
OPTIMIZATION ALGORITHMS FOR INFORMATION RETRIEVAL AND

TRANSMISSION IN DISTRIBUTED AD HOC NETWORKS

A Dissertation

by

HONG LU

Submitted to the Office of Graduate Studies of
Texas A&M University

in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

December 2008

Major Subject: Computer Science

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Texas A&M Repository

https://core.ac.uk/display/4275997?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

OPTIMIZATION ALGORITHMS FOR INFORMATION RETRIEVAL AND

TRANSMISSION IN DISTRIBUTED AD HOC NETWORKS

A Dissertation

by

HONG LU

Submitted to the Office of Graduate Studies of
Texas A&M University

in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

Approved by:

Chair of Committee, Jyh Liu
Committee Members, Donald K. Friesen

Jianer Chen
Weiping Shi

Head of Department, Valerie E. Taylor

December 2008

Major Subject: Computer Science

iii

ABSTRACT

Optimization Algorithms for Information Retrieval and Transmission in Distributed

Ad Hoc Networks. (December 2008)

Hong Lu, B.E., Southeast University, China;

M.S., Southeast University, China

Chair of Advisory Committee: Jyh Liu

An ad hoc network is formed by a group of self-configuring nodes, typically

deployed in two or three dimensional spaces, and communicating with each other

through wireless or some other media. The distinct characteristics of ad hoc net-

works include the lack of pre-designed infrastructure, the natural correlation between

the network topology and geometry, and limited communication and computation

resources. These characteristics introduce new challenges and opportunities for de-

signing ad hoc network applications. This dissertation studies various optimization

problems in ad hoc network information retrieval and transmission.

Information stored in ad hoc networks is naturally associated with its location.

To effectively retrieve such information, we study two fundamental problems, range

search and object locating, from a distance sensitive point of view, where the retrieval

cost depends on the distance between the user and the target information. We develop

a general framework that is applicable to both problems for optimizing the storage

overhead while maintaining the distance sensitive retrieval requirement. In addition,

we derive a lowerbound result for the object locating problem which shows that

logarithmic storage overhead is asymptotically optimal to achieve linear retrieval cost

for growth bounded networks.

Bandwidth is a scarce resource for wireless ad hoc networks, and its proper uti-

lization is crucial to effective information transmission. To avoid conflict of wireless

iv

transmissions, links need to be carefully scheduled to satisfy various constraints. In

this part of the study, we first consider an optimization problem of end-to-end on-

demand bandwidth allocation with the single transceiver constraint. We study its

complexity and present a 2-approximation algorithm. We then discuss how to es-

timate the end-to-end throughput under a widely adopted model for radio signal

interference. A method based on identifying certain clique patterns is proposed and

shown to have good practical performance.

v

TABLE OF CONTENTS

CHAPTER Page

I INTRODUCTION . 1

A. Ad hoc networks . 1

B. Distance sensitive information retrieval 2

C. End-to-end information transmission 5

II DISTANCE SENSITIVE INFORMATION RETRIEVAL 7

A. Introduction . 7

B. Network model . 8

C. Range search . 11

1. Problem statement . 11

2. The baseline scheme 13

3. The generic scheme 16

4. Load balancing . 21

D. Object locating . 24

1. Problem statement . 24

2. The baseline scheme 25

3. The generic scheme 28

4. Lowerbound result . 29

5. Beyond grid networks 35

E. Related work . 38

F. Summary . 42

III END-TO-END INFORMATION TRANSMISSION 44

A. Introduction . 44

B. Basic concepts and terminologies 45

C. Bandwidth allocation . 46

1. Problem statement . 46

2. Complexity analysis 49

3. Minimum consumption routing and scheduling 54

4. Simulation evaluation 62

D. Throughput estimation . 70

1. Problem statement . 71

2. Upperbounding the end-to-end throughput 74

vi

CHAPTER Page

3. Simulation evaluation 79

E. Related work . 82

F. Summary . 84

IV CONCLUSION . 86

REFERENCES . 88

VITA . 98

vii

LIST OF TABLES

TABLE Page

I Solution of the optimization program with a quadratic retrieval

cost function g(r) = r2. 19

II The storage cost f and the li sequence of the baseline and generic

schemes, D = 100. 20

III The storage cost f and the li sequence of the baseline and generic

schemes with s = 2. 21

IV Grid network . 81

V Random network . 82

viii

LIST OF FIGURES

FIGURE Page

1 A distributed range query initiated by the node q in a sensor

network. The query asks for the average temperature readings of

all the sensor nodes in a circular region with radius r. 3

2 A dense ad hoc network with only short links. In geographic

routing, the routing distance between s and t is roughly equal to

their Euclidean distance. 9

3 A virtual grid superimposed on top of a physical ad hoc network

in a two dimensional plane with short links. 10

4 The concepts of d-lattice and d-neighbor. The 4-lattice nodes are

depicted as black dots. q4 is the 4-neighbor of the node q. 11

5 The baseline range search scheme. q is the query initiator, p is an

arbitrary data owner such that |pq| ≤ r. qj is the 2j-neighbor of

the node q. 15

6 Load distribution of the baseline range search scheme for a 40 by

30 grid with s = 0.5. The load of a node is indicated by its darkness. 22

7 Load distribution of the load balanced range search scheme. The

2048 data items fall into (a) two, and (b) four categories. 23

8 The baseline object locating scheme. p is the object owner and q

is the query initiator. q1 and q2 are the 2- and 4- neighbors of the

node q. q finds p at q2. 26

9 Lemma 5. It shows that for any ball and any (retrieval) path

starting from its center, there is a big enough ball contained in it

such that the path does not cross. 31

10 Two balls B1 and B2 in an sr′-ball packing obtained from a 1.5sr′-

ball packing, where the distance between B1 and B2 is at least sr′. . 32

ix

FIGURE Page

11 The proof of theorem 6. It shows the construction of a sequence of

non-intersecting paths P1, P2, P3..., and a sequence of balls B1 ⊇
B2 ⊇ B3... with exponentially decreasing radii. 34

12 A grid network with two holes in the middle. The 4-lattice nodes

are depicted as black dots. 36

13 Hardness: Step 1. The construction of a network with a sequence

of diamond shaped subgraphs with only forwarding links. 50

14 Hardness: Step 2.1. The construction of backward links. 51

15 Hardness: Step 2.1. The construction of dangling links. 52

16 The complete constructed network corresponding to Boolean for-

mula (x1 ∨ x2 ∨ x3) ∧ (x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x3). 52

17 A simple network illustrating the intuition of the MCSR algorithm. . 55

18 Residual networks after the allocation of the paths scd and suvd. . . 55

19 MCRS, the Minimum Consumption Routing and Scheduling algorithm. 57

20 Doubly and singly consumed slot. 59

21 Accumulated acceptance rate. The x axis represents the num-

ber of loaded requests, and the y axis represents the number of

requests accepted by each algorithm. 63

22 Available bandwidth. The x axis represents the number of loaded

requests, and the y axis represents the average number of free

slots per link. 65

23 Accumulated average hops. The x axis represents the number of

loaded requests, and the y axis represents the average path length

for each accepted request. 66

24 Residual networks after 1000 requests. The amount of available

bandwidth of each link is indicated by the darkness of that link. . . . 67

25 Distribution of available link bandwidth after 1000 requests. y is

the number of links with x available slots. 69

x

FIGURE Page

26 Acceptance rate for the mixed experiments where the network is

loaded with 1000 static and 4000 dynamic requests. 70

27 The four patterns of the radio interference model from [1]. 71

28 A sample network. Each double arrowed line represents two one

way links. 72

29 Star and bell clique. 76

30 Class one clique. 77

31 Class two clique. 78

32 Class three clique. 79

1

CHAPTER I

INTRODUCTION

A. Ad hoc networks

An ad hoc network is created by a collection of autonomous nodes in a spontaneous

manner. Such networks may be rapidly deployed as needed, to establish survivable,

efficient, and dynamic communication for many applications such as emergency oper-

ations, disaster relief efforts, and etc, where centralized and organized connectivity is

not affordable or appropriate. Other application scenarios include battlefield surveil-

lance, environment and habitat monitoring, traffic control, mobile target tracking,

home automation, health care applications, and etc [2, 3, 4].

Ad hoc networks differ from other types of networks such as Internet or cellu-

lar networks in many ways. First, there is no pre-existing infrastructure in ad hoc

networks and the connection between nodes is established on-the-fly. The nodes in

ad hoc networks act as both end hosts and routers at the same time, and they typi-

cally work in a peer-to-peer fashion. Second, some ad hoc networks consist of small

nodes with limited computation and communication resources. They are typically

equipped with low cost processors with limited amount of memory and power supply.

They normally share a common bandwidth which is a scarce system resource. Third,

ad hoc networks are usually deployed in two or three dimensional spaces, and their

topologies are closely tied with the underlying geometric environment. Fourth, the

data produced in ad hoc networks is often correlated both in the temporal and spatial

domain. This kind of data correlation introduces new requirements and opportunities

in various applications, ranging from information gathering, aggregation, diffusion,

This dissertation follows the style of IEEE Transactions on Computers.

2

and etc.

These characteristics introduce new challenges and opportunities for designing

ad hoc network information services. In this dissertation, we study ad hoc networking

from the following two perspectives:

• Distance sensitive information retrieval. In particular, we study two problems,

range search and object locating .

• End-to-end information transmission, including on-demand bandwidth alloca-

tion and throughput estimation.

In this dissertation, these problems are investigated from a technology independent

point of view so that the results will remain valid when technologies change. In the

rest of this chapter, we first give an overview of these two topics.

B. Distance sensitive information retrieval

One of the major challenges in distributed ad hoc networks is to efficiently retrieve

the various information stored in the network. This is particularly true in sensor

networks, whose main purpose is to collect and process environmental information.

In the study of information retrieval schemes, we are particularly interested in ad

hoc networks that are deployed in two dimensional spaces. The topology of such

networks usually has a distinct geometric structure and information stored in such

networks is naturally associated with its location. In particular, we focus on two

fundamental information retrieval problems, range search and object locating. The

goal of a range search scheme is to answer range queries posed by users. A range

query asks for the information in a region of the network under consideration. For

example, Figure 1 shows a two dimensional sensor network, where a user at the node

3

q asks for the average temperature readings of all the sensor nodes within distance

r from himself. Instead of retrieving regional information, object locating concerns

searching individual objects. An object location query asks for the location (or the

address) of the node who owns an object with a particular identifier.

q r

Fig. 1. A distributed range query initiated by the node q in a sensor network. The

query asks for the average temperature readings of all the sensor nodes in a

circular region with radius r.

An important property in the design of distributed geometric information re-

trieval systems is distance sensitivity. Roughly speaking, a distance sensitive infor-

mation retrieval system is one who retrieves local information more efficiently than

remote information. Specifically, in a distance sensitive range search system, the

cost to retrieve the information in a region increases as the radius of that region,

and the relationship is described by a monotonic function specified as a requirement

of the system design. For example, one may require that the cost to retrieve the

information in a region must not exceed the radius of that region times a constant

factor. In a distance sensitive object locating system, the cost to locate an object

depends on the distance between the user and the target object. Distance sensitivity

is a desirable property mainly because in many ad hoc network applications, local

4

information is much more valuable than remote information, and therefore, systems

that can retrieval local information more efficiently are preferred. Not only does a

distance sensitive scheme retrieves local information more efficiently, it also does that

in a more robust manner in the following sense. In our discussion the retrieval cost

is measured as the length of the retrieval path. For a distance sensitive scheme, the

retrieval path for local information is shorter than remote information, and therefore

is less likely to be broken in case of network partition.

The main challenge in designing distance sensitive information retrieval schemes

is to enforce the distance sensitivity constraint with minimum resource overhead,

in particular, minimum storage cost. Achieving the objective of distance sensitive

retrieval alone is not difficult. As an extreme case, in the example of Figure 1, if

every sensor holds a copy of everybody else’s temperature data, then the retrieval cost

for any range query is zero in terms of the communication overhead incurred when

the system answers the query, which is distance sensitive by definition. However,

the high storage cost for the sensor nodes makes this simple scheme unsatisfactory

in most cases. The example shows that it is not straightforward at all to maintain

the distance sensitivity property of the retrieval process while minimizing the storage

cost. In general, one can trade storage overhead for better retrieval performance, and

studying this intriguing tradeoff is at the heart of our later discussion on this topic.

In Chapter II, we will discuss the distance sensitive information retrieval problems

in more details. Our primary results are twofold. First, we developed a framework

that optimizes storage overhead for an arbitrary retrieval cost function for grid net-

works. This framework is applicable to both the range search problem and the object

locating problem. Compared with our method, almost all existing design focus on a

special case where the retrieval cost function is a linear one. The performance of our

proposed scheme is verified by both theoretical analysis and simulation evaluation.

5

Second, we derived a lowerbound result which shows that logarithmic storage cost is

asymptotically optimal to achieve linear retrieval cost for a large class of networks

called the growth bounded networks. This result proves the optimality of our ob-

ject locating schemes, as well as many existing ones in the literature. In addition to

these two main results, we also address other relevant issues such as load balancing,

irregular network topology, and etc.

C. End-to-end information transmission

A large number of ad hoc networks are wireless networks. In such networks, band-

width is usually a scarce resource mainly because it has to be shared by multiple

nodes. Efficient utilization of the valuable bandwidth resource, therefore, is of great

importance to wireless ad hoc network applications.

An important characteristic of wireless networks is that multiple wireless trans-

missions may conflict with each other due to various reasons such as radio interference.

As a result, wireless transmissions usually need to be carefully scheduled, according to

certain schedulability constraints, to avoid such conflicts. This need of transmission

scheduling adds considerable complications to the tasks in wireless ad hoc networks.

In Chapter III, we study two specific end-to-end information transmission problems,

on-demand bandwidth allocation and throughput estimation, with schedulability con-

straints.

In on-demand bandwidth allocation, we study the following problem: when a

user’s end-to-end connection request with a specific bandwidth requirement arrives,

find a path between the source and destination in question and allocates the band-

width along this path, such that, (1) the bandwidth requirement of the connection

request is satisfied, and (2) the total bandwidth consumption is minimized so that

6

more future requests can be satisfied. In other words, the objective is to provide

services with guaranteed quality at the minimum cost of system resource.

The major challenge in designing efficient bandwidth allocation schemes for wire-

less ad hoc networks is that it is a simultaneous routing and scheduling problem. Tra-

ditional bandwidth aware routing algorithms based on minimizing hop counts are not

suitable because they are designed for networks where links are physically isolated.

In our problem, however, the wireless links are not independent from each other due

to the single transceiver constraint, which says that a set of transmissions can suc-

cessfully occur at the same time only if no two transmissions share a common sender

or receiver. The impact of single transceiver constraint to bandwidth allocation is the

focus of our study. In particular, we show that under the single transceiver constraint,

the end-to-end on-demand bandwidth allocation problem is NP-hard. Based on this

complexity result, we develop a greedy 2-approximation algorithm. In addition to the

above theoretical results, a set of simulations are conducted to evaluate the perfor-

mance of the approximation algorithm in practice. The experiments show that the

proposed algorithm significantly outperforms traditional algorithms.

The end-to-end throughput is the maximum amount of data that can be success-

fully transmitted from a source node to a sink in a given period of time. End-to-end

throughput is a system parameter that is very important to many network manage-

ment tasks such as capacity planning, bottleneck identification, and etc. The end-

to-end throughput estimation problem studied in this dissertation is a variant of the

well-known maxflow problem with an extra schedulability constraint which models

the effect of radio signal interference. This problem has been shown to be NP-hard,

and the main contribution of our work is an efficient method with practically good

estimation based on identifying cliques in the interference pattern.

7

CHAPTER II

DISTANCE SENSITIVE INFORMATION RETRIEVAL

A. Introduction

In this chapter, we mainly study two information retrieval problems: range search

and object locating in distributed ad hoc networks. A range query asks for all the

data or some statistics of the data in a region of the network. For example, a sensor

node may ask for the average temperature readings of all the sensor nodes within five

meters of itself. An object query asks for the address of the node where an object is

located, so that the content of the object can be retrieved later on using the obtained

node address. For example, a node may ask the position of the node which has a

particular video clip.

A desired property of an information retrieval system for distributed ad hoc

networks is distance sensitivity. For range search, distance sensitivity means that the

cost to answer a range query should be bounded by a function of the query radius.

For object locating, distance sensitivity means that the cost to locate an object must

be bounded by a function of the distance between the object and the node which

initiates the query.

In this chapter, we will first rigorously formulate the above distance sensitive

query processing problems, and then present our design in the context of grid net-

works. The primary results of this chapter are twofold. First, a framework is devel-

oped for designing schemes with an arbitrary retrieval cost function and optimized

storage overhead. Second, a lowerbound result is derived for object locating, which

shows that logarithmic storage cost is asymptotically optimal to achieve linear re-

trieval cost for a large class of networks called the growth bounded networks. In

8

addition to these two main results, we also study other issues in designing distributed

distance sensitive information storage and retrieval schemes, such as load balancing,

irregular network topology, and etc.

The rest of this chapter is organized as follows. Section B introduces the network

model. The range search problem is treated in Section C. Section D studies the

object locating problem. The related work is reviewed in Section E. At last, Section

F summarizes and concludes this chapter.

B. Network model

In the rest of this chapter, we assume that there is a pre-existing routing layer for the

network under consideration. That is, each node is assigned a unique address, and

a source can communicate with any other node using the address of the destination.

The term distance is used to refer to the routing distance between two nodes, that

is, the cost to deliver a unit packet from one to the other.

