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ABSTRACT

Bayesian Hierarchical Model for Combining Two-resolution Metrology Data.

(December 2008)

Haifeng Xia, B.S., Tianjin University, Tianjin, China;

M.S., Tianjin University, Tianjin, China

Chair of Advisory Committee: Dr. Yu Ding

This dissertation presents a Bayesian hierarchical model to combine two-resolution

metrology data for inspecting the geometric quality of manufactured parts. The high-

resolution data points are scarce, and thus scatter over the surface being measured,

while the low-resolution data are pervasive, but less accurate or less precise. Com-

bining the two datasets could supposedly make a better prediction of the geometric

surface of a manufactured part than using a single dataset. One challenge in com-

bining the metrology datasets is the misalignment which exists between the low- and

high-resolution data points.

This dissertation attempts to provide a Bayesian hierarchical model that can

handle such misaligned datasets, and includes the following components: (a) a Gaus-

sian process for modeling metrology data at the low-resolution level; (b) a heuristic

matching and alignment method that produces a pool of candidate matches and

transformations between the two datasets; (c) a linkage model, conditioned on a

given match and its associated transformation, that connects a high-resolution data

point to a set of low-resolution data points in its neighborhood and makes a combined

prediction; and finally (d) Bayesian model averaging of the predictive models in (c)

over the pool of candidate matches found in (b). This Bayesian model averaging

procedure assigns weights to different matches according to how much they support

the observed data, and then produces the final combined prediction of the surface
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based on the data of both resolutions.

The proposed method improves upon the methods of using a single dataset as

well as a combined prediction without addressing the misalignment problem. This

dissertation demonstrates the improvements over alternative methods using both sim-

ulated data and the datasets from a milled sine-wave part, measured by two coordinate

measuring machines of different resolutions, respectively.
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NOMENCLATURE

xi i-th input to a measuring device, nominal position to be measured

{xi}i=1:m Set of locations where measurements are made

{ni}i=1:N Set of locations where measurements are to be predicted

X Location matrix where measurements are made

Xl Location matrix where low-resolution measurements are made

Xh Location matrix where high-resolution measurements are made

ai i-th output from a measuring device, coordinate measurement of a

point on a manufactured surface

alj j-th low-resolution measurement

ahi i-th high-resolution measurement

Dl Set of low-resolution measurements

Dh Set of high-resolution measurements

ml Total number of low-resolution measurements

mh Total number of high-resolution measurements

pi Approaching direction used by a measuring device to measure xi

yi i-th response, a projected value of ai to its associated pi: yi = aTi pi

yl Low-resolution response

yh High-resolution response

ϕ Rigid body transformation parameters

ρu, ρv, ρw Rotation around the u-, v- and w-axis, respectively

tu, tv, tw Translation along the u-, v- and w-axis, respectively

ψ Dimensional parameters for a geometry

ψ∗ Nominal/design values for dimensional parameters of a geometry
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β Parameters for the mean component in the single-resolution data model,

and β = (ϕ,ψ)

βl Mean parameters for the low-resolution data model

ξ(·) Systematic error that is assumed to a Gaussian process of zero mean

and a certain covariance

κ2 Variance of systematic error ξ(·)

κ2
l Variance of low-resolution systematic error

R Correlation function

R Correlation matrix

ν Scale parameter for the correlation function

ε Random error at single-resolution level

εl Random error at low-resolution level

σ2
ε Variance of random error

σ2
l Variance of low-resolution random error

Σ Covariance matrix

I Identity matrix

ηl Filtered low-resolution response, free of low-resolution measurement noises

M(0,ψ∗) Nominal geometry

M(ϕ,ψ) Dashed-line geometry, including both dimensional and location variations

f(xi,β) Point on dashed-line geometry that corresponds to xi

g(xi,β) Projected value of f(xi,β) onto the associated approaching direction pi:

g(xi,β) = f(xi,β)pi

h∗ True form error

ĥOLS(m) Estimated form error using the OLS method and m data points

ĥMZ(m) Estimated form error using the MZ method and m data points
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ĥGP(m) Estimated form error using the GP method and m data points

M Matching matrix that records the matching relationship between

low-resolution and high-resolution datasets

Mk k-th consistent match found by the heuristic matching algorithm

K Total number of consistent matches found

$ Distance threshold used in the heuristic matching algorithm

H Rigid body rotation matrix

α = (α1, α0) Scale and location coefficient in the neighborhood linkage model

e Residual in the neighborhood linkage model

K(xi,xj) Kernel function which defines the neighborhoods of high-resolution

data points

λ Kernel widths for all coordinate axes

λ0 Upper bound for the prior distributions of kernel widths

Ψ(·) Modified tri-cube kernel function

Fλ(x0) Row vector defined as (
∑

i=1,...,ml
K(x0,xi)ηl(xi), 1)

Fλ(x0) Abbreviation of Fλ(Xh) whose j-th row is defined as

(
∑

i=1,...,ml
K(xj,xi)ηl(xi), 1)

θ All the parameters involved in the single-resolution data model

θl All the parameters involved in the low-resolution data model

θh All the parameters involved in the neighborhood linkage model
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CHAPTER I

INTRODUCTION

A. Motivation

This dissertation attempts to address the problem of combining data from two dif-

ferent resolutions to improve both efficiency and measuring resolution such that the

inspection of geometric features on machined parts for compliance with tolerance

specifications will also improve.

Functional requirements or assembly conditions are normally translated into ge-

ometric constraints on parts. In other words, engineers often design parts to have a

certain geometric form and size to achieve certain functions. However, manufacturing

operations are hardly perfect, so manufactured features inevitably deviate from their

nominal designs. The deviation is known as manufacturing error. Therefore, design-

ers assign tolerances to specify the allowable range of manufacturing errors. If the

tolerance controls the errors associated with a dimension of a part, e.g., the radius

of a shaft, it is known as dimensional tolerance; if the tolerance controls the errors

associated with a geometric form, e.g., the straightness or roundness features shown

in Fig. 1, it is known as geometric tolerance or form tolerance. Between dimensional

features and geometric features, the latter are more difficult to assess and to control,

but their integrity is closely related to good quality and proper functionality. Please

refer to the example of an automotive transmission in [60].

In order to assure dimensional quality of machined products, a crucial step is

to take metrology data (i.e., coordinate measurements) of the geometric features and

then check their compliance with tolerance specifications.

The journal model is IEEE Transactions on Automatic Control.
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Fig. 1. Illustration of geometric features and their form tolerance zones

Traditionally, a Coordinate Measuring Machine (CMM) with a mechanical touch

probe is used due to its accuracy and versatility in measuring complicated geometries.

Lately, a CMM with an optical/laser sensor probe (hereinafter OCMM) has been

introduced into industry practice as a complement, sometimes a replacement, of the

CMM. An OCMM takes measurements by forming an image consisting of the laser

light reflected from the part surface. Fig. 2 shows both a CMM and an OCMM.

The resolution of an OCMM is typically much lower than that of a CMM. By

resolution, we refer to the smallest spatial distance that a measuring device can

distinguish. A high-resolution device can distinguish two closely positioned points

and pick up fine spatial features on a product surface. It therefore attains a higher

accuracy (i.e., a smaller bias) and a better precision (i.e., a smaller variability) in its

measurements than its low-resolution counterpart. According to [49], a CMM could

have a resolution as fine as 0.5 microns, while an OCMM typically has a resolution
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Fig. 2. Two-resolution data from CMM with touch probe and laser scanner

on the order of 10 microns. Even though the high-resolution CMM is capable of

measuring surfaces at much finer scales, doing so is very time-consuming. Common

practice is to take measurements of a few locations scattered over the product surface.

The OCMM can scan the entire surface of a product much faster than a mechanical

CMM, but each measurement is of a lower resolution (i.e., associated with high degree

of inaccuracy and uncertainty). As such, when both metrology devices are used, one

would have a large set of low-resolution data and a much smaller set of high-resolution

data. The scattered points (dark) and the densely arranged points (grey) in Fig. 2

illustrate the two-resolution metrology data.

The datasets of different resolutions complement each other in the information

needed to reconstruct the surface, which is usually done by predicting the coordinates
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Table I. Characteristics of high- and low-resolution metrology data

Advantages Disadvantages

High-resolution data
High accuracy and

high precision

More costly to obtain.

Very scarce and fail to

capture the overall trend

of a product surface

Low-resolution data

Easier to obtain and

usually densely cover

the entire product surface.

Therefore, capture the

overall trend of a

product surface well

Low accuracy and

low precision

of unmeasured locations on the same part. Table I summarizes the characteristics

of high-resolution and low-resolution data. An integrated analysis should be able to

produce better results, combining strengths across multiple sources. Our research is to

devise a method taking full advantage of both datasets and making good predictions

of the product surface.

A unique challenge in combining data for the metrology application is the mis-

alignment existing between the data points of different resolutions. The misalignment

happens because when using two metrology devices to measure the same part, it is

often the case that the data are not collected with respect to a common coordinate

system. Consequently, the mismatch of the coordinate systems makes it difficult to

decide how the data points in the two datasets correspond to one another. For exam-

ple, two spatial points of the same (1.0, 1.0, 1.0) measurements in the two different

datasets could correspond to two completely different points on the actual part. Even
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if the part is measured on a single measuring platform carrying both a touch and a

laser probe, independent calibration is needed for each probe, and the coordinates of

measured points is contaminated by noises, still resulting in misalignments between

the datasets.

B. Research Objective

The objective of this dissertation is to develop a methodology that can combine the

misaligned multi-resolution metrology data effectively to better predict the product

surface. Such a successful methodology can directly contribute to improving mea-

surement resolutions and efficiency such that engineers can do a geometric inspection

faster and more accurately.

We plan to combine metrology data from different resolutions in two steps. The

first step is to build a single-resolution data model using a Gaussian process model

and decompose single-resolution data into three components: designed geometric

form, systematic deviation from the designed geometry, and random errors. The

purpose is to link the data at different locations to achieve better information about

the product surface. Ideally, the proposed method should be a general model that

works for various geometries. The second step is to build a linkage model to connect

data from different resolutions such that we could combine two-resolution data for

final inferences.

At the same time, we need to handle the previously mentioned misalignment

problem. The differences between two-resolution datasets are rigid body transforma-

tions plus some small distortions caused by resolution differences. The inter-point

distances between high-resolution data points should be approximately the same as

the distances between the corresponding low-resolution data points. So we utilize the
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invariance of inter-point distances to match the two datasets, i.e., to find a ”rough”

correspondence between data from different resolutions. Then, based on the found

pair-wise correspondence, we estimate the best rigid body transformations that bring

two datasets together using an optimization.

The small distortions in both datasets, however, make it almost impossible to

find the true match between the high-resolution and the low-resolution datasets. We

address this issue from two aspects: First, we build a neighborhood linkage model

which links each high-resolution data point with all the low-resolution data points in

its neighborhood. This model can handle some small misalignments that remain after

the matching procedure above. Second, we consider a number of possible matches and

adopt Bayesian model averaging framework to assign a posterior probability to each

match according to how well it supports observed data. Then the Bayesian model

averaging produces combined final predictions of the surface.

Such a methodology, if successfully developed, will also have broad applications

to other engineering domains, such as remote sensing. When surveying forest cover-

age, engineers could have both an scanning LIDAR (Light Detection and Ranging),

which is of high-resolution but slow, and its fast counterparts, a low-resolution pro-

filing LIDAR. Therefore, we would like to develop a general methodology that could

potentially apply to multi-resolution problems in other engineering applications.

C. Outline of the Dissertation

Following the introduction, the dissertation is organized as follows. Chapter II pro-

vides a comprehensive literature review on existing methods related to combining

data from different resolutions. It also explains how this dissertation relates to and

differs from the existing methods.
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Chapter III presents a Gaussian process model for single-resolution metrology

data. The dissertation validates the single-resolution data model using both simulated

data and real metrology data. This single-resolution model will later serve as a low-

resolution data model in the context of combining two-resolution metrology data.

Chapter IV presents a Bayesian hierarchical model that combines misaligned

metrology data from two different resolutions to better predict the part surface. It

includes the following components: (a) a Gaussian process for modeling metrology

data at the low-resolution level (the same single-resolution model presented in Chapter

III); (b) a heuristic matching algorithm that produces a pool of candidate matches

and their associated transformations between the two datasets; (c) a linkage model,

conditioned on a given match, that connects a high-resolution data point to a set

of low-resolution data points in its neighborhood and makes combined predictions;

(d) finally, Bayesian model averaging of the predictive models in (c) over the pool

of candidate matches found in (b). The Bayesian model averaging procedure assigns

weights to different matches according to how well they support the observed data,

and then produces the final combined prediction of the surface utilizing data from

both resolutions. Chapter IV also presents the prior distributions for the model

parameters.

Chapter V demonstrates the improvements of the proposed method over three

alternative methods, using both simulated data and the datasets from a milled sine-

wave part, measured by two coordinate measuring machines of different resolutions,

respectively. The three alternative methods include observed low-resolution data, pre-

dictions using high-resolution data alone and predictions that combine two-resolution

data but do not address the misalignment problem.

Chapter VI summarizes the dissertation and discusses some future research di-

rections. The outline of this dissertation is shown in Fig. 3.
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Chapter II. Related work

Chapter III. Gaussian process model for
single-resolution metrology data

Chapter IV. Bayesian hierarchical model for
combining two-resolution metrology data

Chapter V. Results for combining two-
resolution metrology data

Chapter VI. Summary and future works

Chapter I. Introduction

Structure Purpose

Motivate the problem and discuss contribu-
tions

Discuss how the dissertation is different from
previous works and what the dissertation
contributes

Serve as the low-resolution data model in
Chapter IV. It can also work by itself for
any single-resolution dataset

(a) Gaussian process model to smooth
measurement uncertainty out from low-
resolution data;
(b) Heuristic method to align both datasets
into the same coordinate system;
(c) Linkage model to calibrate low-resolution
information with high-resolution informa-
tion;
(d) Bayesian model averaging to account for
uncertainty in the matches found in (b).

Demonstrate how the proposed method per-
forms comparing to three alternative meth-
ods

Fig. 3. Organization of the dissertation
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CHAPTER II

RELATED WORK

This chapter reviews three categories of methodologies dealing with metrology data.

The first category (Section II.A) deals with single-resolution metrology data. Even

when data are from multiple metrology devices with different resolution levels, en-

gineers sometimes simply put all the data together and apply the first category of

methods, which basically does not differentiate data from different resolutions. The

second and third categories of methods address the multi-resolution aspect of the

data explicitly. The second category of methods uses data from different resolutions

sequentially, but utilizes the high-resolution data alone for final inference instead

of combining both datasets (Section II.B). The third category combines data from

different resolutions using statistical models (Section II.C), but does not explicitly

address the misalignment problem that we encounter in the metrology application

(discussed in Chapter I Section A).

The dissertation also reviews the existing methods related to matching and align-

ing two datasets in Section II.D, which covers the methods from the literature of image

registration and statistical shape analysis.

A. Methods Using Single-resolution Metrology Data

Reference [15] surveyed the related literature prior to 1997 that used single-resolution

metrology data for the purpose of form error assessment. This survey paper discussed

two major ideas: the minimum zone (MZ) method and the orthogonal least squares

(OLS) method. The MZ method assumes that the limited metrology data repre-

sent the entire surface of a part well, finds the maximum inscribing and minimum

circumscribing features that bound all the metrology data, and uses the calculated



10

orthogonal width to compare with a form tolerance. The OLS method assumes that a

part’s surface arises from a perfect geometric shape with independent and identically

distributed (i.i.d.) errors. So it fits an ideal feature to metrology data by minimizing

the sum of squared orthogonal residuals and uses the range of the resulting orthogonal

residuals to compare with a form tolerance. Most papers surveyed in [15] provided

different algorithms to implement the two ideas for various kinds of geometry features.

Reference [15] also surveyed some variants of the OLS method, which use different

objective functions, e.g., the least average deviation used in [50], [51] and [38].

