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ABSTRACT 

 

The Dynamics and Predictability of Tropical Cyclones. (December 2008)  

Jason Allen Sippel, B.S., Texas A&M University;  

M.S., Texas A&M University  

Chair of Advisory Committee: Dr. Fuqing Zhang  

 

Through methodology unique for tropical cyclones in peer-reviewed literature, this 

study explores how the dynamics of moist convection affects the predictability of 

tropical cyclogenesis. Mesoscale models are used to perform short-range ensemble 

forecasts of a non-developing disturbance in 2004 and Hurricane Humberto in 2007; 

both of these cases were highly unpredictable.  

Taking advantage of discrepancies between ensemble members in short-range 

ensemble forecasts, statistical correlation is used to pinpoint sources of error in forecasts 

of tropical cyclone formation and intensification. Despite significant differences in 

methodology, storm environment and development, it is found in both situations that 

high convective instability (CAPE) and mid-level moisture are two of the most 

important factors for genesis. In the gulf low, differences in CAPE are related to 

variance in quasi-geostrophic lift, and in Humberto the differences are related to the 

degree of interaction between the cyclone and a nearby front.  Regardless of the source 

of CAPE variance, higher CAPE and mid-level moisture combine to yield more active 

initial convection and more numerous and strong vortical hot towers (VHTs), which 
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incrementally contribute to a stronger vortex.  In both cases, strength differences 

between ensemble members are further amplified by differences in convection that are 

related to oceanic heat fluxes.  Eventually the WISHE mechanism results in even larger 

ensemble spread, and in the case of Humberto, uncertainty related to the time of landfall 

drives spread even higher.  

It is also shown that initial condition differences much smaller than current analysis 

error can ultimately control whether or not a tropical cyclone forms.  Furthermore, even 

smaller differences govern how the initial vortex is built.  Differences in maximum 

winds and/or vorticity vary nonlinearly with initial condition differences and depend on 

the timing and intensity of small mesoscale features such as VHTs and cold pools.  

Finally, the strong sensitivity to initial condition differences in both cases 

exemplifies the inherent uncertainties in hurricane intensity prediction.  This study 

illustrates the need for implementing advanced data analysis schemes and ensemble 

prediction systems to provide more accurate and event-dependent probabilistic forecasts.  
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CHAPTER I 

INTRODUCTION 

 

1.1. Motivation and objectives 

Accurate predictions and forecast uncertainty estimations of tropical cyclones have 

enormous economic value, but today’s operational predictions continue to have 

significant error and lack case-dependent uncertainty specification.  With total hurricane-

related losses topping $100 billion for the first time in 2005 (Pielke et al. 2005), demand 

is increasing for better accuracy, longer lead times and more precise warnings to 

minimize losses in hurricane preparation, evacuation and destruction.  Though 

significant progress has been made in short-range track forecasts of tropical cyclones 

(Franklin 2005), forecasting cyclogenesis remains a challenge, and intensity forecast 

skill significantly lags that of track forecasts (e.g., DeMaria and Gross 2003; Emanuel 

2003; DeMaria et al. 2005 and others).  Thus, predictions of tropical cyclone formation, 

rapid intensification and decay remain particularly problematic (Houze et al 2007).  In 

addition, more work is needed in order to assess and address sources of forecast 

uncertainty with tropical cyclones, which can ultimately lead to more precise watches 

and warnings. 

 

 

____________ 
This dissertation follows the style of Journal of Atmospheric Sciences. 
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This doctoral study seeks to investigate tropical cyclone formation and 

intensification with ensemble forecasts and sensitivity studies.  The main objectives are 

to: 

1. Document error growth in ensemble forecasts of both non-developing and  

developing tropical disturbances that were considered to be unpredictable by 

operational forecasters; 

2. Use a previously developed statistical dynamic analysis technique to pinpoint 

precise mechanisms by which ensemble intensity spread (error) originates in 

forecasts of tropical cyclones;  

3. Contribute to the general understanding of how tropical cyclones form and 

evolve; and 

4. Determine possible effects of very minute changes to initial conditions on 

both the large and small scale evolution of a developing tropical cyclone;  

In addition, some attention is paid to how forecast model error, in the form of 

cumulus parameterization, can affect forecasts of genesis and intensification.  This 

work is the first extensive examination of the source of forecast error in tropical 

cyclone forecasts, and the techniques used here have never before been used on 

tropical cyclones. 

 

1.2. Background 

The primary reason for lagging intensity forecast skill appears to be deep moist 

convection.  Warm-season precipitation, whose associated dynamics play a critical role 
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in tropical cyclone genesis and intensification (e.g., Krishnamurti et al. 2005; Hendricks 

et al. 2004; Montgomery et al. 2006), generally remains the least accurate forecast 

element at all scales (Olson et al. 1995).  Islam et al. (1993) and Snyder and Zhang 

(2003) demonstrated that errors grow rapidly at convective scales in weakly forced 

warm-season events, and such error growth in the presence of moist convection can 

significantly impact mesoscale predictability (Zhang et al. 2002, 2003, 2006a, 2007).  

Focusing on an extreme warm-season precipitation event, Zhang et al. (2006a) showed 

that undetectable random noise contaminates deterministic warm-season mesoscale 

forecasts within as few as 36 h.  They concluded that this error, in combination with the 

error associated with inadequate initial analyses and forecast models, necessitates the use 

of probabilistic (ensemble) forecasts for mesoscale systems.   

 

1.2.1. The usefulness of ensembles 

Ensemble forecasts have indeed shown great potential for forecasting tropical 

cyclones.  For example, some studies (e.g., Krishnamurti et al. 2000; Goerss 2000; 

Aberson 2001; Kumar et al. 2003; Williford et al. 2003; Weber 2003, 2005a, 2005b) 

have demonstrated that scalar position and intensity forecasts computed from multi-

model ensembles are better than those from individual ensemble members.  Additional 

work (e.g., Krishnamurti et al. 1997; Zhang and Krishnamurti 1999; Mackey and 

Krishnamurti 2001) has shown that the ensemble mean from an individual model can 

significantly improve upon deterministic forecasts of tropical cyclones.   



 4

Ensemble forecasts have also proven useful for investigating dynamics in a wide 

variety of atmospheric systems, and they might be useful for investigating and 

diagnosing the source of forecast uncertainty in tropical cyclogenesis.  Zhang (2005) 

used ensembles to investigate a winter coastal cyclone and found that initially random 

perturbations evolved into coherent structures with spatial correlation (and covariance) 

between forecast variables.  The correlation (covariance) was highly structured and 

found to be greatest in the region of strong cyclogenesis and along the upper level front.  

In another example, Hakim and Torn (2008) expanded upon the methods of Zhang (2005) 

to investigate the formation dynamics of a spring continental cyclone.  They used the 

strong covariance between variables to infer relationships between the surface cyclone 

and preceding upper level disturbances and to predict changes in the cyclone strength 

given certain changes to the initial conditions.  Finally, Hawblitzel et al. (2007) 

(hereafter H07) examined mesoscale convective vortex (MCV) formation dynamics and 

predictability using an ensemble.  They found that small initial perturbations of model 

forecast variables resulted in large ensemble spread such that some members produced a 

very strong MCV while others produced no MCV at all.  The ensemble members that 

produced a stronger MCV had more prolific convection as early as 24 h before the MCV 

developed.  They concluded that the intimate dependence of every aspect of MCV 

development on moist convection largely explained the significant forecast uncertainty 

associated with this event. 
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1.2.2. Tropical cyclone formation: Observations and theory 

The environments in which tropical cyclones form and intensify are well 

documented.  Riehl (1954) recognized that tropical cyclones form from pre-existing 

disturbances over a relatively warm ocean, and Gray (1968, 1975) noted that developing 

disturbances are associated with large values of absolute vorticity, weak vertical wind 

shear, and mean upward motion.  McBride and Zehr (1981) also found that tropical 

cyclones proceed from cloud clusters in an environment of high low-level vorticity, and 

Emanuel (1989) demonstrated the importance of deep moisture.  In a more recent study, 

DeMaria et al. (2001) found that tropical cyclones are able to intensify when the 200-850 

hPa zonal wind shear is less than 12.5 m s .  Other studies, such as Dunion and Velden 

(2004), have shown how regional phenomena (e.g., Saharan air layers in the Atlantic 

basin) can affect a number of the above factors and strongly modulate tropical cyclone 

formation and intensification.  In addition to using measures of vertical wind shear, low-

level vorticity, and deep moisture, National Oceanic and Atmospheric Administration 

(NOAA) Satellite Services Division (SSD) also uses cloud top temperature, a proxy for 

sustained deep convection, and vertical instability (NOAA SSD, 2008) to operationally 

predict tropical cyclone formation.   

-1

Emanuel (1986) and Rotunno and Emauel (1987) pioneered a theory in which 

tropical cyclones intensify from an initial vortex due to positive feedback between 

oceanic heat fluxes and surface wind speeds.  In this theory, coined wind-induced 

surface heat exchange (WISHE; e.g., Emanuel et al. 1994), winds associated with a 

surface vortex enhance fluxes of sensible and latent heat from the ocean surface.  This 
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can lead to more vigorous convection, stronger diabatic heating, and a greater surface 

pressure deficit due to hydrostatic pressure falls in the vicinity of the convection.  With a 

stronger surface pressure gradient, wind speeds and heat fluxes are higher, thus 

completing the loop.   

While WISHE adequately describes cyclone maintenance and intensification, several 

requirements must be met for the process to proceed efficiently.  In particular, an initial 

warm-core vortex of sufficient amplitude must be present.  In addition, the vortex must 

be encompassed by ample deep-layer moisture (Rotunno and Emanuel 1987; Emanuel 

1989).  If sufficient moisture is not present through the mid-troposphere, then convection 

will have the propensity to produce cold convective downdrafts and stabilize the lower 

troposphere.  

A number of observational studies have proposed mid-level vortex merger as a 

means to strengthen surface vorticity and initiate WISHE.  Harr et al. (1996), Simpson et 

al. (1997), and Ritchie and Holland (1997) observed that MCVs that form in stratiform 

precipitation areas of tropical mesoscale convective systems sometimes merge to 

produce stronger, deeper, and wider circulations than those associated with any 

individual vortex.  This process can enhance low-level vorticity and strengthen a tropical 

disturbance.  

Hendricks et al. (2004) and Montgomery et al. (2006) presented a different view in 

which surface-based convection is key to generating the pre-WISHE tropical cyclone 

vortex.  In this view, system-scale deep convection drives a toroidal circulation, which 

itself organizes the vortex angular momentum.  Individual mesoscale, low-level vortices 
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generated by intense sub-system-scale convection (coined vortical hot towers, or VHTs), 

can also enhance the genesis process during the pre-WISHE stage.  Reasor et al. (2005) 

and Sippel et al. (2006) provided observational evidence of VHTs during tropical 

cyclogenesis, and the results of Tory et al. (2006a,b) support the idea that organized, 

surface based convection may be sufficient to generate a tropical cyclone vortex. 

Finally, an alternative view sharing common ideas with each of the preceding 

theories focuses on the thermodynamics of the incipient vortex.  In this view, first 

proposed by Bister and Emanuel (1997) and supported by Raymond et al. (1998), 

convection increases mid-level relative humidity and vorticity before the establishment 

of the tropical cyclone vortex.  Furthermore, the modeling study of Nolan (2007) 

suggests that such changes are necessary before any VHT process can establish a 

sustained, small-sale, low-level vortex.  Increasing mid-level moisture allows the ratio of 

downdrafts to updrafts to lower significantly before genesis, and increasing mid-level 

vorticity allows deep convective towers to more efficiently heat the atmosphere and 

create a vortex.  Finally, Nolan et al. (2007) similarly found in a modeling study that 

large-scale thermodynamics determine the rate of tropical cyclone formation. 

 

1.3. General methodology 

This section is devoted to describing techniques used to address objectives 1-3, listed 

in section 1.1.  These objectives are addressed in Chapters II and III, which follow the 

underlying H07 method of investigating probabilistic dynamics in order to explain 



 8

predictability.  Specialized methods are also employed at times in the text to address 

smaller points, and they will be discussed as they are used.    

 

1.3.1. Uncertainty and/or predictability 

The root-mean of difference total energy (RM-DTE) is used to investigate forecast 

uncertainty.   The form of DTE employed here is a commonly used measure of the 

predictability in ensembles (e.g., Mitchell et al. 2002; Zhang et al. 2006b; Meng and 

Zhang 2007; H07), and it is calculated as 

 DTE = 0.5(u'u' + v 'v' + kT 'T '). (1) 

In this equation the prime denotes the difference between a member and the ensemble 

mean, u and v are the zonal and meridional velocity components, T is the temperature, 

and k  Cp /Tr (Cp = 1004.9  and  J kg-1 K-1 Tr  = 270 K).  RM-DTE is calculated via 

 RM DTE i, j 
1

Ne

1

kmax

DTE i, j,k,N

k1

kmax


N1

Ne

 , (2) 

where i and j are horizontal grid point indices, kmax  is maximum vertical extent of the 

model domain, and N is the ensemble member index.  Although this form of DTE does 

not account for differences in mixing ratio or vertical velocity, the spatial distribution of 

ensemble spread in these variables is qualitatively similar to that in u, v, and T.  