The distance sensitive information services to be presented are mainly designed

for two (or three) dimensional dense ad hoc networks with only short links. Figure

2 shows an example of such networks. We assume that routing is accomplished by a

geographic routing algorithm. The geographic routing algorithms [5, 6, 7, 8, 9, 10, 11]

developed in the recent years are mostly based on greedy routing augmented by

a deadend recovery mechanism. Such routing algorithms have the following two

properties. (1) For reasonably dense networks, the routing distance between two

nodes is close to the Euclidean distance between them, as long as there is no obstacles

in the line of sight of the two nodes. For example, in Figure 2, the length of the s-t

path is close to the s-t Euclidean distance. To simplify the discussion, we further

assume that the routing distance between any pair of nodes is exactly equal to their

9

s

t

t’

Fig. 2. A dense ad hoc network with only short links. In geographic routing, the

routing distance between s and t is roughly equal to their Euclidean distance.

Euclidean distance. Even though this is an unrealistic assumption, it allows us to

avoid distinguishing routing and Euclidean distance. And, it will become clear later

that this assumption can be easily removed as long as the routing distance is bounded

by a constant times the Euclidean distance. (2) A packet destined for a virtual node

will be delivered to the closest physical node of the virtual node. Here, a virtual node

refers to a node which has a location but does not really exist in the network. For

example, in Figure 2, if s tries to deliver a packet to the virtual node t′, the packet

will be delivered to the node t.

Dense networks with short links are of particular interest because they can be

approximated reasonably well by a virtual grid. Figure 3 shows a virtual grid su-

perimposed on top of a physical network. Both of them cover the same area. The

design of information retrieval systems can be considerably simplified by mapping

each physical node to its nearest virtual grid node. Since it is assumed that the ad

hoc network is dense, the Euclidean distance between a physical node and its nearest

10

Fig. 3. A virtual grid superimposed on top of a physical ad hoc network in a two

dimensional plane with short links.

virtual grid node will be small enough to omit in many applications. Without loss

of generality, we assume that the x and y coordinates of each grid node are a pair

of integers, and the minimum distance between two grid nodes is one. Even though

most of the discussion in this chapter is based on the grid network model, we will

show in Section 5 that, the basic principle for designing distance sensitive information

services applies to a wider class of networks called growth (upper) bounded networks.

The design of the grid based information retrieval schemes is based on two im-

portant notions: d-lattice and d-neighbor. The d-lattice nodes (of a grid) are the

nodes whose x and y coordinates are both integer multiples of d. The d-neighbor of

a node is its closest d-lattice node, where ties are broken arbitrarily. For example,

in Figure 4, the 4-lattice nodes are depicted as black dots, and the node q4 is the

4-neighbor of the node q.

11

q
q4

Fig. 4. The concepts of d-lattice and d-neighbor. The 4-lattice nodes are depicted as

black dots. q4 is the 4-neighbor of the node q.

C. Range search

In this Section, we study the distance sensitive range search problem in distributed

ad hoc networks. We first formally define the problem in Subsection 1, and then

present a baseline design in Subsection 2 with logarithmic storage and linear retrieval

cost. The baseline design is generalized in Subsection 3 to support arbitrary retrieval

cost function. In Subsection 4, we discuss modifications to the baseline and generic

schemes with better load balancing performance.

1. Problem statement

The distributed local range search problem that we study here is a varaint of its

well-known centralized version [12]. Consider a set of data distributed across an ad

hoc network. Each data item belongs to a node, called its owner. A range query,

initiated by a node in the network, asks for all the data items or some statistics of

the data items within a certain distance of the node. In other words, a range query

12

specifies a circular region centered at a query initiator. The data items in the region

are referred to as the target data items. The owner of a data item may store the data

locally, or at one or more other nodes, called its storage servers (the owner itself is

also a storage server), in order to support efficient data retrieval.

To design a range query scheme, one needs to specify both a storage and a

retrieval policy. The storage policy specifies how and where each data item is stored,

and a retrieval policy specifies how a range query is answered by the system. There are

different ways to measure the performance of a range search design. In our discussion,

we choose the following measurement which consists of two components, the storage

and retrieval cost. Formally, the storage cost of a data item is the number of copies, or

the number of storage servers, for that data item. The storage cost of a range search

scheme is the maximum storage cost over all data items in the network. The retrieval

cost is a little more involved, which varies from case to case depending on the retrieval

policy. In our discussion, we restrict ourselves to the class of retrieval policies which

searches data along a single retrieval path starting from the query initiator. The path

has the property that every target data item has at least one storage server on it,

therefore, by search along the path, one can successfully retrieve all the target data.

For such retrieval policies, the length of the retrieval path for a query is called the

retrieval cost for that query. Notice that, a query can also be answered by other ways,

such as flooding the target region. However, it is beyond the scope of our discussion

to study those retrieval policies.

We say a range search scheme is distance sensitive if its retrieval policy is dis-

tance sensitive. Formally, a range search scheme is distance sensitive with a retrieval

function g if the retrieval cost for a query with radius r is at most g(r). Only monoton-

ically increasing functions are considered in our discussion, and therefore, the smaller

r is, the smaller the retrieval cost is. Note that this upper bound of the retrieval

13

cost applies to queries initiated by any node in the network with any query radius

r. Distance sensitivity is a desirable property because in many ad hoc network ap-

plications, the value of a piece of information to a user is strongly correlated with

the distance between them. Usually, local information is much more valuable than

remote information, and therefore, it is natural for a system to be able to retrieve

local information more efficiently.

Having defined the notion of distance sensitivity, let us look at two simple range

search schemes. The first straightforward design is as follows: each data item is stored

locally at its owner, and a range query is answered by scoped flooding, that is, by

flooding all the nodes within the query radius of the user. The advantage of this local

storage design is its low storage cost: there is only one copy for each data item in the

network. The obvious disadvantage of this scheme is its high retrieval cost, as flooding

is a known communication expensive operation. Another straightforward design is to

store each data item at every node such that range queries can be processed locally.

Apparently, this design has high storage cost but the retrieval cost in terms of inter-

node communication is zero. Both of the above two range search schemes are distance

sensitive. They have the opposite performance in terms of storage and retrieval cost.

In general, there is an intrinsic tradeoff between the storage and retrieval cost of a

distance sensitive scheme, and a significant part of this chapter is spent to discuss

this tradeoff.

2. The baseline scheme

The baseline version of the grid based range search scheme is designed to achieve

linear retrieval cost. Specifically, the retrieval cost function of the baseline scheme is

g(r) = s · r, where s is a positive number called the stretch factor which can be set

by the designer of the scheme.

14

The baseline scheme adopts a well known technique called exponential storage

and retrieval, which was also explored by a number of related papers [13, 14, 15, 16,

17, 18, 19]. Although the baseline scheme differs from them in details, it is not meant

to be a radically new design. Rather, it serves as a basis for the discussion of its

generic version to be presented in the next subsection.

The baseline scheme is as follows:

• Storage policy: a node stores its data at all the 2i-lattice nodes within distance

di + 2i/
√

2, i = 0, 1, 2, . . . ,m of itself, where m = dlog(s · D/
√

2)e.

di =
√

2 · 2i/s, (1)

and D is the diameter of the network, i.e., the greatest distance between any

two nodes in the network.

• Retrieval policy: a node retrieves the target data items at its 2j-neighbor, where

r is the query radius and

j =

dlog(s · r/
√

2)e if r >
√

2/s

0 if r ≤
√

2/s

. (2)

The above design is illustrated in Figure 5, where q is the initiator of the range query

with radius r, p is a generic node within distance r from q, and the storage servers

of the node p are depicted as black dots. Now, we analyze the storage and retrieval

policy of this design.

According to the storage policy, there are m = O(log D) layers of storage servers

for each data item. In each layer, the number of storage servers is upper bounded by

π · ((
√

2/s) · 2i + 2i/
√

2)2

(2i)2
= π · (

√
2/s + 1/

√
2)2 = O(1),

15

p

q

r q j

Fig. 5. The baseline range search scheme. q is the query initiator, p is an arbitrary

data owner such that |pq| ≤ r. qj is the 2j-neighbor of the node q.

where the numerator of the above equation is the area of the circle centered at the

data owner and with radius di +2i/
√

2, and the denominator is the area of the square

with base length 2i. Therefore, the storage cost for an arbitrary node is O(log D),

which is to say, the storage cost for the baseline scheme is O(log D).

Now, we show that the retrieval policy is correct, i.e., a node q following the

retrieval policy will not miss any target data. Let p be an arbitrary node such that

|pq| ≤ r. We show that qj, the 2j-neighbor of q, is a storage server of the node p, or

more accurately, any data item owned by p. There are two cases. (a) if r ≤
√

2/s,

by (2), j = 0 and dj =
√

2/s, and therefore |pq| ≤ dj. The 2j-neighbor, that is, the

1-neighbor q1 in this case, is q itself. So |qqj| = 0 < 2j/
√

2. (b) if r >
√

2/s, then by

(1) and (2),

dj = (
√

2/s) · 2dlog(s·r/
√

2)e ≥ (
√

2/s) · 2log(s·r/
√

2) = r.

and thus again |pq| ≤ dj. Since qj is the 2j-neighbor of q, by the definition of 2j-

16

neighbor, |qqj| ≤ 2j/
√

2. In both of the above two cases, |pq| ≤ dj and |qqj| ≤ 2j/
√

2,

so

|pqj| ≤ |pq| + |qqj| ≤ dj + 2j/
√

2.

Since r is at most D, j is at most m = dlog(s · D/
√

2)e. According to the storage

policy, qj is one of p’s storage servers. Therefore, the retrieval policy is correct.

For this retrieval policy, the retrieval path for a query with center q and radius

r is simply qqj, and the retrieval cost is |qqj|, i.e., the Euclidean distance between q

and qj. When r >
√

2/s, this cost is

|qqj| ≤ 2j/
√

2 = 2dlog(s·r/
√

2)e/
√

2 < 2log(s·r/
√

2)+1/
√

2 = s · r.

When r ≤
√

2/s, the cost is 0. In both cases, the retrieval cost is at most s · r.

The above analysis shows that the baseline scheme achieves linear retrieval at

the cost of logarithmic storage, which is summarized as the following theorem.

Theorem 1. The baseline range search scheme has O(log D) storage cost and O(r)

retrieval cost.

3. The generic scheme

The previous subsection presents the baseline range search scheme with logarithmic

storage and linear retrieval cost. In this subsection, we argue that O(log D) + O(r)

is only one point in the design space, and propose a generalization of the baseline

scheme, which has an arbitrary retrieval cost function and an optimized storage cost.

The fundamental strategy of the baseline scheme is to use 2i-lattice nodes as

rendezvous places for data storage and retrieval. The basic idea of the generic scheme

is a direct generalization of this strategy, that is, to use li-lattice nodes for data

storage and retrieval, where li is a number sequence different than the exponential

17

sequence 2i. Specifically, the generic range search scheme is defined as follows:

• Storage policy: a node stores its data at all the li-lattice nodes within distance

di + li/
√

2 of itself, i = 0, 1, 2, . . . ,m.

• Retrieval policy: a node retrieves the target data items at its lj-neighbor, where

j is the smallest non-negative integer such that dj ≥ r and r is the radius of

the query.

In the above design, the sequences li and di are the solution of the following opti-

mization program parameterized by what we call the meta variable m,

min
∑m

i=1 π(di + li/
√

2)2/l2i (3)

s.t. li/
√

2 ≤ g(di−1) ∀1 ≤ i ≤ m (4)

di ≥ 0, li ≥ 0 ∀0 ≤ i ≤ m (5)

d0 = 1, dm ≥ D (6)

Similar to the baseline scheme, there are m layers of storage servers for each

data item. In the ith layer, the number of storage servers is upper bounded by

π(di + li/
√

2)2/l2i , where the numerator is the area of the circle centered at the data

owner and with radius di +2i/
√

2, and the denominator is the area of the square with

base length li. Therefore, the objective function (3) of the optimization program is

an upperbound of the total storage cost of a data item. The inequality (10) is the

non-negativity constraint.

Now we analyze the generic scheme. First, we show that the retrieval policy is

correct. Let q be the query initiator, and let p be an arbitrary node within distance r

of q, that is, |pq| ≤ r. Refer to Figure 5 again. By the retrieval policy, r ≤ dj. Since

|pq| ≤ r, we have |pq| ≤ dj. By the definition of lj-neighbor, |qqj| ≤ lj/
√

2, where

18

qj is q’s lj-neighbor. Therefore, |pqj| ≤ |pq| + |qqj| ≤ dj + lj/
√

2. Since r < D, and

dm ≥ D by (6), it must be true that j ≤ m. By the storage policy, qj must be p’s

storage server. Therefore, the retrieval policy is correct.

Now we show that the retrieval cost is bounded by g(r). The retrieval cost is

|qqj|, and by the definition of lj-neighbor, |qqj| ≤ lj/
√

2. By (4), lj/
√

2 ≤ g(dj−1).

By the retrieval policy, j is the smallest integer such that r ≤ dj, therefore it must

be true that dj−1 ≤ r. Thus, the retrieval cost is bounded by g(r), which proves the

following theorem.

Theorem 2. The generic range search scheme is distance sensitive with a retrieval

function g.

Constraint (4) is called the distance sensitivity constraint in the sense that any li

and di sequence satisfying this constraint plus the storage and retrieval policy yields

a distance sensitive range search scheme. In particular, the baseline scheme can be

obtained by setting li = 2i and li/
√

2 = s · di−1. The optimization program of the

generic scheme merely allows us to choose a good sequence from all the eligible li and

di sequences satisfying (4).

We now discuss how to solve the optimization program. First, observe that it

is a non-linear program, since the objective function (3) is non-linear. The distance

sensitivity constraint (4) is also non-linear when g is a non-linear function. Second,

notice that the number m is an unknown variable. Both characteristics make the so-

lution to the program non-trivial. We use the following intuitive approach to solve the

program: try a range of reasonable values of m; for each value of m, use standard non-

linear programming techniques to solve the more constrained program. In the end,

we choose the value of m that presents the best performance and the corresponding

non-linear programming solution.

19

Choosing the best value for m is very important. Given a specific value of m,

the program can be solved reasonably efficiently according to our experiments. In our

experiments, all the results were obtained by the Matlab optimization toolbox [20] on

a laptop with a 1.3GHz Intel PentiumM processor and 1Gb memory. Matlab solved

all the programs successfully, some of which with m as large as 10000, in a matter of

seconds.

In the following, we show the results for the generic scheme with a quadratic re-

trieval cost function g(r) = r2. Table I lists the li sequence and the corresponding stor-

age cost f (the objective function of the optimization program) for m = 1, 2, 3, ..., 8.

Table I. Solution of the optimization program with a quadratic retrieval cost function

g(r) = r2.

m f li

1 32046 1

2 286.9 1,21.9

3 118.3 1,5.5,71.4

4 100.1 1, 3.4, 15.0, 100

5 102.0 1, 3.1, 10.1, 34.0, 100

6 106.7 1, 3.0, 9.8,31.5, 86.0, 100

7 111.7 1, 3.0, 9.6, 29.8, 77.0, 100, 100

8 116.9 1, 3.0, 9.5, 28.6, 71.0, 100, 100, 100

As shown in Table I, when m increases from 1 to 8, the storage cost f first de-

creases monotonically and then increases. The optimal storage cost f = 100.1 is ob-

tained when m = 4. Recall that the distance sensitivity of the range search scheme is

20

achieved by segmenting the distance between the data owner and query initiator (that

is, the range [1, D]) into m sub-ranges. Table I shows that both over-segmentation

and under-segmentation will result in high storage costs, and the optimal segmenta-

tion lies in between the two extremes. Furthermore, according to our experiments,

this observation is true for not only the quadratic function, but also other retrieval

cost functions as well. As a result, it suggests an alternative approach for solving

the optimization program based on the binary search of m’s value rather than the

exhaustive search.

The generic scheme presented here not only works for non-linear retrieval func-

tions, but also outperforms its baseline version with linear retrieval cost functions.

Recall that a scheme with linear retrieval cost is one whose retrieval cost function is

g(r) = s · r. The comparison is illustrated in Table II, where the storage cost f and

the li sequence are shown. The parameters are D = 100, and s = 0.25, 0.5, 1, 2.

Table II. The storage cost f and the li sequence of the baseline and generic schemes,

D = 100.

baseline generic

s f li f li

0.25 6729 1,2,4 6517.6 1,2.4,4.8

0.5 2614.5 1,2,4,8 2387.3 1,3,7.8

1 987.6 1,2,4,8,16 869.0 1,2.8,7.5,17.2

2 389.5 1,2,4,8,16,32 328.8 1,3.3,10.3,29.3

The following are two observations on the data in Table II. First, the storage cost

of the generic scheme is indeed consistently lower than that of the baseline scheme.

21

In particular, when s = 2, the storage cost of the generic scheme is 18% less than

the baseline version. Second, the baseline scheme tends to over-segment the distance

range [1, D]. In particular, for s = 1 and s = 2, the baseline scheme divides the

range into 4 and 5 sub-ranges, while the generic scheme achieves better performance

by dividing it into only 3 and 4 sub-ranges.

Table III is a further illustration of the above results. It lists the storage cost

f and the li sequence of the baseline and the generic schemes for s = 2 and D =

25, 50, 100, 200. We can see that the same conclusions hold.

Table III. The storage cost f and the li sequence of the baseline and generic schemes

with s = 2.

baseline generic

D f li f li

25 238.2 1,2,4,8 210.5 1,3,7.9

50 312.9 1,2,4,8,16 272.4 1,2.8,7.6,17.4

100 389.5 1,2,4,8,16,32 328.8 1,3.3,10.3,29.3

200 467 1,2,4,8,16,32,64 405.1 1,3.8,14.2,49.6

4. Load balancing

For ease of exposition, the design of the range search schemes presented in this section

does not take load balancing into consideration. In this subsection, we describe a

modified version of the range search schemes with more balanced storage load. We

would like to point out that the discussion in this subsection also applies to the design

of object locating schemes to be presented shortly in the next section.

22

Fig. 6. Load distribution of the baseline range search scheme for a 40 by 30 grid with

s = 0.5. The load of a node is indicated by its darkness.

Observe that, by the definition of the range search schemes, the storage load for

each node is not balanced. In particular, in the baseline scheme, the 2i-lattice nodes

are chosen to be the storage servers, and according to the storage policy, a 2i-lattice

node will hold a copy of all the data items within distance di + 2i/
√

2 from itself.