After 1997, researchers continued searching for efficient and/or robust algorithms

to implement the MZ or OLS method. More publications emerged on the MZ method

than on the OLS method. Some proposed new ideas to find a MZ, such as the charac-

teristic point-based method [12] or the minimum potential energy theory [18]. Others

proposed exact MZ solutions of some geometric features [29], [6] (e.g., sphericity),

which were not available before. Since it is computationally demanding to find the

exact MZ solutions using traditional methods such as convex hull and Voronoi dia-

gram, researchers reported on how to improve the efficiency to find the exact MZ [45],

[46], [30] or on how to develop efficient approximation alternatives [53], [56], [64]. One

method that caught much attention is the zone-fitting method [9], [10]. The zone-

fitting method attempts to verify the form error conformance by transforming all the

metrology data back to the design tolerance zone via an optimization routine. It is

computationally less demanding than those expensive geometry methods and easier

to implement for different types of features.

Reference [15] pointed out several open issues in estimating the surface of geo-

metric features. One important issue is how to incorporate systematic manufacturing

errors into a modeling and assessment procedure. Manufacturing errors are always

stochastic in nature. In the literature, however, the random manufacturing errors
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generally refer to the i.i.d. random deviations from an ideal form, while the system-

atic manufacturing errors refer to the non-i.i.d. deviations. Reference [15] gave a

few examples of systematic manufacturing errors. It also pointed out that system-

atic manufacturing errors are common causes of form errors in reality. Therefore,

a realistic model should definitely incorporate systematic errors. This issue has not

been well addressed in the afore-referenced body of literature. Without accounting

for systematic errors, the estimates of the part’s surface and thereafter form error

could significantly deviate from their actual values. In this dissertation, we devel-

ope a single-resolution model that attempts to capture the systematic errors using a

Gaussian process model [1] (a spatial statistical model) in order to better estimate

the form error.

Researchers have employed some methods to model the systematic errors. Some

used a basis function method to approximate the systematic errors, e.g., a polynomial

of different orders [63] or B-spline functions [61]. Some used Fourier analysis to dis-

tinguish the generally low-frequency systematic components from the high-frequency

random components [27], [8], [13]. These models may require a large sample of metrol-

ogy data to estimate the relatively many parameters involved in the polynomials or

B-spline functions, or to enable a fine separation of frequencies in Fourier analysis.

Another line of methods used a spatial statistical model, typically, a Gaussian

process model, to represent the systematic manufacturing errors [16], [62]. The non-

parametric nature of Gaussian processes offers a better flexibility in learning general

types of systematic errors than the basis-function fitting method and the Fourier

analysis method. This nature makes a Gaussian process model more attractive, since

people generally do not know before hand what the function form or the type of

systematic manufacturing errors is in an actual geometric feature. However, research

on the spatial model-based approach was much under-developed and not broadly



12

reported. References [16] and [62] used Gaussian process models. Their models

require one coordinate variable to be an explicit function of the other two coordinate

variables. Thus, their methods do not apply to generic geometric features, such as

roundness, where one coordinate cannot be expressed as an explicit function of the

other two.

This dissertation also develops a Gaussian process model for single-resolution

metrology data, which continues this line of research. The proposed Gaussian pro-

cess model works for generic geometric features, and improves form error assessment.

Chapter III presents this Gaussian process model. The model does not require ex-

pressing one coordinate as an explicit function of other coordinates. It also incorpo-

rates both systematic errors (using a spatially correlated term) and random errors

(using a spatially uncorrelated term). In contrast, References [16] and [62] did not

consider spatially uncorrelated errors. This might not be reasonable provided that

manufacturing processes produce both low-frequency systematic errors (because of

machine tool wear) and high-frequency random errors (because of machine vibration).

In addition, the Gaussian process model produces a distribution of the geometric sur-

face, and uses it to estimate an empirical distribution of the form error. The empirical

distribution reflects the estimation uncertainty (resulting from the sampling and mod-

eling uncertainty) and can help quantify the risk of part acceptance. References [16]

and [62] used one predicted surface to estimate the form error and decide on accepting

or rejecting the part. They did not provide uncertainty information about the form

error assessment.
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B. Sequential Methods to Use Metrology Data from Different Resolutions

Using multiple-resolution metrology devices is a relatively new idea. Thus, research

reported on combining the multiple datasets of difference resolutions is rather limited.

There have been reports of CMMs carrying multiple types of sensors [7], [37], [49],

[4], which typically include a mechanical touch probe and a vision system. A vision

system has a much lower degree of resolution (between 100-200 microns [49]), which

is close to, or sometimes even larger than, the magnitude of manufacturing errors. On

the other hand, a vision system is highly efficient in capturing the global picture of

the object under measurement. Thus, the goal of having both the mechanical probe

and the vision system is as follows: use the vision system to locate the object and

generate a rough product contour, and then to establish a sampling plan based on the

product contour so that the touch probe can measure the product with little human

guidance or intervention. The information from different sources is used sequentially.

When it comes to predicting the product surface for quality assurance, only the high-

resolution measurements (from the mechanical probe) are used. So the objective of

this line of research is about improving the efficiency of a measurement procedure,

while our research focuses on combining information from different sources for better

predictions.

C. Statistical Methods to Combine Multi-resolution Data

Sophisticated methodologies have been developed to address the problem of synthe-

sizing spatial data collected at different scales and resolutions [23], [58], [20], or the

problem of calibrating (deterministic) computer simulation models of different accu-

racies or of calibrating computer simulations with physical measurements [33], [34],

[43], [28], [40]. According to our survey, there are two major schools of thought.
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The first idea is to establish respective models for data observed at individual

resolution levels. The underlying true process serves as a linkage connecting data from

different resolutions. Accordingly, the data from all the resolutions can be pooled

together to infer about the true process. Most methods reviewed in [23], [58], and

[43] adopted this approach. Of course, individual researchers had their own detailed

treatments on top of the baseline. For example, Reference [43] treated the estimates

of the parameters from the low-accuracy data as a prior to the high-accuracy data

model and then updated the estimates using the high-accuracy data.

The second idea is to establish a single-resolution data model (typically, for low-

resolution or low-accuracy data) and a linkage model connecting data from different

resolutions. The linkage model assumes that each high-resolution response can be

predicted by the corresponding low-resolution one after a scale change and a location

shift. References [33], [34], [28], [20], and [40] adopted this approach. Again,

different treatments were employed in the aforementioned literature: For example,

Reference [20] used a Markov random field for the single-resolution data model, while

all the others used a Gaussian process model.

We believe that the general ideas developed in the statistical literature are ap-

plicable to the metrology application. This dissertation follows the second idea as

outlined above, that is, employing a low-resolution data model plus a linkage model.

Chapter III develops a Gaussian process model for single-resolution metrology data

of a manufactured product, which also serves as the low-resolution data model in

the context of combining two-resolution data. Mathematically, the proposed single-

resolution model is almost the same as the low-accuracy data model used in [40],

except that it has an additional term representing the random measurement errors.

More modeling details as well as physical interpretations are provided in Chapter III.

For the linkage model, we propose a neighborhood linkage model to link each
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high-resolution output as a kernel regression of all the low-resolution information in

its neighborhood. We let the size of the neighborhood be decided by data. Recall

that Reference [40] mapped each high-accuracy data point to a single low-accuracy

data point. Our neighborhood linkage model extends the one-to-one linkage to a one-

to-many relationship. Because of this extension, the neighborhood linkage model is

able to utilize all the high-resolution and low-resolution data, while the linkage model

in [40] utilizes all the high-accuracy data plus a small subset of the low-accuracy data

whose input settings are the same as those of the high-accuracy data.

The computer experiment literature, however, did not address the misalignment

problem encountered in the metrology application. Although the computer simula-

tion codes can be run at varying accuracy, the inputs are always designed precisely so

that the correspondence relationship of inputs can be easily identified across different

resolutions. The misalignment problem was not discussed in the problems of syn-

thesizing spatial data, either, because the inputs for those problems are geographical

locations, measurements of which, although contaminated by noises, are at least one

magnitude more accurate than those of spatial responses. As a result, it is reasonable

to assume the inputs in the spatial problems are also known precisely, the same as in

the computer experiments.

D. Existing Methods on Matching and Aligning Datasets

The dissertation also explores the literature on matching and alignment methods (but

please note that an alignment method does not address the prediction issue as re-

quired in our problem). The majority of the matching and alignment methods were

developed for image analysis and registration applications. References [3] and [66]

gave comprehensive reviews of the methods in image registration. Matching two ob-
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jects or images refers to finding correspondences between points or features of one

object and those of the other. This is also called labeling. After establishing the

correspondences between two datasets, we can mark the matching relationship be-

tween them as labels; the data involved then become labeled points. Given the labeled

points, the subsequent step is to estimate the transformation model to bring the two

objects or images together, which is also called aligning. Statistical shape analysis

[17] provides sophisticated methodologies that address the problem of estimating the

transformation model and assessing the shape differences between different images

based on labeled points.

Our problem of matching the metrology data points is to match unlabeled points.

To find the pairwise matching correspondences of two sets of unlabeled data points,

there are three major approaches in the image registration literature. One is to

rely on the feature properties (e.g., curvature) associated with a point, or a graphic

pattern formed by a set of points [66], [54]. In our metrology application, the high-

resolution data points are very scarce due to the time and cost constraints. Therefore,

we hardly get any feature property from high-resolution data, or we might obtain a

different graphic pattern from high-resolution data than from low-resolution data.

This makes this type of method does not work well to match scarce high-resolution

metrology data with abundant low-resolution metrology data. The high-resolution

points function more like a set of anchor points, and their contribution is to help

calibrate the shape-revealing low-resolution points to the underlying true surface.

The other popular method of point matching is based on the invariance property

of inter-point distances. The underlying principle is that using either dataset, the rel-

ative distance between the same two points should be approximately the same [42],

[54]. The distance-based approach is applicable to the metrology application since

data measured at different resolutions differ from one another by a rigid body trans-
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formation plus small distortions caused by measurement errors. Thus, we will utilize

the distance-based approach to match datasets from different resolutions.

Recently, Reference [25] developed a Bayesian method for finding matching and

transformation between two configurations of points. The matching of points is rep-

resented by a matching matrix, whose (j, k)-th entry is 1 if the j-th point in one

configuration matches the k-th point in another, and 0 otherwise. The transforma-

tion is represented by a rotation matrix and a translation vector. Reference [25]

modeled the matching and aligning problem using a Bayesian approach, and their

method estimates the matching and transformation results simultaneously.

Reference [25]’s method is highly relevant to our application because it handles

unlabeled points, the same as what we need to do. We tried applying Reference [25]’s

method to match and align the data points in the two-resolution datasets.

However, Reference [25]’s method performs poorly in matching and aligning the

two-resolution metrology datasets. The reason is that we attempt to match sparse

high-resolution data points (several tens) to dense low-resolution data points (several

thousands). The parameter space of possible matches are high dimensional. An

example used in Chapter V has high-resolution data of size 40 and low-resolution

data of size 1,560 (i.e., 40 × 15,60). In contrast, the two examples in [25] have high-

resolution data and low-resolution data of sizes 35 × 35 and 40 × 63. Exploring the

high-dimensional parameter space with [25]’s procedure needs to run very long Markov

Chain Monte Carlo (MCMC) chains, and is less likely to produce a good match given

limited time. In addition, the matching problem in metrology also oftentimes involves

matching 3D point clouds of symmetric shapes (e.g., cylinder and circles), which have

been proved difficult due to the existence of numerous local optima [19]. So we cannot

expect the Bayesian alignment model from [25] to converge to the global optima in a

timely manner.



18

Thus, the dissertation chooses to develop a heuristic matching that utilizes the

invariance property of inter-point distance to better suit our metrology application.

The heuristic matching performs a greedy search and thus can explore the parameter

space of matching much more efficiently. The heuristic matching algorithm finds a set

of good matches, and the two-resolution model combines data from two resolutions

averaging over different matches. The dissertation uses Bayesian model averaging

to take care of the uncertainty in determining which match is the best one. The

Bayesian model averaging automatically assigns weights to different matches accord-

ing to how much they are consistent with the two-resolution model and the observed

two-resolution data.

The existing literature on combining multi-resolution datasets is summarized in

Table II.
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CHAPTER III

GAUSSIAN PROCESS MODEL FOR SINGLE-RESOLUTION DATA

A. General Idea of Single-resolution Model

When magnified, the surface of a manufactured part looks just like a geographical ter-

rain. Please see Reference [52] for the topographies of a variety of machined surfaces.

This analogy motivates applying a spatial statistical method to represent a manu-

factured geometric feature. Metrology measurements of a manufactured geometric

feature can be decomposed into three portions (as shown in Fig. 4): a global trend

portion, which follows the shape of the feature as defined by its designed form; a spa-

tially correlated portion (when the systematic error exists, the measurements in close

proximity on a surface show strong correlations); and a spatially uncorrelated portion,

i.e., the random error portion. As such, we model the metrology measurements as

arising from systematic errors and random errors added to an ideal geometric form.

Actual straightness 

feature

= + +

Global trend (defined 

by designed form)

Spatially correlated 

systematic error
Spatially uncorrelated 

random error

Fig. 4. Decomposition of metrology measurements of a manufactured straightness fea-

ture
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B. Background: Gaussian Process Model

Gaussian process (GP) models are popular in modeling spatially correlated data.

Some good references for Gaussian process models include References [48] and [47].

The key idea is to treat observed data as a realization from a Gaussian process

(also called Gaussian random field). Suppose we are to study precipitation of a certain

area S. Following a similar decomposition as in Fig. 4, we can decompose the spatially

varying response into two components:

y(x) = f(x) + ξ(x) for ∀ x ∈ S (3.1)

where f(xi) is the mean function representing the large-scale trend, and ξ(xi) is a

small-scale variation. The small-scale variation ξ(xi) is assumed to be a Gaussian

process with certain correlations. Through modeling the correlations between the

responses from different locations, R(xi,xj), we can capture the small-scale variation

from data.

The commonly used correlation functions include two categories: isotropic corre-

lation functions and anisotropic correlation functions. For isotropic correlation func-

tions, the spatial correlation is a function solely of the distance between xi and xj.

One frequently used isotropic correlation function is the Gaussian correlation model

as follows:

R(ν,xi − xj) = exp{−ν||xi − xj||2} (3.2)

where || · ||2 denotes Euclidean distance and ν is the scale parameter controlling how

quickly the correlation decays as the between-point distance increases.

For anisotropic correlation functions, the spatial correlation depends not only on

the distance between locations, but also on the direction. A commonly used one is
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the following:

R(ν,xi,xj) =
d∏

k=1

exp{−νk(xki − xkj)2}, (3.3)

where d is the dimension of the input variables, i.e., xi = (x1i, x2i, . . . , xdi), and

ν = (ν1, ν2, . . . , νd) are the scale parameters controlling how fast the correlation decays

as the between-input distance increases in each dimension.

As a result of the Gaussian process assumption, any number of the responses

y = (y(x1), . . . , y(xn)) follow a multivariate normal distribution

y ∼ N(f ,Σ), (3.4)

where Σ = κ2R, R is the correlation matrix with its (i, j)-th entity defined as in

either (3.2) or (3.3), and κ2 is the variance for the small-scale trend ξ(·).

Here we illustrate how a GP model works. To simplify the illustration, we con-

sider a one-dimensional area. Suppose we observe some precipitation data illustrated

by crosses in Fig 5 (a). The grey line is the underlying true process.

We assume that the observed data follow Model (3.1) with the mean function

f(x) equaling to zero, and estimate the scale parameter and the variance (Fig. 5 (b)).

Based on the estimated value, we can predict the entire process as in Fig. 5 (c), where

the predictive mean is the black line, and the 95% predictive band is the grey region

around the black line.

For spatial data, the inputs x are usually geographic locations and the responses

y are observations of some spatial phenomena, for example, precipitation or temper-

ature. In the metrology problem, the observed data are three-dimensional coordinate

measurements of a part’s surface. References [16] and [62] applied GP models to the

metrology application before this dissertation. Their GP models used one or two

coordinate variable, e.g., u and/or v, as its inputs, and the remaining coordinate,
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e.g., w, as its response. So their GP models require one coordinate variable to be

an explicit function of the other coordinate variables. This implies that their models

can not apply to a general geometric feature, e.g., a circular feature, where the v

coordinate is not an explicit function of the other coordinate u. In order to make the

GP models to be applicable to generic geometric features, we have to redefine the

input and the response variables.