Therefore, alternate forms of DTE that account for differences in these variables are 

qualitatively similar to that shown here. 
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1.3.2. Correlation analysis 

As in H07, the correlation between different forecast variables is investigated to 

understand the predictability and study relationships between variables within the 

ensembles.  The linear correlation coefficient r is calculated among a set of N data points 

using 

 r(xijk,yijk ) 

1

N 1
(xijk,n  xijk )

n1

N

 (yijk,n  yijk )

1

N 1
(xijk,n  xijk )2

n1

N











1/ 2

1

N 1
(yijk,n  yijk )2

n1

N











1/ 2 , (3) 

where x and y denote two model-state variables and i, j, and k represent three-

dimensional grid points.  In order to simplify writing, we will use standard notation for 

correlation.  First, (A:B) is used to denote correlation between variables A and B.  

Because many of the variables investigated in this study are correlated with multiple 

other variables, statistical control is sometimes used to elucidate the correlation between 

two variables while effectively holding a third variable constant.  For example, if 

variables A, B, and C are all correlated, then (A:B) is the correlation between A and B, 

and (A:B | C) is the correlation between A and B when controlling for C.  The controlled 

correlation is calculated by removing the variation in B that results from its relationship 

with C.  In other words, linear regression between B and C is first used to predict values 

of B given C, and the residuals between the actual and predicted values of B are then 

calculated. Finally, A is correlated to the residuals to compute the controlled correlation 

(A:B | C). 
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Chapters II and III commonly use correlation of variables averaged over spatial areas 

in order to gain insight into dynamics.  For example, in many cases correlation is 

between area-average sea-level pressure (SLP) at a time when storms in the ensembles 

are mature and variables at earlier times.  Since surface pressure falls are related to net 

latent heat release (and thus net precipitation) in each conceptual model for tropical 

cyclone development, much of the correlation analysis here also focuses on the 

correlation between precipitation totals and various fields (e.g., SLP) that are affected by 

or affect precipitation and/or latent heating.  The area averaging of variables is 

somewhat different in each chapter and will be discussed in further detail later. 

Because the developing cyclones take different tracks, much of the correlation 

analysis is completed in a Lagrangian framework wherein the subjectively determined 

meso-circulation center within every ensemble member is centered upon the same 

point.  At some times in various ensemble members, a closed circulation center does not 

exist.  In that circumstance, the center of the problematic member(s) is (are) defined by 

the low-level vorticity maximum that is also consistent with the track of the cyclone at 

previous and later times.  Note that the analysis herein is not particularly sensitive to the 

exact definition of the center, so subjective errors have little or no impact on the results. 

Finally, the reader should be aware of semantics and convention that affect 

interpretation.  For example, because tropical cyclone intensity is generally negatively 

correlated with SLP, the correlation analyses here use the negative of SLP instead of 

SLP so that the correlation will be in a positive sense to the intensity of the storm.   
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CHAPTER II 

PROBABILISTIC DYNAMIC ANALYSIS OF A NON-DEVELOPING 

GULF LOW* 

 

2.1. Introduction 

This chapter uses ensemble forecasts to study the predictability and dynamics of a 

non-developing low-pressure system near the Florida Keys in July 2004.  The lack of 

predictability associated with the 2004 system (assessed from very strong divergence of 

numerical simulations of its evolution) provides much of the motivation for this research. 

The low was associated with a disturbance that appeared in surface observations as a 

shear axis beginning on 27 July as it approached the Bahamas (not shown).  The shear 

axis, which was the surface reflection of an mid-tropospheric potential vorticity (PV) 

anomaly (Fig. 2.1g), continued westward and crossed the Florida peninsula into the Gulf 

of Mexico on 28 July.  The National Center for Environmental Prediction (NCEP) global 

final (FNL) analysis from 00 UTC 29 July clearly shows the surface (Fig. 2.1a) and 500-

hPa (Fig. 2.1g) troughs moving over the west coast of Florida.   

The synoptic background was somewhat favorable for tropical cyclogenesis from 29-

30 July, and the National Hurricane Center (NHC) mentioned the potential for 

development in their tropical weather outlooks.  The disturbance was encompassed by 

ample moisture at 700 hPa (Fig. 2.1d-e), and a similar moisture distribution was present 

                                                 
* Reprinted with permission from “A probabilistic analysis of the dynamics and predictability of tropical 
cyclogenesis” by J. A. Sippel and F. Zhang, 2008.  J. Atmos. Sci., in press. 
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Figure 2.1.  FNL analyses from 29-31 July, 2004.  The first row shows SLP (contoured every 1 

hPa), surface winds (full barb represents 5 m ), and surface temperature (filled every 2 C).  The 

second row shows 700-hPa heights (contoured every 10 m), cloud water mixing ratio (filled every 

1 g ), and winds.  The third row shows 500-hPa heights (contoured every 10 m), PV (filled 

every 0.25 PVU), and winds.  The fourth row shows 200-hPa heights (contoured every 20 m), PV, 

and 200-850-hPa wind shear.  The bold 'x' in the two rightmost columns represents the location of 

the surface circulation center. 

-1s 

-1kg 
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from the surface through 500 hPa (not shown) over the southern and southeastern Gulf.  

Rawinsondes from the Florida peninsula and Key West (not shown) taken on 29-30 July 

reveal that the environment was also unstable and favorable for deep convection.  

Convective available potential energy (CAPE) was generally between 1500 and 2000 

, and weak quasi-geostrophic (QG) ascent (~0.5 cm J kg-1 s-1 ) 1  associated with the 

disturbance helped reduce convective inhibition to less than 10  over the southern 

Florida peninsula and Florida Keys.  FNL analyses during the same period show that 

CAPE over the Gulf of Mexico was generally between 1000 and 2000 J kg  (not 

shown).  In response to the presence of the disturbance in a favorable thermodynamic 

environment, widespread convection was evident in infrared satellite imagery (not 

shown) as the system moved from east of Florida into the Gulf of Mexico.  Finally, one 

neutral to slightly negative factor affecting possible genesis was that 200-850-hPa wind 

shear values near circulation center were between 12.5 and 15.0 m  (Fig. 2.1k-m), 

which is just above the favorable limit for wind shear according to DeMaria et al. (2001). 

J kg-1

-1

s-1

Although the 2004 disturbance appeared to be in a marginally favorable environment, 

it never became a tropical depression.  Amidst prolific deep convection, the system 

intensified somewhat on 29 July when 700-hPa heights fell slightly (compare Fig. 2.1d-e) 

and a closed low-level circulation developed (compare Fig. 2.1a-b).  Despite the closed 

circulation and continuing convection, the system was never sufficiently organized to 

attain depression classification, and by 00 UTC 1 August it degenerated into an open 

                                                 
1 QG omega is calculated via 3-D inversion of the Q-vector form of the QG omega equation using the 
domain-average Coriolis parameter and vertical stability profile.  Q-vector forcing, topographic boundary 
condition forcing, and Ekman forcing are all considered in the inversion.  For more details, see the source 
code of the RIP4 post-processing program (see http://www.mmm.ucar.edu/wrf/users/docs/ripug.htm). 
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wave (not shown).  The failure to develop after 30 July might be related to a possible 

decrease in mid-level moisture over the center (Fig. 2.1f) and the nearby slightly 

unfavorable shear values (Fig. 2.1k-m).   

 

2.2. Methodology 

This section describes the forecast model, ensemble initialization, and other methods 

that are only used in the current chapter. 

 

2.2.1. Forecast model 

All experiments in this chapter utilize version 3 of the Pennsylvania State University 

– National Center for Atmospheric Research MM5 mesoscale model (Dudhia 1993) to 

capture the evolution of the gulf low.  With the exception of the addition of a third 

nested domain, the model setup and physics in this study closely follows that of H07.  

The control experiment (CTRL) uses an outer domain with 30-km horizontal grid 

spacing and two two-way nested domains with 10-km and 3.3-km grid spacing.  The 

outer domain has 190  grid points, the middle nest uses 241120 181



 grid points, and 

the fine nest uses  grid points.  The size and location of the nests (shown in Fig. 

2.2a) are such that the 3.3-km nest adequately encompasses the genesis and subsequent 

tracks of the MM5-generated storms.  All domains have 27 terrain-following vertical 

layers, and the initial and boundary conditions are supplied by the 1 1 FNL analysis.  

The Mellor-Yamada planetary boundary layer (PBL) scheme (Mellor and Yamada 1982) 

and Reisner microphysics scheme (Reisner et al. 1998) are used, and the model is 

316  361
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initialized at 00 UTC 30 July 2004 and integrated for 36 h.  While choosing a different 

start time does not seem to appreciably affect ensemble spread discussed in section 2.3, 

the results of sections 2.4 and 2.5 might change with model initiation time due to the 

possibility of flow-dependent dynamics.  Investigating this possibility is beyond the 

scope of the current study.  Finally, to be consistent with other experiments, all post-

analysis of CTRL is performed on its coarse domain. 

Sea surface temperatures are prescribed according to the FNL skin temperature.  It is 

well known that skin temperatures can overestimate the effective mean temperature of 

 

 

 

Figure 2.2.  The model domain and ensemble forecast tracks of the Gulf low. Panel (a) shows the 

model domain for all experiments and nests for the high resolution experiment such that the panel 

exactly encompasses the coarse grid and the fine grids are shown in gray.  Panels (b)-(e) exactly 

encompass the 10-km grid area and respectively show the tracks of circulation centers in STRG, 

WEAK, 30KM, and CTRL.  The gray box in panel (e) represents the 3-km domain.  Panel (f) shows 

36-h positions in 30KM (demarked with ‘o’) and CTRL (demarked with ‘x’) and exactly 

encompasses the 3.3-km domain. 
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the ocean mixed layer, which might explain why many ensemble members forecast more 

strengthening than observed.  Also, tropical cyclones have been observed to decrease sea 

surface temperatures by 1° to 6°C (Black 1983; Bender et al. 1993) in their wakes.  

While the wake effect should generally be negligible for very weak storms, it is possible 

that it would change results for a few of the ensemble members with stronger cyclones 

discussed in section 2.4. 

Another shortcoming of the ensemble initiation method used here is the absence of 

initial convection in the analysis.  This method is typically called a “cold start”, and 

employing such methodology typically results in a spin up period in which the model 

quickly forms convection as a reaction to initial convective instability or other factors 

that favor convection (S. Braun 2008, personal communication).  As will be seen, this 

very likely has some impact upon the results herein. 

Sensitivity experiment 30KM utilizes only the outer 30-km domain in order to 

investigate whether qualitatively similar results to CTRL can be obtained with cumulus 

parameterization.  Integration again starts at 00 UTC 30 July 2004, and the model 

physics are the same as in CTRL with the exception that the Grell cumulus scheme 

(Grell et al. 1991; Grell 1993) is used to simulate the storm (since there are no nested 

domains).  As with the other physics options, the Grell scheme was chosen to be 

consistent with H07.  This scheme has been successfully used in simulations of tropical 

cyclones in the past (e.g., Park and Zou 2004; Braun et al. 2006; Bruan 2006; Wu et al. 

2006). 
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Figure 2.3.  The initial RMS spread in comparison with observation error and analysis 

differences.  Initial RMS spread of zonal wind (a), temperature (b), and relative humidity (c) for 

CTRL over domain 1 is shown in thin dash-dot lines.  Shown over the same domain is the RMS 

difference between the ECMWF operational analysis and the NCEP/NCAR reanalysis (thick 

dashed lines) and the RMS difference between members 6 and 20 of CTRL (thin dashed lines).  

 

2.2.2. Ensemble initialization 

This chapter uses ensembles of 20 members, which is a sufficient number according 

to the results of Zhang (2005).  The ensemble initial conditions of CTRL/30KM were 

created by perturbing the FNL analysis with random, balanced noise derived from the 

NCEP background error statistics implanted in the MM5 three-dimensional variational 

data assimilation system (Barker et al. 2004).  Figure 2.3 shows the vertical distribution 
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of the initial ensemble spread in CTRL/30KM, which is 0.7-1.2  for zonal wind, 

0.3-0.6 K for temperature and 2-4% for relative humidity.   

-1m s

The initial spread of CTRL/30KM in Fig. 2.3 appears conservative when compared 

to other measures of error.  For example, the spread is smaller than both NCEP-assumed 

sounding observational error and the root-mean square (RMS) difference between the 

NCEP-NCAR 2.5 2.5 reanalysis and the ECMWF 2.5 2.5 operational analysis 

over the MM5 domain at the initial time.  The RMS difference between the FNL 

analysis and both the ECMWF analysis and the NCEP-NCAR reanalysis (not shown) is 

also significantly larger than the spread of CTRL/30KM.  Since the RMS difference 

between various analyses can be used as a rough estimate of typical analysis error at 

leading operational centers, the spread is also smaller than typical analysis error.  In 

addition, model error is not considered, and boundary conditions are not perturbed here.  

These additional sources of error imply that this study provides only an upper limit on 

predictability. 

In addition to 30KM, sensitivity experiments WEAK and STRG were created to 

determine the effect of changing the initial conditions to produce weaker and stronger 

cyclones.  These experiments use the same 30-km domain and model physics as 30KM.  

In WEAK and STRG, ensembles of initial conditions were generated by respectively 

perturbing (in the same manner as CTRL/30KM were created) the initial conditions of 

members 20 and 6 from ensemble CTRL/30KM. Members 6 and 20 are on opposite ends 

of CTRL/30KM in terms of cyclone strength, and their relative strengths can be judged 

by the forecasts of surface pressure, wind, and reflectivity shown in Fig. 2.4.  The 
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Figure 2.4.  Surface forecasts from select members of CTRL and 30KM.  Simulated radar reflectivity 

(shaded every 10 dBZ), sea-level pressure (contoured every 10 hPa) and surface winds (full barb 

represents 5 m ) are shown at 36 h.  Arrows point to intense convective towers mentioned in text 

that significantly alter the local environment.  The minimum SLP for each member is shown in the 

bottom-left corner of each panel. 