Therefore, the storage load of the 2i-lattice nodes tends to increase as i increases.

This is illustrated in Figure 6, which depicts the storage load of all the nodes in a 40

by 30 grid network. There are 2048 data items in this example, and each data item

is owned by a random node. The stretch factor s is set to be 0.5. The load of a node

is depicted by its darkness. The darker a node is, the heavier it is loaded. As the

figure shows, the nodes with the heaviest load are the 8-lattice nodes, followed by the

4-lattice nodes, and then 2-lattice nodes, and so on.

The design of our range search schemes made an implicit assumption that all the

data items are of the same type. In practice, the data that users are interested in may

naturally fall into a few different categories. For example, in a sensor network, a sensor

may generate both temperature and humidity data. In what follows, we describe

a load balanced version of the range search schemes by storing data in different

23

(a) (b)

Fig. 7. Load distribution of the load balanced range search scheme. The 2048 data

items fall into (a) two, and (b) four categories.

categories at different lattice nodes, which only requires a small modification to the

existing design. Observe that, the reason that the 2i-lattice nodes are the performance

“hotspots” is because all the data items share a common lattice system regardless of

their types. And, the basic idea of the load balanced range search scheme is simply to

use a different lattice system for each type of data. This can be achieved by a slight

modification to the definition of d-lattice. In particular, we can define the set of d-

lattice nodes for a type of data as the set of nodes with coordinate (x+a ·d, y + b ·d),

where a and b are integers ranging from −∞ to +∞, and (x, y) is the origin of the

lattice system for that type of data. Each data type has its own lattice origin. It is

straightforward to show that, the range search schemes with this modified notion of

d-lattice are still correct and distance sensitive.

Figure 7 shows the load distribution of the load balanced range search schemes

for the same network and set of data items in Figure 6. In Figure 7(a), the data items

are categorized into two groups, and are stored in two corresponding lattice systems.

In Figure 7(b), the data items are categorized into four groups. Clearly, the load

24

distribution in Figure 7 is considerably more balanced than Figure 6. The conclusion

is also confirmed by many other experiments with different settings.

D. Object locating

In this section, we study distance sensitive object locating in distributed ad hoc

networks, a problem that has a very similar structure as the range search problem

discussed in the previous section. We first present the problem formulation in Subsec-

tion 1, and then present the design of the baseline and generic object locating scheme

for grid networks in Subsection 2 and 3 with linear retrieval cost function and any

arbitrary retrieval cost function respectively. In Subsection 4, we present a lower-

bound result which shows that logarithmic storage cost is asymptotically optimal for

a linear retrieval cost function. At last, in Subsection 5, we briefly discuss how to

design object locating schemes for non-grid networks.

1. Problem statement

The range search problem discussed in the previous section studies regional data

retrieval, while the object locating problem in this section studies the retrieval of

individual data items. Specifically, we consider a set of objects in a network. Each

object has a identifier and a value, and is owned by a node, called its owner. A

reference to an object is an identifier-address pair, which indicates the address of the

owner of the object with the identifier. A node that stores a reference to an object

is called the reference server of the object. Note that, in the range search problem,

we store the data items directly at the storage servers, while in object locating, we

store object references at the reference servers. When a node tries to find an object,

it initiates a query with the identifier of the object, and the query is forwarded along

25

a pre-designed path, called the retrieval path (of the query initiator), until a node

which holds a reference to the object is reached. The storage cost of an object is

the total number of its reference servers, and the storage cost of an object locating

scheme is the maximum storage cost over all objects. When a node is searching for

an object, the retrieval cost is the length of the retrieval path segment between the

node and the first node on its retrieval path that has a reference to the object.

An object locating scheme defines both a storage and a retrieval policy. The

storage policy specifies where to place references to each object in the network, while

the retrieval policy specifies the retrieval path for every query initiator and every

object. An object locating scheme is distance sensitive with the retrieval function g

if for any node and any object, the retrieval cost for the node to find the object is at

most g(r), where r is the distance between the query initiator and the object owner.

Similar to the range search problem, there is an intrinsic tradeoff between the storage

and retrieval cost of an object locating scheme. In general, the higher the storage

cost, the lower the retrieval cost.

2. The baseline scheme

The baseline version of the object locating scheme is designed to achieve linear re-

trieval cost. Specifically, the retrieval cost function is g(r) = s ·r, where s, the stretch

factor, is an arbitrary positive number.

The baseline object locating scheme is defined as follows:

• Storage policy: a node stores a reference to any object it owns at all the 2i-lattice

nodes within distance di+2i/
√

2 of itself, i = 0, 1, 2, · · · ,m = dlog(s·D/
√

2+1)e,

where

di =
√

2 · (2i − 1)/s. (7)

26

p

q(q0)

q2

q1

Fig. 8. The baseline object locating scheme. p is the object owner and q is the query

initiator. q1 and q2 are the 2- and 4- neighbors of the node q. q finds p at q2.

• Retrieval policy: a node q retrieves a target object by searching along the path

q0 → q1 → q2 · · · , where qi is the 2i-neighbor of q, regardless of the identifier of

the object.

The baseline scheme is illustrated in Figure 8. The node p is the owner of the target

object that q is looking for. The reference servers of the node p are shown in the

figure with black dots. q1 and q2 are the 2- and 4- neighbors of the node q. q0 and q

are the same node. In this figure, q2 is a reference server for p, and at the same time,

it is on the retrieval path of q.

Now, we analyze the storage policy. Consider an arbitrary object. There are m

layers of reference servers for the object. By the definition of m, m = O(log D). In

each layer, the number of reference servers is upperbounded by π · (di +2i/
√

2)/(2i)2.

27

By the definition of di, it is straightforward to see to that di = O(2i). Therefore, the

number of reference servers in each layer is O(1), and the total number of reference

servers, i.e., the storage cost of the object, is O(log D).

Now, we analyze the retrieval policy. Let p be the owner of the target object that

q is looking for. First, we show that, if |pq| ≤ dj for some integer j ≥ 0, then qj, the

2j-neighbor of q, is a reference server for the object. By the definition of 2j-neighbor,

we have |qqj| ≤ 2j/
√

2. Since |pq| ≤ dj, |pqj| ≤ |pq| + |qqj| ≤ dj + 2j/
√

2. According

to the storage policy, qj is one of p’s reference servers. Since dm ≥ D and the distance

between any two nodes is at most D, it follows that the 2m-neighbor of any node

holds a reference to any object in the network and the retrieval process in the worst

case ends at the 2m-neighbor of the query initiator. Now, we show that the retrieval

policy is distance sensitive. More specifically, we show that the cost for q to find the

object owned by p is at most s · |pq|. Let j be the smallest integer such that |pq| ≤ dj.

We have just shown that qj is a reference server for any objects owned by p. To prove

that the retrieval policy is distance sensitive, we just need to show that the length of

the path qq1q2 · · · qj, is bounded by s · |pq|. Specifically, this length is,

j
∑

i=1

|qi−1qi| ≤
j

∑

i=1

(|qqi−1| + |qqi|) ≤
j

∑

i=1

2|qqi|,

by the definition of qi, |qqi| ≤ 2i/
√

2, therefore, the length of this path is at most

j
∑

i=1

2 · 2i/
√

2 =
√

2 · (2j+1 − 1) = s · dj−1,

since j is the smallest integer such that |pq| ≤ dj, it must be true that dj−1 ≤ |pq|,

therefore, the length of this path is at most s · |pq|, which implies that the retrieval

cost is at most s · |pq|.

Theorem 3. The baseline scheme has O(log D) storage cost and O(r) retrieval cost.

28

3. The generic scheme

In this section, we generalize the baseline version presented in the previous subsec-

tion, and present the generic object locating scheme with an arbitrary retrieval cost

function.

The generic scheme is defined as follows:

• Storage policy: a node stores a reference to any object it owns at all the li-lattice

nodes within distance di + li/
√

2 from itself, i = 0, 1, 2, · · · ,m, where m is the

smallest integer such that dm ≥ D.

• Retrieval policy: A node q retrieves a target object by searching along the path

q0 → q1 → q2 → · · · , where qi denote the li-neighbor of q.

The sequences li and di are solutions of the following optimization program:

min
∑m

i=0 π(di + li/
√

2)2/l2i (8)

s.t.
√

2
∑i

j=1 lj ≤ g(di−1) ∀1 ≤ i ≤ m (9)

di ≥ 0, li ≥ 0 ∀0 ≤ i ≤ m (10)

d0 = 1, dm ≥ D (11)

In the optimization program, the objective function,
∑m

i=1 π(di+li/
√

2)2/l2i , is an

upperbound of the storage cost of an object. The inequality (10) is the non-negativity

constraint.

Now we analyze the generic scheme. Let p be the owner of the object that q is

looking for. By the same argument presented in the previous subsection, we know

that qj is a reference server of any objects owned by p, where j is the smallest integer

such that |pq| ≤ dj. The retrieval cost is at most the length of the path qq1q2 · · · qj,

29

which is
∑j

i=1 |qi−1qi| ≤ 2 · ∑j
i=1 |qqi|. Since qi is the li-neighbor of q, we know that

|qqi| ≤ li/
√

2. Therefore, the retrieval cost is at most 2 · ∑j
i=1 li/

√
2 =

√
2 · ∑j

i=1 li,

which is at most g(dj−1) by (9). Since j is the smallest integer such that |pq| ≤ dj,

it must be true that dj−1 ≤ r. Therefore, the retrieval cost is at most g(r), which

concludes the following theorem,

Theorem 4. The generic object locating scheme is distance sensitive with a retrieval

function g.

4. Lowerbound result

In this subsection, we analyze the optimality of the performance of the distance

sensitive object locating scheme.

Linear retrieval cost is a very popular distance sensitive constraint, and has been

investigated in a large number of previous studies [21, 13]. The design of the object

locating schemes presented in this chapter has a storage cost that is logarithmic in

the diameter of the network. A natural question is, is this the optimal storage cost

to achieve the linear retrieval constraint? We prove in this section that it is true. We

show that for a wide family of networks called the growth lowerbounded networks,

the logarithmic storage cost is a lowerbound for any object locating scheme that

achieves linear retrieval cost. Since growth lowerbounded networks includes the grid

networks as a special case, the baseline scheme achieves the asymptotically optimal

performance.

Growth bounded networks characterize a large family of networks, and have

been widely studied [16]. The notion of bounded growth is based on the concept of

ball packing. A ball Br(v) with center node v and radius r is defined as the set of

nodes within distance r from v. Here, the distance between two nodes is the routing

30

cost between the two nodes. Let B be a set of balls each with radius r, and let U ⊆ V

be a subset of nodes in the network. B is called a r-packing of U if ∪B⊆BB ⊆ U

and ∀B,B′ ∈ B, B ∩ B′ = Φ. That is, B is a set of mutually non-intersecting balls

each with radius r. A network is growth lowerbounded or simply growth bounded with

growth rate α if for any v ∈ V and any r, r′ such that r′ ≤ r, there exists a r′-packing

of at least (r/r′)α balls for Br(v).

Consider an arbitrary distance sensitive object locating scheme with a linear

retrieval cost function. Without loss of generality, we assume that the minimum

distance between any two nodes is one. Let s be the stretch factor in the linear

retrieval cost function g(r), that is, g(r) = s · r. An important quantity in the

following analysis is the zooming factor, which is defined as:

z = z(s, α) = (1.5s)
α

α−1 .

Before presenting the following lemma (Lemma 5), we introduce a few more

terms. The distance |vP | between a node v and a path P is the minimum distance

between v and any node in P . We say that a path crosses a ball if the intersection

of the (set of nodes on that) path and the (set of nodes in the) ball is non-empty.

Intuitively, the following lemma says that for any ball and any (retrieval) path starting

from its center, there is a big enough (sub-)ball contained in the ball such that the

path does not cross.

Lemma 5. Let v be an arbitrary node in a growth bounded network. Let P =

(v, w1, w2, ...) be a path whose length |P | is at most s · r. Then, there must exist

a node v′ such that Br′(v
′) ⊆ Br(v) and |v′P | > s · r′, where r′ = r/z.

Proof. For simplicity, in the following analysis, we let B′ denote Br′(v
′), and let B

denote Br(v). See Figure 9 for an illustration.

31

B

B'
Pr'

v

v'

s r'

r = r' z

|P|<s r

Fig. 9. Lemma 5. It shows that for any ball and any (retrieval) path starting from its

center, there is a big enough ball contained in it such that the path does not

cross.

By the basic property of the bounded growth of the network, there is a 1.5sr′-ball

packing of cardinality

(
r

1.5sr′
)α = (

z

1.5s
)α = (

1.5sα/(α−1)

1.5s
)α = (1.5s)

α
α−1 = z

for any ball of radius r. Therefore, there is such a packing for B = Br(v). Shrink

the radius of each ball in this packing from 1.5sr′ to sr′, and we obtain an sr′-ball

packing B for B of cardinality z. Clearly, the distance between any two balls in this

packing is at least sr′, as shown in Figure 10.

Consider the number of balls in B that P can cross. Since |P | ≤ s · r and

32

sr ’

sr ’

sr¡fl1.5sr ’ 1.5sr ’

B1 B2

Fig. 10. Two balls B1 and B2 in an sr′-ball packing obtained from a 1.5sr′-ball packing,

where the distance between B1 and B2 is at least sr′.

the minimum inter-ball distance of B is at least s · r′, P needs to “spend” at least

s · r′ in order to go from one ball to anther, and therefore P can cross at most

s · r/(s · r′) = r/r′ = z balls in B. Since there are at least z balls in B, there is at least

one ball that P cannot cross. Let v′ be the center of this ball. Obviously Bs·r′(v
′) ⊆ B

because Bs·r′(v
′) is a member of the ball packing B. Also, B′ = Br′(v

′) ⊆ B too

because Br′(v
′) ⊆ Bsr′(v

′). By our choice of v′, P does not cross Bsr′(v
′), which

implies that |v′P | > sr′. Therefore, v′ is the node we have been looking for.

The above proof also explains how the expression of z is chosen. It ensures that

the number of balls in B is more than the number of balls P can cross. In other

words, z is specifically chosen so that Lemma 5 will hold. In fact, z can be clearly

set to any constant less than (1.5s)α/(α−1).

In the proof of the following theorem, Lemma 5 is applied repeatedly as a basic

building block of the argument.

Theorem 6. Let B be an arbitrary ball of radius R in a growth bounded network.

For any object locating scheme with the linear lookup cost function g(r) = s · r, there

33

must exist a node p ∈ B such that the storage cost of any object it owns is Ω(log R).

Proof. The basic idea of this proof is to repeatedly apply Lemma 5, and construct

a sequence of Ω(log R) nested balls B1, B2, ... with exponentially decreasing radius,

a sequence of nodes q1, q2, . . ., and a sequence of mutually non-intersecting lookup

paths P1, P2, . . . with q1, q2, . . . as their starting ends. The construction ensures that

the node sitting at the center of the innermost ball must have one reference server on

each of the Ω(log R) retrieval paths. See Figure 11 for an illustration.

First, let q1 be the center of B. Let B1 = Br1
(q1), where r1 is the radius of B1.

Let P1 be the maximum segment of q1’s retrieval path for the target object such that

|P1| ≤ s · r1. By Lemma 5, there is a node q2 such that ball B2 = Br2
(q2) ⊆ B1 and

|q2P1| > s ·r2, where r2 = r1/z. Let P2 be the maximum segment of q2’s retrieval path

such that |P2| ≤ s ·r2. Notice that |q2P1| > s ·r2 and |P2| < s ·r2, that is, the distance

from node q2 to path P1 is at least s · r2, while the length of P2 starting from q2 is

less that s · r2, therefore P1 ∩P2 = Φ, that is, P1 and P2 are mutually disjoint. Again

by Lemma 5, there is a node q3 such that ball B3 = Br3
(q3) ⊆ B2 and |q3P2| > s · r3,

where r3 = r2/z. By repeating this process in m = log R/ log z steps, we will have

a sequence of nodes q1, q2, ..., qm, a sequence of balls B1, B2, ..., Bm and a sequence of

paths P1, P2, ..., Pm. By the above construction, Bm ⊆ Bm−1 ⊆ ... ⊆ B2 ⊆ B1, and

P1, P2, ..., Pm are mutually disjoint.

We can now show that qm is the node we are searching for. To verify this,

let p = qm be the owner of the target object. It is straightforward to see that

∀1 ≤ i ≤ m, p ∈ Bi because p ∈ Bm and Bm ⊆ Bi. The fact that p ∈ Bi implies

that |pqi| ≤ ri. Since the retrieval stretch factor is s, and Pi is the maximum segment

of the qi’s retrieval path satisfying |Pi| ≤ s · ri, p must have at least one reference

server on Pi (∀1 ≤ i < m) in order for qi to locate it with a cost no more than

34

B1

B3

P 1

P3

P 2

q1

q2

B4

B2

q3

Fig. 11. The proof of theorem 6. It shows the construction of a sequence of non-in-

tersecting paths P1, P2, P3..., and a sequence of balls B1 ⊇ B2 ⊇ B3... with

exponentially decreasing radii.

s · |pqi|. Since P1, P2, . . . , Pm−1 are mutually non-intersecting, the total number of p’s

reference servers in B is at least m − 1 = log R/ log z − 1 = Θ(log R).

Theorem 6 shows that for a growth-bounded network of diameter D, for any

distance sensitive object locating scheme with linear retrieval cost, its storage cost

must be at least log D times a constant. Therefore, the following corollary directly

follows.

Corollary 7. The baseline object locating scheme achieves asymptotically optimal

storage cost.

We would like to note that there are a few object locating methods in literature

that also achieve O(log D) storage cost. An example is the location service scheme

LLS presented in [13]. Our result also proves the optimality of those schemes.

35

Due to the similarity between the range search and object locating problem, one

might hope that the same proof technique can be applied to show the optimality of

the range search schemes presented in the previous section. Unfortunately, we were

unable to do that directly, and the optimality of the range search schemes remains

unknown to us.