-10 -5 0 5 10
-30

-20

-10

0

10

20

Input

O
u

tp
u

t

-10 -5 0 5 10
-30

-20

-10

0

10

20

Input

O
u

tp
u

t

predictive band

predicted median

observed data

true surface

(b). Fit a Gaussian process and estimate 

the spatial correlation parameters:
scale v = 0.9985

variance κ2 =120.6
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Fig. 5. Illustration of how Gaussian process model works

C. Gaussian Process Model for Single-resolution Metrology Data

First, we explain the measuring mechanism of a computer-controlled CMM, and how

it inspires which variable to use as the input and which variable to use as the out-
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put/response for the GP model. The machine takes the nominal position to be

measured, xi, from an operator (via a computer interface) or a database storing the

predetermined position information. The nominal position xi is usually a point on an

“imaginary” nominal geometry, as illustrated in Fig. 6. The the machine directs its

measuring probe or laser beam to travel in a certain direction, denoted by pi, toward

the object to be measured. Finally it retrieves the coordinate information, denoted

by ai, of a point on the actual manufactured feature. This response that a machine

returns, ai, is the point on the actual surface, by which a laser beam is reflected or a

probe is stopped, shown as in Fig 6. The directional vector pi, associated with each

measurement taken, is either specified by the operator or calculated by the computer

automatically. This mechanism indicates that the input is xi and the response is ai.

Essentially, we map all the points on the nominal geometry to the actual manufac-

tured feature. The GP model is set up to capture the mapping between these two

surfaces. The advantage is that when we use the nominal position xi as the input

variable, it works for any type of geometric features and thus avoids the restriction

in the previous GP models.

The response ai is typically a vector: for example, for a three dimensional feature,

ai = (aui
, avi

, awi
)T . We avoid using (x, y, z) as the coordinate variables because x

and y have been used in the model for different meanings. A multivariate GP model is

obviously more difficult to handle than a univariate model. Thus we want to further

reduce the multivariate response into a one-dimensional response variable. Here we

adopt the strategy used by [32], which suggested projecting the value of ai onto the

probe approaching direction pi (usually the norm direction to the local surface) and

using the resulting scalar as the response. As such, the GP model for single-resolution
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Fig. 6. Input and Output of the coordinate measuring process

metrology data is:

yi ≡ aTi pi = f(xi,β)Tpi + ξ(xi) + ε, (3.5)

where yi is the i-th metrology measurement projected onto the pi direction, f(xi,β)

corresponds to a geometry which has the ideal geometric form that engineers design,

ξ(xi) is the systematic error modeled by a spatially correlated term, and ε is the

random error modeled by the spatially uncorrelated term. Generally, the random

error includes both random manufacturing errors and measurement noises. When the

metrology data are from the high-resolution level (i.e., high accuracy and low noises),

we could assume that the measurement errors are negligible and then attribute the

second error term ε entirely to the random manufacturing errors. When the metrology

data are from the low-resolution level (i.e., low accuracy and high noises), the second
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error term ε is mainly measurement noises.
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Fig. 7. Illustrations for GP model

The vector f(xi,β) represents the point on a dashed-line geometry that corre-

sponds to xi on the nominal geometry, shown as in Fig 7. The dashed-line geometry

is a shifted nominal geometry that also includes possible small dimensional changes.

So f(·, ·) has the same function form as the nominal geometry does and is known

from the part’s design. The value of f(xi,β) incorporates the actual position of the

part, which may undergo a rigid body motion during the fixturing process, as well

as some small changes in dimensions of the part caused by manufacturing errors. In

other words, β includes two factors: β = (ϕ,ψ) , where ϕ includes the parameters

characterizing the rigid-body motion (e.g., the shift of the center of a round part), and

ψ includes the dimension parameters (e.g., the radius of a round part). Therefore,

f(xi,β) can incorporate dimensional errors, for instance, ψ can denote the radius
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value of an actual part, which may be different from the design value.

Fig. 7 exaggerates the differences between the dashed-line geometry and the

nominal geometry for the purpose of illustration. Typically, the actual solid-line

surface follows very closely to the dashed-line geometry, and the differences are no

more than a few hundreds of microns. The closeness between the dashed-line geometry

and the actual surface motivates selecting f(·,βl) as the mean component for the GP

model. A three-step procedure to compute the f(xi,β) for a general geometry is

provided in Section III.D.

In Model (3.5), the random error ε is modeled as i.i.d. N(0, σ2
ε ). The systematic

error ξ(·) is assumed to be a Gaussian process independent of ε , and of zero-mean

and covariance function cov(ξ(xi), ξ(xj)) = κ2 · R(ν,xi − xj), where R(ν, ·) is the

correlation function with hyper-parameter ν. The rationale behind is that the sys-

tematic departures from the ideal geometric shape can be regarded as a sample path

of a suitably chosen Gaussian process ξ(·).

The choice of the correlation function R(ν, ·) should reflect the characteristics

of the systematic manufacturing errors. It should also account for the amount of the

data. When the amount of data is low, it would not serve us well if the GP model

involves too many parameters to be estimated. Under this situation, we could adopt

the Gaussian correlation function as in (3.2), which is isotropic and widely used in

spatial statistics. The Gaussian correlation function has only one unknown param-

eter. Past experiences indicate that this correlation function has a good capability

in modeling various spatial features [65], [21]. The experiences also indicate that the

Gaussian correlation function appears reasonable for a number of manufactured geo-

metric features. When the data suggest that the spatial correlation are significantly

different from (3.2) for some particular part/feature, the isotropic assumption can be

relaxed by including different parameters to control the spatial correlation scale for
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different directions, for example, (3.3). The correlation function (3.3) involves more

parameters, and therefore it requires more measurements to estimate them well.

There have been some research reports on modeling more general variance-

covariance structures of spatially correlated measurements. For example, Reference [5]

proposed a correlation model for lattice-structured metrology measurements on a

part’s surface. It assumed that the overall correlation is the product of the row-wise

and the column-wise correlations, and that the metrology measurements in a row

or column follow an autoregressive moving average (ARMA) process. This line of

research is valuable for modeling the systematic manufacturing errors as a proper

variance-covariance structure is essential to a Gaussian process model. Under the

circumstance that the aforementioned correlation functions do not fit data well, the

correlation structure proposed in [5] could be a good alternative.

The parameters for the GP model are θ = (β, κ2, σ2
ε ,ν). In practice, engineers

use a CMM to measure m data points {xi, yi}i=1,...,m from one part, and use them to

estimate the unknown parameters θ. Plugging the estimated values for the parameters

θ into the GP model, engineers can use the model to predict the actual coordinate

at any unmeasured location and to reconstruct the entire geometric feature. Finally,

engineers can assess the form error of the geometric feature using the reconstructed

geometric feature. The overall procedure is shown in Fig. 8, where GP(·, ·) denotes a

Gaussian process with the specified mean and the covariance matrix.

D. Determine the Ideal Geometric Form

In order to fully specify the GP model in Equation (3.5), this section presents a proce-

dure to determine the ideal geometric form f(xi,β)Tpi for generic geometric features.

The procedure follows an idea first proposed by Reference [32] when discussing a Man-
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Fig. 8. Procedure of the GP modeling for single-resolution measurements

ufacturing Part Model (MPM). We repeat some of [32]’s original description here in

order to make this dissertation a self-contained piece and to provide a basis for later

discussions. Consider the process that a CMM measures a manufactured part with

a general geometry shape, represented by M(ϕ,ψ) where ϕ and ψ follow the same

meaning as we explained in Section III.C. Denote the nominal design values for the

dimension parameters by ψ∗. As such, M(0,ψ∗) represents the designed feature that

is of nominal sizes and is perfectly aligned with the CMM reference coordinate. Nor-

mally, M(0,ψ∗) serves as the nominal geometry. M(ϕ,ψ) has the same geometry

as M(0,ψ∗) but differs from it in terms of a rigid body motion and some dimen-

sion change. Therefore, M(ϕ,ψ) represents the ideal form, the same as f(·, ·). More

specifically, f(xi,β) is a point on M(ϕ,ψ) (recall that β = (ϕ,ψ)). As mentioned in

Section III.C, for a given part, the function form of M(·, ·) or that of f(·, ·) is known
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from the computer-aided design model.

During a coordinate measuring process, M(ϕ,ψ) slightly deviates from M(0,ψ∗)

in both location and dimension sizes. The dimension aspect is easy to understand

since a manufacturing process supposedly produces the required dimensions with

reasonable accuracy.

The location aspect can be understood as follows. A CMM can set up its reference

coordinate through soft fixturing [31]. Before a metrology device performs the actual

measuring task, it will first undergo a soft-fixturing process. That is, the machine

takes a few measurements from the actual surface and uses them to estimate where

the part is located. Since the actual dimension and shape of the part is unknown at

the moment, the measurement machine must decide the location of the part assuming

that the part has the design function form, e.g., a perfectly round circle for Fig. 9,

and dimensions, e.g., the design value for radius r0 for the round part in Fig. 9. Then

the machine translates its origin (0, 0) to the center of the part. Now the machine has

a known geometry, e.g., the circle centered at (0, 0) with radius r0 in Fig. 9, serving as

the reference for the subsequent measuring process. It is denoted by the dotted line

M(0,ψ∗) and is often called the nominal geometry. When the metrology device takes

an input position xi, it considers this point to be on the nominal geometry. Because

soft-fixturing only takes a few measurements to estimate the object’s location, the

estimation is not perfect, but the estimation errors are small. As a result, M(ϕ,ψ)

also deviates from M(0,ψ∗) in both location and dimension only slightly.

The differences between the actual surface (solid-line) and the dashed-line geome-

try M(ϕ,ψ) are the form or geometric errors. They are also caused by manufacturing

errors. Fig. 10 summarizes all the three types of errors that we explain. Fig. 9 ex-

aggerates the differences for the purpose of illustration. Typically, the actual surface

follows the dashed-line geometry closely, and the differences are no more than a few
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Fig. 9. Illustration of the coordinate measuring process

hundreds of microns. The closeness between the dashed-line geometry and the actual

surface motivates selecting f(·,βl) as the mean component for the GP model.

Determining f(xi,β) requires solving some geometry equations for the given point

xi. When a CMM is directed to measure a point xi, it will automatically calculate its

path, an approaching direction pi, based on its knowledge of the nominal surface. The

approaching vector pi is usually the norm direction to the nominal surface M(0,ψ∗)

as the true shape and location is never known. When it moves along, the probe

will touch the actual manufactured surface and return the measurement value ai.

Geometrically, f(xi,β) is an intersection point of the geometry shape M(ϕ,ψ) and

the line passing through xi and xi + pi. Therefore, both ai and f(xi,β) lie on the

line going through xi and xi + pi. If projecting both ai and f(xi,β) along pi, one
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Fig. 10. Three different types of errors

will end up with the univariate GP model in (3.5).

The above discussion outlines how to decide f(xi,β)Tpi. No general analytical

formula, however, can be devised for an arbitrary geometry. Engineers will have to

go through the following procedure (please refer to Fig. 11 for illustrations):

(i). Decide the approaching direction pi according to M(0,ψ∗) and xi, and decide

the line function passing through xi and pi.

(ii). Solve for the intersection point(s) between the line function and M(ϕ,ψ).

(iii). If there are more than one intersection points, select the first intersection point

when traveling with the CMM probe toward M(ϕ,ψ).

(iv). Then, f(xi,β)Tpi is simply the vector inner product of the coordinates of the

intersection point f(xi,β) and pi.

In the following subsections, we will illustrate how to implement the procedures

to determine the ideal geometric form for two commonly used geometric features,

straightness and roundness.
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1. Straightness feature

For a straightness feature, as illustrated in Fig. 11 (a), the nominal geometryM(0,ψ∗)

is v = 0. The general geometry shape M(ϕ,ψ) is v = v0 + %u, where ϕ = (v0, %) is

the location parameter with v0 representing translation and % representing rotation.

For a straight line, the dimension parameter ψ degenerates. So β = (v0, %). For

a point xi = (ui, 0)T on the nominal feature v = 0, the approaching direction is

pi = (0,−1)T . After solving for the intersection between v = v0 + %u and the vertical

line u = ui and then calculating the vector inner product in Step (iv), we have

f(xi,β)Tpi = (ui, v0 + %ui) · (0,−1)T = −v0 − %ui.

2. Roundness feature

For a straightness feature, v is an explicit function of u. But this is not the case for

a roundness feature. Denote the roundness feature’s nominal radius by r0 and its

actual radius by r. As illustrated in Fig. 11 (b), the nominal geometry M(0,ψ∗) is

u2 + v2 = r2
0 and the general geometry shape M(ϕ,ψ) is (u− u0)

2 + (v − v0)
2 = r2.

The location parameter ϕ only consists of the translation of the center, i.e., (u0, v0),

because a roundness feature is invariant under rotation. The dimension parameter

ψ is the radius r. So β = (u0, v0, r). Given the nominal feature M(0,ψ∗), we will

have xi = (r0 cos τi, r0 sin τi)
T and pi = (− cos τi,− sin τi), where τi is the polar angle.

Consequently, f(xi,β) is an intersection point of (u − u0)
2 + (v − v0)

2 = r2 and the

line passing through (0, 0) and xi = (r0 cos τi, r0 sin τi), i.e., a solution of the following

equations:





(fui
− u0) + (fvi

− v0)
2 = r2

fvi

fui
= tan τi

(3.6)
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where (fui
, fvi

) are the two coordinates of the intersection points. Notice that a circle

has two intersection points with a line. Pick the first intersection point according to

the approaching path of the probe as the final solution (fui
, fvi

). In this way, we can

numerically calculate f(xi,β)Tpi = −fui
cos τi − fvi

sin τi for any given xi.

For the value of f(xi,β)Tpi, we can also calculate it via a geometrical method

for roundness features: As illustrated in Fig. 12, f(xi,β)Tpi is the ti in a triangle

constructed from the three points: f(xi,β) , (u0, v0) and (0, 0). A similar triangle

was utilized in [55]. Solving this triangle, we get f(xi,β)Tpi = −u0 cos τi− y0 sin τi−
√
r2 − (u0 sin τi − v0 cos τi)2.

ai

v-axis

f(xi,β)

r

(u0, v0)

(0, 0)

pi

τi

u-axis

ti
aT

i pi

Fig. 12. Triangle relationship in a roundness feature
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E. Predictive Distribution and Probabilistic Form Error Assessment Procedure

1. Maximum likelihood estimate for parameter estimation

Recall that the parameters in the GP model (3.5) are θ = (β, κ2, σ2
ε ,ν), and the

observed data are {xi, yi}i=1,...,m. We arrange all the yi in yo, i.e., yo = (yi)i=1,...,m

where the subscript “o” implies the observed metrology measurements. We arrange

all the xi likewise, i.e., Xo is defined as a m × d matrix whose i-th row is xi. Given

the Gaussian process assumption, the distribution of yo given θ = (β, κ2, σ2
ε ,ν) is:

(yo|θ) ∼ N(g(Xo,β),Σo), (3.7)

where g(Xo,β) is an m× 1 vector whose i-th element is g(xi,β) = f(xi,β)Tpi, and

Σo = κ2Ro + σ2
ε I and Ro is an m ×m matrix whose (i, j)-th elements is defined as

either in Equation (3.2) or (3.3).

We employ a maximum likelihood estimator (MLE) to estimate the parameters

in the GP model. Based on Distribution (3.7), the log-likelihood function for yo will

be:

2l(β, κ2, σ2
ε ,ν) =− log(det(κ2Ro + σ2

ε I))

− (yo − g(Xo,β))T (κ2Ro + σ2
ε I)−1(yo − g(Xo,β))−m log(2π)

(3.8)

An MLE of θ = (β, κ2, σ2
ε ,ν) can be obtained by maximizing l(β, κ2, σ2

ε ,ν), i.e.,

θ̂ = arg maxθ l(β, κ
2, σ2

ε ,ν). We solve it using a gradient-based optimization routine

in MATLAB. Other similar optimizers can fulfill the task as well. Two more actions

are taken to improve the optimization efficiency. One is that we substitute three

parameters (κ2, σ2
ε ,ν) with (exp(ω1), exp(ω2), exp(ω3)). This is because the variance

parameters κ2 and σ2
ε , and the correlation hyper-parameter ν can only take posi-
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tive values, and it makes a constrained optimization. After the transformation, we

deal with an unconstrained optimization, which is generally easier to solve. For an

unconstrained optimization, we use the MATLAB function fminunc.