-1s 
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cyclone in member 6 (Fig. 2.4a-b) is generally one of the strongest in the ensemble, 

while the storm in member 20 (Fig. 2.4g-h) is generally the weakest.  

 

2.2.3. Correlation analysis 

Verbal descriptions of linear correlation will follow those of H07 with the exception 

that correlation above 0.85 is described as very strong.  Correlation between 0.7 and 0.85 

is described as strong, correlation between 0.5 and 0.7 as moderate, and correlation 

between 0.3 and 0.5 as weak.  Values below 0.3 are described as uncorrelated.  In the 

framework of statistical significance with a sample size of 20, a correlation of 0.7 is 

statistically different from 0 with over 99% confidence, while 0.5 and 0.3 are 

respectively different from 0 with roughly 95% and 80% confidence. 

Because this particular chapter compares statistics of different ensembles, it is useful 

to understand which differences in correlation are statistically significant and which are 

not.  Because correlation confidence interval (CI) lengths vary with correlation, and the 

intervals themselves are not symmetric for smaller sample sizes, Table 2.1 has been 

included to give CIs for relevant correlation values with a sample size of 20.  Generally 

speaking, differences between strong and weak correlation are associated with fairly 

high confidence, as are differences between moderate and very strong correlation.  

However, differences between moderate and strong correlation have lower confidence, 

and differences between weak and moderate correlation are insignificant.  With this the 

case, care must be taken not to draw conclusions based on small differences, especially 

for weaker correlation.  
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The correlation analysis in this chapter makes frequent use of correlation between 

area-average SLP at 36 h (hereafter in this chapter, SLPf) and variables averaged over 

spatial areas in order to gain insight into dynamics.  Other metrics of storm intensity (i.e., 

surface vorticity and wind speed) are also occasionally used in correlation analysis at 

other times.  In any case, SLP and other intensity metrics are averaged over an 1111 

grid-point, 300  300 km2 area surrounding the center.  Unless otherwise specified, other 

variables are horizontally averaged over a 21 21 grid-point, 600 600 km2 area also 

centered on the storm center.  

 

TABLE 2.1.  Confidence intervals for varying degrees of statistical confidence for correlation (r) 

values of 0.1, 0.3, 0.5, 0.7 and 0.85 and a sample size of 20. 
 

 r = 0.1 r = 0.3 r = 0.5 r = 0.7 r=0.85 
99% CI (-0.48,0.62) (-0.30,0.73) (-0.07,0.83) (0.24,0.90) (0.56,0.95)
95% CI (-0.36,0.52) (-0.16,0.66) (0.07,0.77) (0.37,0.87) (0.65,0.94)
90% CI (-0.29,0.46) (-0.09,0.61) (0.15,0.74) (0.44,0.85) (0.69,0.93)
80% CI (-0.21,0.39) 

 
(0.00,0.55) (0.23,0.70) (0.51,0.74) (0.74,0.92)

 

2.3. Ensemble performance and predictability  

Ensemble spread in CTRL grows rapidly as a result of ensemble members 

strengthening the incipient cyclone at different rates and moving it in different directions.  

The left column of Fig. 2.4 shows that by 36 h, there is a wide variety of forecasts within 

the ensemble.  Recall that member 20 forecasts minimal pressure falls up until this time 

Fig. 2.4g), and member 6 has a strong tropical storm (Fig. 2.4a).  The evolution of RM-

DTE in CTRL (Fig. 2.5) shows that ensemble spread grows substantially in the vicinity 
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Figure 2.5.  RM-DTE of CTRL and 30KM.  RM-DTE is calculated according to Eq. 2 and contoured 

every 1  starting at 1 m  over domain 1.  Axis scales are in model grid points.  Panel (a) shows 

the analysis (0-h) RM-DTE for both ensembles.  Panels (b) and (c) show 36-h RM-DTE, and panel (d) 

shows 36-h difference in RM-DTE between the two ensembles.  The arrows point to the genesis region.  

-1s m -1s 

 

of the cyclone forecast track (the arrows in Fig. 2.5 point to the genesis region).  For 

example, the absolute maximum horizontal RM-DTE increases from about 2  at the 

analysis time (Fig. 2.5a) to over 5  at 36 h (Fig. 2.5b).  Vertical profiles of RM-

DTE (not shown) indicate that error growth is similar through the entire lower 

troposphere and somewhat stronger above 200 hPa. 

m s-1

-1s m

RM-DTE at 36 h is significantly less in CTRL than in 30KM in the vicinity of the 

cyclone (Fig. 5), a likely result of how Grell cumulus parameterization treats convection.  

Low-resolution runs with Grell produce more intense convective cells and less stratiform 

precipitation than simulations with only explicit convection.  For example, Fig. 2.6 

shows that far more grid points in CTRL attain the weaker values of reflectivity (i.e., 25- 
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Figure 2.6.  The number of grid points summed over all ensemble members that attain threshold 

values of maximum reflectivity near the cyclone center in CTRL and 30KM.  The analysis is 

completed in a 21  grid-point box that is centered on the cyclone center in each member.  

Maximum reflectivity is calculated by finding the maximum reflectivity value in a vertical column 

above a given point. 

21

35 dBZ) expected in stratiform precipitation, while more points in 30KM attain the 

higher values of reflectivity expected in convective cells.  One result is that the variance 

of precipitation totals in the vicinity of the cyclone is much higher in 30KM than CTRL 

(e.g., Fig. 2.7d). Also, the wind field around deep convective towers in the low-

resolution runs is altered over a larger area than that in the high-resolution run (the 

arrows in Fig. 2.4 point to a few such examples).  This is qualitatively similar to findings 

in Davis and Bosart (2002) and Mapes et al. (2004) that the Grell scheme is often 

reluctant to activate, but after activation it tends to produce very intense rainfall and 

excessive perturbations to model variables. 

There are slight differences in ensemble-mean cyclone intensity between CTRL and 

30KM and much larger differences between WEAK and STRG.  The ensemble-
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mean minimum 36-h SLP is 1005.2 hPa in CTRL and 1003.9 hPa in 30KM.  Meanwhile, 

in WEAK and STRG the ensemble-mean SLP is respectively 1008.2 hPa and 998.3 hPa.  

The discrepancy between WEAK and STRG can also be seen in the relative accuracy of 

their forecasts.  Roughly 25% of the members in WEAK produce quite good forecasts of 

no cyclogenesis out to 36 h.  For example, the 36-h SLP, reflectivity and surface wind 

forecast of member 14 in WEAK (Fig. 2.8a) shows only a weak, disorganized low in the 

                                         

Figure 2.7.  Ensemble-mean 6-h precipitation ending at 36 h (a-b), the variance of the same 6-h 

precipitation (c-d), and ensemble-mean MUCAPE at 36 h (e-f) for CTRL and 30KM.  The analysis is 

completed in a Lagrangian framework, and the ‘X’ marks the location of the Lagrangian cyclone 

center.  The additional line outside the shaded regions in (a-b) encircles areas where mean 

precipitation is greater than 2 mm, and the dotted lines in (e-f) indicate intermediate values of 

MUCAPE in multiples of 250 . -1kg J
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Gulf of Mexico.  The only apparent surface difference between this member and the 

analysis for the same time (Fig. 2.1c) is that the 1012 hPa isobar is closed in member 14.  

The impact of the closed isobar on the wind field in member 14 must be minimal since 

both surface circulations are similar. Meanwhile, no members of STRG produce 36-h 

forecasts with as weak a surface low as member 20 in CTRL/30KM (i.e., Fig. 2.4g-h) or 

the several members in WEAK (not shown) that resemble member 14.  In fact, four 

members in STRG have storms of hurricane intensity by 36 h (e.g., Fig. 2.8b). 

      

Figure 2.8.  As in Fig. 2.4, but for member 14 of WEAK (a) and member 2 of STRG (b) at 36 h. 

 

 

2.4. Correlation analysis: The basic dynamics in CTRL 

Cyclone intensity at 36 h is largely dependent upon the net latent heating and 

intensity of cyclogenesis during the first 12-24 h.  For example, Fig. 2.9b shows the time 

evolution of correlation between instantaneous SLP (hereafter SLPi) and SLPf, 

instantaneous and final surface wind speeds, and instantaneous and final surface 

vorticity in CTRL.   By 12 h, all three variables show strong correlation with their values  
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Figure 2.9.  The time evolution of correlation between different variables in CTRL (a-b), 30KM (c-d), 

WEAK (e-f), and STRG (g-h).  In the above legends, CAPE refers to MUCAPE, FLX refers to latent 

heat fluxes, SHR refers to 200-850-hPa wind shear, MIXR refers to 500-850-hPa mean mixing ratio, 

WS refers to wind speed, SF refers to surface vorticity, the ‘f’ subscript represents the final forecast 

time, and the 't' subscript represents time.  CAPE, FLX, and SHR are averaged over a 21  grid-point 

Lagrangian area, and MIXR, SLP, WS, and SF are averaged over an 1

21  

111  grid-point Lagrangian 

area.    
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Figure 2.10.  The vertical profiles of correlation between final storm intensity ( SL ) and area-

averaged temperature (T), mixing ratio (q), static stability (
fP

/ z  ), and vorticity ( ).  Time of 

correlation is indicated at the top of the columns.  Variables are averaged over a  grid-point 

Lagrangian area, and SLP is averaged over an 1  grid-point Lagrangian area.  Results are 

shown for CTRL (a-b), 30KM (c-d), WEAK (e-f), and STRG(g-h). 

21  21

111
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at 36 h, and by 24 h the correlation is very strong.  Similarly, the correlation between 

SLPf and 12-h precipitation totals (not shown) is strong, and it becomes very strong for 

24-h precipitation totals.  Because differences during the first 24 h crucially determine 

later differences, the remainder of this study focuses on the first 24 h of cyclogenesis.   

 

2.4.1. Role of deep moisture 

The amount of initial moisture present through nearly the entire troposphere is very 

important for cyclogenesis in CTRL.  Figure 2.10a, which shows the correlation between 

SLPf and initial variables in CTRL as a function of height, indicates significant 

correlation between SLPf and water vapor mixing ratio (q) from the surface to about 300 

hPa.  Furthermore, (q:SLPf) around 700 hPa is stronger than correlation between SLPf 

and any other variable in the initial conditions.  

Figures 2.11 and 2.12 show how the moisture correlation analysis relates to 

individual members of CTRL.  The bottom row of Fig. 2.11 shows q solid-contoured 

every 1  at 700 hPa for the four ensemble members shown in Fig. 2.4.  Figure 

2.12h shows the evolution of an 11

g kg-1

11 grid-point average of mean 500-850-hPa q 

(hereafter qmid), and Fig. 2.12f shows the time evolution of area-average wind speeds 

near the centers of the same four members.  Of the four members shown in Fig. 2.11e, 

member 6 is the only one whose initial 700-hPa q exceeds 10  , and it quite clearly 

has the highest qmid.  It is also always the strongest member of the four shown in terms 

of surface wind speeds.  Members 9 and 19 have intermediate values of initial qmid, and 

they also have intermediate wind speeds through the forecast.   Finally, member 20 is the  

g kg-1
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only member in which the 8 g  isopleth encroaches upon the western edge of the 

genesis region (Fig 2.12h), and it clearly has the lowest qmid of the four members shown.  

It is also the only member of the four shown that does not strengthen. 

kg-1

 

 

 

Figure 2.11.  The initial fields of ensemble members shown in Fig. 2.4.  The top row shows 

temperature (contoured every 2 C) and MUCAPE (shaded every 500 J kg ) along with surface wind 

barbs (full barb represents 5 m s ).  The bottom row shows 700-hPa mixing ratio (solid contoured 

every 1 g kg ), QG vertical motion (shaded every 0.25 dPa  for QG lift and dash contoured every 

0.25 dPa  for QG subsidence), and 700-hPa winds. 

-1

-1

-1 -1 s
-1 s

 

Although ensemble members with higher initial mid-level moisture more quickly 

strengthen the cyclone, it does not appear that higher initial deep moisture directly 

reduces the strength and/or number of downdrafts.  For example, ensemble mean 500-

850-hPa q and surface equivalent potential temperature (e ) in Fig. 2.13a-b both fall 

substantially during the first 12 h in CTRL, and Fig. 2.12 shows that ensemble members 

with more initial convection drive this change.  First, although surface e  is initially 
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Figure 2.12.  The time evolution of certain quantities from the four ensemble members shown in 

Figs. 2.4 and 2.11.  All panels except (d) show the evolution of Lagrangian area-average 

quantities as indicated in the panel titles.  Panel (d) shows the evolution of the minimum surface 

e  in an 1  grid-point Lagrangian area.   11  1
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much higher in the convectively active ensemble members shown in Fig. 2.12, it falls 

sharply in members with more convection (e.g., Fig. 2.12a-c).  By 12 h, e  is similar in 

all members shown.  Furthermore, member 6 has the highest initial qmid, but it has the 

lowest minimum surface e  near the center by 12 h (Fig. 2.12d).  Mid-level moisture 

also sharply lowers in members 6, 9 and 19 (Fig. 2.12h), and (qmid:SLPf) becomes 

insignificant by 12 h (Fig. 9a).  Finally, the weak correlation between initial qmid and 

surface e  (not shown) during the first 24 h is not statistically different from that at the 

analysis time.  Thus, any relationship between the two variables can be explained by 

their initial relationship, and higher initial qmid does not dynamically alter subsequente .   