5. Beyond grid networks

The design of the range search and object locating schemes so far is based on a fairly

restricted network model, the grid network. In practice, however, the network under

study usually has more complicated topology, and the design of the object locating

schemes does not directly apply. In this subsection, we describe how to design object

locating schemes for growth upper bounded networks. We would like to point out

that, the techniques presented in this subsection also directly apply to the design of

range search schemes.

First, we use a simple example to explain the limitations of the object locating

schemes that we have developed. Figure 12(a) shows a grid where the 4-lattice nodes

are depicted as black dots. The node q4, as the 4-neighbor of the node q, is on q’s

retrieval path. For the gird in Figure 12(a), q can easily calculate the position of q4

according to the position of itself, and |qq4| ≤ 24/
√

2. These two facts are necessary

conditions for the retrieval policy to be correct and distance sensitive. Figure 12(b)

shows the same grid with two holes in the middle of the network. The node q4,

which was present in Figure 12(a), happens to be in the hole area and does not exist

in Figure 12(b). In addition, the distance between q and its nearest 4-lattice node

in Figure 12(b) is more than 24/
√

2, therefore, even if q is aware of the existence

of the holes, and picks the q′s nearest 4-lattice node as its 4-neighbor, the distance

sensitivity property of the retrieval policy would still be violated.

36

q

q4

(a)

q

(b)

Fig. 12. A grid network with two holes in the middle. The 4-lattice nodes are depicted

as black dots.

The basic principle of the grid based distance sensitive object locating schemes

can be generalized and used for designing object locating schemes for a class of net-

works called growth upper bounded networks. The notion of upper bounded growth

is based on the notion of ball covering. Let B be a set of balls each with radius r,

and let U ⊆ V be a subset of nodes in the network. B is called a r-covering of U if

U ⊆ ∪B⊆BB. A network is growth upper-bounded with growth rate β if for any v ∈ V

and any r, r′ such that r′ ≤ r, there exists a r′-covering of at most (r/r′)β balls for

Br(v). Apparently, the notions of upper and lower bounded growth are a pair of dual

concepts.

Recall that, the basic principle of the grid based schemes is to use d-lattice nodes

as places for information storage and retrieval. Correspondingly, the basic principle

for object locating schemes for growth upper bounded networks is to use d-net nodes

as rendezvous places, where the notion of d-net is a natural generalization of the

concept of d-lattice. Let V denote the set of nodes in the network. A node set U ⊆ V

forms a d-net of V if the distance between any pair of nodes in U is at least d, and for

37

any node v ∈ V −U , there is at least one node u ∈ U such that the distance between

u and v is at most d. It is well-known that, a d-net can be obtained by the following

simple greedy algorithm:

1. Initially, set V to be the set of all nodes and U to be the empty set,

2. pick an arbitrary node v in V −U , put it in U , and remove all the nodes whose

distance to v is less than d,

3. repeat the step 2 until V is empty.

When the algorithm terminates, the set U is a d-net. An important characteristics of

a growth upper bounded network is, the number of d-net nodes in any ball of radius

r is at most 2β · (r/d)β. This can be shown as follows. Consider an arbitrary ball

B with radius r. By the definition of growth upper bounded network, there exists a

d/2-ball covering of cardinality at most (2r/d)β = 2β(r/d)β. Notice that, since the

radius of each ball in the covering is d/2, and the distance between any pair of d-net

node is at least d, there must be at most one d-net node in each ball in the covering.

This implies that, the number of d-net nodes in B is at most 2β · (r/d)β. It follows

directly from this fact that the number of d-net nodes in any ball of radius O(d) is

O(1), where the growth rate β is considered as a constant.

By the above characteristics of growth upper bounded networks, the following

object locating scheme achieves logarithmic storage and linear retrieval cost:

• Storage policy: a node stores a reference to each object that it owns at all the

2i-net nodes within distance di = O(2i) from itself, i = 0, 1, 2, · · · ,m, where m

is the smallest integer such that dm ≥ D.

• Retrieval policy: a node q retrieves the target object by searching along the

path q0 → q1 → q2 · · · , where qi is the nearest 2i-net node of q.

38

The above scheme for growth upper bounded network looks almost identical as the

baseline scheme designed for gird networks, and it is straightforward to show that the

above object locating schemes is correct and distance sensitive. Despite the obvious

similarity, the above schemes is actually a little more involved than the grid based

scheme in the sense that to store and retrieve information according to this policy,

the nodes in the network must be aware of a sequence of pre-constructed 2i-nets.

More specifically, to store object references, an object owner must “remember” the

addresses of all the 2i-net nodes within distance di from itself. Note that, in grid

networks, the object owner can simply “calculate” the locations of all the 2i-lattice

nodes within distance di. Similarly, to retrieve an object, a node needs to remember

the addresses of the nodes on its retrieval path, while in grid networks, the locations

of the nodes on the retrieval path can also be “calculated”. In summary, object

locating schemes for growth bounded networks need to maintain a certain amount of

information of the topology of the network, which is not necessary for grid networks.

This additional overhead comes at no surprise. After all, grid is a special kind of

growth bounded network, and the topology of an arbitrary growth bounded network

does not have the regularity that a grid has.

E. Related work

A distinct characteristic of the information storage and retrieval schemes is that they

are designed for geometric networks, which can be embedded in 2- or 3-dimensional

Euclidean space. Such data storage and retrieval schemes for geometric networks have

been an active topic of study, especially in the context of sensor network research. A

well known approach is the Geographic Hash Table (GHT) [22], where a hash function

is used to determine the rendezvous locations to store data. It uses the geographic

39

routing algorithm GPSR [6] to transmit messages. GPSR guarantees that messages

can be routed to the node geographically nearest the rendezvous location. The same

hash function is used by both information producers and consumers, so that the con-

sumers know where to find the data associated with a key. The approach assumes

that sensors know their physical locations. GHT is not a distance sensitive scheme.

For a grid network with n nodes and a geographic hash function with uniform distri-

bution, the average lookup cost for GHT is O(
√

n). Distance sensitive information

brokerage has been studied in [21], where the authors proposed a novel double ruling

based information brokerage scheme which we refer to as DR. The key idea of the DR

scheme is to store the data replicas on continuous curves instead of one or multiple

isolated nodes. The curve along which a producer replicates its data is designed in a

way that guarantees it to intersect the lookup path of any consumer. For a network

of n nodes, a producer needs to store its data in O(
√

n) rendezvous nodes on the

curve. The scheme achieves linear lookup cost. In addition, DR supports structured

aggregate queries, meaning that a consumer following a particular curve can retrieve

the data from all producers in the network. The authors argue that the flexibility

of their retrieval mechanisms gives better routing and data robustness. Additional

information storage schemes based on landmarks, etc., have been proposed in [23, 24].

Probably the most related research to ours is distributed object locating and

routing (DoLR) schemes. DoLR is usually studied in the context of efficient file

sharing in large scale distributed networks, especially overlay networks. The main

difference between DoLR and the distributed object locating problem discussed in

this chapter is that, DoLR schemes include an extra phase to construct an overlay

network on top of the original network, and an efficient routing scheme for the overlay

network. In DoLR, objects are mapped to overlay network nodes, and then the

problem of finding an object is reduced to the problem of finding the overlay node(s)

40

where the object is mapped to. DoLR comes in two flavors: distance sensitive and

insensitive.

Research in DoLR has received significant attention during the last decade. The

two early popular schemes are Chord [25, 26] and CAN [27]. In Chord, network

nodes are organized as an identifier ring. In a network with n nodes, each node

maintains information about O(log n) other nodes, and each lookup request is resolved

in O(log n) steps. The other original DoLR proposal, CAN, is built around a virtual

d-dimensional Cartesian coordinate space on a multi-torus. The entire coordinate

space is dynamically partitioned among all the n nodes in the network such that

every node possesses its individual, distinct zone within the overall space. Each node

maintains information about O(d) other nodes, and each lookup request is resolved

in O(dn1/d) steps. Following Chord and CAN, a large number of DoLR schemes

were developed, noticeably Koorde [28], Kademlia [29], Viceroy [30], Symphony [31],

and etc. All these schemes focus on system scalability and maintainability, while

disregarding data locality. In the seminal work by Plaxton et al.[16], a randomized

distance sensitive DoLR solution was proposed for growth bounded networks, which

was called the PRR scheme. The schemes Tapestry [18] and Pastry [19] inherited the

basic ideas of PRR, and focused more on the self organization of overlay networks

under frequent node arrivals, departures and failures. PRR, Tapestry and Pastry all

have linear lookup cost in expectation. LAND [17] is a DoLR scheme for growth

bounded networks. It achieves a deterministic 1 + ε stretch lookup cost in the worst

case.

Another closely related topic is target tracking (or location service) in mobile

networks, where a node uses the data stored in location servers to learn the loca-

tions of other nodes. The study of location service was pioneered by Awerbuch and

Peleg [32][33]. In their work, the network was modeled by a general graph, and the

41

approach was based on hierarchical regional directories. LLS [13] adopted the ideas

in [32][33] on tracking, and obtained a distance sensitive scheme with linear lookup

ratios. It replicates data in log n nodes for grid-like networks. STALK [15] and MLS

[14] achieved a similar tracking performance. They also addressed the issues of fault

tolerance and robust performance. In particular, MLS has studied the maximum

speed at which the nodes can move in order to guarantee locality-sensitive lookup.

The above schemes all have linear lookup costs. GLS (grid location service) is another

interesting scheme [34]. It is based on the hierarchical decomposition of the network

using a quad-tree structure, and location servers are selected from the network com-

ponents in the quad-tree. Although its lookup cost is not locality-sensitive in the

rigorous sense, it does enable a consumer to find the location information of a closer

node from a location server in a smaller region. Therefore it achieves a performance

that is nearly locality sensitive.

Finally, distance sensitive information retrieval is also related to compact routing.

Compact routing comes in two flavors, labeled routing and name independent routing.

The objective of both of the two problems is to find a short (not necessarily the

shortest) path between node pairs while minimizing the size of routing tables. The

main difference between the two variants is that in labeled routing, the names (or

addresses) of the nodes are assigned by the system designer according to the network

topology, while in name independent routing, the names are chosen by the users. The

range search and object locating problems are more related to the name independent

routing problem. Name independent compact routing has been extensively studied

for a variety of network topologies, such as trees [35], Euclidean metrics [36], growth

bounded networks [37], networks with low doubling dimension [38, 39, 40, 41], and

general graphs [42, 43].

42

F. Summary

This chapter studies distance sensitive information services in distributed ad hoc

networks. In particular, we consider two closely related problems, range search and

object locating. The first main result of this chapter is a generic framework for

designing distance sensitive services for grid networks. The framework allows the

system designer to specify an arbitrary retrieval cost function, and outputs a scheme

with optimized storage cost. To our best knowledge, this is the first time that general

retrieval cost functions are studied for distance sensitive services. This framework

is applicable to both the range search and object locating problems. Although we

did not get into further discussion, the technique also be used in the problem of

mobile target tracking to optimize the initialization cost as well as the update cost.

The other main contribution of this chapter is a lower bound result for the object

locating problem, which shows that an logarithmic storage cost is asymptotically

optimal for schemes with linear retrieval cost in growth lower bounded networks.

This result proves the asymptotic optimality of many existing work in the area of

ad hoc networks as well as P2P networks research community. In addition, we also

address other issues such as load balancing and non-grid network topology in the

design of distance sensitive information services.

There are many interesting problems that are left unsolved by our study. First,

despite of the similarity of the two problems studied in this chapter in terms of the

problem structure and our solution framework, we only obtained a optimality result

for the object locating problem, and have not been to obtain the same result for

the range search problem even though we believe the result also holds. Second, the

optimality result that we have obtained is still in a weaker form in the following sense.

It only proves that to guarantee linear retrieval, at least one node in a growth lower

43

bounded network needs to have a logarithmic number of reference/storage servers. We

suspect that a much stronger result also hold: to guarantee linear retrieval, most of

the nodes in the network need to have a logarithmic number reference/storage servers.

Apparently, the vague and intuitive notion of “most nodes” in the above statement

need to be quantified. Third, we only obtained the optimality result when the retrieval

cost function is a linear one. An intriguing question is, is the generic scheme that

we have developed in this chapter also optimal in some sense for other retrieval cost

functions? Note that, we identified that the lower bounded growth of a network is

the necessary condition for the optimality result to hold in the linear retrieval case,

is it also a necessary condition in the non-linear retrieval case? Fourth, we assumed

that the network under study is static. The topology of practical networks, especially

cellphone network, sensor network, and Internet, is dynamic. Nodes in these networks

come and go on a regular basis, and it is of great interest to incorporate such network

dynamics into the design of our distance sensitive information services. Fifth, the

baseline scheme for both the two problems has very nice closed form storage and

retrieval cost functions, the logarithmic and linear functions. In the generic scheme,

however, the storage cost function does not necessarily take an closed form, which

raises the following question. Is there any other closed form storage and retrieval cost

function pairs? In summary, the general problem of distributed distance sensitive

information retrieval is still far from completely solved, and our study is a step towards

the goal.

44

CHAPTER III

END-TO-END INFORMATION TRANSMISSION

A. Introduction

A large number of ad hoc networks are wireless networks. An important characteristic

of wireless networks is that wireless transmissions may conflict with each other due

to various reasons such as radio interference, and therefore may not occur at the

same time. As a result, wireless transmissions usually need to be carefully scheduled,

according to certain schedulability constraints, to avoid such conflicts. This need of

making conflict free schedules for transmissions adds considerable complications to

many tasks during the network operation. In this chapter, we study the impact of

various wireless schedulability constraints to two fundamental networking problems,

end-to-end on-demand bandwidth allocation, and end-to-end throughput estimation.

The goal of an end-to-end on-demand bandwidth allocation scheme is to allocate

available network resource to satisfy a user’s end-to-end connection request with a

specific bandwidth requirement, while optimizing the bandwidth utilization such that

more future requests can be satisfied. In other words, we have two simultaneous

objectives, guaranteeing quality of service (QoS) to the end users, and minimizing

system resource consumption.

The end-to-end throughput estimation problem simply asks what is the maxi-

mum amount of data that can be successfully delivered between a pair of source and

sink nodes in a given period of time. End-to-end throughput is a fundamental net-

work parameter that can be used to identify potential bottleneck, coordinate network

traffic, plan and evaluate network design, etc. It is generally difficult to compute the

exact end-to-end throughput under various schedulability constraints, and also, it is

45

often satisfactory to have a reasonably small range within which the thoughput falls

in. Because of this, in this chapter, we will only focus on efficient methods that give

a reasonably good upperbound of the thoughput. In particular, we show that, under

a widely adopted interference model, a practically tight upperbound can be obtained

by identifying a small set of carefully chosen cliques.

Before getting into the detailed discussion of these two end-to-end information

transmission problems, we first introduce some basic concepts and terminologies.

B. Basic concepts and terminologies

We consider an ad hoc network formed by a group V of homogeneous nodes. Each

node is equipped with a wireless transceiver. All the other nodes that a node can

directly communicate with (transmit to or receive from) successfully via its transceiver

are called its neighbors. There is a directed link from a node to each of its neighbors.

The set of all links is denoted by E. Let e = uv ∈ E be a directed link, u and v are

respectively called the sender and receiver of e. u is called v’s predecessor and v is u’s

successor. Given a node v, Ein(v) and Eout(v) respectively denote the set of inbound

and outbound links incident on v. Communication between two non-neighboring

nodes is forwarded by one or more intermediate nodes. For two nodes s, d ∈ V , an

s → d path p is a sequence of adjacent links connecting s and d. If e = uv is a link

of path p, we say u ∈ p, v ∈ p, and e ∈ p.

A notion of great importance in the discussion of this chapter is that of schedu-

lability of transmissions. A transmission is a one hop communication that occurs

at a particular link. The schedulability constraint characterizes the condition under

which wireless transmissions can successfully occur at the same time. Formally, the

schedulability constraint is a binary relation ∦ on the link set E. If e1 ∦ e2, we say link

46

e1 and e2 conflict with each other, and e1 and e2 cannot be used for data transmis-

sion at the same time. The schedulability relation essentially defines a dependency

among links, which could be caused by various reasons such as the ability of radio

transceivers and radio interference. The schedulability constraint is the main com-

plication factor for the problems to be discussed in this chapter. In particular, we

consider the impact of the single transceiver constraint to the problem of end-to-end

on-demand bandwidth allocation and the impact of radio interference to the problem

of end-to-end throughput estimation.

C. Bandwidth allocation

In this Section, we first present a combinatorial optimization formulation of the on-

demand end-to-end bandwidth allocation problem with the single transceiver schedu-

lability constraint in Subsection 1. We analyze the complexity of this problem and

show that it is NP-hard in Subsection 2. A 2-approximation algorithm MCRS (min-

imum consumption routing and scheduling) is presented in Subsection 3. Experi-

ments show that MCRS significantly outperforms existing minimum hop based rout-

ing schemes in Subsection 4.

1. Problem statement

We first introduce the relevant notations and formulate the problem of end-to-end

bandwidth allocation with a particular schedulability constraint, called the single

transceiver constraint.

The single transceiver constraint says that a set of transmissions can successfully

occur at the same time only if no two transmissions share a common sender or receiver.

This constraint is caused by the fact that each node is equipped with only one radio

47

transceiver, and thus a node cannot transmit to two different receivers or receive

from two different senders at the same time. The impact of the single transceiver

constraint to routing and scheduling is the focus of our study. The effect of other

type of schedulability constraint such as those caused by radio interference is not

considered in this section. This simplification is based on the fact that interference

can be dramatically suppressed with technologies such as directional antenna [44]

and adaptive transmission power control [45]. Furthermore, interference can also be

eliminated by a well-studied preprocessing step called channel assignment [46, 47, 48],

which assigns interfering links to orthogonal channels that are mutually isolated.

We assume that all the wireless links between neighboring nodes have the same

capacity. The network works on the basis of TDMA (time division multiple access),

where time is divided into equal length frames and each frame into equal length slots.

