(kind=dbl),dimension(2) ::dyy,dls,dlf 
 real(kind=dbl),dimension(nx) ::dxx, dV_in,dV_tot 
 complex :: j ,dum,B1,A1,gam,ep,Zin 
 complex,dimension(ns) ::ef_in,ef_ref,R2 
 
 end module lossy_TL 
!********************************************************************** 
 use lossy_TL 
 
!  call data needed to calculate 
 call data 
 
!  call initialization subroutine 
  call initialize                  !initialize the arrays 
 
!  snapshots plots of the V and I field at these time steps 
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 do n=1,nt 
    nn=n 
   call V_lossless  
   call V_total 
   call dft 
 
   open(unit=50,file='V_in.txt') 
       write(50,*) (nn-nx_start+nx_source)/100,Vs(nx_source) 
 
   open(unit=60,file='V_ne.txt') 
       write(60,*) (nn-nx_start+nx_source)/100,V_tot(nx_start) 
 
   open(unit=70,file='V_fe.txt') 
       write(70,*) (nn-nx_start+nx_source)/100,V_tot(nx_end-1) 
   do ip=1, nsnap  
      iplot(ip)=(ip)*10 
!      if (n.eq.iplot(ip)) call plot3d 
   end do 
 end do 
 
! call analytical solution in freq. domain 
 call analytic 
 
! plot reflection plot 
 call plot_reflection 
 
 end 
!********************************************************************** 
 subroutine data 
 
 use lossy_TL 
 
      j = CMPLX(0.,1.) 
 pi=4.*ATAN(1.) 
 mu=4.*pi*1.e-7 
 eo=1.e-9/(36*pi) 
 eta=sqrt(mu/eo) 
 er1=9.7 
 loss_tang=2e-4 
 er2=0 
 sigma=5.8e7 
 ep=eo*(er1-j*er2)    
 ep1=eo*er1 
 ep2=eo*er2 
 ds_air=0.003 
 di=0.1                  !Lossy TL length 
 Zs=10. 
 Zl=100. 
 h=5.e-4 
 t=2.e-5 
 nx_end=118 
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 w0=5e-4 
 w1=15e-4 
 sum(nx_start)=0.0 
 w(nx_start)=w0 
 w(nx_end)=w1 
 
 do i=nx_start,nx_end1 
        freqs(1) = 0.0 
        do k = 2, ns 
       freqs(k) =0!4.e9!freqs(k-1) + 10.E06 
  omega=2*pi*freqs(k) 
  Rm=sqrt(omega*mu/2/sigma) 
  if (w(i)/h<=1) then 
   f(i)=0.02*(er1-1)*(1-w(i)/h)**2 
   C0(i)=2*pi*eo/log(8.*h/w(i)+w(i)/4/h) 
  else  
   f(i)=0. 
   C0(i)=eo*(w(i)/h+1.393+0.667*log(w(i)/h+1.444)) 
  end if 
   ee(i)=(er1+1)/2+(er1-1)/2/sqrt(1+12*h/w(i)) 
     +                  +f(i)-0.217*(er1-1)*t/sqrt(w(i)*h) 
   fb(i)=47.746/h/sqrt(er1-ee(i))*atan(er1*sqrt((ee(i) 
     +                   -1)/(er1 
     +               -ee(i)))) 
   fa(i)=fb(i)/(0.75+(0.75-0.332*er1**(-1.73))*w(i)/h) 
   mo(i)=1+1/(1+sqrt(w(i)/h))+0.32*(1+sqrt(w(i)/h))** 
     +                  (-3) 
  if (w(i)/h<=0.7) then 
   mc(i)=1+1.4/(1+w(i)/h)*(0.15-0.235*exp(0.45*freqs(k) 
     +                  /1.e9/fa(i))) 
  else 
   mc(i)=1. 
  end if 
   m(i)=mo(i)*mc(i) 
  ee_f(i)=er1-(er1-ee(i))/(1+(freqs(k)/1.e9/fa(i))**m(i)) 
  ds(i)=ds_air/sqrt(ee_f(i)) 
  w(i+1)=w(i)+(w1-w0)/di*ds(i) 
  sum(i+1)=sum(i)+ds(i) 
  skin_depth=(1/Rm/sigma)*100/2.54*1000 
  if (w(i)/h<=0.5) then 
      LR(i)=1 
  else 
      LR(i)=0.94+0.132*w(i)/h-0.0062*(w(i)/h)**2 
  end if 
  R11(i)=Rm/w(i)*LR(i)*(1/pi+1/pi**2*log(4*pi*w(i)/t)) 
  R22(i)=Rm/w(i)*w(i)/h/(w(i)/h+5.8+0.03*h/w(i)) 
  Zc(i)=1/C0(i)*sqrt(mu*eo/ee_f(i)) 
  Ca(i)=C0(i)*ee_f(i) 
  La(i)=mu*eo/C0(i) 
  Ga(i)=er1/ee_f(i)*(ee_f(i)-1)/(er1-1)*omega*er2/er1*Ca(i) 
  Ra(i)=R11(i)+R22(i) 
  alpad(i)=Ga(i)*Zc(i)/2 
  alpac(i)=Ra(i)/2/Zc(i) 
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  alpa(i)=(alpad(i)+alpac(i))*8.686 
  vi(i)=1/SQRT(La(i)*Ca(i)) 
  vi1(i)=1/SQRT(eo*mu*ee_f(i)) 
  dt=ds(i)/vi(i)  
  A(i)=(Ga(i)/Ca(i)-Ra(i)/La(i))*ds(i)/(2*vi(i))     
  B(i)=EXP(-(Ga(i)/Ca(i)+Ra(i)/La(i))*ds(i)/(2*vi(i))) 
  AA(i)=A(i) 
        end do 
 end do 
 