Figure 2.13.  The time evolution of certain quantities from Fig. 2.12 for the ensemble means of 

CTRL, 30KM, STRG, and WEAK. 
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It is possible that higher deep moisture directly contributes higher rates of 

precipitation and latent heating without reducing the number of downdrafts.  In fact, 

some members (e.g., member 6) have so much convection that they actually appear to 

have stronger or more numerous mean downdrafts than ensemble members with less 

initial moisture and convection.  This appears to be consistent with the result from Nolan 

(2007) that the frequency and strength of updrafts increases as mid-level moisture 

increases, but the frequency and strength of downdrafts does not decrease. 

 

2.4.2. Role of convective instability  

Convective instability is also an important factor for cyclone intensity, likely because 

of its relationship with subsequent precipitation.  Area-average most unstable CAPE 

(MUCAPE2) is about 1750  in CTRL at the analysis time (Fig. 2.13c), and it is 

moderately correlated with SLPf, 0-12-h precipitation, and 0-24-h precipitation (not 

shown).  Furthermore, (MUCAPE:SLPf) does not appear to be a simple result of positive 

correlation between MUCAPE and another variable that favors intensification.  In Fig. 

2.14, which shows the (MUCAPE:SLPf) when controlling for initial variables, only 

initial temperature and mixing ratio below 900 hPa significantly affect the correlation.  

This is not surprising since PBL temperature and mixing ratio determine over 90% of the 

variance in MUCAPE.  Also, although controlling for PBL mixing ratio and/or 

temperature reduces (MUCAPE:SLPf), MUCAPE is still a better predictor of final storm 

J kg-1

                                                 
2 MUCAPE is computed as the CAPE for the parcel in each column with maximum equivalent potential 
temperature within the lowest 3000 m.  Following the recommendation of Doswell and Rasmussen (1994), 
virtual potential temperature is used in this calculation. 
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Figure 2.14.  Correlation between MUCAPE and final intensity (SLP-36h) when controlling for 

temperature (T), mixing ratio (q), static stability ( / z ), and vorticity (  ) at different heights at the 

analysis time.  All variables except SLP-36h are averaged over a 21  grid-point Lagrangian area.  

SLP-36h is averaged over an 1  grid-point Lagrangian area. 

21

11  1

 

intensity than either of these variables individually.  

Though it is not readily apparent in Fig. 2.11, MUCAPE in this case relates to the 

large-scale environment through its association with QG lift.  The MM5 develops the 

cyclone in an environment of weak QG lift (shaded in the bottom row of Fig. 2.11), 

which is known to reduce static stability and moisten the atmosphere.  MUCAPE over 

the genesis region is well correlated low-level QG lift in the genesis region of CTRL.  

However, low-level QG lift and SLPf are not significantly correlated, so QG lift is not 

directly a significant contributor to storm intensity. 

MUCAPE in CTRL quickly becomes uncorrelated with SLPf as convection in the 

ensemble significantly reduces its magnitude (e.g., Fig. 2.13c) and variance.  

(MUCAPE:SLPf ) significantly decreases after 6 h in Fig. 2.9a, and MUCAPE becomes 
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similar for all ensemble members shown in Fig. 2.12e by about 12 h.  By 30 h the 

members of CTRL that have high MUCAPE are those that have little convection, and 

the correlation between 30-h MUCAPE and precipitation over the preceding 6 h in 

CTRL is strongly negative (not shown).  Thus, (MUCAPE:SLPf) becomes significantly 

anticorrelated in Fig. 2.9a. 

Figures 2.11 and 2.12 show how the above correlation analysis relates to individual 

ensemble members in CTRL.  The top row in Fig. 2.11 displays MUCAPE, again shaded 

every 500 , and surface temperature contoured every 2 C.  In member 6 (Fig. 2.11a) 

the maximum MUCAPE slightly to the west of the genesis region is higher than in the 

other members.  This member also has the least pronounced minimum in MUCAPE in 

the immediate genesis region.  Meanwhile, member 20 (Fig. 2.11d) starts off with 

significantly lower initial MUCAPE and surface temperatures than the other members 

shown in Fig. 2.11.  Figure 2.12 shows that the convective response during the first 12 h 

of integration is in general proportion to the initial area-average convective instability.  

Likewise, there is a dramatic increase in area-averaged surface wind speeds near the 

centers of the stronger ensemble members during the first 6 h.  Thereafter, stronger 

ensemble members stay stronger, and weaker members stay weaker. 

J kg-1

 

2.4.3. Role of vorticity and vertical wind shear 

Ensemble-mean deep-layer (200-850-hPa) wind shear peaks around 6 h in CTRL 

(Fig. 2.13d), and shear from 6-12 h is moderately anticorrelated with SLPf (Fig. 2.9a).  

Note that the shear in Figs. 2.12 and 2.13 is again an area average, and ensemble-mean 
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shear during the first 12 h is generally in agreement with Fig. 2.1k.  The substantially 

weaker shear at later times in Figs. 2.12 and 2.13 seems to have little effect on final 

intensity (Fig. 2.9a).  

The dramatic decrease in shear at later times in Figs. 2.12g and 2.13d appears to be 

caused by convection that occurs during the first 12 h.  For example, 12-h precipitation 

totals are strongly anticorrelated with deep-layer shear at 12 h in CTRL.  Even the 

convection in member 20, which is weaker than that of any other ensemble member (Fig. 

2.12a-b), is sufficient to rearrange the upper level PV field (not shown) and reduce deep 

layer shear in the genesis region by 18 h (Fig. 2.12g).  The resultant upper level PV and 

shear fields are incongruent with the analyses in Fig. 2.1k-m and show how quickly 

well-placed convection can lead to error. 

 
 

 
 

Figure 2.15.  Ensemble-mean latent heat flux (shaded every 100 W m ), surface wind vectors 

(scaled differently in each panel), and instantaneous correlation between total heat fluxes and 

intensity for CTRL at 12 (a), 24 (b), and 36 h (c).  Correlation is contoured at -0.7, -0.5, -0.3, 0.3, 0.5, 

and 0.7 with solid lines indicating positive correlation, dashed lines indicating negative correlation, 

and increasing thickness indicating increasing correlation magnitude.  All panels are in a Lagrangian 

framework. 

-2
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Low-level vorticity is initially uncorrelated to SLPf in CTRL, but it quickly becomes 

an excellent predictor of itself.  Considering that most ensemble members demonstrated 

development, the initially insignificant correlation in Fig. 2.10a may indicate that the 

initial disturbance provides sufficient vorticity for cyclogenesis to proceed in all 

members.  Meanwhile, 6-h surface vorticity is very strongly correlated with final 

vorticity in CTRL.  Thus, ensemble members that are able to rapidly build a surface 

vortex during the first 6 h are the same members that have stronger vorticity at 36 h.   

  

2.4.4. Initial latent heat fluxes and the onset of WISHE 

It is clear from Fig. 2.9 that surface latent heat flux3 (hereafter LHF) is important 

before WISHE becomes a dominant intensification factor in CTRL.  (LHF:SLPf ) rises 

to moderate strength by 12 h (Fig. 2.9a), and LHF over the first 12 h is weakly to 

moderately correlated to subsequent precipitation.  Yet, (LHF:SLPi) is quite weak during 

the first 24 h (Fig. 2.9b). The statistical significance of LHF before 24 h is therefore 

notstrongly tied to WISHE (see Emanuel 1986, 1989, 1995; Rotunno and Emanuel 

1987), which should cause high instantaneous correlation between LHF and SLP.   

WISHE appears to become a more important intensification mechanism by 30 h in 

CTRL.  In Fig. 2.15, ensemble-mean LHF is shaded, and (LHF:SLPi) is contoured.  The 

expanding area of dark shading and increasingly bold contours near the center from 12-

36 h shows that LHF and SLPf become intimately related as LHF increases.  Likewise, 

                                                 
3 While WISHE theory relates to total heat flux (i.e., the sum of latent and sensible heat flux), latent heat 
fluxes in these simulations are more than an order of magnitude greater than sensible fluxes.  Therefore, 
the correlation between storm intensity and total fluxes is determined almost exclusively by latent heat 
fluxes. 
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Fig. 2.9a shows that (LHF:SLPi) increases to a strong level by 30 h, which is consistent 

with WISHE becoming an intensification factor.  

Another indication of the growing importance of WISHE in CTRL is the evolution to 

dynamics of a more mature tropical cyclone.  Specifically, the correlation profiles in Fig. 

2.10b become generally consistent with the expectation that a tropical cyclone will have 

a warm, moist, high-vorticity core in the troposphere and an anticyclone near the 

tropopause (e.g., Gray 1975; Hawkins and Imbembo 1976; Frank 1977).  A notable 

exception is the large drop in correlation in (q:SLPf) at mid levels.  This particular 

correlation drops because the averaging area for q in Fig. 2.10b encompasses the tropical 

cyclone core and areas of subsidence outside the core.  Stronger cyclones should have 

higher moisture in their cores, but they also will be surrounded by more intense 

subsidence.  Thus, by 24 h the smaller averaging area used in the qmid correlation is a 

more appropriate predictor of SLPf.  Indeed, qmid and SLPf in Fig. 2.9a are moderately 

correlated.  This represents a significant change in dynamics from 12 h, when the two 

variables are uncorrelated due to downdrafts. 

 

2.5. Sensitivity experiments 

This section first analyzes some possible impacts of cumulus parameterization.  

Ensemble 30KM is created using the same initial conditions as in CTRL, but only the 

30-km domain is used.  More importantly, this requires the use of cumulus 

parameterization.  While using cumulus parameterization is not preferable since the 

merits of individual cumulus schemes are presently limited (e.g., Arakawa 2004), it is 
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often necessary in the operational environment where models are used with grid spacing 

larger than that in CTRL.  

Also investigated here are the effects of changing the ensemble initial conditions in 

30KM to those that produce generally weaker (WEAK) and stronger (STRG) storms.  

The purpose of these experiments is to investigate the extent to which genesis dynamics 

change when both more and fewer ensemble members encompass the truth. 

 

2.5.1. Experiment 30KM: Possible effects of cumulus parameterization 

As in CTRL, cyclone intensity in 30KM strongly depends upon the strength of 

cyclogenesis and amount of precipitation during the first 24 h.  In Fig. 2.9d (SLPi:SLPf) 

becomes very strong by 24 h, and surface wind speed and vorticity also have strong 

time-lag relationships by 18 h.  Precipitation totals over the first 24 h are also strongly 

correlated with SLPf, which shows that latent heating during the first 24 h is crucial to 

cyclogenesis in 30KM. 

The vertical correlation profiles in Fig. 2.10 show that the amount of deep moisture 

present is also crucial in 30KM.  As in CTRL, SLPf is weakly to moderately correlated 

with the initial q through nearly the entire troposphere.  While the level of maximum 

correlation is about 100 hPa lower than in CTRL, and the magnitude of (q:SLPf) is 

somewhat lower in 30KM through the middle troposphere, these differences are not 

statistically significant with even 80% confidence. 

Convective instability is also important in 30KM, again largely because of its 

relationship with subsequent precipitation totals.  As with CTRL, MUCAPE at the 
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analysis time is moderately correlated with both SLPf and subsequent 24-h precipitation 

totals.  This again provides a direct link between initial MUCAPE and SLPf.  Also, weak 

correlation (0.38) between QG lift and MUCAPE suggests that the QG circulation 

indirectly contributes to cyclogenesis in 30KM as well. 

One important difference between CTRL and 30KM is that (MUCAPE:SLPf) in  

30KM is positive for a much longer time.  Comparing Fig. 2.9a with Fig. 2.9c, 

(MUCAPE:SLPf) in 30KM at 12 h (18 h) is different from that in CTRL with 90% (80%) 

confidence.  The difference is even stronger by 30 h, when the two variables are 

moderately anticorrelated in CTRL and uncorrelated in 30KM.  This difference in 

correlation is significant with more than 99% confidence.  

A possible interpretation of this result is that the Grell cumulus parameterization 

scheme is overly sensitive to CAPE because it relies too heavily on low-level instability 

to determine where convection should occur.  This is supported by the difference in how 

SLPf relates to thermodynamic variables in 30KM and CTRL.  In 30KM, SLPf is 

strongly correlated to the initial temperature within the PBL and moderately to strongly 

anticorrelated with static stability from within the PBL to between 700 and 800 hPa (Fig. 

10c).  The correlation in both these relationships is different from its corresponding 

value in CTRL with 95% confidence.  It appears that the strong anticorrelation between 

static stability and SLPf in 30KM is due to the fact that the Grell scheme is generally 

quite sensitive to the vertical gradient of moist static energy near the top of the PBL (e.g., 

Cohen 2002).   
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The difference in how convection is treated in 30KM and CTRL is another possible 

reason for the discrepancy in (MUCAPE:SLPf).  Because 30KM tends to produce less 

widespread stratiform precipitation than CTRL (e.g., Figs. 2.4 and 2.6), it is less 

effective at reducing MUCAPE over a large area.  For example, ensemble-mean 

MUCAPE and surface e   (Fig. 2.13b-c) fall much less in 30KM than CTRL over the 

first 12 h.  Furthermore, Fig. 2.7 shows a specific example of how MUCAPE relates to 

precipitation in CTRL and 30KM at 36 h.  The 36-h ensemble-mean precipitation 

maximum is generally south and east of the mean center in both CTRL and 30KM, but 

MUCAPE in this area in 30KM is much higher than that in CTRL.  Thus, the nature of 

convection in 30KM appears to less effectively destroy CAPE.  Also, as previously 

mentioned, the correlation between MUCAPE and preceding precipitation in CTRL 

becomes strongly negative by 30 h, whereas the two variables have no statistically 

significant relationship at 30 h in 30KM.  This difference is significant with more than 

99% confidence.  