The set of slots of a frame is denoted by T = {1, 2, . . . , |T |}. The k-th slot of a link

e is referred to as tke . A slot is an atomic reservable bandwidth unit. We say link e1

conflicts with e2, or e1 ∦ e2, if they share a common sender or receiver. Notice that,

by this definition, if e1 = e2, then e1 ∦ e2. Slot tk1

e1
conflicts with tk2

e2
, if k1 = k2 and

e1 ∦ e2. Each individual slot can be in one of the following three states: allocated,

occupied, or free. An allocated slot is one that is reserved to carry a unit of flow traffic.

An occupied slot is one that an allocated slot conflicts with, hence cannot be used

for data transmission. A free slot is one that is neither allocated nor occupied. The

available bandwidth of a link is the set of free slots on that link. A slot is consumed

if it is either allocated or occupied.

The state S of a network G is a triple (A,O, F) where the function A : E → T

specifies the set of allocated slots on each link. The sets of occupied and free slots

are specified by the functions O and F respectively. A state S is conflict free if no

two allocated slots conflict with each other. The functions A, O, and F are obviously

48

related. Given G and ∦, O and F can be derived from A. Therefore, only A is the

essential component of a conflict free state S. The total number of free slots,

∑

e∈E

|F (e)|,

characterizes the available network bandwidth that can be allocated to support users’

requests.

The goal of our work is to design algorithms to process users’ flow request. Let

s
b→ d denote a flow request between source s and sink d asking for b free slots. An

s
1→ d request is called a unit request.

To answer an end-to-end flow request, we restrict ourselves to solutions based

on a single path. In particular, an s
b→ d flow arrangement Ap is specified by an

s → d path p, and b time slots to be allocated on each link e of p. The set of the

b slots to be allocated on the link e ∈ p is denoted by Ap(e). We usually speak of

a flow arrangement with respect to a state of the network. A flow arrangement Ap

is feasible with regard to state S = (A,O, F) if Ap(e) ⊆ F (e) for every link e of p.

That is, the time slots to be allocated by Ap are all free slots. Notice that, if S is

conflict free and Ap is feasible, then the new network state S ′ = (A′, O′, F ′) after the

allocation of Ap is also conflict free. Here, A′ is defined by A′(e) = A(e) ∪ Ap(e) for

every e ∈ p, and A′(e) = A(e) for every e /∈ p. Recall that, O′ and F ′ can be easily

derived from A′. Unless explicitly declared, only feasible arrangements are considered

in our discussion.

Given a state S, the consumption set C(S, tke) of a free slot tke is defined to be

{tke′ |tke′ ∈ F (e′), e ∦ e′}, that is, the set of free slots that tke conflicts with. The consump-

tion set of a flow arrangement Ap, denoted by C(S,Ap) is defined as
⋃

e∈p C(S,Ap(e)),

where C(S,Ap(e)) =
⋃

tke∈Ap(e) C(S, tke) is the set of free slots to be consumed by the

allocation of Ap(e). Note that, tke ∈ C(S, tke) and Ap(e) ⊆ C(S,Ap(e)) by the above

49

definition. When S is understood, C(S,Ap(e)) and C(S,Ap) will be abbreviated as

C(Ap(e)) and C(Ap). With the above definitions and notations, we formulate the

end-to-end on-demand bandwidth allocation problem as follows. Given a network G,

its state S and a flow request s
b→ d, find a feasible flow arrangement Ap if there is

any, such that |C(S,Ap)|, the number of slots to be consumed by Ap, is minimized.

The above problem formulation essentially defines an optimal flow arrangement

as the one that consumes the minimum amount of available bandwidth. We remark

that, there are many other ways to define the optimality of a flow arrangement. For

example, the optimal flow arrangement can be defined as the one such that after the

allocation of the arrangement, the residual network has the maximum average avail-

able slots per link. Further discussions on other notions of optimal flow arrangements

and the corresponding flow arrangement algorithms fall out of the scope of our study,

and is left as one of the future work.

2. Complexity analysis

Before presenting our algorithm for the end-to-end bandwidth allocation problem

defined in the previous section, we first study its complexity. The main result of this

section is the following theorem.

Theorem 8. The end-to-end bandwidth allocation problem with the single transceiver

schedulability constraint is NP-hard.

Proof. We consider the decision version of the problem, which asks for the existence

of a flow arrangement that consumes less than a specific number of slots. The idea of

this proof is to show that 3SAT is reducible to (the decision version of) the bandwidth

allocation problem.

The 3SAT problem asks for the satisfiability of a given Boolean formula f in

50

the CNF form, that is, f is given as the conjunction of a number of clauses: f =

f1 ∧ f2 ∧ . . . ∧ fi ∧ . . ., where each clause fi is the disjunction of up to three literals

(Boolean variables or their negations). We use |f | to denote the number of clauses in

the formula f and |fi| to denote the number of literals in the clause fi. We will use

the following formula

f = f1 ∧ f2 ∧ f3 = (x1 ∨ x2 ∨ x3) ∧ (x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x3)

as an illustrating example throughout this proof.

For a given Boolean formula f , we can construct a corresponding directed graph

Gf in the following two steps.

Step 1. For each clause fi, we create a diamond shaped subgraph Gfi
with |fi|

parallel paths corresponding to the |fi| literals in fi. After that, all the |f | constructed

diamond subgraphs are connected one by one serially as shown in Fig 13, where the

leftmost and rightmost nodes are named s and d respectively. All the links created in

step 1 are called forward links, directed from s to d. The graph node corresponding

to a particular literal l ∈ f is denoted as vl.

s

x1

d

x1 x2 x3 x2 x3 x1 x2 x3

x1

x2

x3

x2

x3 x3

x2

Fig. 13. Hardness: Step 1. The construction of a network with a sequence of diamond

shaped subgraphs with only forwarding links.

Step 2. We add additional links to the graph constructed in step 1 as follows.

51

∀1 ≤ i < j ≤ |f |, and ∀li ∈ fi and ∀lj ∈ fj, we consider two cases:

Case 1: li 6≡ lj. That is, li and lj correspond to different Boolean variables, or

they correspond to the same Boolean variable and both are in its original form or

negation form. In this case, we add a directed link from node vlj to node vli . In our

example, if li is x1 in f1 and lj is x2 in f2, then the added link is the top link in Fig

14. If li is x3 in f1 and lj is x3 in f2, then the added link is the bottom one. Links

created in this case are called backward links.

s

x1

d

x1 x2 x3 x2 x3 x1 x2 x3

x1

x2

x3

x2

x3 x3

x2

Fig. 14. Hardness: Step 2.1. The construction of backward links.

Case 2: li ≡ lj. That is, li and lj correspond to the same Boolean variable, and

they are the negation of each other. In this case, we add two extra nodes and links to

the graph as follows: first, we add an extra node and a directed link from the extra

node to node vli ; then, we add another extra node and a directed link to it from node

vlj . In our example, suppose li is x3 in f2 and lj is x3 in f3, then we add the two

nodes and two directed links as shown in Fig 15. Links created in this case are called

dangling links.

After the two steps, we get a directed graph Gf as shown in Fig 16. Consider

the network corresponding to Gf . Suppose each time frame contains only one slot, all

slots are free, and an s
1→ d request is to be established. Since |T | = 1, an s

1→ d flow

52

s

x1

d

x1 x2 x3 x2 x3 x1 x2 x3

x1

x2

x3

x2

x3 x3

x2

Fig. 15. Hardness: Step 2.1. The construction of dangling links.

arrangement Ap degenerates to path p. In other words, establishing a unit flow only

involves routing in this setting. Any s
1→ d path makes 3|f | − 1 links be allocated. It

also makes
∑|f |

i=1 2(|fi|−1) forward links created in step 1 be occupied, and Q number

of backward and dangling links created in step 2 be occupied. To find an optimal

path that consumes minimum number of links, we would like to minimize Q.

s

x1

d

x1 x2 x3 x2 x3 x1 x2 x3

x1

x2

x3

x2

x3 x3

x2

Fig. 16. The complete constructed network corresponding to Boolean formula

(x1 ∨ x2 ∨ x3) ∧ (x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x3).

Now we show a relationship between a solution to 3SAT and a solution to our

bandwidth allocation problem. Specifically, we show Boolean formula f is satisfiable

53

if and only if there exists an s → d path p in Gf which consumes at most

(3|f | − 1) +

|f |
∑

i=1

2(|fi| − 1) +

|f |−1
∑

i=1

|f |
∑

j=i+1

|fj| +
|f |
∑

i=2

i−1
∑

j=1

|fj| −
(|f |

2

)

links, that is, if and only if for path p,

Q ≤
|f |−1
∑

i=1

|f |
∑

j=i+1

|fj| +
|f |
∑

i=2

i−1
∑

j=1

|fj| −
(|f |

2

)

. (*)

If 3SAT has a satisfying solution, then we can assign values to the Boolean

variables such that for every 1 ≤ i ≤ |f |, there is a literal li ∈ fi such that the

assignment makes li = true. In Gf , consider the s → d path p that travels through

vli , 1 ≤ i ≤ |f |. For vli , attached to it there are
∑|f |

j=i+1 |fj| inbound links(either

backward links or dangling links) and
∑i−1

j=1 |fj| outbound links created in Step 2.

Therefore, the number of backward and dangling links to be consumed by path p is

|f |−1
∑

i=1

|f |
∑

j=i+1

|fj| +
|f |
∑

i=2

i−1
∑

j=1

|fj|.

Notice that, some of the links are counted twice in the above enumeration. In fact,

for any 1 ≤ i < j ≤ |f |, by the construction of path p, we have li 6≡ lj, and there is a

link from vlj to node vli . This link is considered as both an inbound link of vli and an

outbound link of vlj . Since there are |f | clauses, there are in total
(|f |

2

)

such doubly

counted links, and therefore, the actual number of backward and dangling links to be

consumed by path p is

Q =

|f |−1
∑

i=1

|f |
∑

j=i+1

|fj| +
|f |
∑

i=2

i−1
∑

j=1

|fj| −
(|f |

2

)

,

i.e., (*) holds.

Now consider the other direction. Assume there is an optimal path p such that

for this path, (*) holds. Suppose for i = 1, 2, · · · , |f |, path p travels through vli ,

54

where li ∈ fi. By essentially the same reason as above, we can see that there cannot

exist two nodes vli and vlj with 1 ≤ i < j ≤ |f | on p such that li ≡ lj, otherwise,

(*) cannot be satisfied. So, for any Boolean variable x, if it appears in one of the

literals l1, l2, · · · , l|f |, it either appears only in the form of x or only in the form of

x. We assign values to every Boolean variable x in f as follows: among the literals

l1, l2, · · · , l|f |, if x appears in the form of x, then we let x = true; if x appears in the

form of x, then we let x = false; otherwise, we let x take any Boolean value. Such

an assignment must be a satisfying solution to the 3SAT problem.

In summary, 3SAT can be reduced to a special case of our end-to-end on-demand

bandwidth allocation problem with single transceiver constraint in two steps. Ap-

parently the reduction takes only polynomial time, that is to say, the bandwidth

allocation problem is NP-hard.

3. Minimum consumption routing and scheduling

In this section, we present the design of our end-to-end on-demand bandwidth allo-

cation algorithm MCRS, and analyze its performance.

An illustrative example

Before getting into the detailed discussion of MCRS, we first use a toy network in

Figure 17 to illustrate the basic idea of its routing sub-algorithm. To simplify the

discussion, we assume that each frame has only one slot, so that establishing a unit

flow connection only involves making routing decisions. That is, a flow arrangement

Ap is uniquely specified by the path p.

Consider the network in Figure 17. Initially, all links are available. Suppose a

unit flow between s and d is to be established. Two obvious routing choices are: scd

and suvd, of which scd is the one with minimum number of hops. If scd is chosen,

55

s

d

c u

v

Fig. 17. A simple network illustrating the intuition of the MCSR algorithm.

then the link sc and cd will be allocated, and all the links in Eout(s), Ein(c), Eout(c)

and Ein(d) are to be occupied. The residual network after the allocation of sc and

cd is shown in Figure 18(a), where both sc and cd, as well as the links conflicting

with them are left out. Similarly, the residual network after the allocation of suvd is

shown in Figure 18(b). Clearly, network (a) is “less connected” than (b), and hence

has a poorer chance to support future requests.

s

d

c u

v

(a) path scd is chosen

s

d

c u

v

(b) path suvd is chosen

Fig. 18. Residual networks after the allocation of the paths scd and suvd.

This simple example shows, unlike in wired networks, choosing the path with

minimum hops, scd in this case, does not necessarily lead to minimum bandwidth

consumption in wireless network. It seems that a better strategy would be to avoid

56

choosing nodes with high degree, such as the node c in Figure 17. It is worth to

point out that, the degree of a node is a dynamic quantity, which keeps changing as

flow requests are processed. For example, the degrees of c in Figure 17 and Figure 18

are different. That is, the degrees of c before and after the flow request is processed

are different. The same observation can also be made from the perspective of links:

choosing a link e = uv would result in |Eout(u) ∪ Ein(v)| links to be consumed, thus

one would like to avoid choosing links with high |Eout(u) ∪ Ein(v)| value in order to

reduce bandwidth consumption.

The above observation is based on the assumption that each frame has only

one slot. Algorithm MCRS in the next subsection further develops this idea for the

general case where a frame has more than one allocatable slots.

Minimum consumption routing and scheduling

Algorithm MCRS relies on two concepts, the b-th bottom set and b-th consumption

level of a link e. The b-th bottom set of a link e, denoted by Bb(S, e), is the set of b

free slots of e with minimum consumption sets if |F (e)| ≥ b, or Φ if |F (e)| < b.

The consumption level of a free slot tke , denoted by c(S, tke), is the size of its

consumption set |C(S, tke)|. The b-th consumption level of link e, denoted by cb(S, e),

is defined as |C(S,Bb(e))| if |F (e)| ≥ b, or ∞ if |F (e)| < b. In other words, the

b-th consumption level of a link e = uv is the minimum number of slots that will be

consumed to support a u
b→ v flow.

When S is understood, Bb(S, e), c(S, tke), and cb(S, e) will be abbreviated as

Bb(e), c(tke), and cb(e). With these definitions, we present our routing and scheduling

algorithm, MCRS, as shown in Figure 19.

Basically, MCRS uses the b-th consumption level for routing (step 1 and 2) and

b-th bottom set for scheduling (step 4 and 5). This method of routing and scheduling

57

Input: network graph G = (V,E), state S = (A,O, F), flow request s
b→ d

Output: a feasible s
b→ d flow arrangement Ap if there is one

1. For each e ∈ E, compute the b-th consumption level cb(e)

2. Use cb(e) as the cost of e ∈ E to find a shortest s → d path p by Bellman-Ford’s

algorithm

3. If p does not exist or the cost of p is ∞, then return “failed”, else

4. For each link e ∈ p, compute the b-th bottom set Bb(e)

5. Let Ap(e) = Bb(e), and return Ap

Fig. 19. MCRS, the Minimum Consumption Routing and Scheduling algorithm.

will hereafter be called MCR (minimum consumption routing) and MCS (minimum

consumption scheduling) respectively. If the algorithm does not return “failed” in

step 3, it returns a flow arrangement Ap. The returned arrangement Ap is obviously

feasible since Bb(e) ⊆ F (e),∀e ∈ p. Accordingly, the new network state after the

allocation of Ap is conflict free.

The running time of algorithm MCRS is dominated by step 1, 2 and 4. Step

1 computes the b-th consumption level for each link e ∈ E, which can be done in

time O(b|E||T |) in the following two substeps. In the first substep, we compute the

consumption level of every free slot as follows. For a free slot tke , its consumption level

c(tke) = cin(tke) + cout(t
k
e) + 1. Here, cin(tke) and cout(t

k
e) are the number of free slots

tke′ , e 6= e′, such that e and e′ share the same receiver and sender respectively. The

number “1” corresponds to slot tke itself. Notice that, slots tke and tke′ have the same

cin value if e and e′ share the same receiver. Based on this fact, the cin value for all

58

the free slots can be computed in time O(|E||T |). Similarly, the cout value and hence

the consumption level for all the free slots can also be computed in time O(|E||T |).

Then in the second substep, we spend another O(b|T |) time for each link e ∈ E, that

is, O(b|E||T |) for all the links, to find the b slots with minimum consumption levels

for each link and compute the b-th consumption level. Therefore, step 1 takes time

O(b|E||T |) in total. Step 2 runs Bellman-Ford’s shortest path algorithm which takes

time O(|E||V |). Step 4 computes the minimum consumption schedule for every link

of the path found by step 2. By an analysis similar to that of step 1, step 4 takes

time O(b|E||T |). In summary, Algorithm MCRS takes time O((|V | + b|T |) · |E|).

The NP-hardness of the bandwidth allocation problem with single transceiver

constraint shows that an optimal arrangement cannot be found by an polynomial time

algorithm, assuming P is not equal to NP. Nevertheless, algorithm MCRS provides

a solution whose cost is guaranteed to be no more than twice the cost of an optimal

solution.

Theorem 9. MCRS is a 2-approximation algorithm.

Proof. Let Aq be any s
b→ d flow arrangement where q is an arbitrary s → d path.

We first show,

|C(Aq)| ≤
∑

e∈q

|C(Aq(e))| ≤ 2|C(Aq)| (1)

Before showing (1) is true, we need to introduce the concepts of “singly consumed”

and “doubly consumed” slots. We say a free slot is to be singly consumed by Aq if it

belongs to the consumption set of exactly one free slot to be allocated by Aq. A free

slot is to be doubly consumed if it belongs to the consumption sets of exactly two

free slots to be allocated. Since any link e has at most two ends on path q, slot tke is

either to be singly or doubly consumed by Aq. For example, Fig 20 shows a fraction

of a network, where each frame has three slots, and each currently consumed slot is

59

marked with a “x”. Suppose a u
2→ v flow is to be established, which allocates t2uw,

t3uw, t1wv, and t3wv. Then, t3uv is to be doubly consumed by this arrangement because

t3uv ∈ C(t3uw) and t3uv ∈ C(t3wv), and t2uw and t2ux are to be singly consumed because

they are only in the consumption set of t2uw.

u

v

w

x

y

1
2
3

x
x

1
2
3

x

1
2
3

x

1
2
3

x

1
2
3

x

Fig. 20. Doubly and singly consumed slot.