For a straightness feature, its GP model has a linear mean structure. Thus,

we can use a Restricted Maximum Likelihood (REML) estimator, which is supposed

to give less biased estimates of the covariance parameters (i.e., κ2, σ2
ε , and ν) than

MLE. Reference [11] proved the asymptotic property of REML estimation for the

GP covariance parameters. Reference [59] gave the details for implementing a RMLE

for a linear GP model. For a roundness feature, Model (3.5) has a nonlinear mean

structure, and REML estimation is not available. Therefore, we use an MLE for

roundness features.

2. Predictive distribution of geometric surface and form error assessment

For the purpose of form error assessment, we are ultimately interested in predicting

the behavior of the geometric feature based on the observed metrology data. We

approximate the continuous surface of a geometric feature by a dense set of points on

it. Denote the dense set of nominal points on a geometric feature by {ni}i=1:N , and

it is deemed representative for the feature. The prediction of the geometry at ni is

y(ni). We arrange all N predictions in a vector yp, i.e., yp = (y(ni))i=1:N , where the

subscript “p” implies a prediction. Given the Gaussian process assumption, yp and

yo follow a joint multivariate normal distribution:

(yp,yo|θ) ∼ N







g(Xp,βl)

g(Xo,βl)


 ,




Σp Σpo

ΣT
po Σo





 , (3.9)

where g(Xo,β) and Σo are defined in Equation (3.7); g(Xp,β) is an N × 1 vector

whose i-th element is g(ni,β) = f(ni,β)Tpi; Σpo is the covariance matrix between
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yp and yo, Σpo = κ2Rpo + σ2
εE, and the matrix E has its (i, j)-th elements Eij = 1

if ni = xj and 0 otherwise; Σp is the covariance matrix of yp and Σp = κ2Rp + σ2
ε I.

The correlation matrix Rpo is an N ×m matrix, and its (i, j)-th elements is defined

as in R(ν,ni,xj); Rp is an N × N correlation matrix, and its (i, j)-th elements is

R(ν,ni,nj).

According to the conditional distribution theorem for multivariate normal dis-

tribution (Appendix A), we have

(yp|yo,θ) ∼ N(gp(Xp,β) + ΣpoΣ
−1
o (yo − go(Xx,β)),Σo −ΣpoΣ

−1
o ΣT

po). (3.10)

Equation (3.10) provides the predictive distribution of the discretized geometric fea-

ture based on the observed metrology measurements yo. The negative amount ΣpoΣ
−1
o ΣT

po

in the variance term comes from the observed measurements yo and their correlations

with the predicted locations. Basically, the information in the observed metrology

data helps reduce the uncertainty in predicting the geometric feature. The more

metrology data are observed or the stronger the correlations between {ni}i=1:N and

{xi}i=1:m are, the less uncertainty remains in the predictive distribution of the ge-

ometric feature. In practice, the parameter θ = (β, κ2, σ2
ε ,ν) is unknown and will

be estimated using the observed metrology data. A common treatment is to plug

the MLE estimate θ̂ into Distribution (3.10). The predictive distribution with the

plugged-in parameter estimates looks like:

(ŷp|yo, θ̂) ∼ N(gp(Xp, β̂) + Σ̂poΣ̂
−1

o (yo − go(Xx, β̂)), Σ̂o − Σ̂poΣ̂
−1

o Σ̂
T

po), (3.11)

where Σ̂o = κ̂2R̂o + σ2
ε I, Σ̂p = κ̂2R̂p + σ̂2

ε I, Σ̂po = κ̂2R̂po + σ̂εE. The matrixes R̂o,

R̂o and R̂po are the correlation matrixes with the value ν̂ plugged in.

We can reconstruct the geometric feature by drawing a sample from the multi-

variate distribution specified in Equation (3.11). The sample will be one realization
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of the discretized geometric feature. The density of prediction locations is supposed

to be much higher than the actual metrology measurements, i.e., N � m. The mea-

sured sites {xi}i=1:m is usually a subset of the prediction sites {ni}i=1:N . That allows

the reconstructed surface to provide a closer representation of the geometric feature

than the handful of metrology observations scattered over the surface. Once a surface

is predicted or reconstructed, the form error of the feature, denoted by h, is estimated

by finding the maximum inscribing and the minimum circumscribing geometries that

bound all points of the predicted surface. This treatment follows the Taylor’s prin-

ciple [15]. To account for the uncertainty in data and model, we need to repeat the

above procedure T times. T needs to be a big number to ensure a good approxima-

tion, and we use T = 10, 000 for the studies in Section III.F. Fig. 13 (a) shows a 95%

predictive band of the predicted surface and the average predicted surface, together

with the measured and the true values of the surface. This is a simulated case, so we

know the true surface.

Finally, we have T estimates of the form error, ĥ1, ĥ2, . . . , ĥT . Each of them is

calculated by applying the Taylor’s principle to an individual predicted surface. Using

the T estimates of the form error, we can have an empirical distribution of h, e.g.,

the histogram in Fig. 13 (b). This histogram is an empirical predictive distribution

of the form error, given the metrology measurements yo and the GP model. When a

large set of metrology data is used, the distribution of h is centered around the actual

form error. So it makes sense to use the median of the empirical distribution of h,

denoted by ĥ(0.5), as the final estimate of the form error.

In fact, the predictive distribution of h contains richer information than a point

estimate of the form error. It allows engineers to quantify the decision risk on part

acceptance. In practice when the sample size is limited, one may want to be more

conservative in accepting the part. For example, instead of using the median ĥ(0.5),
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Fig. 13. Predictive distribution of roundness feature and form error estimate histogram
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one could use the 95 percentile of the empirical distribution, ĥ(0.95), to compare with

a pre-determined form tolerance. If ĥ(0.95) is smaller than the pre-determined form

tolerance, one is more than 95% confident that the part’s form error is less than

the form tolerance. Which exact percentile to use can be adjusted based on the

functionality requirements and the cost of making a wrong decision.

F. Validate Proposed Model and Compare with Traditional Methods

This section compares the GP method for form error estimate with the two traditional

methods: the MZ and the OLS methods. We choose these two methods as the

reference for comparison primarily because they are still the most popular ones in the

literature and are widely used in form error assessment software provided by CMM

manufacturers.

In this section, we focus on comparing the unbiasness of the form error estimates

from the three different methods. We calculate the ratios of the estimated form errors

over the true form errors. The true form errors are known for the simulation studies.

If the calculated ratio is closer to 1, the estimate is less biased. We do not compare the

probabilistic decision-making procedure allowed by the GP method, which produces

a predictive distribution of the form error h, with the MZ and OLS methods. This

is because the MZ and OLS methods do not take the uncertainty information into

account in their decision making procedure. But we believe that it is an advantage

of the GP method to provide the distribution information, which can quantify the

decision risk for industrial practices.

We do not compare the speed of these three methods because the GP method

uses a large number of replications to get the predictive distribution of the form error,

while the other two do not. The OLS method only calculates a point estimate and
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is faster. Finding the exact MZ solution could be computationally demanding, but

many fast approximation algorithms are available. In the dissertation, we actually

use the minimax estimate to approximate the MZ. The actual computation time of

the GP method ranges from tens of seconds to several minutes, which should be

acceptable to practitioners.

Section III.F.1 performs the comparison using a set of simulated data. We sim-

ulate three different manufacturing scenarios for each of the following two geometric

features: straightness and roundness. For each scenario, different sizes of samples,

ranging from eight to eighty for straightness and for roundness, are used to esti-

mate the form error. The sample size, denoted by m, refers to the number of the

measurements taken from different locations on a part.

In Section III.F.2, we use a CMM to obtain actual coordinate measurements from

two parts with a straightness feature and a round feature, respectively. We apply the

GP method, the MZ method, and the OLS method to estimate the form error and

other parameters for each of the two features.

1. Comparison using simulated data

We follow the following procedures to implement the simulation study for each man-

ufacturing scenario in this section (A similar procedure was used by [14] to compare

the performance of the MZ method with the OLS method.):

(i). Simulate one single geometric feature.

(ii). Generate a dense enough set of measurements on the selected geometric feature

so that the measurements represent the actual geometry well. In the simulation, we

take a measurement every 0.5 millimeters. This density is considered dense enough

by practitioners. Then we get a total of N points, N = L/0.5, where L is the length

of a straightness feature or the circumference of a roundness feature. Determine the
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form error from the N points using the MZ method, and treat it as the “true” form

error.

(iii). Select m data from the set of dense measurements, and treat them as the ob-

served metrology measurements of the geometric feature. The m locations and their

corresponding observations are chosen using a maximin distance Latin Hypercube

sampling, a method that has the m samples evenly spread over the feature space.

For more details on the maximin distance Latin Hypercube sampling, please refer to

Reference [47] (Page 150).

(iv). For m = 8, 10, 15, 20, 30, 40, 80, determine the form error estimate, and denote

it by ĥOLS(m) when using the OLS method, by ĥMZ(m) when using the MZ method,

and by ĥGP(m) when using the GP method. The GP method provides a distribution

for estimating form errors while the MZ and OLS methods provides only point es-

timates. So we need to pick a point estimate from the form error distribution such

that we can compare these three methods’ performances. Here we choose ĥ(0.5), the

median of the distribution of the form error (defined in Section III.E.2), because it

centers around the true form error when a relative large number of metrology data

are available.

(v). Calculate the estimate ratios, ĥOLS(m)/h∗, ĥMZ(m)/h∗, and ĥGP(m)/h∗. Recall

that h∗ is the true form error. A ratio closer to 1 indicates a less biased estimate.

(vi). Repeat Step (iii) to (v) 50 times for each m, and generate a box-whisker plot of

the estimate ratios calculated in Step (v).

a. Straightness feature

In this subsection, we simulate the straightness feature. Manufacturing errors of a

straightness feature usually include surface deflection, waviness, and random error.

Depending on what manufacturing process is used to produce the feature, one of
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the errors could dominate in the measurements. For instance, when using a lathe

to machine the feature (i.e., a turning process), surface deflection could be more

prominent than other types of errors because of the force exerted perpendicularly to

the surface. We simulate different scenarios using the generating function from [14]

as follows:

v = v0 + %x− 64

L6
R(x3(L− x)2) + A sin(

2π

λ
x) + ε, (3.12)

where the first two terms v0 + %x represents the rigid-body motion during a fixturing

process, the third term represents the surface deflection, the fourth term is a wave pat-

tern, and the last term is the i.i.d. random error assumed to be N(0, σ2
ε ). Including an

i.i.d. pure random error term sometimes creates outliers jumping out of the geometric

surface. The existence of such outliers creates abrupt discontinuity in the geometry

and may not reflect the actual surface well. To alleviate the discontinuity problem,

we use a three-point moving average window to smooth the i.i.d. random errors. The

meanings of the other parameters in Equation (3.12) are as follows: L is the length of

the straightness feature; A is the sine wave amplitude; λ is the wavelength; R is the

deflection range. We simulate a feature of length L = 200 mm. Table III shows the

three simulated manufacturing scenarios, corresponding to a milling, a turning, and a

grinding process, respectively. The parameters in Table III are determined from the

typical process capability associated with each of the manufacturing processes [26].

b. Roundness feature

The dissertation adopts the roundness feature generator from [13] as follows:

u = u0 + (r + A1 sin(4τ) + A2 cos(3τ) + A3 sin(7τ) + A4 cos(10τ) + ε) cos τ (3.13)

v = v0 + (r + A1 sin(4τ) + A2 cos(3τ) + A3 sin(7τ) + A4 cos(10τ) + ε) sin τ (3.14)
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Table III. Manufacturing scenarios for a straightness feature

Process characteristics
δ
(mm) φ

A
(mm)

λ
(mm)

R
(mm)

σε
(mm)

Case I
Sine wave dominates
(face milling) .04 .02 .03 20 .015 .017

Case II
Deflection dominates
(turning) .05 .01 .005 10 .025 .009

Case III
Random errors
dominate (grinding) .03 .01 0 N/A 0 .003

where u0 and v0 are the origin of the roundness feature, r is the radius, τ is the polar

angle, A1 sin(4τ) + A2 cos(3τ) + A3 sin(7τ) + A4 cos(10τ) represents the systematic

error, and other notations are the same as defined before. Table IV summarizes three

different manufacturing scenarios.

Table IV. Manufacturing scenarios for a roundness feature (unit: mm)

Process
characteristics u0 v0 A1 A2 A3 A4 r σε

Case I

Three-lobed syste-
matic errors domi-
nate and radius
change (turning)

.2 .02 N/A .03 N/A N/A 25.03 .01

Case II
General systematic
errors dominate
(turning)

.03 .2 .002 -.015 -.01 -.008 25 .012

Case III
Random errors
dominate (turning) .01 .15 N/A N/A N/A 0 25 .017

c. Results and discussion

Figs. 14-16 show the results of form error estimation for the straightness feature, and

Figs. 17-19 show the estimation results for the roundness feature. In each box-whisker

plot, the locations of the upper limit, the 75% quantile, the median, the 25% quantile

and the lower limit are shown. The crosses outside of the upper and lower limits are
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usually considered as “outliers”. The dashed line indicates that the estimate of the

form error is the same as the true form error, i.e., the estimated ratio equals to one.

In other words, the best method is the one that consistently produces box-whisker

plots closest to the dashed line.
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Fig. 14. Form error estimate comparison for straightness Case I

From Figs. 14-19, we observe the following:

(i). The proposed GP method performs significantly better than the OLS and MZ

methods when systematic manufacturing errors exist. When the sample size grows

larger, the GP method tends to be unbiased. This appears to confirm what we observe
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Fig. 15. Form error estimate comparison for straightness Case II
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Fig. 16. Form error estimate comparison for straightness Case III
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Fig. 18. Form error estimation comparison for roundness Case II
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Fig. 19. Form error estimation comparison for roundness Case III
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in the empirical distribution of form error estimate in Fig. 13 (b). By comparison,

the MZ and OLS methods tend to underestimate the form error, even when using a

relatively large sample size, e.g., m = 40 or 80. Reference [14] also mentioned the

underestimation of the MZ and OLS methods for straightness features. We believe

that our form error estimation/assessment benefits from the GP method’s ability to

capture the systematic manufacturing errors, while the other two methods treat the

handful of metrology measurements as a complete representation of the entire feature.

Please refer to Fig. 13 (a) which shows the predicted surface for a roundness feature.

(ii). In the cases when only random manufacturing errors exist, i.e., Fig. 17 and 19,

the GP method performs similarly to the OLS method and slightly better than the

MZ method. This is expected since the OLS method assumes that the error term

is i.i.d. random noises. When the systematic error term vanishes, the GP model is

essentially the same as the OLS model.

(iii). The GP method suffers from not having sufficient information when the metrol-

ogy data sample is small as the other two methods do, but to a less degree. Insufficient

information from small sample generally leads to wider predictive distributions, mean-

ing more uncertainty.

(iv). In the simulations, we decide the smallest sample size according to the number

of unknown parameters used in the GP model, which is five for the straightness and

six for the roundness. We start with a sample size roughly 1.5 times the number

of unknown parameters. Prior literature has not yet settled on how many samples

will result in good predictions. Reference [2] suggested using three observations per

parameter as a rule of thumb for good model performance. That translates to a

sample size of 15 and 18, respectively, for the two features that the dissertation stud-

ies. From the simulation results, we notice that the GP method produces reasonably

good estimate of form error when the sample size is larger than 15 for straightness or
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larger than 20 for roundness. Citing the work [57], Reference [15] pointed out that

a sample size of 10 to 20 is usually needed to estimate the error and the parameters

well. What the simulation suggests appears consistent with the recommendation of

Reference [57].

(v). In the cases where the number of the metrology data is fewer than 1.5 times the

number of unknown parameters, the GP method may not produce accurate enough

predictions, so the alternative method should be used.

2. Form error estimation using actual CMM measurements

Fig. 20. Sketches of two real parts

We use a CMM to obtain coordinate measurements from two parts. The first one

is a straight block with 250 millimeters in length, which is shown in Fig. 20 (a) and is
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manufactured by a face milling process. The other one is a cylinder with a roundness

feature of 38.1 millimeters in radius, which is shown in Fig. 20 (a) and is manufactured

by a rough turning process. We take a set of dense metrology measurements (i.e., one

measurement every .5 millimeters) for both the straightness feature and the roundness

feature. As a result, we have a total of 500 points taken from the straightness feature,

and 480 points taken from the circle. The Taylor’s principle is applied to the dense

metrology measurements, and the calculated form error is treated as the true form

error h∗. For the straightness feature, the form error h∗ = .052 mm; for the roundness

feature, h∗ = .43 mm.