 end 
!********************************************************************** 
 subroutine dft 
 
 use lossy_TL 
 
! To find reflection coefficient, store data 
 
 j=(0,1)    
 temp=V_tot(nx_collect)-V_in(nx_collect) 
 
 do k=1,ns 
     dum=-1.*j*2.*pi*(n-1)*freqs(k)*dt  
   ef_in(k)=ef_in(k)+dt*V_in(nx_collect)*CEXP(dum) 
   ef_ref(k)=ef_ref(k)+dt*temp*CEXP(dum) 
   R2(k)=ABS(ef_ref(k)/ef_in(k)) 
 end do 
 
 end 
!********************************************************************** 
 subroutine analytic 
 
 use lossy_TL 
 
        j = CMPLX(0.,1.) 
!   call data 
! generate the analytical data 
 
      do k=1, ns 
   omega=2*pi*freqs(k) 
   gam=sqrt((Ra(i)+j*omega*La(i))*(Ga(i)+j*omega*Ca(i))) 
   A1=(exp(gam*di)-exp(-1.*gam*di))/(exp(gam*di)+exp(-1.*gam*di)) 
   Zin=Zc(i)*(Zl+Zc(i)*A1)/(Zc(i)+Zl*A1) 
   B1=(Zin-Zs)/(Zin+Zs) 
   R1(k)=abs(B1) 
      end do 
 
 end 
!********************************************************************** 
 subroutine initialize 
 
! Initialize all the arrays 
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 use lossy_TL 
 
      V_in=0.0               
      I_in=0.0 
      V_tot=0.0              
      I_tot=0.0 
      Vs=0.0 
      V_in_u=0.0             
      I_in_u=0.0 
      V_tot_u=0.0            
      I_tot_u=0.0 
      ef_in=(0.0,0.0) 
      ef_ref=(0.0,0.0) 
      R2=(0.0,0.0)            
      R1=(0.0,0.0)  
 
 end 
!********************************************************************** 
! Voltage without lossy center section 
 
 subroutine V_lossless 
 
 use lossy_TL 
 
  call source     
 
 V_in_u(1)=0.0 
 I_in_u(1)=0.0 
 
 do i=2,nx-1   
   V_in_u(i)=0.5*((V_in(i+1)+V_in(i-1)) 
     +             -(I_in(i+1)-I_in(i-1))*Zs)+Vs(i) 
 
       I_in_u(i)=0.5*((I_in(i+1)+I_in(i-1)) 
     +              -(V_in(i+1)-V_in(i-1))/Zs)  
 
 end do 
 
 V_in_u(nx)=0.0 
 I_in_u(nx)=0.0 
 
 do i=1,nx 
   V_in(i)=V_in_u(i) 
   I_in(i)=I_in_u(i) 
 end do 
 
 end 
!********************************************************************** 
! Voltage with lossy center section 
 
 subroutine V_total 
 
 use lossy_TL 
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  call source     
 
 V_tot_u(1)=0.0 
 I_tot_u(1)=0.0 
 
 do i=2,nx-1   
     V_tot_u(i)=0.5*((V_tot(i+1)+V_tot(i-1)) 
     +                -(I_tot(i+1)-I_tot(i-1))*Zs) +Vs(i) 
 
        I_tot_u(i)=0.5*((I_tot(i+1)+I_tot(i-1)) 
     +              -(V_tot(i+1)-V_tot(i-1))/Zs) 
 
 if(i.gt.nx_start.and.i.lt.nx_end) then 
 
          V_tot_u(i) = B(i)*0.5 * (  
     +             (1+((A(i)**2)/6)-(A(i)/3))*(V_tot(i+1)  
     +             + V_tot(i-1)) 
     +             -Zc(i)*(1+((A(i)**2)/6))*(I_tot(i+1)-I_tot(i-1)) 
     +             +(4*A(i)/3)*(bessi1(AA(i))-bessi0(AA(i)))*V_tot(i) ) 
 