For an arrangement Aq, let S1 and S2 respectively denote the set of slots to be

singly and doubly consumed. Then |C(Aq)| = |S1| + |S2| and
∑

e∈q |C(Aq(e))| =

|S1| + 2|S2|, and (1) follows.

Now, let Ap be the arrangement outputted by algorithm MCRS, and Aq be an

optimal flow arrangement. By (1),

|C(Ap)| ≤
∑

e∈p

|C(Ap(e))|. (2)

By algorithm MCRS and the definition of cb(e), Ap(e) = Bb(e) and cb(e) = |C(Bb(e))|

for every e ∈ p, so,

∑

e∈p

|C(Ap(e))| =
∑

e∈p

|C(Bb(e))| =
∑

e∈p

cb(e). (3)

60

Ap is the shortest path using cb(·) as the cost function, thus,

∑

e∈p

cb(e) ≤
∑

e∈q

cb(e). (4)

By the definition of cb(·), ∀e ∈ q, cb(e) ≤ |C(Aq(e))|, so,

∑

e∈q

cb(e) ≤
∑

e∈q

|C(Aq(e))|. (5)

By (2), (3), (4), (5), and (1), we have

|C(Ap)| ≤ 2|C(Aq)|. (6)

That is, the amount of bandwidth to be consumed by Ap is no more than twice

the amount of bandwidth to be consumed by the optimal flow arrangement, which

concludes our proof that MCRS is a 2-approximation algorithm.

Theorem 9 analyzes the theoretical bound on the performance of MCRS. In

practice, the performance of MCRS may be significantly better. In particular, MCRS

consumes twice the amount of bandwidth the optimal flow arrangement would con-

sume if and only if inequality (2), (4), (5), and (1) all hold with equality. A thorough

study of the likelihood that equality holds for (2), (4), (5), and (1), falls out of the

scope of our discussion, and we take it as future research.

Stateless and semi-stateless variations

As one of the two components of MCRS, MCS is amenable to efficient distributed

implementation. The main task of MCS is to compute Bb(e) for every link e = uv of

the path p chosen by MCR. To do this, we can simply let u collect the state of links

in Eout(u)∪Ein(v), and compute Bb(e). In this way, the computation of MCS can be

performed concurrently using only local information.

61

MCR, based on Bellman-Ford’s algorithm, on the other hand, is relatively harder

to implement in an efficient way. A common method of implementing Bellman-Ford’s

algorithm is to precompute and cache routing decisions in a table. This method may

not be suitable for MCR because it requires up-to-date network state information,

which may change frequently as flow requests arrive and leave.

To address the above issue, we propose the following stateless version of MCR,

called MCR−. Specifically, in MCR− we use |Eout(u) ∪ Ein(v)| for every e = uv ∈ E

instead of cb(e) as the cost function for routing. This idea of MCR− has actually

already been illustrated in the example at the beginning of this section. The intuition

is essentially the same as that of MCR, that is, to avoid choosing “highly connected”

nodes as much as possible. Note that, MCR− only requires the network topology

as input, that is, it needs not to be aware of the current network state. Therefore,

routing decisions can be precomputed efficiently by the distributed Bellman-Ford’s

algorithm.

Routing can also be done in a semi-stateless manner where the cost function for

routing is defined as follows: if |F (e)| ≥ b, then the cost of e = uv is |Eout(u)∪Ein(v)|,

otherwise, the cost is ∞. This semi-stateless MCR needs |F (e)| as input, ∀e ∈

E, that is, it does need to be aware of the information of available bandwidth for

each network link. With this information, semi-stateless MCR can avoid choosing

routes with insufficient available bandwidth, and make more accurate decisions than

completely stateless MCR-. Here, |F (e)| is only a single number, which is significantly

simpler than S(e) = (A(e), O(e), F (e)), what MCR needs to know. As a result, semi-

stateless MCR is expected to be more efficient than MCR in terms of computation

and communication overhead.

In summary, stateless and semi-stateless routing algorithms trade bandwidth ef-

ficiency for computation and communication efficiency. Stateless and semi-stateless

62

algorithms do not provide any upper bound on the amount of bandwidth to be con-

sumed. The actual performance of stateless algorithm will be experimentally studied

in Section 4.

4. Simulation evaluation

To evaluate the performance of our scheme, we perform a series of simulations on a

experiment network with 200 nodes randomly distributed in a 500× 500 rectangular

plane area. For each node, we assign a random (Gaussian) transmission range with

mean and variance set to 100 and 50. A node can communicate uni-directionally

with any node within its transmission range. The number of slots per frame is set

to be 50. Note, although this simulation setting implies a disk graph based network

model, MCRS is designed for general graph models. We take this simulation design

mainly because it is a widely adopted set up, and we use it as a benchmark to

test performance.

To the our best knowledge, no other non-trivial routing and scheduling algorithm

has been proposed in the literature. Thus, in our experiments, we fix the scheduling

algorithm to be MCS, and compare the performance of MCR and MHR, and their

stateless versions, MCR− and MHR−. Here, MHR is acronym for minimum hop rout-

ing, a widely used routing algorithm for networks without schedulability constraint.

Note, when we speak of the performance of one of the four routing algorithms, we

are really talking about the performance of its combination with MCS. For MHR, we

assign a cost of 1 (one hop) to link e, ∀e ∈ E, if |F (e)| ≤ b, or ∞ if |F (e)| > b. For

MHR−, we simply let the cost of each link to be 1 regardless of the current network

state. For convenience, MCR and MCR− will be collectively called min-consumption

algorithms, and MHR and MHR− min-hop algorithms.

63

Static experiment

In the first experiment, we load the network with static requests. Once a static

flow request is accepted and established, it stays in the network indefinitely, and

the allocated bandwidth is not recycled. We load the network with 5000 such unit

requests one by one, each of which is assigned a random source and sink. We observe

the bandwidth and delay performance, as well as load balancing performance for each

algorithm.

0 1000 2000 3000 4000 5000

0.4

0.5

0.6

0.7

0.8

0.9

1

number of requests

ac
cu

m
ul

at
ed

 a
cc

ep
ta

nc
e

ra
te

MCR
MHR

MCR−

MHR−

Fig. 21. Accumulated acceptance rate. The x axis represents the number of loaded

requests, and the y axis represents the number of requests accepted by each

algorithm.

Figure 21 plots the accumulated acceptance rate, y, after x requests are loaded,

0 < x ≤ 5000, that is, y = a(x)/x, where a(x) is the number of accepted requests out

64

of the x loaded ones. As shown in this figure, MCR maintains a 100% acceptance

rate up to 1537 requests, while this number for MHR, MCR−, and MHR− is 406,

742, and 401 respectively. We take the point x up to which an algorithm maintains

a 100% acceptance rate as a simple measurement of that algorithm’s bandwidth

performance. By this measurement, the bandwidth performance of MCR is more

than 4 times of that of MHR in this experiment (in all our other experiments, the

bandwidth performance of MCR is consistently at least 3 times that of MHR). It is

interesting to notice that the stateless algorithm MCR− exhibits better performance

than the stateful algorithm MHR. In Figure 21, both yMCR and yMHR keep dropping

monotonously when more and more requests are loaded, but yMCR is consistently

higher than yMHR. In the end, MCR accepted 2511 out of 5000 requests, which is

17.9% more than MHR. yMCR− and yMHR− exhibit the same pattern. Interestingly,

yMCR− falls below yMHR at x ≈ 1000, but it ends up to be higher than yMHR when x

approaches 5000.

Figure 22 shows the average number of free slots per link, y, after x requests

are loaded, 0 < x ≤ 5000. As expected, yMCR > yMCR− > yMHR = yMHR− when x is

small, which shows min-consumption algorithms consumes less bandwidth than min-

hop algorithms when the same amount of requests are accepted. Here, yMHR = yMHR−

because MHR and MHR− choose different paths only after certain shortest paths are

saturated. Notice that, yMCR < yMHR < yMCR− < yMHR− when x approaches 5000.

This is not surprising because as shown in Figure 21, min-consumption algorithms

have accepted more requests than min-hop algorithms at this moment. yMCR has an

abrupt turn at x ≈ 2000. Before this point, yMCR decreases quickly and almost linearly

as requests are loaded one by one, and after this point, yMCR begins to decrease at

a very low speed. Similar point can be observed for yMHR at x ≈ 1900, although

the turn is less abrupt than that of yMCR. We call this point the saturation point

65

0 1000 2000 3000 4000 5000
0

5

10

15

20

25

30

35

40

45

50

number of requests

av
er

ag
e

av
ai

la
bl

e
ba

nd
w

id
th

 p
er

 li
nk

MCR
MHR

MCR−

MHR−

Fig. 22. Available bandwidth. The x axis represents the number of loaded requests,

and the y axis represents the average number of free slots per link.

in that it roughly indicates the moment when the network bandwidth is exhausted.

No obvious saturation points can be observed for yMCR− and yMHR− . The existence

of saturation point for stateful algorithms shows that they are more aggressive at

bandwidth allocation than stateless algorithms.

Next, we evaluate the delay performance of each algorithm, where delay is mea-

sured by the number of hops of the path computed for each accepted request. In

Figure 23, We show the accumulated average hops, y, after x requests are loaded,

where y =
∑x

i=1 h(i)/a(x) with h(i) and a(x) defined as follows. If request i is ac-

cepted, then h(i) is the number of hops of the path found by each routing algorithm;

if request i is rejected, then h(i) = 0. a(x) again is the number of accepted requests

out of x loaded requests. At first when x is small, yMCR > yMCR− > yMHR = yMHR− .

This indicates that min-hop based algorithms have better delay performance than

66

0 1000 2000 3000 4000 5000
2

2.2

2.4

2.6

2.8

3

3.2

3.4

3.6

3.8

number of requests

ac
cu

m
ul

at
ed

 a
ve

ra
ge

 h
op

s

MCR
MHR

MCR−

MHR−

Fig. 23. Accumulated average hops. The x axis represents the number of loaded re-

quests, and the y axis represents the average path length for each accepted

request.

min-consumption based algorithms, which conforms to their design objective to re-

duce delay. Here, yMHR = yMHR− is again because MHR and MHR- make the same

routing decision when no path is saturated. When more requests are loaded, more

and more min-hop paths are saturated, and MHR is forced to pick sub-shortest paths.

This is why yMHR keeps increasing until it reaches a peak at the saturation point of

x ≈ 1900. After that, yMHR begins to keep dropping, because when the network be-

comes more and more saturated, it is only capable of supporting shorter and shorter

requests. In comparison, yMCR maintains a value of around 3.4 up to the saturation

point of x ≈ 2000. After that, yMCR starts to keep dropping (although still higher

than yMHR). The reason that yMCR does not follow the climbing-descending pattern

as that of yMHR is because MCR is better at load balancing(to be further illustrated

67

shortly): when a short path is saturated, so are the longer ones. Finally, just as MHR

versus MCR, the delay performance of MHR− is always better than that of MCR−.

No hill climbing is observed for both yMCR− and yMHR− because they are stateless:

no longer paths are tried when shorter ones are saturated.

(a) MCR (b) MHR

(c) MCR− (d) MHR−

Fig. 24. Residual networks after 1000 requests. The amount of available bandwidth of

each link is indicated by the darkness of that link.

To study the load balancing abilities of min-consumption and min-hop algo-

rithms, we examine the network for each algorithm after the first 1000 requests are

68

loaded, as shown in Figure 24. Here, 1000 is an arbitrarily chosen number. We

performed the same studies for operation points other than 1000, and all the stud-

ies produced similar results. In Figure 24, we use darkness to indicate the amount

of available bandwidth of each link. The darker a link is, the more bandwidth is

available. From the figure we can see that the available bandwidth distributions of

network (a) and (c) are more uniform than those of (b) and (d). This is because

min-hop algorithms choose the shortest path for each request. Since the source and

sink node of each request is random, the nodes sitting at the center of the network are

more likely to be loaded first. This is not the case for min-consumption algorithms,

however, because they do not particularly favor short paths.

Figure 25 plots the bandwidth distributions of the four networks in histograms.

That is, this figure plots y = d(x) for each algorithm, where d(x) is the number of links

with x available slots, 0 ≤ x ≤ 50. In the four networks, the bandwidth spectrum of

the MCR network is the narrowest. More accurately, the variances for MCR, MHR,

MCR−, and MHR− are 4.16, 14.83, 9.80, and 14.15 respectively, which shows that the

load balancing abilities of min-consumption algorithms are significantly better than

min-hop algorithms.

Mixed experiment

In this experiment, we consider both static and dynamic requests. Dynamic flows

have limited life-time. After they expire, the allocated bandwidth can be recycled

to support other new flows. The arrival time of each dynamic request is modeled

as a Poisson process, where the average inter-arrival time is set to 0.5 second. The

life-time of a dynamic flow is modeled as a random variable with uniform distribution

from 0 to 5 seconds. We first load the network with 1000 static unit requests, and

then another 4000 dynamic unit requests. We perform 15 such experiments, each

69

0 10 20 30 40 50
0

200

400

600

800

1000

(a)

0 10 20 30 40 50
0

200

400

600

800

1000

(b)

0 10 20 30 40 50
0

200

400

600

800

1000

(c)

0 10 20 30 40 50
0

200

400

600

800

1000

(d)

Fig. 25. Distribution of available link bandwidth after 1000 requests. y is the number

of links with x available slots.

with a randomly generated network with the same parameters as those of the static

experiment, and a set of mixed static and dynamic requests. Figure 26(a) shows the

acceptance ratio of the 4000 dynamic requests for each of the 15 experiments. Figure

26(b) shows the average number of hops for the 4000 dynamic requests for each of the

15 experiments. Results confirm again that min-consumption algorithms have better

bandwidth performance while min-hop algorithms have better delay performance.

70

2 4 6 8 10 12 14
0.4

0.5

0.6

0.7

0.8

0.9

1

experiment number

ac
ce

pt
an

ce
 r

at
e

MCR
MHR

MCR−

MHR−

2 4 6 8 10 12 14
2

2.2

2.4

2.6

2.8

3

3.2

3.4

3.6

3.8

4

experiment number

av
er

ag
e

ho
ps

 p
er

 r
eq

ue
st

MCR
MHR

MCR−

MHR−

Fig. 26. Acceptance rate for the mixed experiments where the network is loaded with

1000 static and 4000 dynamic requests.

D. Throughput estimation

In this section, we study the problem of estimating the end-to-end throughput for

wireless ad hoc networks with radio interference, where the term throughput refers to

the maximum amount of data that can be successfully delivered across the network

from a source node to a sink in a given period of time. End-to-end throughput is

a fundamental network parameter that can be used to identify potential bottleneck,

coordinate network traffic, plan and evaluate network design, etc. It is generally

difficult to compute the exact end-to-end throughput under various schedulability

constraints, and also, it is often satisfactory to have a reasonably small range within

which the thoughput falls in. Because of this, in this section, we will only focus

on efficient methods that give a reasonably good upperbound of the thoughput. In

particular, we show that, under the interference model described in [1], a practically

tight upperbound can be obtained by identifying a small set of carefully chosen cliques.

71

1. Problem statement

The schedulability constraints considered in this section models the effect of radio

interference in wireless networks. We adopt the interference model in [1]. [1] assumes

that each node has a radio transceiver with a certain transmission range, and a

transmission from u to v is successful if all the other nodes whose transmission range

that v is within are not transmitting. This interference model can also be stated in

terms of links as follows. Let e = uv and e′ = wh be two links; e ∦ e′, that is, e

conflicts with e′ at node v if wv ∈ E, h = v, or w = v, see Figure 27(a), (b), and

(c); transmission on e is successful if all the links that e conflicts with are not in

transmission. In addition to the above three interference patterns, transmissions on

link e and e′ shown in Figure 27(d) are also considered to conflict with each other. This

is the single transceiver constraint that we have considered before. Traditionally, the

interference pattern in Figure 27(a) is called the secondary interference [46], while

the patterns in Figure 27(b), (c) and (d) are called the primary interference. For

convenience, the graph (E, ∦) is called the conflict graph. Take Figure 28 as an

example, 25 ∦ 47 at node 5, 41 ∦ 46, 14 ∦ 42 and 14 ∦ 64 at node 4.

e'

e

u v

w h

v(h)

e

e'
u

w

e e'
v(w)

u h

u(w)

e

e'

v

h

Fig. 27. The four patterns of the radio interference model from [1].

72

1 2 3

4 5

6 7 8

Fig. 28. A sample network. Each double arrowed line represents two one way links.

The notion of end-to-end throughput depends on the notion of schedule, which

specifies the action of every link during one time unit. Specifically, a schedule is a 0-1

vector z indexed by e ∈ E and 0 ≤ t ≤ 1. ze,t = 1 indicates that e is scheduled to be

active at t, otherwise e is scheduled to be inactive. Schedule z is feasible if ∀e, e′ ∈ E,

0 ≤ t ≤ 1, ze,t = ze′,t = 1 implies e does not conflict with e′. In other words, z is

feasible if at any time 0 ≤ t ≤ 1, the set of links scheduled to be active is conflict

free.

Let ce denote the capacity of link e ∈ E, that is, the maximum amount of data

that can be transmitted by link e in unit time. Let s and d be a pair of source and

sink nodes. An s − d flow x is a vector indexed by e ∈ E that satisfies the capacity

constraints

0 ≤ xe ≤ ce,∀e ∈ E,

and the flow conservation constraints

x(v) = 0,∀v ∈ V − {s, d},

where x(v) =
∑

e∈Eout(v) xe −
∑

e∈Ein(v) xe. The capacity constraint simply says that

the amount of data that link e carries cannot exceed its capacity. The flow conserva-

73

tion constraint says that the amount of data that flow into each node (except s and

d) is equal to the amount of data that flow out of it. The value of an s − d flow x

is x(s), the net amount of data that flows out of source s in unit time. Flow x is

schedulable if there exists a feasible schedule z such that

xe/ce =

∫ 1

0

ze,tdt,∀e ∈ E.