The use of cumulus parameterization might also affect the correlation between initial 

vorticity and SLPf in 30KM in an unphysical way.  Figure 2.10c shows that initial 

surface vorticity and SLPf are weakly anticorrelated in 30KM, which is a 

counterintuitive result.  Recall that low-level vorticity is uncorrelated to SLPf in CTRL; 

the difference in correlation here is significant with about 90% confidence. 

Also, the time-lag correlation between instantaneous and final vorticity in 30KM is 

generally less than it is in CTRL.  The difference is most extreme at 6 h (compare Fig. 

2.9b and 2.10d), when the correlation is only around 0.1 in 30KM, but it is over 0.8 in 
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CTRL.  This is a significant difference with over 99% confidence and indicates that it 

takes longer for a coherent vorticity maximum to organize in 30KM than in CTRL.  

Deep-layer wind shear remains an important inhibitor to strengthening in 30KM.  

The evolution of shear is very similar to that in CTRL (Fig. 2.13d), and as before SLPf is 

most strongly anticorrelated to shear when shear is highest.  Also as in CTRL, the 

magnitude of shear decreases tremendously between 6 and 18 h.  Since 12-h shear in 

30KM is strongly anticorrelated with 12-h precipitation totals, the decrease in shear 

again seems to be the result of deep convection. 

Finally, LHF is important in 30KM, but there is some difference from CTRL in its 

relationship with SLPf.  First, (LHF:SLPf) indicates that LHF again contributes to 

strengthening before the onset of WISHE (Fig. 2.9c).  As in CTRL, (LHF:SLPi) 

increases with time, and it appears that WISHE is a dominant factor by about 24-30 h.   

The major difference between CTRL and 30KM is that (LHF:SLPf) is significantly less 

in CTRL around 6 h; the reason for this large difference is unclear.  Differences between 

CTRL and 30KM in terms of both (LHF:SLPi) and (LHF:SLPf) continue until about 30 

h, but they are not statistically significant.  

 

2.5.2. Experiments WEAK and STRG: The effect of changing initial conditions 

The underlying dynamics in WEAK and STRG have both similarities to and 

differences with those of 30KM.  First, despite the large difference in mean layer 

moisture from STRG to WEAK (Fig. 2.13a), initial deep moisture is significantly 

correlated with SLPf in both ensembles (Fig. 2.10).  While shear is also an inhibiting 
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factor in both ensembles at different times in Fig. 2.10, the evolution of correlation 

between shear and SLPf is different than 30KM in both ensembles.  The shear to SLPf 

correlation in STRG initially resembles that of 30KM, but it becomes significantly 

positive after 12 h.  Meanwhile, shear and SLPf are initially uncorrelated and become 

more strongly anticorrelated after 12 h in WEAK.  These differences in correlation from 

30KM are significant with at least 90% confidence by 30 h, and because shear in Fig. 

2.13 is generally similar among the ensembles at later times, they indicate that the effect 

of shear likely depends on storm intensity.  As with shear, the importance of MUCAPE 

changes with time differently in STRG and WEAK than in 30KM.  In WEAK (Fig. 2.9e), 

(MUCAPE:SLPf) has no net trend, but (MUCAPE:SLPf) becomes lower in STRG (Fig. 

2.9g) than in 30KM.  The difference in correlation between WEAK (STRG) and 30KM 

is significant with 90% (80%) confidence by 30 h, and it appears that the time it takes to 

transition from the CAPE intensification regime also depends on storm intensity.  Finally, 

Fig. 2.9 shows that the relationship between LHF and SLPf is generally similar in 

WEAK and STRG to that seen in 30KM.  (LHF:SLPi) rises from insignificant levels at 6 

h to moderate and high levels at 30 h.  Although (LHF:SLPf) is weaker in WEAK than 

STRG with over 95% confidence (compare Fig. 2.9e with Fig. 2.9g), the difference 

quickly decreases with time.  Again, the reason for the large difference at early times is 

unclear. 
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2.6. Discussion 

The primary intensification mechanism during the first 6-12 h in CTRL is the 

explosive development of convective towers in a moist, unstable environment of weak 

QG lift.  The presence of a stronger QG circulation with more lift over the genesis region 

leads to stronger destabilization.  Figure 2.12 shows that those ensemble members that 

have the most initial MUCAPE and deep moisture averaged over a large region around 

their cyclone centers tend to produce more precipitation both in the immediate vicinity 

of the centers and over the larger area during the first 6-12 h.  The immediate response to 

the deep convection is a rapid increase in surface wind speeds in the immediate vicinity 

of the centers, and after 6 h the surface wind speeds in the strongest member are roughly 

twice those in the weakest member (Fig. 2.12f).   

The intensification rate subsides dramatically for all members by 12 h, likely because 

prolific downdrafts stabilize the lower troposphere (Fig. 2.12c-e).  For example, area-

average surface e  reaches a minimum around 12 h.  In response to the stabilization 

precipitation rates plateau or fall significantly, depending on the ensemble member and 

averaging area. 

Precipitation rates increase again when surface e  recovers after 24-30 h near the 

centers of convectively active members.  This is approximately the time that the 

ensemble statistics support the WISHE mechanism becoming an intensification factor.  

Concomitant with the increase in precipitation and onset of WISHE, the rate of 

intensification begins to accelerate, a tendency most strongly seen in member 6.  
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Downdrafts still affect the minimum e  when precipitation intensifies from 24-36 h 

(compare Figs. 2.10b and 2.10d), but not to the extent of the earlier downdrafts.   

Since MUCAPE and deep moisture are responsible for vortex spinup before 12 h, 

they ultimately help determine the intensity of the final cyclone.  For example, the 

correlation analysis in Fig. 2.9 shows that SLP variations at 12 h account for nearly 65% 

of the variance in intensity at 36 h.  While it is well known that convective instability 

does not contribute to the strength of very intense tropical cyclones (e.g., Persing and 

Montgomery 2005), convective instability here infuses energy into the system before 

WISHE becomes dominant.  After 12 h it appears that pre-WISHE surface heat fluxes 

and eventually WISHE itself amplify the 12-h differences, resulting in large ensemble 

spread. 

A simple thought experiment shows how an environment of higher CAPE could be 

expected to support more rapid initial genesis of a tropical cyclone.  In areas where no 

other factors (e.g., CIN) restrain convection, a greater amount of CAPE will result in 

more prolific overturning of the atmosphere before a moist-neutral state is reached.  One 

manifestation of this fact is that, regardless of complications associated with parcel 

theory, it is still true that updraft velocity in a given environment increases with 

increased CAPE (e.g., Michaud 1996; Crook 1996).  This is dynamically important to 

tropical cyclone formation because greater updraft velocities will generally be associated 

with stronger stretching and production of vertical vorticity.  Thermodynamically, in an 

environment of higher CAPE there should also be a greater difference between the mean 

temperature in updrafts and the environmental temperature.  Therefore, sustained 
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convection in a high-CAPE environment should produce a stronger tropospheric warm 

temperature anomaly in the vicinity of the convection than would occur in a low-CAPE 

environment.  The balanced response to such an anomaly would be a decrease in surface 

pressure beneath it, concomitant with the increase in vorticity.   

The importance of initial deep moisture here agrees with numerous other tropical 

cyclone modeling and observational studies, but how the importance of CAPE relates to 

other findings is unclear.  On one hand, Montgomery et al. (2006) noted that VHTs 

appear to “compete” with one another for ambient CAPE.  It is possible that higher 

CAPE in this particular case generally favors stronger and/or more numerous VHTs, 

which in turn incrementally contribute to system-scale heating and vortex spinup.  On 

the other hand, the idealized results of Nolan et al. (2007) suggest no relationship 

between environmental CAPE and the rate of cyclone development.  There are several 

major differences between Nolan (2007) and the current study, including their use of 

radiative-convective equilibrium and no vertical wind shear in their initial conditions.  

Thus, it is quite possible that these differences strongly govern how cyclones in the 

current study and theirs respond to initial CAPE differences.    

Although using cumulus parameterization and changing the initial ensemble mean 

produces qualitatively similar results in the 2004 case, such changes can significantly 

modulate how quickly an ensemble moves out of the CAPE-based intensification regime 

and when shear becomes an important factor.  The Grell cumulus scheme is strongly 

sensitive to lower tropospheric temperature and static stability, and it affects the nature 

of convection, resulting in less stratiform precipitation and more deep convective cells.  
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This convection with Grell does not remove MUCAPE over a large region as effectively 

as high-resolution, explicit convection, and MUCAPE therefore contributes to 

intensification in a low-resolution ensemble with cumulus parameterization (30KM) for 

a longer period of time than it does in a high-resolution ensemble with only explicit 

convection (CTRL).  Meanwhile, in another low-resolution ensemble with the initial 

conditions modified to produce stronger storms (STRG), MUCAPE stays correlated with 

final intensity for less time than in 30KM.  Exactly the opposite behavior is noted in a 

third low-resolution ensemble with weaker storms (WEAK).  Finally, shear negatively 

affects storm intensity in WEAK at a much later time than in the other ensembles. 

Also, it appears that cumulus parameterization can appreciably change the ensemble 

spread.  In this situation, there is a fair amount more spread in 30KM than in CTRL in 

terms of RM-DTE over the entire domain.  The discrepancy is accentuated in the region 

of the ensemble mean position of the cyclone at 36 h, where the peak in RM-DTE in 

30KM is nearly double that in CTRL.  This difference in spread is likely intimately 

related to difference in the nature of convection between CTRL and 30KM. 

Finally, the use of the cold start initialization technique likely impacts results here, 

but the extent to which this is the case is not known.  The sudden onset of deep 

convection early in the ensemble is well within any potential model spin up period, and 

the strongest reaction to the cold start technique is most likely to be felt in the ensemble 

members that most strongly favor initial convection.  Thus, it is probable that this 

particular technique is an artificial source of strengthening in some ensemble members 

and therefore also a source of ensemble spread.  To test the repeatability of the results in 
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this chapter, the next chapter will investigate an entirely different cyclogenesis event 

with an entirely different initialization technique. 
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CHAPTER III 

PROBABILISTIC DYNAMIC ANALYSIS OF HURRICANE 

HUMBERTO (2007) 

 

3.1. Introduction 

This chapter is intended as a follow-up study to Chapter II and will use an ensemble 

forecast to investigate Hurricane Humberto, which rapidly formed off the upper Texas 

coast on the morning of 12 September, 2007 (see Fig. 3.1).  The system was 

operationally declared a tropical depression at 1500 UTC, though the best-track analysis 

issued by the NHC estimates that the depression had formed by 0900 UTC and that the 

system was a 35-kt tropical storm by 1200 UTC (Fig. 3.2).  By the time of its landfall 

east of High Island, TX at 0700 UTC 13 September, the storm had strengthened to an 

80-kt, Category 1 hurricane.  Thus, the cyclone intensified by approximately 45 kt in the 

19 hours before its landfall, which makes it the most rapidly intensifying, near-landfall 

storm in US records.  

    

3.1.1. Genesis environment 

The initial local environment preceding the development of Hurricane Humberto was 

relatively favorable for genesis, although unfavorable factors lingered on a larger scale.  

The focus for convection prior to cyclogenesis was an inverted trough at low- to mid-

levels that manifested itself at the surface as a weak low (Fig. 3.3).  This system had 

moved westward across the Gulf of Mexico during the preceding week, and the NHC 
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recognized it as a potential trigger for cyclogenesis as early as the afternoon of 10 

September.  Convection associated with the disturbance had access to convective 

instability and low-level moisture (e.g., Fig. 3.3b-c), and the convection gradually 

became more widespread and organized preceding Humberto’s genesis (Fig. 3.4).  In 

addition to increasing convection favoring genesis, the local genesis environment was 

rich with necessary deep moisture by 0900 UTC 12 June (Fig. 3.3b-c).  Yet, on a larger 

scale, significantly drier air associated with a frontal boundary was not far north of the 

developing cyclone and could certainly hinder genesis if it entrained into the circulation 

(Fig. 3.3a-b; also note the wind shift and temperature gradients in Fig. 3.3c).  Additional 

drier pockets at 700 hPa were also evident farther south over the Gulf of Mexico (Fig. 

 
Figure 3.1.  The WRF domain configuration and track of Humberto.  Domain 1 serves as the 

background map and the nested domains 2 and 3 are outlined in black.  The post-analysis best track 

of the storm is shown and color coded according to post-analysis intensity. 
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3.3a), and they too could potentially hinder genesis.  Finally, the ample convection in the 

genesis region likely helped reduce upper level PV and build an upper level ridge above 

the circulation center (Fig. 3.3d).  Associated with the ridge was a minimum in 200-850-

hPa shear (Fig. 3.3d), and mean shear within 300 km of the circulation center was 

favorable for intensification (Fig. 3.5). 