Then we take a smaller, more practical number m, of CMM observations from

each part to estimate the form error. Again, the three methods, the GP, OLS, and

MZ methods, are used. The sample sizes we used are 15, 20 and 30. Figs. 21-

22 summarize the comparison results for the straightness feature and the roundness

feature, respectively. Consistent with the previous simulation results, the GP method-

based form error estimate performs much better than the other two estimates and

appears to be less biased.

In addition, we obtain the estimation of the dimension parameter (only for the

roundness), and the variance of the random errors. Table V shows the estimation

results and gives the mean values and the associated standard deviations (in bracket).

For the roundness feature, manufacturing engineers are interested in estimating

of the radius r and using it for dimensional quality control. For all different sample

sizes, the estimates from the GP method and from the OLS method are very close

in terms of both the average estimates and the standard deviations. The estimate

r̂ from using the MZ method deviates more noticeably from the estimates from the

OLS and GP methods, and the standard deviation of the MZ estimate is about three
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Table V. Parameter estimate comparison

Straightness Roundness

sample
size

σ̂OLS
ε

(µ m)
σ̂GP
ε

(µ m)
σ̂OLS
ε

(µ m)
σ̂GP
ε

(µ m)
r̂OLS

(10−2mm)
r̂MZ

(10−2mm)
r̂GP

(10−2mm)

15
15
(.65)

3.4
(1.1)

93
(18)

21
(12)

3810
(1.1)

3807
(3.3)

3809
(1.2)

20
14
(.61)

3.4
(1.2)

87
(16)

22
(11)

3810
(1.3)

3806
(3.4)

38.10
(1.3)

30
14
(0.48)

3.3
(1.2)

89
(7.4)

18
(9.8)

3810
(.71)

3804
(2.6)

3810
(.61)

times larger than those of the OLS and GP estimates. This suggests that using the

MZ method for parameter estimation might not be a good practice. The estimated

standard deviation of random error σ̂ε can be obtained by the GP method and the

OLS method but not by the MZ method. In fact, every decision in a MZ procedure

is deterministic. One may notice that the GP method yields a smaller estimate of

random error σ̂ε than the OLS method. This is because the OLS method treats both

the errors, ξ and ε, as the random error and thus may inflate the estimate σ̂ε. The

inflation in the estimate σ̂ε will cause a loss of power in subsequent inferences [35].

Other parameters such as %, u0 and v0 can be estimated as well. These parameters

are related to the rigid body motion of the part during a fixturing process. They are

not directly involved in the form error assessment but only work as a compensation

of imperfect alignment. Their estimated values are indeed small because of the soft-

fixturing procedure used in a CMM measuring process. To save space, we do not list

them here.



58

G. Chapter Summary

This chapter presents a GP method for form error assessment. The comparisons

show the GP method generally gives a less biased estimate of the form error than the

traditional MZ and OLS methods. The simulation results indicate that a sample of

15 or more metrology data should be used with the proposed GP method, at least

for the two geometric features under consideration. This result is consistent with the

recommendation from previous studies [57]. The GP method produces a predictive

distribution of the form error, allowing a decision-maker to take into account the

uncertainty from the modeling and the sampling.

An additional note is on the random error term in the GP model. Reference [15]

mentioned that the rule of thumb in practice is that one may ignore the measure-

ment error if the tolerance size is 10 times larger than the CMM’s uncertainty. The

CMM we used is a Sheffield Discovery II D-8. Its calibrated volumetric accuracy and

repeatability are 4.7 and 1.66 microns in range, respectively. The combined uncer-

tainty is around 6 microns. Compared with the form errors of 0.052 millimeters for

straightness and 0.43 millimeters for roundness, the above rule of thumb certainly

holds for the roundness feature and approximately holds for the straightness fea-

ture (about 8 times). So our treatment of attributing all the random error to the

manufacturing process is reasonable for the products we analyzed. However, some

high-precision manufacturing processes, such as grinding, lapping and honing, have

a typical tolerance limit of a few microns (e.g., 8 microns for grinding). Then, the

above rule-of-the-thumb will not be strictly satisfied. Therefore in general, engineers

need to consider, and eventually to eliminate, the influence of the measurement error

in order to reduce the false positives in the process of quality assurance. The cur-

rent GP model can be extended to include the measurement error, but it requires
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repeated measurements to enable differentiating measurement errors from random

manufacturing errors.
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CHAPTER IV

BAYESIAN HIERARCHICAL MODEL FOR COMBINING TWO-RESOLUTION

METROLOGY DATA

This dissertation proposes a Bayesian predictive method that combines the metrology

datasets from two different resolutions when the matching and alignment between the

two datasets is unknown. We devise a hierarchical predictive model as such: at the

lower level, a Gaussian process (GP) model developed in Chapter III is used for

representing the low-resolution data; and at the upper level, a neighborhood linkage

model is established to link each high-resolution output as a kernel regression of all the

low-resolution information in its neighborhood. Different from the linkage model used

in the computer experiments [40], the proposed linkage model, conditioned on a match

between the two-resolution datasets, extends the one-to-one linkage to a one-to-many

linkage. The reason we make this extension is, despite all the alignment efforts, there

is no guarantee to find the true match with the presence of distortions [36], [54].

We develope a heuristic matching algorithm, which outputs several most prob-

able match candidates. For each match candidate, an optimization minimizes the

sum of the squared Euclidean distances between matched data points to find the cor-

responding best transformation. Conditioned on each match and its corresponding

transformation, the hierarchical predictive model could predict the part’s surface us-

ing the two-resolution metrology data. Furthermore, we conduct a Bayesian model

averaging of the predictive models over the pool of candidate matches found by the

heuristic matching. This Bayesian model averaging procedure assigns weights to

different matches according to how well they support the observed data, and then

produces the final combined predictions of the entire surface. Fig. 23 summarizes the

overall framework of the proposed method. We will discuss the individual components
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in more detail in the following sections.

Gaussian process model for
low-resolution data

Neighborhood linkage model to link
high-resolution to low-resolution data

Bayesian model averaging

Domain
knowledge

Prior
distributions

Posterior estimation of model parameters

Posterior prediction for product surface

pool of candidate matches

Heuristic method to find
good initial matches

Matching and Alignment

Optimzation routine to find the
corresponding best transformations

Fig. 23. Overall framework of the proposed Bayesian hierarchical model

A. Low-resolution Data Model

Chapter III presents a GP model for single-resolution metrology data of a manufac-

tured part. This GP model is adopted for the low-resolution metrology data in this

Bayesian hierarchial model to combine two-resolution metrology data.

The GP model for low-resolution data is as follows:

yl(xi) = ηl(xi) + εl, i = 1, . . . ,ml. (4.1)
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Here a subscript “l” is associated with each term because the model is used here for

the low-resolution data, although the same model can be used for the high-resolution

data as well. In Equation (4.1), yl(xi) is the i-th low-resolution observation, ml is

the number of the low-resolution observations, εl is the random error, dominated by

measurement noises and modeled as i.i.d. N(0, σ2
l ), and ηl(·) is the low-resolution

version of the actual surface. Please note that ηl(·) is not exactly the true surface

because the low-resolution measurements provide a “blurred” view, rather than a

sharp reflection, of the actual surface.

The low-resolution surface ηl(·) corresponds to the sum of f(·,β)Tpi and ξ(·)

in Equation (3.5) of Chapter III. So it is a Gaussian process with the i-th mean

component being f(xi,βl)
Tpi and the covariance function being cov(ηl(xi), ηl(xj)) =

κ2
lR(ν,xi,xj), where κ2

l and R(ν,xi,xj) are the variance and the correlation function,

respectively. The three-step procedure to compute the f(xi,βl) for a general geometric

feature is provided in Chapter III, Section D. The correlation function R(ν,xi,xj) is

modeled as a product of Gaussian correlation functions [47]:

R(xi,xj) =
d∏

k=1

exp{−νk(xki − xkj)2}, (4.2)

where d is the dimension of the input variables, i.e., xi = (x1i, x2i, . . . , xdi), and

ν l = (ν1, ν2, . . . , νd) are the scale parameters controlling how fast the correlation

decays as the between-input distance increases in each dimension. For the metrology

applications, d = 1, 2, or 3. For this GP model, we summarize the model parameters

in θl = (βl, κ
2
l , σ

2
l ,ν l).

Denote the location matrix where low-resolution observations are made by Xl =

(x1,x2, . . . ,xml
)T ; denote the low-resolution surface by ηl = (ηl(x1), ηl(x2), . . . , ηl(xml

))T ;

denote the observed low-resolution data by yl = (yl(x1), yl(x2), . . . , yl(xml
))T . Con-
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ditioned on θl, the joint distribution of ηl and yl is as follows:

p(ηl,yl|θl) = N







g(Xl,βl)

g(Xl,βl)


 ,



κ2
lRl κ2

lRl

κ2
lR

T
l Σl





 , (4.3)

where g(Xl,βl) is anml×1 column vector whose i-th element is g(xi,βl) = f(xi,βl)
Tpi;

Rl is an ml × ml correlation matrix whose (i, j)-th element is defined according to

Equation (4.2); and Σl = κ2
lRl + σ2

l I.

According to the conditional distribution theorem for multivariate normal dis-

tribution (Appendix A), the distribution of ηl conditioned on the observations of yl

would be:

p(ηl|yl,θl) = N
(
g(Xl,βl)− κ2

lRlΣl(yl − g(Xl,βl)), κ
2
lRl − κ4

lRlΣlR
T
l

)
. (4.4)

This equation indicates that ηl can also be considered as a filtered version of the

low-resolution data and is free of the random measurement errors. Later, the filtered

low-resolution data ηl(xi), instead of the unfiltered yl(xi), for i = 1, . . . ,ml, will be

used when establishing a link to the high-resolution data.

B. Match and Align Two-resolution Metrology Data

Suppose, before projecting onto p, we have a set of high-resolution data, Dh = {ahi :

i = 1, . . . ,mh}, and a set of low-resolution data, Dl = {alj : j = 1, . . . ,ml}, where

mh << ml. Both sets of data points are arbitrarily labeled for identification. The

goal is to match a subset of the low-resolution data points to the whole set of high-

resolution data points and then find the corresponding transformation.

Matching two datasets refers to establishing the correspondence between two

datasets. For example, a found match could be ah1 → al5, a
h
2 → al11, a

h
3 → al64, . . . , a

h
20 →

al496, as in Fig. 24 (a). The transformation refers to the rigid body transformation
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(a). Matching




ah
1

ah
2

ah
3

...

ah
20




= H




al
5

al
11

al
64

...

al
496




+ t + ε
transformation
parameters:
H and t

(b). Computing
transformation

Fig. 24. Two steps to align two-resolution data of sine wave

between the low-resolution dataset and the high-resolution dataset, i.e., the rota-

tion matrix H and the translation vector t in Fig. 24 (b). The parameters of the

tranformation (i.e., the mapping function) can be computated using the established

correspondence. In other words, the alignment procedure normally goes through two

steps: first, we find the correspondence between the two datasets, a procedure called

matching; second, we computate the transformation parameters based on the found

match.

1. Heuristic matching

We develop a heuristic matching algorithm utilizing the invariance property of inter-

point distances explained in Section II.D, which was initially introduced for image

registration [42]. Mathematically, it means the following: if (ahi , a
l
j) is a pair of
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matching points, then for each other point ahk in Dh (k 6= i), there should be a

corresponding point, denoted by als, such that the distances (ahi , a
h
k) “almost” equals

to the distance (alj, a
l
s). Here we use “almost” because both measurement datasets are

noisy, so an exact equality is difficult to attain. During implementation, this “almost

equality” is implemented by setting a threshold for difference allowance. Before doing

the heuristic matching, we estimate the nominal surfaces from both datasets and align

them together. In this way, the two datasets are very close to each other ensuring

that the heuristic algorithm works. The heuristic algorithm proceeds as follows.

Repeat the following two steps for j = 1, 2, . . . ,ml,

(Step 1). Let the first data point ah1 in Dh be paired with the j-th data point alj in

Dl.

(Step 2). For k = 2, 3, . . . ,mh, calculate the inter-point distance between ahk and ah1 ,

and then find a point in Dl, e.g., the s-th low-resolution point, such that ‖ (als −

alj) − (ahk − ah1) ‖ is less than some threshold $. If such a low-resolution point is

found, ahk and als will be considered as a pair of matching points. When there are

more than one low-resolution points satisfying the above requirement, select the one

giving the smallest difference between als − alj and ahk − ah1 . Once going through all

the mh high-resolution points, if all of them find their matching points in the low-

resolution dataset, we consider a match identified and call the set of the matching

pairs a consistent match, a term first used in the image registration literature [36]. If

not all the mh high-resolution points find their matching point in the low-resolution

data, then we say no consistent match exists for alj, go back to Step 1, and let ah1 be

paired with the next low-resolution point.

In this algorithm, we basically check each of the ml cases for consistent matches.
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This algorithm is quite general and works with any geometry, even symmetric features

such as a circle. Even though ml is usually a large number, we can still afford to

enumerate all the ml cases for consistent matches. For example, enumerating the

ml = 1, 560 cases in the sine-wave example takes two minutes, and it is affordable as

an off-line operation. The Bayesian model averaging procedure for combining two-

resolution data is more computational expensive. So it is more important to eliminate

all the inconsistent matches before the Bayesian model averaging.

For features that have clear boundary and are asymmetric, we may utilize some

engineering knowledge to further eliminate cases where we will find no consistent

matches. For example, we may avoid matching a corner point to some point which

lies in the middle of the feature under study. If engineering knowledge can help reduce

the number of cases from ml to a small number, we just need to do Step 1 and 2

above for each of the small number cases.

Suppose the heuristic matching procedure produces K consistent matches. Usu-

ally K is much smaller than ml. We record each consistent match between the two

datasets with a matching matrix M = (Mij), where

Mij =





1 if alj is matched to ahi ,

0 otherwise.
(4.5)

Note
∑

i,jMij = mh. Also, only one low-resolution point will be matched to each high-

resolution data point, i.e.,
∑

jMij = 1. In this way, the K consistent matches will be

denoted as {Mk, k = 1, . . . , K}. We will find their corresponding best transformations

and feed them to the Bayesian hierarchical model to combine the two-resolution

data. Conditional on each match and its corresponding transformation, the Bayesian

hierarchical model makes a set of predictions. All sets of predictions will be combined

using Bayesian model averaging over different matches.
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Given the two-resolution data, the number of consistent matches K found by the

heuristic procedure depends on the distance threshold $. A small $ will lead to a

fewer number of consistent matches. As a result, the Bayesian hierarchical model will

run over a fewer number of matches, and the subsequent inferences will also incur

less computation. Having a too small value for $ should also be avoided because

it would leave out some good matches and undermine the performance of the final

combined predictions. For the examples in Chapter V, we set $ to be the average

inter-point distance in the low-resolution dataset. With this $, for the two examples

in Chapter V, the heuristic matching produces K = 15 or 30 consistent matches for

the circular surfaces and K = 2 or 1 consistent matches for the sine-wave surface,

respectively.

2. Optimization to calculate transformation

After matching the two datasets, we can calculate the best transformation by solving

the following optimization, which minimizes the sum of the squared distances between

the corresponding points in the two datasets over possible rigid body transformation:

min
tu,tv ,tw
ρu,ρv ,ρw

∑

i=1:mh
j∈{j:Mij=1}

‖ ahi −
(
H(ρu, ρv, ρw)alj + (tu, tv, tw)T

)
‖2 (4.6)

s.t. H(ρu, ρv, ρw) =



cos(ρu) cos(ρv) cos(ρu) sin(ρv) sin(ρw)−sin(ρu) cos(ρw) cos(ρu) sin(ρv) cos(ρw)+sin(ρu) sin(ρw)

sin(ρu) cos(ρv) sin(ρu) sin(ρv) sin(ρw)+cos(ρu) cos(ρw) sin(ρu) sin(ρv) cos(ρw)−cos(ρu) sin(ρw)

− sin(ρv) cos(ρv) sin(ρw) cos(ρv) cos(ρw)




;

tu, tv, tw ∈ R;

ρu, ρv, ρw ∈ [0, 2π);
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where ‖ · ‖ denotes the Euclidean norm, ρu, ρv, ρw are the rotations around, and

tu, tv, tw are the translations along, the u-, v- and w-axis, respectively.

It is a nonlinear optimization problem. We use the MATLAB function fminunc to

solve it. The solution is the best transformation corresponding to a given match Mk.