          I_tot_u(i) = B(i)*0.5 * (  
     +             (1+((A(i)**2)/6)+(A(i)/3))*(I_tot(i+1)  
     +             + I_tot(i-1)) 
     +             -(1+(A(i)**2)/6)*(V_tot(i+1) - V_tot(i-1))/Zc(i) 
     +             +(4*A(i)/3)*(bessi1(AA(i))+bessi0(AA(i)))*I_tot(i) ) 
 
   else if (i.gt.nx_end-1.and.i.lt.nx) then 
 
     V_tot_u(i)=0.5*((V_tot(i+1)+V_tot(i-1)) 
     +                -(I_tot(i+1)-I_tot(i-1))*Zl)  
 
        I_tot_u(i)=0.5*((I_tot(i+1)+I_tot(i-1)) 
     +              -(V_tot(i+1)-V_tot(i-1))/Zl) 
 end if 
 
 end do 
 
 V_tot_u(nx)=0.0 
 I_tot_u(nx)=0.0 
 
 do i=1,nx 
   V_tot(i)=V_tot_u(i) 
   I_tot(i)=I_tot_u(i) 
 end do 
  
  end 
!********************************************************************** 
! Bessel function 
 
 FUNCTION bessi0(x) 
 REAL bessi0,x 
 REAL ax 
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 DOUBLE PRECISION  
 p1,p2,p3,p4,p5,p6,p7,q1,q2,q3,q4,q5,q6,q7,q8,q9,y  
 SAVE p1,p2,p3,p4,p5,p6,p7,q1,q2,q3,q4,q5,q6,q7,q8,q9 
 DATA 
 p1,p2,p3,p4,p5,p6,p7/1.0d0,3.5156229d0,3.0899424d0,1.2067492d0, 
     +                       0.2659732d0,0.360768d-1,0.45813d-2/ 
 DATA q1,q2,q3,q4,q5,q6,q7,q8,q9/0.39894228d0,0.1328592d-1, 
     +        0.225319d-2,-0.157565d-2,0.916281d-2,-0.2057706d-1 
     +        ,0.2635537d-1,-0.1647633d-1,0.392377d-2/ 
 if (abs(x).lt.3.75) then 
 y=(x/3.75)**2 
 bessi0=p1+y*(p2+y*(p3+y*(p4+y*(p5+y*(p6+y*p7))))) 
 else 
 ax=abs(x) 
 y=3.75/ax 
 bessi0=(exp(ax)/sqrt(ax))*(q1+y*(q2+y*(q3+y*(q4 
     +                +y*(q5+y*(q6+y*(q7+y*(q8+y*q9)))))))) 
 endif 
 return 
 END 
 
 FUNCTION bessi1(x) 
 REAL bessi1,x 
 REAL ax 
 DOUBLE PRECISION 
 p1,p2,p3,p4,p5,p6,p7,q1,q2,q3,q4,q5,q6,q7,q8,q9,y  
 SAVE p1,p2,p3,p4,p5,p6,p7,q1,q2,q3,q4,q5,q6,q7,q8,q9 
 DATA p1,p2,p3,p4,p5,p6,p7/0.5d0,0.87890594d0,0.51498869d0, 
     +                0.15084934d0,0.2658733d-1,0.301532d-2,0.32411d-3/ 
 DATA q1,q2,q3,q4,q5,q6,q7,q8,q9/0.39894228d0,-0.3988024d-1, 
     +        -0.362018d-2,0.163801d-2,-0.1031555d-1,0.2282967d-1 
     +       ,-0.2895312d-1,0.1787654d-1,-0.420059d-2/ 
 if (abs(x).lt.3.75) then  
 y=(x/3.75)**2 
 bessi1=x*(p1+y*(p2+y*(p3+y*(p4+y*(p5+y*(p6+y*p7)))))) 
 else 
 ax=abs(x) 
 y=3.75/ax 
 bessi1=(exp(ax)/sqrt(ax))*(q1+y*(q2+y*(q3+y*(q4+ 
     +         y*(q5+y*(q6+y*(q7+y*(q8+y*q9)))))))) 
 if(x.lt.0.)bessi1=-bessi1 
 endif 
 return 
 END 
!********************************************************************** 
! The excitation of the gaussian pulse  
! It should be added at each time step. 
 