 
 
Figure 3.2.  A comparison of the best-track intensity estimate (black) with the time evolution of 
minimum SLP (a,c) and maximum surface wind (b,d) analyses and forecasts (this same data is shown 
in Figs. 3 and 11 of Z08).  Panels (a) and (b) show forecasts from the operational GFS (blue) and 4.5-
km WRF models (red) starting every 6 hours from 0000 UTC 12 September to 0000 UTC 13 
September.  In panels (c) and (d), time evolution of SLP and wind from individual members of the 
EnKf analysis (green dashed) and subsequent ensemble forecast (green solid).   
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Figure 3.3.  The 0900 UTC 12 June EnKF analysis of thermodynamic, height, PV, wind, and shear 

fields.  Specifically, 700-hPa mixing ratio (filled every 1 ), height (contoured every 10 m), and 

wind (full barb represents 5 ) are shown in (a), surface mixing ratio (filled every g kg ), wind 

and SLP (contoured every 1 hPa) are shown in (b), surface temperature (contoured every 2 C), wind, 

and MUCAPE (filled every 500 ) are shown in (c), and 200-hPa height (contoured every 20 m), 

PV (smoothed, filled every 0.25 PVU for positive values and dash-contoured every 0.25 PVU for 

negative values), and 200-850-hPa shear (full barb represents 5  ) are shown in (d). 

-1g kg
-1s m -1

-1J kg

-1s m

 

3.1.2. Forecast challenges 

Humberto’s development and evolution posed serious operational forecast 

challenges.  All operational models failed to capture the storm’s rapid genesis and 

deepening to a formidable Category 1 hurricane.  For example, Fig. 3.2 demonstrates the 

severity of the failure of multiple real-time forecasts by the operational global forecast 

system (GFS) running at National Centers for Environmental Prediction (NCEP).  The 
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Figure 3.5.  Wind shear (dotted) and the correlation between wind shear and final storm intensity 

(SLPf) (solid) from 0900 UTC 12 September until 1200 UTC 13 September.  Wind shear is computed 

as the difference between the mean 200 and 850-hPa wind vectors averaged within 300 km of the 

circulation center in a Lagrangian coordinate system.  Until 1800 UTC, shear is calculated from the 

EnKF analysis, and after that time it is calculated from the ensemble forecast. 

 

 
 

: 

Figure 3.4.  Radar reflectivity at the 0.5° elevation angle from the KHGX WSR-88D radar (a) and the 

EnKF-analysis reflectivity (b) at the same time.  The two panels cover approximately the same domain, 

and reflectivity values are colored similarly in each panel.  EnKF-analyzed surface wind vectors are 

shown in (b). 
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Weather Research and Forecast (WRF) model also failed in post-event, 4.5-km, cloud-

resolving simulations that were initialized with the GFS analyses with lead times every 6 

h from 6 to 48 h. 

The failure of all operational models to capture the rapid intensification of Humberto 

led to significant operational intensity forecast errors.  First, while tropical weather 

outlooks issued by the NHC mentioned the preceding disturbance for several days prior 

to genesis, none mentioned the possibility that depression formation was imminent.  

Also, though the official track errors were less than long-tem average track error, 

average 12-h intensity forecast error was 300% of long-term average intensity error with 

the same lead time.  This failure highlights the current struggle to forecast rapid intensity 

change of tropical cyclones in general. 

Zhang et al. (2008) (hereafter Z08) studied Humberto with an ensemble Kalman 

filter (EnKF) data assimilation system coupled with the WRF model (see Z08 for a 

review of past performance of such data assimilation setups).  They found that the EnKF 

assimilation of radial velocity observations from three WSR-88D radars along the gulf 

coast resulted in analyses that accurately depicted the best-track position and intensity of 

Humberto.  In addition, EnKF-initialized deterministic (not shown) and ensemble (Figs. 

3.2 and 3.6) forecasts outperformed operational forecasts by predicting the rapid 

formation and intensification of the hurricane.  Despite the benefits of data assimilation, 

the large ensemble intensity spread in Fig. 3.2 exemplifies the significant uncertainty 

associated with the intensity forecast.  The generally good ensemble performance and 

large uncertainty render this an ideal opportunity to test the results of Chapter II.  
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Figure 3.6.  The ensemble forecast tracks and the best track analysis.  Tracks of all ensemble members 

(thin black or colored lines), the ensemble mean position (thick black solid line), and the best-track 

analysis (thick black dotted line) are plotted every 3-h from 1200 UTC 12 June to 1200 UTC 13 June in 

(a).  Panel (b) depicts the mean 1200-1800-UTC analysis position (computed from hourly data) with 

filled dots and the 0600 UTC forecast position with circles.  Panel (c) shows tracks from select 

members with the 1800-UTC (final EnKF analysis) position noted by filled dots.  Color represents 

maximum intensity of the cyclone for the given member (black, <25 m ; blue <30 m ; green <35 

; yellow <40 m ; red >40 m ).  Before 1800 UTC, position is calculated from the EnKF 

analysis, and thereafter it is calculated from the ensemble forecast. 

-1s -1s 
-1s m -1s -1s 

 

3.2. Methodology 

This section outlines methodology specific to this particular chapter, including the 

forecast model and ensemble initialization method.  In general, this chapter will employ 

methodology very similar to that of Chapter II in order to understand both the 

predictability and dynamics of the genesis and evolution of Humberto.  However, as will 

become evident, some methods have been refined here to understand what factors on 

both local and regional scales favor cyclogenesis. 
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3.2.1. Forecast model and data assimilation methods 

The EnkF-WRF analyses and ensemble forecasts of Z08 will be analyzed here to 

understand Humberto’s genesis dynamics, and a brief synopsis of the setup follows.  The 

outer, 40.5-km WRF domain covers the contiguous United States with 160  grid 

points and two nested domains cover the central United States with 160  ( 253

121

121 253 ) 

grid points and a grid spacing of 13.5 (4.5) km (Fig. 3.1). All model domains have 35 

vertical layers, and the model top is set at 10 hPa.  The physical parameterization 

schemes include the Grell-Devenyi cumulus scheme (Grell and Devenyi 2002), WRF 

Single Moment 6-class microphysics with graupel (Hong et al. 2004), and the Yonsei 

State University scheme (Noh et al. 2003) for planetary boundary layer processes. 

Random, balanced, large-scale perturbations are added to the National Centers for 

Environmental Prediction (NCEP) Global Forecast System (GFS) analyses at 00Z 12 

September to create initial conditions for a 30-member ensemble forecast that is 

integrated forward until 0900 UTC.  Data assimilation of thinned and quality controlled 

radial velocity observations from the Corpus Christi (KCRP) and Houston-Galveston 

(KHGX) radars begins at 0900 UTC, and assimilation of data from Lake Charles (LCH) 

begins a few hours later.  Assimilation proceeds in hourly cycles until 1800 UTC 12 

June, at which point an EnKF-initialized ensemble forecast is integrated forward.  For a 

full review of the methodology used in this data assimilation system, see Z08.   

The use of an EnKF for the analyses here is a significant difference from the 

methodology of Chapter II.  In the ensemble analysis of the 2004 gulf low, the cold-start 

technique was used, which likely resulted in some artificial overreaction of initial 
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convection to ambient convective instability during the model spin-up period.  The 

EnKF analyses used in this chapter is a so-called “hot start” technique because the 

analysis contains active moist convection (see Fig. 3.4).  As will be seen later in this 

chapter, the difference in techniques does have some effects on results. 

 

3.2.2. Correlation 

As in Chapter II, linear correlation is used here to elucidate dynamics, but verbal 

descriptions of correlation will be somewhat different than in that study.  Since the size 

of the ensemble used here is larger (i.e., 30 vs. 20 members), confidence that a particular 

level of correlation is statistically different from 0 is higher here.  This chapter continues 

using the Chapter II correlation benchmarks of 0.3, 0.5, and 0.7, and these values are 

significant with roughly 90%, 99.5%, and 99.99% confidence, respectively.  Verbal 

descriptions of the correlation values will respectively be ‘correlated’, ‘strongly 

correlated’, and ‘very strongly correlated’.   

 

3.2.3. Lagrangian and Eulerian computations 

This study also largely follows the convention of Chapter II by making use of a 

Lagrangian, storm-centered coordinate system, but advancements are made upon the 

methodology.  Many of the ensemble-mean and correlation computations use the 

Lagrangian system in which the analysis domain is centered upon the larger scale 

circulation center in each ensemble member.  However, while Lagrangian variables in 

Chapter II were averaged in a square box, many variables here are averaged in a radial 
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coordinate system with averaging radii increments of 20 km.  For example, variables are 

averaged at all grid points falling within the first 20 km of the center to produce near-

center means (and correlation), and they are also averaged at points falling in 20-km 

annuli (e.g., from 20 to 40 km, etc.) to show how the azimuthal mean (and correlation) 

varies with distance from the center.  As in Chapter II, many variables are correlated 

with area-average sea-level pressure (SLP) at a time when the storm is mature.  In this 

case, that time is 0600 UTC 13 June, which is before most ensemble members make 

landfall (although the results are very similar with a slightly later time when the mean 

 
 

Figure 3.7.  A scatterplot of SLPi at 1800 UTC 12 June vs. SLPf.  The best fit line is shown in dark 

red, and members 1, 10, 16, and 19 are labeled and shaded in cyan (these members are further 

analyzed in the text).  The correlation coefficient is shown in the lower right corner. 
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strength is higher but more ensemble members have storms that have made landfall).  

The averaging area for SLP at 0600 UTC (hereafter in this chapter, SLPf) is within the 

first 20 km; this radius was chosen largely because it produces SLPf that exhibits the best 

time-lag correlation with SLP averaged over the same area at other earlier times 

(hereafter in this chapter, SLPi).  For instance, in Fig. 3.7, (SLPi:SLPf) at 1800 UTC 12 

June is nearly 0.9.  Finally, as in Chapter II the negative of SLPi and SLPf will be in 

correlation computations so that positive correlation with SLPf implies that a factor 

favors intensification.   

There are times in this study when correlation with azimuthally averaged variables 

does not give necessary insight, so that methodology is not ubiquitously used here.  For 

example, it is interesting to know how SLPf is affected by large-scale Eulerian fields 

before genesis.  In addition, it is sometimes necessary to investigate specific features in 

one quadrant or another of the circulation; in these cases correlation and means will be 

computed for area averages that only encompass certain features of interest.  These 

instances will be described in more detail as their use becomes necessary. 

 

3.3. Ensemble performance and predictability 

Ensemble spread grows much more rapidly in the case of Humberto than in the 2004 

gulf low.  For instance, the minimum SLP envelope here spans nearly 30 hPa after 18 h 

of forecast time (i.e., by 1200 UTC 13 June in Fig. 3.3c), but the envelope in the gulf 

low was only 14 hPa after 36 h (when sampled on the 3.3-km grid).  As a result of the 

larger intensity spread in the Humberto case, RM-DTE error grows much faster.  In Fig. 
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3.8, RM-DTE increases from about 3 at 1800 UTC 12 June to over 10   by 

1200 UTC 13 June (to facilitate comparison to Chapter II, RM-DTE has been sampled 

every 7 grid points, or 31.5 km, in Fig. 3.8).  This >300% RM-DTE increase occurs in 

only half the time of a similar percentage increase in Chapter II (see Fig. 2.5). Thus, 

forecast uncertainty was considerably higher with Humberto than with the 2004 low.  

-1m s -1m s

As mentioned in the introduction, the current ensemble captures the genesis and 

rapid intensification of Humberto, a feat not accomplished by operational models.  To 

further demonstrate ensemble performance, Figs. 3.9 and 3.10 respectively show 

observed reflectivity from the time around Humberto’s landfall and derived reflectivity 

at the landfall time of ensemble members 1, 10, 16 and 19 (these members generally 

span the ensemble in terms of SLPf in Fig. 3.7).  Members 1 and 10 (Fig. 3.9a-b) both 

have fairly strong cyclones with well-organized central cores.  Member 1, which has a 

 

Figure 3.8.  RM-DTE (every 1 m ) for the approximate area of domain 3 at 1800 UTC 12 June (a) 

and 1200 UTC 13 June (b).  Sampling is limited to every 7 grid points (31.5 km) in order to facilitate 

comparison with Fig. 2.5, which shows RM-DTE sampled to a 30-km grid. 

-1s 
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50% closed eyewall, best represents the central reflectivity structure of Humberto at its 

landfall, but member 10 performs better with the stratiform precipitation to the northeast 

of the core.  In terms of minimum SLP, the cyclones in both members are somewhat 

weaker than Humberto at its landfall, but other storms in the ensemble do obtain lower 

 
Figure 3.9.  Radar reflectivity at the 0.5° elevation angle from the KHGX WSR-88D radar at 0600 (a), 

0700 (b), 0800 (c), and 0900 (d) UTC 13 June. 
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Figure 3.10.  Derived reflectivity from ensemble members 1 (a), 10 (b), 16 (c), and 19 (d) at the 

approximate time their storms make landfall on 13 June.  Surface wind vectors and SLP (contoured every 

5 hPa) are also shown, and the minimum central SLP is shown in the bottom left corner of each panel. 
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 central pressure (see Fig. 3.2c).  The one noticeable problem with the strongly 

developing ensemble members in Fig. 3.2c-d is that they strengthen the storm too slowly.   