C. Neighborhood Linkage Model

A neighborhood linkage model is used to combine the metrology data from different

resolutions for predictions. Recall Reference [40] used a one-to-one linkage to link

each low-accuracy output with a single high-accuracy output. In this metrology

problem, however, measurement errors in both low-resolution and high-resolution

datasets prevent us from finding the perfect match between low-resolution and high-

resolution data points. When there is some small misalignment left after the matching

and alignment procedure, we need a more robust linkage model than the one-to-one

linkage. Therefore, we extend the linkage model to connect each high-resolution data

point to all the low-resolution ηl(·) in its neighborhood, conditioned on a given match,

as follows:

yh(xi) = α1

∑

j=1,...,ml

K(xi,xj) ηl(xj) + α0 + e, (4.7)

where yh(xi) is the univariate high-resolution response defined in the same way as

the low-resolution one, i.e., yh(xi) = (ahi )
Tpj; α = (α1, α0) are the scale and location

coefficients, respectively; K(·, ·) is a kernel function; e is the residual, assumed to be

i.i.d. N(0, σ2
e).

We choose the tri-cube kernel function but generalize it by having different kernel
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widths λ = (λ1, . . . , λd) for different axes. The resulting kernel function is as follows:

K(xi,xj) = Ψ

(
d∑

k=1

(
xki − xkj

λk

)2
)

(4.8)

with

Ψ(t) =





(1− t3/2)3 if t ≤ 1;

0 if t > 1.
(4.9)

This kernel function smoothly defines a neighborhood of a high-resolution data point.

Only the low-resolution data points in the neighborhood are linked with the high-

resolution data point. The size of the neighborhood is controlled by λ and will be

decided by the data.

Utilizing the linkage model, we can predict the high-resolution response yh(x0) at

any given location x0. Given the filtered low-resolution responses ηl at ml locations,

and conditioned on the model parameters θh = (α, σ2
e ,λ) and the match Mk, yh(x0)

has the following distribution

(yh(x0)|Mk,ηl,α, σ
2
e ,λ) ∼ N(Fλ(x0)α, σ

2
e), (4.10)

where Fλ(x0) is a row vector, defined as
(∑

i=1,...,ml
K(x0,xi) ηl(xi), 1

)
for all l =

1, 2, . . . , L. Denote the locations of high-resolution responses by Xh = (x1, . . . ,xmh
)T .

The distribution in (4.10) can be extended to the multivariate case, where yh =

(yh(x1), . . . , yh(xmh
))T as follows:

(yh|Mk,ηl,α, σ
2
e ,λ) ∼ N(Fλα, σ

2
eI), (4.11)

where Fλ abbreviates Fλ(Xh), an mh × 2 matrix whose j-th row is defined as
(∑

i=1,...,ml
K(xj,xi) ηl(xi), 1

)
, xi is the i-th row of Xl, and xj is the j-th row of Xh.
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D. Bayesian Priors for the Predictive Model

This section discusses how we choose the priors for the parameters in the Bayesian

hierarchical model. The parameters consist of two parts: (θl,θh), where θl =

(βl, σ
2
l , κ

2
l ,ν l) are the parameters involved in the low-resolution data model, and

θh = (α, σ2
e ,λ) are the parameters involved in the neighborhood linkage model.

They can also be grouped into three categories: the mean-component parameters

(βl,α), the variance parameters (σ2
l , κ

2
l , σ

2
e), as well as the parameters (ν l, λ) in the

correlation function and the kernel function, respectively.

Regarding the GP model for the low-resolution data, we follow the common prac-

tice (e.g., in [40]) and use a normal distribution for the prior of the mean parameter

βl, inverse-gamma distributions for the priors of the variance parameters (σ2
l , κ

2
l ),

and gamma distributions for the priors of the correlation parameter ν l.

The linkage model is essentially a linear regression model once the kernel width

λ is given. We choose the noninformative priors for α and σ2
e to reflect the lim-

ited knowledge regarding how the two-resolution metrology data are related. An

accompanying benefit of using the noninformative priors is that the resulting poste-

rior distributions of α and σ2
e are in closed forms. It helps speed up the computation

in the subsequent Bayesian inference. The prior distribution for the kernel width

λ = (λ1, . . . , λd) is chosen to be uniform over a range. Let λi follow a discrete distri-

bution taking values j × c for j = 1, . . . , λ0, where c is the size of the increment, and

λ0 is a positive, typically large, integer. Assuming λ has a discrete distribution helps

simplify the computation in the subsequent Bayesian inference as well.

Furthermore, the joint prior distribution is assumed to be the product of the
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prior distributions of individual parameters as follows:

p(θ) = p(βl)p(σl)p(κl)p(α)p(σh)p(ν l)p(λ) (4.12)

where βl ∼ N(µl,Ql);

σ2
l ∼ Inv-Gamma(a1, b1);

κ2
l ∼ Inv-Gamma(a2, b2);

νi ∼ Gamma(a3, b3) for i = 1, . . . , d;

p(α) ∝ 1;

p(σ2
e) ∝ σ−2

e ;

p(λi = j × c) = 1/λ0 for j = 1, 2, . . . , λ0, and i = 1, . . . , d.

The covariance matrix Ql is a diagonal matrix, whose i-th diagonal elements q2
i de-

notes the variance for the i-th element of βl.

Here we include some discussion on how to choose the parameters in the afore-

mentioned prior distributions. The βl includes the parameters accounting for a part’s

actual location (on a measuring platform) and dimension. In Fig. 9, the dashed-line

geometry f(·,βl) deviates slightly in location from the nominal geometry. The devia-

tion is small due to the use of the soft-fixturing process. There is also some difference

in dimensions between these two geometries, but it is small because a manufactur-

ing process normally produces the required dimension with reasonable accuracy. By

treating the location of the nominal geometry to be at the origin of the coordinate sys-

tem, we can assign the mean component of the prior distribution of βl as µl = (0,ϕ∗)

where ϕ∗ is the nominal dimensions of the part. The variance q2
i can be determined

from a crude least-squares estimation of the part’s location as well as from the typi-

cal manufacturing process capability [[26], Page 85] which accounts for variability in

actual part’s dimensions.
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For the prior distribution of σ2
l and κ2

l , we choose α1 = α2 = 1 and β1 = β2 =

1 × 10−4 so that σl and κl mostly takes values smaller than .2 millimeter (i.e., 200

microns). This is consistent with engineers’ knowledge on the error magnitudes from

the manufacturing and the measuring processes. Also, this prior distribution gives

higher probabilities to the smaller values as they correspond to a better fit of the

low-resolution data to the model. The prior chosen for each correlation parameter νi

is Gamma(.01, .01), a noninformative prior [22].

E. Bayesian Prediction and Model Averaging

The ultimate goal of combining the two-resolution data is to predict the response

yh(x0) at any input location x0 based on the observed data yh and yl.

It can be shown (please see Section IV.E.1 for derivation) that given the prior

distribution as specified in (4.12), the following predictive distribution holds true:

p(yh(x0)|Mk,yl,yh) =

∫

θl

p(yh(x0)|Mk,ηl,yh)p(ηl|θl,yl)p(θl|yl)dθl, (4.13)

where p(ηl|θl,yl) is given in (4.4), p(θl|yl) ∝ p(θl) · p(yl|θl), and

p(yh(x0)|Mk,ηl,yh) =
∑

λ1=c,2c,...,λ0c
...

λd=c,2c,...,λ0c

p(yh(x0)|Mk,yh,ηl,λ)p(λ|yh,ηl), (4.14)

in which

(yh(x0)|Mk,yh,ηl,λ) ∼ tmh−2(Fλ(x0)α̂, s
2(1 + Fλ(x0)(FT

λFλ)−1Fλ(x0)T )), (4.15)
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p(λ|yh,ηl) ∝ p(λ)|FT
λFλ|−

1
2

[
(yh − Fλα̂)T (yh − Fλα̂)

2

]−mh
2

+1

, (4.16)

Fλ and Fλ(x0) are defined in (4.10) and (4.11),

α̂ = (FT
λFλ)−1FT

λyh,

s2 =
1

mh − 2
(yh − Fλα̂)T (yh − Fλα̂).

We can use the folowing algorithm to approximate p(yh(x0)|yl,yh):

(i). Generate (θ
(1)
l ,θ

(2)
l , . . . ,θ

(n)
l ) from the posterior distribution p(θl|yl) using MCMC

algorithms [22]. In particular, this dissertation uses Gibbs sampler and slice sampling.

An introduction to MCMC as well as some implementation details for this disserta-

tion are provided in Appendix B. Reference [1] also adopted slice sampling scheme

for Gaussian process models.

(ii). Approximate p(yh(x0)|Mk,yl,yh) by

p(yh(x0)|Mk,yl,yh) =
1

n

n∑

i=1

p(yh(x0)|Mk,ηl,yh)p(ηl|θ
(i)
l ,yl) (4.17)

where p(yh(x0)|Mk,ηl,yh) and p(ηl|θ
(i)
l ,yl) are given in (4.14) and (4.4), respectively.

The matching and alignment method in Section IV.B produces K matches and

their corresponding transformations. Here we denote both a match and its corre-

sponding transformation with Mk, k = 1, 2, ..., K and use a Bayesian model averag-

ing [41] to combine the final predictions over different matches. A brief introduction

to Bayesian model averaging is provided in Appendix C. Using Bayesian model aver-

aging takes into account the uncertainty in the match between two-resolution data,

and assign different weights, i.e., posterior probabilities, to the matches according

to how much they are consistent with observed data. Then the Bayesian model av-

eraging averages the predictive model in (4.13) over the pool of candidate matches

{Mk}k=1,...,K , weighted by the posterior probabilities p(Mk|yh,yl), k = 1, ..., K. We
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obtain the posterior distribution of yh(x0) given the two-resolution data yh and yl as:

p(yh(x0)|yl,yh) =
K∑

k=1

p(yh(x0)|Mk,yl,yh)p(Mk|yl,yh), (4.18)

where

p(Mk|yh,yl) =
p(yh|Mk,yl)p(Mk)∑K
k=1 p(yh|Mk,yl)p(Mk)

, (4.19)

and

p(yh|Mk,yl) =

∫

θl

p(yh|Mk,ηl)p(ηl|yl,θl)dθl, (4.20)

p(yh|Mk,ηl) =
∑

λ1=1,2,...,λ0

...
λd=1,2,...,λ0

(2π)−
mh
2

+1|FT
λFλ|−

1
2 Γ(

mh

2
− 1)

[(yh − Fλα̂)T (yh − Fλα̂)

2

]
.

(4.21)

The derivation of (4.21) is included in Subsection IV.E.2.Fig. 25 summarizes how the

Bayesian model averaging procedure works.

Bayesian model averaging

K consistent matches and their
corresponding best transforma-
tions

K good initial matches

optimization to find best transformations to align
low-resolution data with high-resolution data

Heuristic method to find good initial matches

Linkage model

Fig. 25. Procedure for matching the two-resolution metrology data and the subsequent

Bayesian model averaging for prediction
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1. Proof of (4.13)

Recall the model parameters are θ = (θl,θh). We express p(yh(x0)|yl,yh) as

p(yh(x0)|Mk,yl,yh) (4.22)

=

∫

θl

∫

θh

p(yh(x0)|Mk,yl,yh,θl,θh)p(θl,θh|Mk,yl,yh)dθhdθl

=

∫

θl

∫

θh

p(yh(x0)|Mk,yh,ηl,θh)p(θh|Mk,ηl(Xl),yh)dθhp(ηl|yl,θl)p(θl|yl)dθl

=

∫

θl

p(yh(x0)|Mk,yh,ηl)p(ηl|Mk,yl,θl)p(θl|yl)dθl,

where

p(yh(x0)|Mk,ηl,yh) (4.23)

≡
∫

θh

p(yh(x0)|Mk,yh,ηl,θh) p(θh|Mk,ηl,yh)dθh

=

∫

α,σ2
e ,λ

p(yh(x0)|Mk,ηl,α, σ
2
e ,λ) p(α, σ2

e ,λ|Mk,ηl,yh) dα dσ2
e dλ

=

∫

λ

∫

σ2
e ,α

p(yh(x0)|Mk,ηl,α, σ
2
e ,λ) p(α, σ2

e |Mk,λ,yh,ηl) dα dσ2
e p(λ|Mk,ηl,yh)dλ

In order to derive p(yh(x0)|Mk,ηl,yh), perform the integration in (4.23) in the fol-

lowing two steps:

(i) Integrate out α and σ2
e ;

(ii) Integrate out λ.

Step (i) integrate out α and σ2
e . We denote the inner integration in (4.23) by
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p(yh(x0)|Mk,yh,ηl,λ), that is,

p(yh(x0)|Mk,yh,ηl,λ) (4.24)

≡
∫

σ2
e ,α

p(yh(x0)|Mk,ηl,α, σ
2
e ,λ) p(α, σ2

e |Mk,λ,yh,ηl) dα dσ2
e

∝
∫

σ2
e ,α

p(yh(x0)|Mk,ηl,α, σ
2
e ,λ)p(yh|Mk,ηl,α, σ

2
e ,λ) p(α, σ2

e) dα dσ2
e .

Given the kernel width λ, the linkage model can be considered as a linear regression

model yh = Fλα+ εh. Recall εh ∼ N(0, σ2
eI). Therefore,

(yh|Mk,ηl,α, σ
2
e ,λ) ∼ N(Fλα, σ

2
eI),

(yh(x0)|Mk,ηl,α, σ
2
e ,λ) ∼ N(Fλ(x0)α, σ

2
e).

These are the same results as in (4.10) and (4.11). Reference [22] (Page 359) stated

if the prior distribution of α and σ2
e is p(α, σ2

e) ∝ σ−2
h , the posterior predictive

distribution of yh(x0), conditioned on the data and kernel width λ, would be:

(yh(x0)|Mk,yh,ηl(X0),λ) ∼ tmh−2(Fλ(x0)α̂, s
2(1 + Fλ(x0)(FT

λFλ)−1Fλ(x0)T )),

where α̂ = (FT
λFλ)−1FT

λyh and s2 = 1
mh−2

(yh−Fλα̂)T (yh−Fλα̂). This is how (4.15)

is obtained. If we integrate out α and σ2
e , (4.23) becomes:

p(yh(x0)|Mk,ηl,yh) =

∫

λ

p(yh(x0)|Mk,yh,ηl(X0),λ) p(λ|Mk,ηl,yh)dλ. (4.25)

Step (ii), integrate out λ. Recall λ has a discrete distribution. Thus, the integration

in (4.25) can be written as the following summation:

p(yh(x0)|Mk,ηl,yh) =
∑

λ1=1,2,...,λ0

...
λd=1,2,...,λ0

p(yh(x0)|Mk,yh,ηl,λ) p(λ|Mk,yh,ηl),
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where

p(λ|Mk,yh,ηl) ∝ p(λ)p(yh|Mk,ηl,λ). (4.26)

This is how we obtain (4.14). The marginal distribution of the high-resolution data

given the inputs ηl and the kernel width λ is as follows:

p(yh|Mk,ηl,λ) (4.27)

=

∫

σ2
e ,α

p(yh,α, σ
2
e |Mk,ηl,λ) dα dσ2

e

=

∫

σ2
e ,α

p(yh|Mk,ηl,α, σ
2
e ,λ) p(α, σ2

e) dα dσ2
e

=

∫

σ2
e

∫

α

(2π)−
mh
2 (σ2

e)
−mh

2 exp

{
− 1

2σ2
e

(yh − Fλα)T (yh − Fλα)

}
dα σ−2

h dσ2
e

=

∫

σ2
e

∫

α

exp

{
− 1

2σ2
e

[(yh − Fλα̂)T (yh − Fλα̂) + (α− α̂)TFT
λFλ(α− α̂)]

}
dα

· (2π)−
mh
2 (σ2

e)
−mh

2
−1dσ2

e

=

∫

σ2
e

∫

α

exp

{
− 1

2σ2
e

(α− α̂)TFT
λFλ(α− α̂)

}
dα

· (2π)−
mh
2 exp

{
− 1

2σ2
e

(yh − Fλα̂)T (yh − Fλα̂)

}
(σ2

e)
−mh

2
−1dσ2

e

=

∫

σ2
e

2π|FT
λFλ|−

1
2σ2

e(2π)−
mh
2 exp

{
− 1

2σ2
e

(yh − Fλα̂)T (yh − Fλα̂)

}
(σ2

e)
−mh

2
−1dσ2

e

=(2π)−
mh
2

+1|FT
λFλ|−

1
2

∫

σ2
e

(σ2
e)
−(

mh
2
−1+1)exp

{
−(yh − Fλα̂)T (yh − Fλα̂)

2σ2
e

}
dσ2

e

=(2π)−
mh
2

+1|FT
λFλ|−

1
2 Γ
(mh

2
− 1
)[(yh − Fλα̂)T (yh − Fλα̂)

2

]−mh
2

+1

.