If the above equation holds, then x is said to be realized by z. The term
∫ 1

0
ze,tdt

here is the fraction of time that e is scheduled to be active.

With the above notions, we can now define the end-to-end throughput estimation

problem as follows. Given a network and two nodes s, d ∈ V , the problem of end-

to-end throughput is to find a schedulable s − d flow x with maximum value. This

value, denoted as θsd, is called the s − d throughput.

The above formulation of the throughput problem with the schedulability con-

straint is a variant of the well known maxflow problem. The different between the

two problems is, the throughput problem has an extra constraint that the flow must

be schedulable (under the schedulability constraint) while the traditional maxflow

problem does not have such restrictions. Due to this extra constraint, the feasible

solution space of our throughput problem has a more complicated combinatorial struc-

ture. More specifically, it may not be possible to describe the feasible solution space

by a small set of linear constraints. The key idea of the upperbounding approaches

to be presented in the following discussion is to use a polynomial number of linear

constraints to characterize a superset of the feasible solution space.

Note that the notion of a flow here is different from that in the last section. In

particular, in this section, an end-to-end flow is delivered via multiple paths while a

flow in the last section is restricted to a single path.

74

2. Upperbounding the end-to-end throughput

One approach to estimate the end-to-end throughput is based on the notion of inde-

pendent link set, a set of mutually non-conflicting links. The independence number

α(F) of a set of links F ⊆ E is the size of the maximum independent set of F . No-

tice that if a flow x is schedulable, then it must satisfy the following independence

constraint :
∑

e∈F

xe/ce ≤ α(F),∀F ⊆ E.

To see that this necessary condition is true, let z be a feasible schedule that realizes

x. By the definition of schedulability, ∀e ∈ E, xe/ce =
∫ 1

0
ze,tdt. Thus,

∑

e∈F

xe/ce =
∑

e∈F

∫ 1

0

ze,tdt =

∫ 1

0

∑

e∈F

ze,tdt.

By the feasibility of z, the set of active links at time t is conflict free. In other words,

the set of active links at time t forms an independent set. Since α(F) is the size of

the maximum independent set of F , it must be true that
∑

e∈F ze,t ≤ α(F). And

therefore, the independence constraint follows.

Since every schedulable flow satisfies the independence constraint, it together

with the flow conservation constraint and the capacity constraint specifies a superset

of the feasible solution space. It follows directly that, the optimal objective value

θ̄sd(F) of the following linear program LP(F) is an upperbound of θsd, the end-to-

end s − d throughput, where F ⊆ 2E is an arbitrary set of subsets of E:

75

maximize x(s)

subject to
∑

e∈F

xe/ce ≤ α(F), ∀F ∈ F

x(v) = 0, ∀v ∈ V − {s, d}

0 ≤ xe ≤ ce, ∀e ∈ E

Although any F ⊆ 2E corresponds to an upperbound θ̄sd(F) of θsd, the above

linear program does not tell us which choice of F is good in the sense that the

corresponding θ̄sd(F) is close to θsd and is easy to compute. In general, the more

link sets F contains, the tighter θ̄sd(F) will be. The tightest θ̄sd(F) is achieved

when F = 2E. θ̄sd(2
E), however, is obviously expensive to compute since there are

exponential number of elements in 2E. In the following, we propose several choices of

good F . In particular, we restrict our attention to cliques.

A clique is a set of mutually conflicting links. There are several advantages to

deal with cliques instead of arbitrary link sets. First, given an arbitrary clique F ,

the term α(F) in LP(F) can be immediately substituted with 1 since the links in

F mutually conflict with each other. This is in contrast to the fact that it is often

expensive to compute α(F) for an arbitrary link set F . Second, given two class of

cliques F1 and F2, we can often know which one of θ̄sd(F1) and θ̄sd(F2) is tighter

without solving LP(F1) and LP(F2). Specifically, if for every clique F2 ∈ F2, there

is a clique F1 ∈ F1 such that F2 ⊆ F1, then we say F1 is stronger than F2. If F1 is

stronger than F2, then the independence constraints on F2 must be implied by the

independence constraints on F1, and as a result θ̄sd(F1) must be closer to θsd than

θ̄sd(F2). Therefore, in order to obtain a relatively tight upperbound θ̄sd(F) within a

reasonable amount of time, one would want to pick a small set F of strong cliques .

76

4(v)

1 2

5

6 7

1 2 3

4(u) 5(v)

6 7 8

Fig. 29. Star and bell clique.

We start our discussion of choosing a good set of cliques by considering the

following class of cliques call the star cliques:

Qs = {Ein(v) ∪ Eout(v),∀v ∈ V }. (7)

By the primary interference, any two links in Ein(v)∪Eout(v) conflict with each other

at the node v, thus each member of Qs is indeed a clique. Figure 29(a) shows the

star clique on node 4 of the network in Figure 28, which contains link 14, 41, 42, 45,

46, 64, 47, and 74. Another class of cliques, called the bell cliques, has the following

form:

Qb = {Eout(u) ∪ Ein(v),∀uv ∈ E}. (8)

We say E1 ⊆ E conflicts with E2 ⊆ E, if ∀e1 ∈ E1 and ∀e2 ∈ E2, e1 conflicts with e2.

Each member of Qb is indeed a clique since Eout(u) and Ein(v) are both cliques by

the primary interference and Eout(u) conflicts with Ein(v) at node v by the secondary

interference. For example, the bell clique on link 45 of the network in Figure 28 is

depicted in Figure 29(b).

By the definition of star and bell cliques, there are |V | and |E| number of star

and bell cliques respectively for a given network, thus all of them can be enumerated

77

efficiently. Starting from star and bell cliques, we identify three classes of stronger

cliques in the following discussion. To ease the exposition, we introduce the following

additional notations. The set of predecessors and successors of a node v are denoted

as pred(v) and succ(v). Define pred[v] = pred(v) ∪ {v} and succ[v] = succ(v) ∪ {v}.

Let U be a set of nodes, and v be a single node. The set of all links e = uv such

that u ∈ U is denoted as E(U → v). Similarly, E(v → U) denotes the set of all links

e = vu such that u ∈ U .

First, consider the following class of cliques called class one cliques:

Q1 = {Ein(u) ∪ Eout(u) ∪ E(pred(u) → v),∀uv ∈ E}.

It is straightforward to verify that E(pred(u) → v) conflicts with Ein(u) either at u

or v, and E(pred(u) → v) conflicts with Eout(u) at v. We have already known that

Ein(u) ∪ Eout(u) forms a star clique, therefore, Ein(u) ∪ Eout(u) ∪ E(pred(u) → v)

makes a clique. Figure 30 shows the class one clique on node 4 and 5 of the network

in Figure 28. Q1 is stronger than Qs since it is obtained by augmenting each star

clique Ein(u) ∪ Eout(u) with E(pred(u) → v).

4(u) 5(v)

E(Npred(u) v)

1 2

6 7

Fig. 30. Class one clique.

78

Second, let u, v and w be three nodes such that uv ∈ E and uw ∈ E. The class

two cliques is defined as follows:

Q2 = {Eout(u) ∪ Ein(v) ∪ E(pred[v] → w),∀uv, uw ∈ E}.

It is straightforward to verify that E(pred[v] → w) conflicts with Eout(u) at w, and

it also conflicts with Ein(v) at v. We have already known Eout(u) ∪ Ein(v) is a bell

clique, so Eout(u) ∪ Ein(v) ∪ E(pred[v] → w) is indeed a clique. Figure 31 shows

the class two clique on node 4, 5 and 2 of the network in Figure 28. Q2 is stronger

than Qb since it is obtained by augmenting each bell clique Ein(u) ∪ Eout(v) with

E(pred[v] → w).

4(u) 5(v)

E(Npred[v] w)

1 2(w) 3

6 7 8

Fig. 31. Class two clique.

Finally, let u, v and w be three nodes such that uv ∈ E and wv ∈ E. Consider

class three cliques as follows:

Q3 = {Eout(u) ∪ Ein(v) ∪ E(w → succ[u]),∀uv, wv ∈ E}.

By similar analysis we can show that, each member of Q3 is indeed a clique too. As

79

an example, Figure 32 shows the class three clique on node 4, 5 and 7 of the network

in Figure 28.

4(u) 5(v)

7(w)

E(w Nsucc[u])

1 2 3

6 8

Fig. 32. Class three clique.

The asymmetricity in the form of Q1, Q2 and Q3 stems from the fact that

the interference model is essentially a receiver oriented model, which precludes all the

predecessors of the receiver but not the sender of a communication from transmitting.

By the definition of the class one, two, and three cliques, there are at most |E| cliques

in Q1, and |E| · |V | cliques in Q2 and Q3 respectively. Thus, Q1, Q2 and Q3 can all be

enumerated in polynomial time, and the corresponding upperbounds θ̄sd(Q1), θ̄sd(Q2),

θ̄sd(Q3), and θ̄sd(Q1 ∪ Q2 ∪ Q3) can be computed fairly efficiently. Furthermore, the

simulation result to be presented shortly shows that these upperbounds are fairly

tight in practice.

3. Simulation evaluation

In this section, we evaluate the clique based upperbounds on grid networks and

random networks respectively. In our simulations, linear programs are solved by

80

Lp solve[49], and the following simple recursive algorithm is used to compute the inde-

pendence number α. The algorithm is based on the fact that α(F) = max{α(F\{e}),

α(F\I[e]) + 1}, where e is a link in F , I[e] = I(e) ∪ {e} and I(e) is the set of links

that e conflicts with.

1. if |F | = 0 return 0

2. pick a link e ∈ F

3. recursively compute α(F\{e}) and α(F\I[e])

4. return max{α(F\{e}), α(F\I[e]) + 1}

Grid networks

In this experiment, we create a 10x10 grid network. We assign to each link a random

capacity with uniform distribution from 0 to 100. We randomly pick 10 pairs of

nodes, and compute their s − d throughputs. The upperbounds θ̄sd(Q1), θ̄sd(Q2),

θ̄sd(Q3), and θ̄sd(Q1 ∪ Q2 ∪ Q3) are listed under column θ̄1, θ̄2, θ̄3, and θ̄123 in Table

IV. Column θ lists the lowerbounds computed by the maximal independent sets

enumeration method in [50].

From the results we can see that, it always holds that θ̄1 > θ̄2 = θ̄3 = θ̄123, and

the numbers in column θ̄123 are very close to the numbers in column θ, which suggests

that θ̄123 is a practically good upperbound. In this regards, we computed θ̄123 for all

pairs of nodes in this network and compare them with θ. We found that more than

90% of the time, θ̄123 is within 1.05θ, and never goes above 1.25θ.

81

Table IV. Grid network

θ̄1 θ̄2 θ̄3 θ̄123 θ

1 60.04 53.06 53.06 53.06 51.33

2 53.41 51.62 51.62 51.62 51.41

3 86.00 86.00 86.00 86.00 86.00

4 73.79 64.71 64.71 64.71 56.62

5 63.84 60.14 60.14 60.14 51.89

6 62.79 54.70 54.70 54.70 54.70

7 60.62 47.70 47.70 47.70 41.17

8 44.13 41.57 41.57 41.57 34.67

9 33.20 31.36 31.36 31.36 31.07

10 33.20 31.36 31.36 31.36 31.28

Random networks

We create a set of 40 nodes on a 500x500 Euclidean plane. Each node is equipped

with one radio with a random transmission range of mean 100 and variance 20. Each

link in the network is assigned a random capacity with uniform distribution from 0

to 100. We randomly pick 10 pairs of nodes, and compute their s − d throughputs.

The results are listed in Table V.

From the results we can see that, again, θ̄123 is a fairly close upperbound. After

that, we computed θ̄123 and θ for all pairs of nodes in this network, and found that

more than 90% of the time, θ̄123 is within 1.35θ, and never goes above 2θ. Notice

that, θ is only a lowerbound of θ, thus, the gap between θ̄123 and θ could be even

smaller than that between θ̄123 and θ.

82

Table V. Random network

θ̄1 θ̄2 θ̄3 θ̄123 θ

1 22.99 23.10 22.72 22.71 17.66

2 8.17 7.53 7.53 7.53 7.53

3 41.18 39.90 40.81 39.90 27.91

4 20.67 16.47 16.47 16.47 16.47

5 8.17 8.17 8.17 8.17 8.17

6 84.00 84.00 84.00 84.00 84.00

7 96.00 96.00 96.00 96.00 96.00

8 67.38 61.90 55.77 54.57 44.96

9 51.58 38.85 37.82 35.42 32.00

10 8.17 7.53 7.53 7.53 7.53

E. Related work

The on-demand end-to-end bandwidth allocation problem that is considered in our

discussion can be regarded as a variant of the QoS routing problem in wired networks.

Compared with the QoS routing problem, our problem is more involved since it con-

sists of not only a routing component, but also a scheduling component. Traditionally,

QoS aware network layer design adopts minimum hop routing and its variations, such

as shortest widest path routing [51], widest shortest path routing [52], and MPLS

routing[53]. QoS routing via multiple paths using bandwidth reservation is studied in

[54], [55], [56], and etc. These routing algorithms are not suitable for wireless networks

because they are designed for networks where links are physically isolated. Wireless

links, however, are not independent from each other, and allocating bandwidth on

one link does affect the available bandwidth of others.

83

A variant of the end-to-end on-demand bandwidth allocation problem has been

extensively studied in [57, 58, 59, 60, 61, 62, 63, 64]. The problem that they considered

is as follows, given a path between a pair of source and sink, decide if a connection

with a bandwidth requirement can be established along this path. Some slots of the

links on that path may have already been allocated. The schedulability constraint is

that nodes (on the path) cannot send and receive at the same time. [57] showed that

this problem is NP-hard and [58, 59, 60, 61, 62] proposed various heuristic solutions.

They differ from our work in that their focus is to satisfy the need of the current

request, while ours is to optimize bandwidth utilization so that more future requests

can be supported. Furthermore, a path is already given in their problem as the input.

Therefore, only scheduling decision needs to be made in their problem formulation.

While in our discussion, routing, i.e., finding a good path, is an indispensable part of

the solution.

The problem of computing end-to-end throughput for multihop wireless networks

was first studied in [65], where the system under study is assumed to be free of sec-

ondary interference. The author gave a polynomial time algorithm based on the

famous ellipsoid method. The exact time complexity of their algorithm, however, is

unknown. Following [65], [66] proposed a more practical algorithm that computes

approximate throughput based on Shannon’s coloring theorem. Both [65] and [66]

neglect the existence of secondary interference. Jain et. al. showed this problem

is NP-hard in general [50], and proposed a maximal independent set based lower-

bounding and a clique based upperbounding technique. Their approach is general

enough to be applied to a wide class of networks. However, it does not take full ad-

vantage of the special interference pattern of wireless networks. [67] first established

a lowerbound that is within a constant factor of the throughput in wireless networks

with secondary interference. Finally, [68, 69, 70] considered throughput estimation in

84

multi-radio multi-channel wireless networks by extending results for the single-radio

single-channel case.

F. Summary

In this chapter, we studied two information transmission problems in wireless ad hoc

networks.

We first considered a problem of end-to-end on-demand bandwidth allocation

with the single transceiver schedulability constraint. The problem is a variant of the

well-known QoS routing problem with an extra scheduling component. We proved

that the problem is NP-hard and presented a 2-approximation routing and scheduling

algorithm, MCRS. Our scheme exhibits better bandwidth efficiency than traditional

methods in simulations. We also discussed the stateless version of the MCRS al-

gorithm which is more amenable to distributed implementation. Our work can be

extended along a variety of interesting directions. First, a most interesting question

is whether we can find an algorithm whose approximation ratio is less than 2. Also,

further empirical research is needed to study the performance of MCRS in practice.

Second, our work is based on a deterministic TDMA network model. Although in

general, deterministic access results in better performance, the overhead of synchro-

nization and coordination may be significant. Hence, we plan to study bandwidth

allocation in random access networks, especially those based on IEEE 802.11 medium

access protocols. Third, we only studied QoS routing for unsplittable flows in our

discussion. QoS routing for splittable flows is a rather interesting topic, where the

data of a flow does not necessarily have to travel along a single path. Fourth, we

focused on bandwidth efficient end-to-end unicasting in our discussion. Research on

bandwidth efficient broadcasting and multicasting will also be of both theoretical

85

and practical interest. Fifth, there are many ways to define the optimality of a flow

arrangement, and ours is only one of them. It would be interesting to adopt other

notions of optimality, and design efficient algorithms correspondingly.

The second problem that we have studied is end-to-end throughput in multi-hop

wireless ad hoc networks, which a variant of the classic maximum flow problem. We

proposed a general linear program LP(F) based solution framework, where each choice

of F corresponds to an upperbound of the end-to-end throughput. We identify several

good choices of F , the class one, two, and three cliques. We show by simulation that

the upperbound based on these cliques is close to the actual throughput in practice.

86

CHAPTER IV

CONCLUSION

This dissertation studies ad hoc networks. The distinct characteristics of ad hoc

networks include the lack of pre-existing infrastructure, the natural correlation be-

tween the network topology and geometry, limited communication and computation

resources, node mobility, and etc. These characteristics created an enormous amount

of new interesting and challenging problems, especially optimization problems. To

effectively make use of the valuable ad hoc network resource, we studied a few opti-

mization problems in information retrieval and transmission in this dissertation.