Humberto’s actual central pressure falls below the lower limit of the ensemble envelope 

until its landfall, after which many ensemble members obtain a similar central pressure.    

Meanwhile, member 16 (Fig. 3.9c) does a mediocre job at representing Humberto’s 

intensity and structure, and member 19 (Fig. 3.9d) does a poor job.  Yet, both members 

perform better than did the operational models (e.g., Fig. 3.2a).   

 
Figure 3.11.  A mesoscale surface analysis from 0600 UTC 13 June, just prior to Humberto’s landfall.  

Full wind barbs are 5  and analyzed fields are as follows: pressure is contoured every 5 hPa from 

990 to 1005 hPa (thin black lines) and every 1 hPa at and above 1010 hPa (thick black lines), and 

temperature is contoured every 1 C.  Observations outside the depicted domain and at both earlier and 

later times were used to construct the analysis.  

-1s m
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Figure 3.12.  Surface temperature (shaded every 1 C), pressure (contoured as in Fig. 3.11), and wind 

vectors at 1500 UTC 13 June for member 1. 

 

In addition to accurately portraying Humberto’s intensity, certain members of the 

ensemble also accurately capture the storm’s interaction with the nearby surface front.  

For instance, Fig. 3.11 shows a mesoscale analysis of Humberto shortly before the 

hurricane made landfall, and Fig. 3.12 shows the corresponding member 1 forecast for 

1500 UTC 13 June shortly after the cyclone in that member makes landfall.  The 

observations in Fig. 3.11 reveal that Humberto’s circulation had begun entraining cool 

post-frontal air before landfall, which might explain the observed lack of convection on 

the southwest side of the storm (e.g., Fig. 3.9a).  The forecast temperature field in Fig. 

3.12 exhibits a very similar wavelike pattern to that observed in Fig. 3.11, and the 

temperature difference across the front is about the same in both figures.  In addition, the 

simulated storm similarly lacks convection on its southwest side.  Finally, a wavelike 

field seen in both dew-point observations and the simulation (not shown) indicates that 
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the air entraining into the circulation from the northwest was also drier than that of its 

immediate genesis environment.   

 The ensemble captures Humberto’s general track, but it moves the storm 

northeastward too slowly.  For example, in Fig. 3.6 the actual position of the cyclone at 

1200 UTC 13 June is well northeast of all the ensemble members.  This error is partly a 

result of the left track deviation that takes place after 1800 UTC 12 June (i.e., after the 

final EnKF analysis) in many of the ensemble members.  Of the four members shown in 

Fig. 3.6c, the storm in member 10 is the only one to not exhibit a leftward turn, and it is 

the farthest northeast at 1200 UTC 13 June.  One result of this error is that many 

members make landfall 6-12 h later than did Humberto, which is evident by the end of 

their intensification cycles in Fig. 3.3c-d. 

 

3.4. Ensemble mean and probabilistic dynamics 

The correlation statistics here reveal that the processes that control Humberto’s 

simulated final intensity begin very early in the analysis period and that the SLPf 

variance is largely determined by 1800 UTC 12 June.  For example, Fig. 3.13 shows 

azimuthally averaged PV in a Lagrangian system and (PV:SLPf).  Temporally and 

spatially consistent (PV:SLPf) is established by 1300 UTC, and the most quickly 

developing storms have a well-defined PV tower through 9 km by 1500 UTC.  

Furthermore, (SLPi:SLPf) at 1800 UTC is almost 0.9 (Fig. 3.7).  Because 1800-UTC 

strength differences explain a large majority of SLPf variance, the processes that act to 

strengthen the cyclone before 1800 UTC (discussed below) must be crucial in 
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determining the final strength.  Meanwhile, processes after 1800 UTC generally only act 

to increase existing differences.  The dynamical examination is therefore divided to 

show how distinct mechanisms act to determine intensity differences by 1800 UTC and 

the means by which post-1800 UTC spread increases.   

 

 
Figure 3.13.  The evolution of ensemble-mean PV and (PV:SLPf) as a function of radius and height 

in a Lagrangian, storm centered coordinate system.  PV is averaged in 20-km annuli and shaded every 

0.5 PVU.  The average is computed before the correlation, which is contoured in black at magnitudes 

of 0.3, 0.5, and 0.7 with increasing line thickness indicating increasing magnitude (dotted black lines 

indicate negative correlation).  Each panel represents a different time, every hour from 1000 UTC 

until 1800 UTC 12 June.  
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Figure 3.14.  Ensemble-mean 1-h precipitation (shaded every 5 mm), surface wind vectors, and 2-km 

PV (contoured at 2, 4, and 8 PVU).  The boxes outline averaging regions of PV anomalies A (solid) 

and B (dashed) mentioned in text.  The associated correlation between area-average PV and SLPf is 

also indicated next to each box, and (PV16:SLPf) is indicated in panel f.  Analysis is completed in a 

Lagrangian coordinate system with the center of each panel at the ensemble mean center location. 

 

 
 

3.4.1 Early convection and details of PV tower building 

Between 1000 and 1100 UTC, two ensemble-mean, 2-km PV anomalies appear in 

areas of active convection and grow in both strength and areal extent thereafter.  When 

the anomalies first appear, they have little relationship to the ultimate storm strength, but 
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correlation between their strength (determined by the area-average PV within the solid 

and dashed boxes in Fig. 3.14, respectively PVA and PVB) and SLPf quickly increases.  

Strong (PVA:SLPf) and (PVB:SLPf) by 1500 UTC indicates that variance in the strengths 

of these anomalies ultimately explains much of the variance in SLPf.   

How do these low-level anomalies become well correlated to SLPf?  In anomaly A, 

the change in (PVA:SLPf) between 1100 and 1200 UTC seems to be largely a dynamic 

response to the amount of precipitation (i.e., latent heating) in its vicinity.  Figure 3.14 

shows that high precipitation totals encompass anomaly A as it develops, and 

precipitation totals on the southwest side of anomaly A from 1100 to 1200 UTC are 

significantly correlated to PVA at 1200 UTC (Fig. 3.15a).  Standard deviation of PVA 

 
 
Figure 3.15.  Ensemble-mean 1-h precipitation (color filled every 2 mm), surface wind vectors, and the 

correlation (contoured as in Fig. 3.13) between precipitation and PVA (a) and PV16Z (b).  In panel (a), 

precipitation is from 1100 to 1200 UTC, and in panel (b) the precipitation is from 1500 to 1600 UTC.  

The regions of PVA and PV16Z are outlined with red contours in panels (a) and (b) respectively. 
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also doubles during this time period (evidence for this is in the increased spread for 

select members in Fig. 3.16a), and ensemble-mean PVA concomitantly increases (Fig. 

3.16a). It thus appears that convection strengthens PVA and that varying convective 

intensity leads to varying PVA.  Such is also the case for PVB between 1400 and 1500 

UTC, when the mean and standard deviation of PVB and (PVB:SLPf) all increase in the 

presence of deep convection.  Meanwhile, it seems that EnKF updates might lead to 

increases in (PVA:SLPf) and (PVB:SLPf) at other times.  For example, there is no 

 
 
Figure 3.16.  The evolution of PVA (a) and PVB (b) is shown for the ensemble mean (thick solid) 

and members 1 (bold dash-dot), 10 (thin dash-dot), 16 (dotted), and 19 (thin solid) from 1100 to 1500 

UTC 12 June.  PV16Z is also shown for the mean (boxed ‘M’ at 1600 UTC) and same members 

(boxed with their respective numbers at 1600 UTC). 

 
 



 69

precipitation associated with the increase in (PVB:SLPf) between 1100 and 1200 UTC or 

(PVA:SLPf) between 1300 and 1400 UTC.  With no apparent dynamic mechanism to 

increase correlation in Fig. 3.14, EnKF updates are a possible culprit. 

The strength of the single PV anomaly that results from the 1500 UTC merger of 

anomalies A and B in the ensemble mean is very strongly correlated to SLPf.  At 1600 

UTC, correlation between mean PV inside the mean 2-PVU isopleth (hereafter in this 

 
Figure 3.17.  The evolution of ensemble-mean condensational heating (CON) and (CON:SLPf) as a 

function of radius and height in a Lagrangian, storm centered coordinate system.  CON is averaged in 

20-km annuli and shaded every 0.5 K .  The average is computed before the correlation, and the 

correlation is contoured as in Fig. 3.13.   Each panel represents a different time, every hour from 1000 

UTC until 1800 UTC 12 June.  

-1h
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chapter, PV16Z) and SLPf is 0.87 (see Fig. 3.14); this means that 75% of SLPf variance 

can be explained by variance of PV16Z.  Furthermore, Fig. 3.13 shows that significant 

(PV:SLPf) encompasses much of the troposphere starting at 1500 UTC, the time of the 

merger.   

Simultaneous with the change in (PV:SLPf) is a remarkable change in PV strength 

due to widespread convection.  From 1500 to 1700 UTC in Fig. 3.14, ensemble-mean 

positive PV strongly grows in both strength and areal coverage.  Also, ensemble-mean 

PV16Z is significantly higher than either mean PVA or PVB at 1500 UTC (Fig. 3.16), 

and an increase in PV is evident throughout much of the troposphere from 1500 UTC 

onward in Fig. 3.13.  Concomitant with the PV increase, two regions of high 

precipitation totals emerge near the center between 1400 and 1800 UTC in Fig. 3.14, and 

azimuthally averaged condensational heating increases dramatically (Fig. 3.17).  PV16Z 

is strongly correlated to precipitation totals in these regions where they are high (Fig. 

3.15b), and the correlation between PV16Z and mean antecedent 1-h precipitation within 

the 4-mm isopleth (i.e., the regions encompassed by the yellow line in Fig. 3.18, 

hereafter in this chapter, PTOT16Z4) is also strong.  Thus most PV16Z variance can be 

explained by variance of PVA, PVB, and PTOT16Z. 

                                                 
4 If the two large precipitation regions of PTOT16Z are considered individually, the northeastern region is 
more strongly correlated with PV16Z, but the southwestern region is more strongly correlated with SLPf.  
The differences are likely due to the location and duration of the convective events.  The northeastern 
convection occurs more immediately in the PV16Z region and tends to produce stronger PV, but this 
convection is relatively short in duration.  The southwestern convection region lasts through the afternoon 
hours, and while its initial PV anomaly is weaker, it continues to produce high-PV air that feeds into the 
center. 
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Figure 3.18.  The relationship between 1-h precipitation (color filled every 2 mm) and PV (contoured 

at 2, 4 and 8 PVU) in members 1 (a), 10 (b), 16 (c), and 19 (d) at 1600 UTC 12 June.  The region of 

PV16Z is outlined in red, and the region of PTOT16Z is outlined in yellow.  ‘A’ and ‘B’ point roughly 

to the regions of PV anomalies A and B from the text.  Surface wind vectors are also shown. 

 
 

 
 

Figures 3.16 and 3.18 demonstrate how the above results relate to the individual 

ensemble members selected from Fig. 3.7.  Member 1, which is strongest in terms of 

SLPf chosen from Fig. 3.7 for further analysis, has the highest PVA from 1300 UTC 

onward.  Its PV16Z is also much higher than that of the other members (Fig. 3.18a).  
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PVA and PVB in member 19, on the other hand, weaken with time, and it is the weakest 

member further analyzed in terms of both PV16Z and SLPf.  Simulations with higher 

PV16Z also tend to have heavier or more widespread precipitation within the PTOT16Z 

regions between 1500 and 1600 UTC; this is also best demonstrated by comparing 

members 1 and 19 (i.e., Fig. 3.18a,d).  For example, member 1 has very strong 

precipitation maxima in both primary PTOT16Z regions that appear to be a source of the 

stronger and more widespread PV that advects into the PV16Z region.  Meanwhile, 

member 19 has considerably less convection in the PTOT16Z region, especially around 

anomaly A (this is likely why PV in the anomaly A region of member 19 is so low). 

Figure 3.19 shows how the PV and precipitation distribution present at 1600 UTC 

evolves in the ensemble members from Fig. 3.18.  In members 1 and 10 (Fig. 3.19a-f), 

anomalies A and B are both well-defined at 1600 UTC.  By 1700 UTC, A becomes 

clearly associated with the circulation center in both of these simulations, and B 

becomes increasingly deformed by A.  Because anomaly A is strongest in member 1 at 

1600 UTC, member 1 also has a larger area of strong PV at its center at 1800 UTC.  In 

members 16 and 19 (Fig. 3.19g-m), anomaly B is also much more ill-defined and 

elongated at 1600 UTC.  While the strength of the PV near the center is visually similar 

in members 10 and 16 at 1800 UTC (Fig. 3.19i,m), PV in member 19 is clearly less.  

Finally, the most notable differences in convection between these simulations occur 

south and southwest of their circulation centers (i.e., that initially associated with the 

southwestern PTOT16Z region).  From member 16 to member 1, there is incrementally 

more precipitation in this area through 1800 UTC; this convection also generates PV that 
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Figure 3.19.  The evolution of surface winds vectors, 1-h precipitation (color filled every 10 mm) and 

PV (contoured at 2, 4, 8, and 16 PVU) for members 1 (a-c), 10 (d-f), 16 (g-i), and 19 (j-m) from 1600 

to 1800 UTC 12 June.  PV in encircled regions A and B roughly corresponds with PV anomalies A 

and B from the text.  
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apparently helps to further strengthen the stronger members.  Contributing factors to the  

 
 

Figure 3.20.  Minimum SLP (a) and maximum wind speed (b) for members 1, 10, 16, and 19. 