Note that in the second line of the above derivation, we utilize (4.11) which specifies

the distribution of p(yh|ηl,α, σ2
e ,λ). Given the above, (4.26) can now be written as

p(λ|yh,ηl) ∝ p(λ)|FT
λFλ|−

1
2

[
(yh − Fλα̂)T (yh − Fλα̂)

2

]−mh
2

+1

.

This finishes the proof for (4.13).
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2. Proof of (4.21)

To prove (4.21), we just integrate (4.27) over λ. As λ takes discrete values, we end

up with a summation over all the possible values for λ:

p(yh|Mk,ηl) =
∑

λ1=1,2,...,λ0

...
λd=1,2,...,λ0

(2π)−
mh
2

+1|FT
λFλ|−

1
2 Γ(

mh

2
− 1)

[(yh − Fλα̂)T (yh − Fλα̂)

2

]
.

This finishes the proof for (4.21).
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CHAPTER V

NUMERICAL RESULTS

This chapter is devoted to validating the proposed Bayesian hierarchial model for

combining two-resolution metrology data. It demonstrates the improvements achieved

by the proposed method over alternative methods. The alternative methods include

methods using either high-resolution data or low-resolution data alone and a method

that combines data from different resolutions but does not address the misalignment

issue.

The validation and comparison are performed for two different types of features:

roundness features and a sine-wave feature. A roundness feature is a challenging

feature even though it is two-dimensional. First, its v-axis coordinate can not be

expressed as an explicit function of its u-axis. Second, a perfect circle would be in-

variant under rotation, and therefore matching and aligning a close-to-perfect circle

is very difficult. A sine-wave feature is chosen because it is three dimensional and

also a free-form feature. So this chapter presents two examples: the first example

simulates two datasets of different resolutions measuring three circular features, re-

spectively; and the second example uses measurements of a milled sine-wave surface

(as illustrated in Fig. 2) from a CMM and an OCMM. Throughout this chapter, the

values of physical quantities are expressed in millimeters unless indicated otherwise.
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A. Circular Features

1. Simulate circular features

Circular features manufactured by turning processes are simulated using the formula

proposed in [13] as follows:

u = u0 + (r + A1 sin(4τ) + A2 cos(3τ) + A3 sin(7τ) + A4 cos(10τ) + ξ) cos τ, (5.1)

v = v0 + (r + A1 sin(4τ) + A2 cos(3τ) + A3 sin(7τ) + A4 cos(10τ) + ξ) sin τ, (5.2)

where A1 sin(4τ) +A2 cos(3τ) +A3 sin(7τ) +A4 cos(10τ) represents the low-frequency

manufacturing errors showing some systematic pattern, ξ represents the high-frequency

random manufacturing errors, and the other notations follow those in Fig. 26.

(u, v)

r

(u0, v0)

τ

Actual surface

Dashed-line geometry (shifted nominal
geometry with radius change)

Fig. 26. Illustration of circle-related variables

In the simulation, (u0, v0) is set to be (.05, .02), and the values are chosen to be

within the typical range of the soft-fixturing errors. A1, A2, A3 and A4 are chosen
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to be .03, −.02, −.01 and −.008, respectively, to reflect typical manufacturing errors

of a turning process [[26], Page 85]. A standard deviation of .002 is chosen for ξ,

according to the roughness level of a turning process [[26], Page 86]. In other words,

ξ is simulated by N(0, 4× 10−6).

Three circular features are simulated using (5.1) and (5.2) with the radius r = 41

and 100 and 150, respectively. Each of these simulated circles is treated as a true

surface to be measured.

The high-resolution data are supposedly scattered over the surface, but each of

them has little bias from the true surface. So mh data points are first sampled from

the simulated surface (via a Latin Hypercube sampling [47]), and then independent

random noises εh with a variance of 1 × 10−6 (i.e., with a standard deviation of 1

micron) are added to them.

The low-resolution data are usually the averages of the surface coordinates in a

spatial neighborhood within which a low-resolution device cannot distinguish distinct

points. To simulate a device of resolution roughly 30 microns, a 30 × 30 microns mov-

ing window is first used to smooth the simulated surface. Then a dense sample of ml

data points is obtained, equally spaced over the whole surface. Finally, independent

random noises with a variance of 9 × 10−6 (i.e., with a standard deviation of 3 mi-

crons) are added. Since low-resolution data may be misaligned from high-resolution

data, a rigid body transformation is also performed to the low-resolution data. The

simulation procedure is summarized in Fig. 27, and the data amounts of high- and

low-resolution data are listed in Table VI.

2. Comparison results

The proposed Bayesian hierarchical model is used to predict the surface coordinates

at locations where only low-resolution data are available. The resulting predictions
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Generate a set of 5,000 points describing the true surface using (5.1) and (5.2)

?

Have a Latin Hypercube sample of size mh

?

Add random errors εh ∼ N(0, 1× 10−6)

?

Obtain mh high-resolution data

?

Smooth the surface with a moving win-
dow of size .03 and sample ml data

?

Add random errors εl ∼ N(0, 9× 10−6)

?

Perform a rigid body transformation

Obtain ml low-resolution data
?

Fig. 27. Procedure to generate two-resolution data

are compared with three alternative approaches: the low-resolution data themselves,

the predictions using the high-resolution data alone (based on the single-resolution

model presented in Chapter III), and the predictions using the multi-resolution GP

model [33], which does not have a matching and aligning procedure. For the last

one, we use the tgp package [24] in R, which is close to the multi-resolution model

presented in [33]. Since this is a simulation study, the true circular surface is known.

The predicted surface from each method is compared with the true circular surface.

Table VI presents the mean squared errors (MSE) of predictions, which are calculated

by averaging the squared errors between the predicted and the true surfaces over

different locations.

As one observes from Table VI, the proposed Bayesian hierarchical model (in the

fifth column) outperforms all the alternative methods. For the three simulated cir-

cular features, the integrated prediction improves (in terms of the MSE values) over

the observed low-resolution data by 74.31%, 70.86% and 52.86%, respectively. An-

other observation is that the predictions using the high-resolution data alone perform
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Table VI. Evaluation and comparison of prediction accuracy for circular surfaces

MSE (mm2)

prediction using data of

radius data low- high- two-resolution with two-resolution with

amount resolution resolution proposed method multi-resolution GP

(mh/ml) (having alignment) (not having alignment)

41 20/512 3.83× 10−5 6.47× 10−4 9.84× 10−6 5.35× 10−4

100 20/1021 3.74× 10−5 1.11× 10−3 1.09× 10−5 1.98× 10−3

150 20/1013 3.84× 10−5 1.76× 10−3 1.81× 10−5 2.19× 10−3

worse than the low-resolution data. We believe this is because the high-resolution

data are too scarce to make good predictions of the entire surface. The last column

has the predictions from the tgp package which does not align data of different reso-

lutions. When the two-resolution data are not aligned, the low-resolution data either

contribute little to the combined prediction or mislead the integrated predictions.

So the tgp package performs much worse than the proposed method. This result

emphasizes the importance of addressing the misalignment problem when combining

multi-resolution data for predictions.

B. Sine-wave Surface

1. Experiment setup

We have a manufactured part of size 101 × 101 × 51, and its top surface is milled

to be of a sine-wave shape. Fig. 28 shows the picture of the sine-wave part. The

nominal geometry is w = ψ1 sin(2π(ψ2 + u)/ψ3), where ψ = (ψ1, ψ2, ψ3) are the di-

mension parameters, and ψ1, ψ2, and ψ3 are called amplitude, phase, and wavelength,
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respectively.

Two metrology devices are used to measure this sine-wave surface: the CMM

is a Sheffield Discovery II D-8 with a TB 20 touch probe (Fig. 29), and the OCMM

is a LDI Surveyor DS-2020 with a RPS 150 laser unit (Fig. 30). The CMM has

a resolution of roughly 5 microns, while the OCMM has a resolution of about 50

microns. Even though this CMM does not have a resolution as high as many used in

precision engineering, it serves as the high-resolution device in this particular pair.

Moreover, the CMM and the OCMM have their own measuring platforms so that the

part is repositioned to be measured on the second machine.

When using the OCMM, it results in a low-resolution dataset of ml = 1, 560

(=40 × 39) points, which are evenly spaced over the surface with approximately a

2.54 mm inter-point distance in both u and v axes. The CMM measures the same

surface and obtains a high-resolution dataset of also 1,560 points. The 1,560 high-

resolution data are reserved as the representation of the “true” surface and will be

used to as a benchmark to assess the prediction quality.

Here we consider seven different cases where the high-resolution observations are

of different sizes ranging from mh = 10 to mh = 80. These observations are chosen

via Latin hypercube sampling [47] from the 1,560 high-resolution data. For each case,

the proposed Bayesian hierarchical model is used to make predictions combining the

mh high-resolution observations and the ml = 1, 560 low-resolution observations.

The position and orientation of the part on a metrology measuring platform are

unknown. It may be different from its nominal position by the translation t and the

rotation H. For this reason, the coordinates of a point on the dashed-line geometry

f(·,βl) is H(ui, vi, wi)
T + t, where (ui, vi, wi) is a point on the nominal geometry

satisfying the constraint wi = ψ1 sin(2π(ψ2 + ui)/ψ3).



85

Fig. 28. Sine-wave part

Fig. 29. CMM: Sheffield Discovery II D-8 with a TB 20 touch probe

Fig. 30. OCMM: LDI Surveyor DS-2020 with a RPS 150 laser unit
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2. Predictive distributions

As in the simulated example, the proposed Bayesian hierarchical model is used to

predict the part’s surface at locations where only the low-resolution data are available.

The predictions using the proposed method are compared with the observed low-

resolution data, the predictions using the mh high-resolution data alone, and the

predictions using the tgp package which does not align the two-resolution data.

Fig. 31 shows the prediction results for one location on the sine-wave part and

illustrates the benefit of combining two-resolution information. In Fig. 31, the “true”

value (the black solid line) is actually a reserved high-resolution measurement. The

grey solid curve represents the combined predictive distribution using the proposed

multi-resolution method, and the grey line in the middle is the corresponding pre-

dicted median. The dashed-dotted line represents the observed low-resolution data.

For this particular point, the combined prediction almost coincides with the “true”

value and is much less biased than the low-resolution data. The dashed line and

the dashed curve denote the predicted median and the predictive distribution using

the mh high-resolution observations, respectively. Using the two-resolution data also

results in a much narrower distribution (which indicates a smaller uncertainty) than

the distribution from using the high-resolution data alone. In summary, the combined

prediction produces the best prediction, less biased (in terms of the distance between

the predictive median and the true value) and with reduced uncertainty.

If the two-resolution datasets are combined to make predictions without properly

aligning the datasets, it may not be able to produce the desired benefit. Still for the

same location as in Fig. 31, Fig. 32 compares the predictive distribution from the

proposed method with the predictive distribution from the tgp package, which does

not align the two-resolution data. The proposed method predicts significantly better
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Fig. 31. Integrated prediction reduces bias and uncertainty
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than the tgp package does.

4.2 4.3 4.4 4.5 4.6 4.7 4.8 4.9
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true value
predictive distribution using the proposed method
predictive distribution using tgp

Fig. 32. Integrated predictions without addressing misalignment could lead to worse

results

3. Comparison results

We use all of the aforementioned four methods to make predictions over the en-

tire product surface and compare their predictions with the reserved high-resolution

data, which serve as the “true” surface. Table VII summarizes the MSE values of

the predictions for seven different cases. The cases differ by the amount of the ob-

served high-resolution data. For example, “10/1560” refers to the case where 10
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high-resolution data points and all the low-resolution data points, 1560 of them, are

available.

Table VII. Evaluation and comparison of the predictions for the sine-wave surface

MSE (mm2)

prediction using data of

data
amount
(mh/ml)

low-
resolution

high-
resolution

two-resolution with
tgp package (not
having alignment)

two-resolution with
proposed method
(having alignment)

10/1560 1.31× 10−3 2.08× 10−2 9.73× 10−2 1.03× 10−3

20/1560 1.18× 10−3 1.04× 10−2 8.79× 10−2 7.85× 10−4

30/1560 1.21× 10−3 3.94× 10−3 7.11× 10−2 7.52× 10−4

40/1560 1.05× 10−3 2.44× 10−3 6.10× 10−2 7.26× 10−4

50/1560 1.05× 10−3 2.11× 10−3 5.48× 10−2 6.74× 10−4

60/1560 1.05× 10−3 1.46× 10−3 4.36× 10−2 6.78× 10−4

80/1560 1.05× 10−3 1.45× 10−3 2.69× 10−2 7.04× 10−4

Supposedly, the difference between the “true” surface and the low-resolution data

should be the same across the different cases. However, we observe that the MSE

values listed in Table VII, Column 2 are different across the cases. This is because this

sine-wave example is a real case study, and we do not know the true transformation

between the low-resolution data and the high-resolution data. We have to estimate the

transformation using the observed high-resolution and low-resolution data. As such,

the estimated transformations differ when using different sets of high-resolution data.

It leads to different MSE values for the low-resolution data, as shown in Table VII.

To be fair, we consider the smallest MSE values that we find for the low-resolution

data, 1.05 × 10−3, as the true MSE value between the low-resolution data and the

“true” surface.
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Among the three alternative methods (Table VII, Column 2− 4), Column 2 has

the smallest MSE values. It implies that the observed low-resolution data follow the

“true” surface most closely.

Comparing the MSE values of the proposed method (Table VII, Column 5)

with the smallest MSE value of the observed low-resolution data, 1.05 × 10−3, we

calculate the differences, divide them by 1.05× 10−3, and summarize the percentages

in Table VIII, Column 2. Note 1.05×10−3 is regarded as the “true” MSE value of the

observed low-resolution data. Other columns in Table VIII are calculated likewise.

Table VIII. Improvement in percentage of the proposed methods over other methods

Improvement over alternative methods

data
amount
(mh/ml)

observed low-
resolution data
(1.05× 10−3)

prediction using high-
resolution data
with GP model

prediction using two-
resolution data with
tgp package
(not having alignment)

10/1560 1.90% 95.04% 98.94%

20/1560 25.24% 99.92% 99.11%

30/1560 28.38% 80.91% 98.94%

40/1560 30.86% 70.25% 98.81%

50/1560 35.80% 68.06% 98.77%

60/1560 35.42% 53.56% 98.44%

80/1560 32.95% 51.45% 97.38%

From Table VIII, Column 2, we notice that the proposed method produces MSE

values at least 25% less than the observed low-resolution dataset does, when the

high-resolution data are over 20. As the high-resolution data amount increases, the

proposed method produces more reduced MSE values. However, the reduction does

not grow in proportion to the increase in the high-resolution data amount. When
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the high-resolution data are of size 50 or 60 (Table VIII, Column 2, Box 5− 6), the

reduction reaches the maximum, about 35%.

In the case of “10/1560”, the calculated reduction is only around 2% (Table VIII,

Column 2, Box 1). Ten data points are not many enough to estimate the six param-

eters for rigid body transformation well, and therefore the low-resolution dataset is

poorly aligned with the high-resolution dataset. Since we assume that the “true” sur-

face is perfectly aligned with the high-resolution dataset, the low-resolution dataset is

also poorly aligned with the “true” surface. As a result, the observed low-resolution

dataset has a relatively large MSE value, 1.31×10−3, after transformation (Table VII,

Column 2, Box 1). This MSE value is significantly larger than 1.05× 10−3, the MSE

value of the low-resolution dataset when we have more than 40 high-resolution data

to estimate the transformation( Table VII, Column 2, Box 4 − 7). If we calculate

how much the proposed method reduces the MSE values of 1.31×10−3, the reduction

percentage would be 21.37%, for the case of “10/1560”. This number is comparable

with other percentages in Table VIII, Column 2.