 subroutine source 
 
 use lossy_TL 
 
 beta=40. 
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 Vs(nx_source)=exp(-((n-5*beta)/beta)**2) 
 
 end 
!********************************************************************** 
! Plot the reflection coeffcient 
 
 subroutine plot_reflection 
 
 use lossy_TL 
  
!  Matlab required variables 
 integer :: m_eng, engopen 
 integer :: engevalstring, engputfull, stat, engclose 
 integer :: mxcalloc,drr_pointer, dR_pointer,dR1_pointer 
 
 do k=1,ns 
  drr(k)=freqs(k)/1.e9  
  dR(k)=R2(k) 
  dR1(k)=R1(k)   
 end do 
 
 open(unit=10,file='eqn_data.txt') 
 do k=1,ns 
    write(10,*) drr(k),dR(k) 
 end do 
 
 open(unit=20,file='anal_data.txt') 
 do k=1,ns 
    write(20,*) drr(k),dR1(k) 
 end do 
 
  m_eng = engopen('matlab ') 
 dR_pointer = mxcalloc(ns,8) 
 dR1_pointer = mxcalloc(ns,8) 
 drr_pointer=mxcalloc(ns,8) 
 
 call mxcopyreal8toptr(dR,dR_pointer,ns) 
 call mxcopyreal8toptr(dR1,dR1_pointer,ns) 
 call mxcopyreal8toptr(drr,drr_pointer,ns) 
 
 stat=engputfull(m_eng, "dR" , ns, 1, dR_pointer ,0) 
 stat=engputfull(m_eng, "dR1" , ns, 1, dR1_pointer ,0) 
 stat=engputfull(m_eng, "drr", ns, 1,drr_pointer, 0) 
 
 stat=engevalstring(m_eng, "plot(drr, dR, 'r' ,drr,dR1,'b--')") 
 stat=engevalstring(m_eng, "xlabel('FREQUENCY(GHz)')") 
 stat=engevalstring(m_eng, "ylabel('REFLECTION COEFFICIENT')") 
      stat=engevalstring(m_eng, "legend('Eqn','Analytic')") 
 stat=engevalstring(m_eng, "axis([0 6 0 1])") 
 PAUSE 
 
 stat = engclose(m_eng) 
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 end 
!********************************************************************** 
! plot the V_in and V_tot  
 
 subroutine plot3d 
 
 use lossy_TL 
  
!  Matlab required variables 
 integer :: m_eng, engopen 
 integer :: engevalstring, engputfull, stat, engclose 
 integer :: mxcalloc, Vt_pointer,Vi_pointer,dxx_pointer,y_pointer 
 integer :: dyy_pointer,dls_pointer,dlf_pointer 
 
 dyy(1)=1.0 
 dyy(2)=-1.0 
 dls(1)=nx_start  
 dls(2)=nx_start 
 dlf(1)=nx_end 
 dlf(2)=nx_end 
 
 do i = 1,nx 
   dxx(i)=I  
   dV_in(i)=V_in(i) 
   dV_tot(i)=V_tot(i) 
 end do 
 
!  Start matlab engine and allocate space for matrix to be passed to  
!  matlab 
 if( n==10) m_eng = engopen('matlab ') 
 Vt_pointer = mxcalloc(nx, 8) 
      Vi_pointer = mxcalloc(nx, 8) 
 dxx_pointer = mxcalloc(nx, 8) 
 dyy_pointer = mxcalloc(2, 8) 
 dls_pointer = mxcalloc(2, 8) 
 dlf_pointer = mxcalloc(2, 8) 
!  First we convert the data to a format that matlab understands 
 call mxcopyreal8toptr(dV_in,Vi_pointer,nx) 
 call mxcopyreal8toptr(dV_tot,Vt_pointer,nx) 
      call mxcopyreal8toptr(dxx,dxx_pointer,nx) 
 call mxcopyreal8toptr(dyy,dyy_pointer,2) 
 call mxcopyreal8toptr(dls,dls_pointer,2) 
 call mxcopyreal8toptr(dlf,dlf_pointer,2) 
! Now move the data into matlab 
 stat=engputfull(m_eng, "dxx", nx, 1, dxx_pointer, 0) 
 stat=engputfull(m_eng, "dyy", 2,  1, dyy_pointer, 0) 
 stat=engputfull(m_eng, "dls", 2,  1, dls_pointer, 0) 
 stat=engputfull(m_eng, "dlf", 2,  1, dlf_pointer, 0) 
 stat=engputfull(m_eng,"dV_in",nx,1,Vi_pointer,0) 
 stat=engputfull(m_eng,"dV_tot",nx,1,Vt_pointer,0) 
! now generate all six plots on page  and wait 5 seconds 
 stat=engevalstring(m_eng,"subplot(2,1,1)") 
 stat=engevalstring(m_eng,"plot(dxx,dV_in,dls,dyy,':',dlf,dyy,':') 
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     +        ") 
 stat=engevalstring(m_eng,"subplot(2,1,2)") 
 stat=engevalstring(m_eng,"plot(dxx,dV_tot,dls,dyy,':',dlf,dyy,':' 
     +       )") 
 
!  Now close matlab  
 if(n.eq.nt) stat = engclose(m_eng) 
  
 end 
!********************************************************************** 
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