The study of ad hoc network information retrieval, in particular, the range search

and object locating problem, is centered around the notion of distance sensitivity. Our

main contribution is twofold. First, we developed a generic framework for distance

sensitive services. This framework optimizes the storage cost for information retrieval

schemes with an arbitrary retrieval cost function that can be specified by the system

designer. We remark that, designing distance sensitive information retrieval systems

with nonlinear retrieval cost functions is a largely unexplored area, and to our best

knowledge, this dissertation is the first to consider such non-linear cases. Second,

for growth lower bounded networks, we showed that an logarithmic storage cost is

asymptotically optimal for any object locating schemes with linear retrieval cost. This

result proves the optimality of a wide range of ad hoc network as well as P2P network

proposals. We should point out that, despite the progress that we have made in this

dissertation, there are many interesting questions that remain open, and the problem

of distance sensitive information retrieval is still quite far from completely solved.

In the study of ad hoc network information transmission, our main concern is the

various constraints for wireless transmissions to successfully occur, and the impact

87

of these constraints to effective information delivery. First, we studied a problem of

end-to-end on-demand bandwidth allocation with the single transceiver schedulability

constraint. We proved that the problem is NP-hard, proposed a 2-approximation

routing and scheduling algorithm, MCRS, and showed by simulation that MCRS

outperforms traditional methods. The second problem that we have studied is to

compute the upperbound of the end-to-end throughput in wireless ad hoc networks.

We investigated a general linear program based solution framework, and showed how

to apply this general method under a specific radio interference model.

88

REFERENCES

[1] P. Gupta and P. Kumar, “The capacity of wireless networks,” IEEE Transactions

on Information Theory, vol. 46, no. 2, pp. 388–404, Mar 2000.

[2] C. E. Perkins, Ad Hoc Networking. Addison-Wesley, 2001.

[3] I. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci, “A survey on sensor

networks,” Communications Magazine, IEEE, vol. 40, no. 8, pp. 102–114, Aug

2002.

[4] R. Ramanathan and J. Redi, “A brief overview of ad hoc networks: challenges

and directions,” Communications Magazine, IEEE, vol. 40, no. 5, pp. 20–22,

2002.

[5] F. Kuhn, R. Wattenhofer, and A. Zollinger, “Worst-case optimal and average-

case efficient geometric ad-hoc routing,” in MobiHoc ’03: Proceedings of the 4th

ACM International Symposium on Mobile Ad Hoc Networking and Computing,

pp. 267–278, 2003.

[6] B. Karp and H. T. Kung, “Gpsr: greedy perimeter stateless routing for wire-

less networks,” in MobiCom ’00: Proceedings of the 6th Annual International

Conference on Mobile Computing and Networking, pp. 243–254, 2000.

[7] E. Kranakis, S. O. C. Science, H. Singh, and J. Urrutia, “Compass routing

on geometric networks,” in Proc. 11th Canadian Conference on Computational

Geometry, pp. 51–54, 1999.

[8] F. Kuhn, R. Wattenhofer, Y. Zhang, and A. Zollinger, “Geometric ad-hoc rout-

ing: of theory and practice,” in PODC ’03: Proceedings of the Twenty-second

Annual Symposium on Principles of Distributed Computing, pp. 63–72, 2003.

89

[9] F. Zhang, H. Li, A. Jiang, J. Chen, and P. Luo, “Face tracing based geographic

routing in nonplanar wireless networks,” in INFOCOM 2007. 26th IEEE Inter-

national Conference on Computer Communications, pp. 2243–2251, May 2007.

[10] Y.-J. Kim, R. Govindan, B. Karp, and S. Shenker, “Geographic routing made

practical,” in Proceedings of the USENIX Symposium on Networked Systems

Design and Implementation, pp. 217–230, May 2005.

[11] B. Leong, B. Liskov, and R. Morris, “Geographic routing without planarization,”

in NSDI’06: Proceedings of the 3rd Conference on 3rd Symposium on Networked

Systems Design & Implementation, pp. 25–25, 2006.

[12] M. de Berg, M. van Kreveld, M. Overmars, and O. Schwarzkopf, Computational

Geometry: Algorithms and Applications, 2nd ed. Springer-Verlag, 2000.

[13] I. Abraham, D. Dolev, and D. Malkhi, “Lls: a locality aware location service for

mobile ad hoc networks,” in DIALM-POMC ’04: Proceedings of the 2004 Joint

Workshop on Foundations of Mobile Computing, pp. 75–84, 2004.

[14] R. Flury and R. Wattenhofer, “Mls: an efficient location service for mobile ad

hoc networks,” in MobiHoc ’06: Proceedings of the Seventh ACM International

Symposium on Mobile Ad Hoc Networking and Computing, pp. 226–237, 2006.

[15] M. Demirbas, A. Arora, T. Nolte, and N. Lynch, “Brief announcement: Stalk:

a self-stabilizing hierarchical tracking service for sensor networks,” in PODC

’04: Proceedings of the Twenty-third Annual ACM Symposium on Principles of

Distributed Computing, pp. 378–378, 2004.

[16] C. G. Plaxton, R. Rajaraman, and A. W. Richa, “Accessing nearby copies of

replicated objects in a distributed environment,” in SPAA ’97: Proceedings of

90

the Ninth Annual ACM Symposium on Parallel Algorithms and Architectures,

pp. 311–320, 1997.

[17] I. Abraham, D. Malkhi, and O. Dobzinski, “Land: stretch (1 + e) locality-aware

networks for dhts,” in SODA ’04: Proceedings of the Fifteenth Annual ACM-

SIAM Symposium on Discrete Algorithms, pp. 550–559, 2004.

[18] B. Y. Zhao, J. D. Kubiatowicz, and A. D. Joseph, “Tapestry: An infrastructure

for fault-tolerant wide-area location and,” University of California at Berkeley,

Berkeley, CA, Tech. Rep., 2001.

[19] A. Rowstron and P. Druschel, “Pastry: Scalable, decentralized object location,

and routing for large-scale peer-to-peer systems,” in IFIP/ACM International

Conference on Distributed Systems Platforms (Middleware), pp. 329–350, 2001.

[20] Mathworks, “matlab optimization toolbox.” [Online]. Available: http://

www.mathworks.com/products/optimization (accessed on Sep. 1, 2008).

[21] R. Sarkar, X. Zhu, and J. Gao, “Double rulings for information brokerage in

sensor networks,” in MobiCom ’06: Proceedings of the 12th Annual International

Conference on Mobile Computing and Networking, pp. 286–297, 2006.

[22] S. Ratnasamy, B. Karp, S. Shenker, D. Estrin, R. Govindan, L. Yin, and F. Yu,

“Data-centric storage in sensornets with ght, a geographic hash table,” Mob.

Netw. Appl., vol. 8, no. 4, pp. 427–442, 2003.

[23] S. Funke and I. Rauf, “Information brokerage via location-free double rulings,”

in ADHOC-NOW ’07: the 6th International Conference on Ad-Hoc, Mobile, and

Wireless Networks, pp. 87–100, 2007.

91

[24] Q. Fang, J. Gao, and L. J. Guibas, “Landmark-based information storage and

retrieval in sensor networks,” in INFOCOM ’06: Proceedings of the 25th Con-

ference on Computer Communications, pp. 1–12, 2006.

[25] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and H. Balakrishnan, “Chord: A

scalable peer-to-peer lookup service for internet applications,” in SIGCOMM ’01:

Proceedings of the 2001 Conference on Applications, Technologies, Architectures,

and Protocols for Computer Communications, pp. 149–160, 2001.

[26] I. Stoica, R. Morris, D. Liben-Nowell, D. R. Karger, M. F. Kaashoek, F. Dabek,

and H. Balakrishnan, “Chord: a scalable peer-to-peer lookup protocol for inter-

net applications,” IEEE/ACM Transaction on Networking, vol. 11, no. 1, pp.

17–32, 2003.

[27] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and S. Schenker, “A scalable

content-addressable network,” in SIGCOMM ’01: Proceedings of the 2001 Con-

ference on Applications, Technologies, Architectures, and Protocols for Computer

Communications, pp. 161–172, 2001.

[28] M. F. Kaashoek and D. R. Karger, “Koorde: A simple degree-optimal distributed

hash table,” in IPTPS ’03: Proceedings of the 2nd International Workshop on

Peer-to-Peer Systems, pp. 98–107, 2003.

[29] P. Maymounkov and D. Mazières, “Kademlia: A peer-to-peer information sys-

tem based on the xor metric,” in IPTPS ’01: Revised Papers from the First

International Workshop on Peer-to-Peer Systems, pp. 53–65, 2002.

[30] D. Malkhi, M. Naor, and D. Ratajczak, “Viceroy: a scalable and dynamic em-

ulation of the butterfly,” in PODC ’02: Proceedings of the Twenty-first Annual

Symposium on Principles of Distributed Computing, pp. 183–192, 2002.

92

[31] G. S. Manku, M. Naor, and U. Wieder, “Know the neighbor’s neighbor: the

power of lookahead in randomized p2p networks,” in STOC ’04: Proceedings of

the Thirty-sixth Annual ACM Symposium on Theory of Computing, pp. 54–63,

2004.

[32] B. Awerbuch and D. Peleg, “Concurrent online tracking of mobile users,” SIG-

COMM Comput. Commun. Rev., vol. 21, no. 4, pp. 221–233, 1991.

[33] D. Peleg and B. Awerbuch, “Online tracking of mobile users,” Journal of ACM,

vol. 42, no. 5, pp. 1021–1058, 1995.

[34] J. Li, J. Jannotti, D. S. J. D. Couto, D. R. Karger, and R. Morris, “A scalable

location service for geographic ad hoc routing,” in MobiCom ’00: Proceedings of

the 6th Annual International Conference on Mobile Computing and Networking,

pp. 120–130, 2000.

[35] M. Thorup and U. Zwick, “Compact routing schemes,” in SPAA ’01: Proceedings

of the Thirteenth Annual ACM Symposium on Parallel Algorithms and Architec-

tures, pp. 1–10, 2001.

[36] I. Abraham and D. Malkhi, “Compact routing on euclidian metrics,” in PODC

’04: Proceedings of the Twenty-third Annual ACM Symposium on Principles of

Distributed Computing, pp. 141–149, 2004.

[37] D. Malkhi and I. Abraham, “Name independent routing for growth bounded

networks,” in SPAA ’05: Proceedings of the Seventeenth Annual ACM symposium

on Parallelism in Algorithms and Architectures, pp. 49–55, 2005.

[38] G. Konjevod, A. W. Richa, and D. Xia, “Optimal-stretch name-independent

compact routing in doubling metrics,” in PODC ’06: Proceedings of the Twenty-

93

fifth Annual ACM Symposium on Principles of Distributed Computing, pp. 198–

207, 2006.

[39] G. Konjevod, A. W. Richa, and D. Xia, “Optimal scale-free compact routing

schemes in networks of low doubling dimension,” in SODA ’07: Proceedings of

the Eighteenth Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 939–

948, 2007.

[40] I. Abraham, C. Gavoille, A. V. Goldberg, and D. Malkhi, “Routing in networks

with low doubling dimension,” in ICDCS ’06: Proceedings of the 26th IEEE

International Conference on Distributed Computing Systems, pp. 71–80, 2006.

[41] H. T.-H. Chan, A. Gupta, B. M. Maggs, and S. Zhou, “On hierarchical routing

in doubling metrics,” in SODA ’05: Proceedings of the Sixteenth Annual ACM-

SIAM Symposium on Discrete Algorithms, pp. 762–771, 2005.

[42] M. Arias, L. J. Cowen, K. A. Laing, R. Rajaraman, and O. Taka, “Compact

routing with name independence,” in SPAA ’03: Proceedings of the Fifteenth

Annual ACM Symposium on Parallel Algorithms and Architectures, pp. 184–192,

2003.

[43] I. Abraham, C. Gavoille, D. Malkhi, N. Nisan, and M. Thorup, “Compact name-

independent routing with minimum stretch,” in SPAA ’04: Proceedings of the

Sixteenth Annual ACM Symposium on Parallelism in Algorithms and Architec-

tures, pp. 20–24, 2004.

[44] J. Joseph C. Liberti and T. S. Rappaport, Smart Antennas for Wireless Com-

munications. Prentice Hall PTR, 1998.

[45] R. Ramanathan and R. Hain, “Topology control of multihop wireless networks

94

using transmit power adjustment,” in IEEE Conference on Computer Commu-

nications(Infocom), pp. 404–413, 2000.

[46] S. Ramanathan and E. L. Lloyd, “Scheduling algorithms for multihop radio

networks,” IEEE/ACM Transaction on Networking, vol. 1, no. 2, pp. 166–177,

1993.

[47] S. Ramanathan, “A unified framework and algorithm for channel assignment in

wireless networks,” Wireless Networks, vol. 5, pp. 81–94, 1999.

[48] S. O. Krumke, M. V. Marathe, and S. S. Ravi, “Models and approximation

algorithms for channel assignment in radio networks,” Wireless Networks, vol. 7,

no. 6, pp. 575–584, 2001.

[49] “lp solve.” [Online]. Available: http://groups.yahoo.com/group/lp solve (ac-

cessed on Sep. 1, 2008).

[50] K. Jain, J. Padhye, V. Padmanabhan, and L. Qiu, “Impact of interference on

multi-hop wireless network performance,” in Proceedings of the 9th Annual Inter-

national Conference on Mobile Computing and Networking(Mobicom), pp. 66–80,

2003.

[51] Z. Wang and J. Crowcroft, “Qos routing for supporting resource reservation,”

IEEE Journal on Selected Areas in Communications, vol. 14, no. 7, 1996.

[52] R. A. Guerin, A. Orda, and D. Williams, “Qos routing mechanisms and ospf

extensions,” in IEEE Global Telecommunications Conference(Globecom), pp. 3–

8, Phoenix, AZ, 1997.

[53] M. Kodialam and T. Lakshman, “Minimum interference routing with applica-

tions to mpls traffic engineering,” in INFOCOM 2000. Proceedings of the Nine-

95

teenth Annual Joint Conference of the IEEE Computer and Communications

Societies, pp. 884–893, 2000.

[54] N. Rao and S. Batsell, “Qos routing via multiple paths using bandwidth reserva-

tion,” INFOCOM ’98. Proceedings of the Seventeenth Annual Joint Conference

of the IEEE Computer and Communications Societies., vol. 1, pp. 11–18, 1998.

[55] B. Wang and J. Hou, “Multicast routing and its qos extension: problems, algo-

rithms, and protocols,” Network, IEEE, vol. 14, no. 1, pp. 22–36, 2000.

[56] X. Lin and N. B. Shroff, “An optimization-based approach for qos routing in

high-bandwidth networks,” IEEE/ACM Trans. Netw., vol. 14, no. 6, pp. 1348–

1361, 2006.

[57] C. Ferguson, “Routing in a wireless mobile cdma radio environment,” Ph.D. dis-

sertation, Computer Science Department, University of California, Los Angeles,

1996.

[58] C. R. Lin and J. Liu, “Qos routing in ad hoc wireless networks,” IEEE Journal

on Selected Areas in Communications, vol. 17, no. 8, pp. 1426 – 1438, 1999.

[59] H. C. Lin and P. C. Fung, “Finding available bandwidth in multihop mobile

wireless networks,” in IEEE Vehicular Technology Conference(VTC), pp. 912 –

916, 2000.

[60] C. R. Lin, “On-demand qos routing in multihop mobile networks,” in IEEE

Conference on Computer Communications(Infocom), pp. 1735–1744, 2001.

[61] C. R. Lin, “Admission control in time-slotted multihop mobile networks,” IEEE

Journal on Selected Areas in Communications, vol. 19, no. 10, pp. 1974 – 1983,

2001.

96

[62] C. Zhu and M. S. Corson, “Qos routing for mobile ad hoc networks,” in IEEE

Conference on Computer Communications(Infocom), pp. 958– 967, 2002.

[63] W.-H. Liao, Y.-C. Tseng, and K.-P. Shih, “A tdma-based bandwidth reservation

protocol for qos routing in a wireless mobile ad hoc network,” IEEE International

Conference on Communications, vol. 5, pp. 3186–3190, 2002.

[64] Q. Xue and A. Ganz, “Ad hoc qos on-demand routing (aqor) in mobile ad hoc

networks,” J. Parallel Distrib. Comput., vol. 63, no. 2, pp. 154–165, 2003.

[65] B. Hajek and G. Sasaki, “Link scheduling in polynomial time,” ACM/IEEE

Transactions on Information Theory, vol. 34, no. 5, pp. 910–917, 1988.

[66] M. Kodialam and T. Nandagopal, “Characterizing achievable rates in multi-hop

wireless networks: the joint routing and scheduling problem,” in Proceedings of

the 9th Annual International Conference on Mobile Computing and Network-

ing(Mobicom), pp. 42–54, 2003.

[67] V. A. Kumar, M. V. Marathey, S. Parthasarathyz, and A. Srinivasan, “Algo-

rithmic aspects of capacity in wireless networks,” in International Conference

on Measurement and Modeling of Computer Systems(Sigmetrics), pp. 133 – 144,

2005.

[68] M. Kodialam and T. Nandagopal, “Characterizing achievable rates in multi-hop

wireless with orthogonal channels,” ACM/IEEE Transactions on Networking,

vol. 13, pp. 868–880, 2005.

[69] M. Alicherry, R. Bhatia, and L. E. Li, “Joint channel assignment and routing for

throughput optimization in multi-radio wireless mesh networks,” in Proceedings

97

of the 11th Annual International Conference on Mobile Computing and Network-

ing(Mobicom), pp. 58–72, 2005.

[70] M. Kodialam and T. Nandagopal, “Characterizing the capacity region in multi-

radio multi-channel wireless mesh networks,” in Proceedings of the 11th Annual

International Conference on Mobile Computing and Networking(Mobicom), pp.

73–87, 2005.

98

VITA

Hong Lu received his B.E. in Electrical Engineering in 1999, and M.S. degree in

Computer Science in 2002, from Southeast University, China. He entered the Com-

puter Science program at Texas A&M University in September 2002, and received

his Ph.D. in 2008. His research interests include networking algorithms and hard-

ware/software system co-design. He can be reached at: Hong Lu, Department of

Computer Science, Texas A&M University, College Station, TX 77843. His email

address is luhong@tamu.edu.