The MSE values of using high-resolution data alone (Table VII, Column 3) are

significantly larger than the MSE values of using two-resolution data with the pro-

posed method (Table VII, Column 4). We take the differences between Column 3

and 4, divide them by Column 3 and record them in the third column of Table VIII.

The calculated results show that the proposed method produces MSE values more

than 51% less than the method of using high-resolution data alone does. As the

amount of high-resolution data increases, the reduction percentage decreases because

the method of using high-resolution data alone performs better when there are more

high-resolution data available. This outcome makes sense because if we have plenty

of high-resolution data, we will not need low-resolution data at all.

If we combine two-resolution data using the tgp package which does not address
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the misalignment, the resulting MSE values (Table VII, Column 4) are normally two

magnitudes bigger than the MSE values of the proposed method (Table VII, Column

5), which addresses the misalignment. In other words, the proposed method produces

MSE values 97% − 99% smaller than those of the tgp package, as shown in the last

column of Table VIII. Even when the high-resolution data amount reaches a relatively

big value of 80, the above conclusion still holds true. This highlights the importance

of addressing the misalignment problem. Otherwise, low-resolution data will either

contribute little to the combined predictions or mislead them.

In summary, these results confirm the conclusions in the simulated examples.

The proposed method performs significantly better than the methods using single-

resolution data only as well as the method that combines two-resolution data but

does not address the misalignment issue.

4. Estimation of kernel width

Recall that a discrete uniform distribution is assigned as the prior distribution for

the kernel width λ = (λ1, λ2), i.e., p(λi = j × c) = 1/λ0 for j = 1, 2, . . . , λ0 and

i = 1, 2. In this example, we choose λ0 = 30, and c = 2.54 which is the average

inter-point distance in the low-resolution data. Fig. 33 shows the marginal posterior

distributions of the kernel widths in the u- and the v-axis. The kernel width along

the u-axis λ1 is 2.54, suggesting that only the nearest low-resolution data point in

the u-direction has a strong connection with each high-resolution data point. For the

v-axis, the kernel width λ2 of 2.54 has the highest probability, but the probabilities

at the first eight kernel width have a noticeable nonzero mass. This makes good sense

for the sine-wave surface in Fig. 2. It is easier to align the sine-wave surface along

the u-direction than along the v-direction because of a much larger surface change in

the u-axis than in the v-axis.
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The Bayesian hierarchical method assigns posterior weights to different kernel

widths according to how much they are consistent with the data. As shown in Fig.

33, the kernel widths that are greater than 20.32 (or eight units of inter-point distance)

barely have any posterior weights and will not contribute to the posterior inference

in the sine-wave example. This is not a surprise because the remaining misalignment

is supposed to be small after all the alignment efforts. This implies that as long as

we choose a big upper bound λ0, the posterior inference of the prediction will not be

sensitive to the prior choice for λ.

We also conduct a sensitivity analysis to see how different increments c affect

the combined predictions. The results for the case using 20 high-resolution data and

1560 low-resolution data are summarized in Table IX. It shows that the combined

predictions are insensitive to the value of c when c takes a value less than or equal to

the average distance, 2.54 mm, between low-resolution data points.

Table IX. Sensitivity analysis of the choices of c

c = i× 2.54 mm

i = 1 i = 0.75 i = 0.5 i = 0.25 i = 0.1

MSE 7.853× 10−4 7.782× 10−4 7.772× 10−4 7.818× 10−4 7.822× 10−4
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Fig. 33. Marginal posterior distributions of the kernel widthes in u-axis and v-axis
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CHAPTER VI

SUMMARY AND FUTURE WORK

This chapter summarizes the contributions and findings of the dissertation. It also

discusses the open issues that are worthy of further exploration.

A. Summary

This dissertation presents a Bayesian hierarchical model for combining two-resolution

metrology data for the purpose of predicting a product surface. The proposed method

also addresses the misalignment between two-resolution datasets.

The following summarizes the major contributions of the dissertation:

1. Gaussian process model for single-resolution metrology data

This dissertation develops a Gaussian process model for single-resolution metrology

data. The model can work by itself for either high-resolution data or low-resolution

data alone. It provides a better fit for metrology data by taking into account sys-

tematic patterns in a product surface caused by manufacturing errors. The model

could also produce a predictive distribution of a product surface and therefore offer a

probabilistic assessment of form error. The dissertation validates the single-resolution

model using real metrology data and demonstrates its improvements over traditional

methods, i.e., the MZ method and the OLS method, in terms of better estimating

form errors. This single-resolution model serves as the low-resolution data model in

the context of combining two-resolution data.



96

2. Bayesian hierarchical model for combining two-resolution metrology data

The dissertation also develops a Bayesian hierarchical model for combining two-

resolution metrology data for the purpose of predicting a product surface. The devel-

oped method also takes the necessary steps to address the misalignment between the

two-resolution datasets. A heuristic matching algorithm together with an optimiza-

tion procedure finding the best transformation is used to align the data of different

resolutions, and a neighborhood linkage model is established to handle the remain-

ing mismatch after the alignment. The heuristic matching algorithm finds a set of

consistent matches, and the Bayesian model averaging combines the final predictions

over the consistent matches.

This dissertation also shows that the proposed method performs significantly

better in terms of predicting accuracy and uncertainty than the methods that use

only a single-resolution dataset and than the integrated method that does not align

the two-resolution data.

B. Future Work

Based on the study in this dissertation, we find the following direction worthy of

further exploration:

1. Effectiveness of combining two-resolution data

Although the proposed method can effectively combine data from two different reso-

lutions, additional research questions remain: What factors affect the performance of

the integrated analysis? What is the best strategy to achieve the highest performance?

For example, the sine-wave example shows that when the amount of high-resolution

data is doubled (i.e., the cost is almost doubled), the reduction in the MSE of the pre-
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diction is far from being doubled. We believe that two factors are critical: the ratio of

data between high- and low-resolution datasets as well as the resolution difference be-

tween them. A comprehensive research on this issue will provide insights for devising

a strategy for when and how to collect more precious high-resolution data. Therefore,

studying how to produce the most cost-effective benefit in combining multi-resolution

data for prediction definitely merits further exploration.

2. Exploration of different modeling approaches and extension to multi-resolution

levels

The current method uses a calibrating idea, as shown in Fig 34 (a). Looking at this

two-resolution data problem from a slightly different aspect, it seems reasonable that

metrology data from different resolutions are different reflections or representations

of the same underlying true surface, illustrated in Fig. 34 (b). Following this idea, it

would make sense to connect data of different resolutions through the underlying true

surface that they measure. To be specific, the alternative approach could model the

underlying physical surface with a spline, and establish the observations at different

resolutions as the same physical surface being smoothed using kernel functions of

different kernel widths. Then we can pools all the data together to estimate the

unknown parameters involved in the spline model. One benefit of this alternative

approach is that it would be relatively easier to extend the alternative approach to a

multi-resolution model for combining data from more than two resolutions.

3. Other engineering applications

Many potential applications exist in remote sensing. For example, forestry scientists

have to combine a scanning LIDAR (Light Detection And Ranging) with a profiling

LIDAR to survey forestry better. A scanning LIDAR provides high-resolution data
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Low-resolution data model

Calibrate low-resolution data 

with high-resolution data

(a) current approach

Low-resolution data

A model for true surface

Observed through

High-resolution data

Infer true surface
Predict high-resolution data not 

yet observed

(b) alternative approach

Fig. 34. An alternative idea for combining two-resolution data

covering a relatively small area of one square mile, while a profiling LIDAR gives

low-resolution data covering a much bigger geographical area that could be as large

as a county in Texas. New applications such as this will have their own needs, calling

for new methods or novel usages of existing methods to address them.
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APPENDIX A

CONDITIONAL DISTRIBUTION THEOREM FOR MULTIVARIATE NORMAL

DISTRIBUTION

Assume an n-dimensional random vector

y =




y1

y2




has a normal distribution N(µ,Σ), where

µ =



µ1

µ2


 ,Σ =




Σ11 Σ12

Σ21 Σ22


 ,

y1 and y2 are two subvectors of respective dimensions p and q with p+ q = n. Note

that Σ = ΣT , and Σ21 = ΣT
12.

Then the distribution of y1 conditional on y2 = a is multivariate normal, (y1|y2 =

a) ∼ N(µ̄,Σ) where the mean

µ̄ = µ1 + Σ12Σ
−1
22 (a− µ2) ,

and the covariance matrix

Σ = Σ11 −Σ12Σ
−1
22 Σ21.
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APPENDIX B

MARKOV CHAIN MONTE CARLO

Markov chain Monte Carlo (MCMC) methods are a class of algorithms for sam-

pling from probability distributions. They construct a Markov chain that has the

desired distribution, for example, a Bayesian posterior distribution, as its stationary

distribution. The samples are drawn sequentially, with the distribution of the sam-

pled draws depending only on the last value drawn. Hence, the draws form a Markov

chain. (As defined in probability theory, a Markov chain is a sequence of random

variables θ1,θ2, . . ., for which, for any t, the distribution of θt depends only on the

most recent value, θt−1.) The states of the chain after a large number of steps are

then used as a sample from the desired distribution.

In Bayesian statistics, MCMC is used when it is not possible or computationally

inefficient to sample θ directly from the posterior distribution p(θ|y). For example,

the posterior predictive distribution and the posterior distribution in (4.13) involve

a high-dimensional integral and can not be derived analytically. Instead, we sample

iteratively in a way such that at each step we expect to draw from a distribution

closer and closer to p(θ|y). For a wide class of Bayesian problems including posterior

distributions from many hierarchical models, MCMC appears to be the easier way

to get reliable results. A good reference on using MCMC for Bayesian posterior

computations is [22]. MCMC also has many applications outside Bayesian statistics.

For example, Reference [44] developed a MCMC-based algorithm for optimization.

The key to MCMC is to create a Markov chain whose stationary distribution is

the desired p(θ|y) and to run the simulation long enough such that the distribution

of the current draws is close enough to the stationary distribution. For any specific
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p(θ|y), various MCMC algorithms with the desired property can be constructed. Here

we introduce some basic methods: Gibbs sampler, Metropolis-hastings algorithm and

slice sampling.

1. Gibbs sampler

Gibbs sampler is also called alternative conditional sampling. It is defined in terms of

subvectors of θ. Suppose the parameter vector θ has been divided into d subvectors,

θ = (θ1,θ2, . . . ,θd). Each iteration of Gibbs sampler cycles through the subvectors

of θ, drawing each subvector conditional on the values of all the others: That is, for

j = 1, 2, . . . , d, sample from

p(θj|θt−1
−j ,y),

where θt−1
−j represents all the components of θ, except for θj, at their current values.

Many problems involve standard statistical models, for example, the linkage

model in (4.7) is essentially a linear regression model. For these problems, it is

possible to analytically derive the conditional distributions of some parameters given

other parameters and sample from them directly (as shown in Section IV.E.1). Un-

der these cases, we will typically prefer Gibbs sampler since it provides easy and fast

computations.

More often, however, we can not analytically derive the conditional distributions

required by Gibbs sampler. Under those situations, we turn to more general MCMC

methods, like Metropolis-Hastings algorithms or slice sampling. Gibbs sampler is

actually a special case of Metropolis-Hastings algorithms.



110

2. Metropolis-Hastings algorithm

The Metropolis-Hastings algorithm adopts a random work and uses an acceptance

rule to converge to the specified target distribution. The procedures proceed as fol-

lows:

(i). Draw a starting point θ0, for which p(θ0|y) > 0, from a starting distribution

p0(θ). The starting distribution might be based on an approximation of the target

distribution, or we may simply choose starting values dispersed around crude approx-

imates.

(ii). For t=1,2,...

(a). Sample a proposal θ∗ from a jumping distribution (also called a proposal

distribution) at time t, Jt(θ
∗|θt−1).

(b). Calculate the ratio of the densities,

r =
p(θ∗|y)/Jt(θ

∗|θt−1)

p(θt−1|y)/Jt(θ
t−1|θ∗)

. (B.1)

(c). Set

θt =




θ∗ with probability min(r, 1),

θt−1 otherwise.
(B.2)

Given the current value θt−1, the transition distribution Tt(θ
t|θt−1) of the Markov

chain is thus a mixture of a point mass at θt = θt−1 and a weighted version of the

jumping distribution Jt(θ
t|θt−1) that adjusts for the acceptance rate. A commonly

used jumping distribution is a normal distribution, for example, N(θt−1, σ2I). The

value of σ2 is tuned for a reasonable acceptance rate.
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3. Slice sampling

Slice sampling is based on the principle that one can sample from a distribution by

sampling uniformly from the region under the plot of its density function. Suppose we

would like to sample from a distribution for a variable θ, whose density is proportional

to some function f(θ). We can do this by sampling uniformly from the region that

lies under the plot of f(θ). This idea can be formalized by introducing an auxiliary

real variable U , and defining a join distribution over θ and U that is uniform over

the region below the curve defined by f(θ), D = {(θ, U) : 0 < U < f(θ)}. In other

words, the joint density for (θ, U) is

p(θ, U) =





1/Z if 0 < U < f(θ),

0 otherwise,

where Z =
∫
f(θ)dθ. If we let f(θ) be the product of the likelihood and the prior

density function, i.e., f(θ) = L(θ,y)π(θ), the marginal density for L(θ,y) is then

the posterior distribution of θ:

∫ f(θ)

0

(1/Z)dU = f(θ)/Z =
L(θ,y)π(θ)∫
L(θ,y)π(θ)dθ

= p(θ|y).

Generating independent samples drawn uniformly from D may not be easy. So

we might instead construct a Markov chain that will converge to this uniform distri-

bution.

Gibbs sampler is one possibility: We sample alternately from (a) the conditional

distribution for U given the current y, which is uniform over the interval (0, f(θ)),

and from (b) the conditional distribution for θ given the current U , which is uniform

over the region D = {(θ, U) : 0 < U < f(θ)}, and it is called the ”slice” defined by

θ.

Here we use a single-variable slice sampling method to illustrate the procedures
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to update θ in each iteration,

(i). Draw a real value, U , uniformly from (0, f(θt−1)), thereby defining a horizontal

“slice”: S = {θ : U < f(θt−1)}. Note that θt−1 is always in S.

(ii). Draw θ∗ from π(θ).

(iii). If θ∗ is not in the slice S and is bigger than θt−1, then draw from π(θ)I(θ < θ∗).

If θ∗ is not in the slice S and is smaller than θt−1, then draw from π(θ)I(θ > θ∗).

Repeat until a point in the slice is found.

The multi-variate case works either by applying the single-variable slice sampling pro-

cedures described above for each parameter in turn or by shrinking hyper-rectangles.

One benefit of slice sampling is that it requires little or no tuning. Reference [39]

provided more details on slice sampling.

This dissertation combines Gibbs sampler and slice sampling for approximating

the posterior distribution and the posterior predictive distribution in (4.13). Sec-

tion IV.E.1 derives the conditional distributions needed to implement Gibbs sampler

for the parameters involved in the neighborhood linkage model. For the parameters

involved in the low-resolution model, this dissertation adopts the single-variable slice

sampling procedure and cycles through the parameters, sampling each parameter

conditioned on the values of all the others.
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APPENDIX C

BAYESIAN MODEL AVERAGING

Bayesian model averaging provides a way accounting for model uncertainty. If ∆ is

the quantity of interest, such as a future observable, then its posterior distribution

given the data D is

p(∆|Mk) =
K∑

k=1

p(∆|Mk, D)p(Mk|D), (C.1)

where M1, . . . ,MK are the models considered. This is an average of the posterior

distributions under each of the models considered, weighted by their posterior model

probabilities.

The posterior probability for Model Mk is:

p(Mk|D) =
p(D|Mk)p(Mk)∑K
l=1 p(D|Ml)p(Ml)

, (C.2)

where

p(D|Mk) =

∫
p(D|θk,Mk)p(θk|Mk)dθk,

θk is the vector of parameters of Model Mk (e.g., for a regression model Mk, θk =

(β, σ2)), p(θk|Mk) is the prior probability of θk under Model Mk, p(D|θk,Mk) is the

likelihood, and p(Mk) is the prior probability that Mk is the true model.

By averaging over different competing models, Bayesian model averaging incor-

porates model uncertainty into the conclusions about parameters and predictions.

Bayesian model averaging has been applied successfully to many statistical models

including linear regressions, generalized linear models, and discrete graphical models.

In all these cases, it improves predictive performances.
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