 
 

sustenance of the southwestern convective region will be discussed in the next 

subsection. 

The differences in low-level PV organization at 1800 UTC are associated with 

varying intensities in terms of SLP and surface winds.  For example, in Fig. 3.20 

member 1 clearly has the strongest maximum winds and lowest SLP, which is consistent 

with its strong PV core.  Members 10 and 16 have generally similar core PV strength 

and organization, which is less than in member 1 at 1800 UTC.  Likewise, their 
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minimum SLP is more similar to one another than to member 1, and their maximum 

winds are significantly weaker than those in member 1.  Though the member-19 cyclone 

center has considerably less areal coverage of high PV than members 10 and 16, its 

maximum local intensity is similar to that of members 16 and 19.  Thus, apparently only 

for the strongest members do organizational differences translate to differences in local 

(maximum) intensity at 1800 UTC.  Yet the more organized cores of members 10 and 16 

are beneficial to storm intensification later in the day, when their cyclones strengthen 

more rapidly than does that of member 19 (discussed in section 3.4.4). 

To summarize, it was shown in this subsection that strength of a low-level PV 

anomaly at 1600 UTC 12 June strongly controls the ultimate strength of the cyclone.  

This anomaly results from the merger of two smaller anomalies, and its strength is 

modulated by the initial strength of the smaller anomalies and the amount of 

precipitation that falls during an eruption of convection around 1500 UTC.  The next 

several subsections will analyze what specific initial factors both favor and inhibit 

convection in the PTOT16Z region.   

 

3.4.2. Contributors to PTOT16Z: MUCAPE and deep moisture 

Deep moisture in Chapter II was found to favor tropical cyclone intensification, and 

here it directly contributes to convection in the PTOT16Z region.  To demonstrate this, 

Fig. 3.21g-i shows ensemble-mean mid-level (3-6 km average) moisture (hereafter in 

this chapter, qmid) and (qmid:PTOT16Z).The large meridional band of strong correlation 
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Figure 3.21.  The relationship between PTOT16Z and antecedent/concurrent Tsfc (a-c), MUCAPE (d-f) 

and mid-level moisture (g-i) in a Lagrangian, storm centered coordinate system.  Ensemble-mean Tsfc, 

MUCAPE, and mid-level mixing ratio (average from 3-6 km) are respectively color filled at intervals of 

1 K, 200 , 0.5 at 1400 (first column), 1500 (second column), and 1600 UTC (third column) 

12 June.  Correlation between the variable in each panel and PTOT16Z is contoured as in Fig. 3.13.  

The PTOT 16Z region is contoured in white in panels (c), (f), and (i).  Surface wind vectors are also 

shown, and the bold ‘X’ represents the position of the mean circulation center at 1600 UTC for 

reference. 

-1J kg -1g kg
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Figure 3.22.  The Lagrangian evolution of ensemble-mean Tsfc (shaded every 0.5 K) and its correlation 

with preceding 3-h precipitation (a), ensemble-mean condensational heating (CON, shaded every 0.5 

) averaged over 1-9 km and its correlation with SLPf  (b) , and ensemble-mean mid-level (3-6-km 

average) moisture (shaded every 0.5 g kg ) and its correlation with SLPf (c).  All variables are 

displayed as a function of radius and time, and CON, Tsfc, and moisture are averaged in 20-km annuli 

before the correlation is computed.  Correlation is contoured as in Fig. 3.13. 

-1hK 
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in Fig. 3.21g-h illustrates the direct causal role that mid-level moisture has in enhancing 

precipitation and thus genesis.  This point is reinforced by Fig. 3.22, which shows the 

evolution of azimuthally averaged qmid and its correlation with SLPf.  Both ensemble-

mean qmid and (qmid:SLPf) generally increase with time in the immediate vicinity of the 

circulation center, which is a reflection of stronger storms having initially more moisture 

and subsequently more abundant convection near the center (Fig. 3.22b).   

In addition to more deep moisture, PTOT16Z convection also benefits from higher 

surface temperature (hereafter in this chapter, Tsfc) and convective instability in its low- 
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level inflow regions.  To show this, ensemble-mean Tsfc (MUCAPE) is overlain with the 

correlation between PTOT16Z and Tsfc (MUCAPE) in Fig. 3.21a-f.  Strongly positive 

(Tsfc:PTOT16Z) shows that higher surface temperatures upstream of the PTOT16Z 

regions are quite clearly beneficial to convection within the PTOT16Z boundary.  In a 

specific example, member 19 has the coolest surface air immediately southwest of the 

circulation center (i.e., upstream of PTOT16Z convection) and generally less 

 
 

Figure 3.23.  Surface temperature (shaded every 1 K) and wind vectors for members 1 (a), 10 (b), 16 

(c), and 19 (d) at 1400 UTC 12 June.  The approximate leading edge of cool, post-frontal air (i.e., the 

299-K isotherm) is marked with a bold dashed line. 

 
 



 79

precipitation in the PTOT16Z region than the other simulations shown in Fig. 3.23.  

Meanwhile, member 1 generally has generally higher Tsfc in the same location than the 

other members shown, and it has very strong convection in the PTOT16Z region.  

Increased Tsfc is favorable because it results in higher MUCAPE, and (all else equal) an 

increase in MUCAPE leads to stronger convection.  Indeed, precipitation that contributes 

to PTOT16Z falls generally downstream of distinct ensemble-mean MUCAPE maxima, 

and MUCAPE in these regions is significantly correlated with PTOT16Z (Fig. 3.21d-f).  

Both (Tsfc:SLPf) and (MUCAPE:SLPf) are respectively quite similar to (Tsfc:PTOT16Z) 

and (MUCAPE:PTOT16Z), which shows that the variance in Tsfc and MUCAPE that 

leads to precipitation differences also leads to similar differences in SLPf.  In addition, 

there is evidence that the intensity of convection in the vicinity of anomaly A at 1100 

UTC is also sensitive to surrounding surface temperature (not shown).  This further 

demonstrates the importance of initial convective instability in generating Humberto and 

is a similar result to that seen in Chapter II.   

Interestingly, Fig. 3.21 indicates that some precipitation areas might be more 

sensitive to variance in MUCAPE, while others are more sensitive to changes in mid-

level moisture.  For example, (MUCAPE:PTOT16Z) is strong in the inflow of the 

southwestern PTOT16Z region at 1400-1500 UTC, and it is weaker (yet still significant) 

in the inflow of the northeastern region.  Meanwhile, PTOT16Z is strongly correlated to 

mid-level moisture upstream of the northeastern PTOT16Z region, but the variables are 

not at all correlated near the southwestern region (Fig. 3.21 g-h).  This suggests that 

variance in inflow MUCAPE is the primary control for precipitation in the southwestern 
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primary PTOT16Z region, and mid-level moisture more strongly controls precipitation 

variance in the northeastern region.   

 

3.4.3. Frontal interaction: An inhibiting factor 

Interaction with the front directly limits intensification in some ensemble members. 

Figure 3.24, which shows ensemble-mean surface mixing ratio (hereafter qsfc) and Tsfc 

along with (qsfc:SLPf) and (Tsfc:SLPf) at 0900 UTC and 1200 UTC 12 June, clearly 

demonstrates that the front negatively impacts SLPf.  As in Fig. 3.3, enhanced Tsfc and 

qsfc gradients along the gulf coast clearly delineate the ensemble-mean position of the 

front.  Strong (qsfc:SLPf) and (Tsfc:SLPf) to the north of the boundary indicate that a 

weaker front is more favorable for cyclogenesis, and similar correlation patterns at later 

times (not shown) indicate that the front continues to negatively impact cyclogenesis 

through the afternoon hours of 12 June.  Figure 3.23 reveals the negative influence of the 

front very early in some ensemble members.  Members 16 and 19, which have weaker 

cyclones than those in members 1 and 10, have cooler air behind the front and also tend 

to ingest post-frontal air sooner.  This is demonstrated by differences in location of the 

299 K isotherm in Fig. 3.23 and is partially a cause of the strong correlation between 

PTOT16Z and Tsfc in Fig. 3.21a-b.   

Though the close proximity of the front could conceivably cause system location to 

be an important factor during the early stages of genesis, such does not appear to be the 

case before 1800 UTC.  Pre-1800-UTC position is well stratified by strength in Fig. 3.6b, 

but very low position spread in the EnKF analyses indicates that position alone probably 
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is not a controlling intensification factor at that time.  There is only about 30-40 km of 

longitudinal separation between the western-most and eastern-most cyclones in Fig. 3.6b, 

which alone is insufficient distance to strongly govern the extent of front-cyclone 

interaction.  For example, an inspection of the ensemble members in Fig. 3.23 reveals no 

clear indication that storms further west interact with the front more strongly by 1400 

 

 

Figure 3.24.  Ensemble-mean Eulerian surface temperature (a-b) and moisture (c-d) fields as well as 

the correlation between SLPf and the respective fields at 0900 (left column) and 1200 UTC (right 

column) 12 June.  Temperature (moisture) is shaded every 1 K (1 g kg ), and correlation is 

contoured as in Fig. 3.13. 
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UTC.  Member 10 is the western-most storm in Fig. 3.23, but it has surface temperatures 

warmer than those in members 16 and 19.    

It appears that the main reason for strong stratification of position by strength in Fig. 

3.6b (and correlation between pre-1800-UTC longitude and SLPf) lies in the relationship 

between frontal strength and the mean regional winds.  For an undetermined reason 

(beyond the scope of this study), the strength of the front is very strongly anticorrelated 

with the mean zonal wind (u) below 6 km in the genesis area (i.e., members with 

stronger fronts also have a stronger easterly wind component, not shown).  Since mean 

background winds are known to determine tropical cyclone track (zonal wind and storm 

longitude are strongly correlated here as well), the very early stratification of track by 

strength appears to be a byproduct of the relationship between the front and wind fields.   

In summary, this subsection has shown that the presence of the front significantly 

inhibits development in ensemble members whose cyclones interact with it more 

strongly.  Members with the weakest cyclones have the strongest fronts, and cooler, 

post-frontal air entrains into their circulations.  Previous subsections show that 

convection leading to genesis is weaker when surface temperatures and instability are 

lower, so the effect of the front is to diminish this convection and ultimately PV 

production and genesis.   

 

3.4.4. Post-1800 UTC evolution 

To review, it was previously shown that variance in storm intensity by 1800 UTC 

explains a vast majority of SLPf variance.  Stronger storms at 1800 UTC evolve from 
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stronger low-level PV anomalies that initially appear around 1100 UTC in the ensemble 

mean.  These anomalies are built by intense convection, which itself is fed by higher 

MUCAPE and mid-level moisture. Since a stronger surface front reduces surface 

temperature and convective instability, it also inhibits genesis.  Finally, since SLPf is so 

strongly correlated with 1800-UTC cyclone strength, any processes acting after 1800 

UTC generally only increase existing differences.  This subsection investigates how 

spread increases after 1800 UTC. 

Interaction with the surface front continues to be the most important mechanism 

governing cyclone intensity during the afternoon of 12 June.  Unlike the period before 

1800 UTC, however, storm track becomes an increasingly important factor.  The reason 

for the change in relevance of storm position is related to the change from using EnKF 

analyses to using an ensemble forecast.  At and before 1800 UTC, track spread is fairly 

low because EnKF analyses adjust the cyclone position in all members toward the 

observed track (Fig. 3.6).  Therefore, differences in interaction with the front are not 

strongly a result of differences in storm position.  However, spread increases 

substantially after 1800 UTC, when the background wind is free to advect cyclones 

without track adjustment by the filter.  The 2100-UTC result of larger track spread is a 

much stronger track-dependent difference in cyclone-front interaction (Fig. 3.25).  For 

example, not only do members 16 (Fig. 3.25c) and 19 (Fig. 3.25d) have drier air behind 

the front, but their cyclones are visibly further west and closer to the front than those in 

members 1 (Fig. 3.25a) and 10 (Fig. 3.25b).  Recall that that the westerly wind 

component is strongly anticorrelated to front strength, so storms embedded in weaker 
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westerlies must fight a stronger front in addition to encountering the front sooner (e.g., 

in Fig. 3.6, storms with stronger westerlies move to the northeast, somewhat parallel to 

the front).  Thus, the cyclones in members 16 and 19 face a serious uphill battle. 

Other processes present before 1800 UTC persist through the afternoon as well.  For 

example, the convection that begins at 1500 UTC in the southwestern PTOT16Z region 

lasts through the afternoon and into 13 June (see the boxed area in Fig. 3.26a for 

reference).  This post-1800-UTC convection remains similar to the initial PTOT16Z 

 
 

Figure 3.25.  Surface mixing ratio (shaded every 1 ) and wind vectors are shown for members 1 

(a), 10 (b), 16 (c), and 19 (d) at 2100 UTC 12 June.  The approximate leading edge of dry, post-

frontal air is marked with a bold dashed line. 

-1g kg
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convection in terms of its relationship with SLPf and surrounding thermodynamic fields.  

First, average precipitation inside the box in Fig. 3.26a is strongly correlated to SLPf, a 

likely result of continued low-level PV production in this region (e.g., Fig. 3.27a).  

Second, precipitation continues to be strongly correlated to its low-level inflow 

temperature (Fig. 3.28a), which indicates persistent importance of convective instability 

for genesis and intensification.   

Another interesting result from Fig. 3.28 is that stronger convection produces 

stronger cold pools through the afternoon of 12 June.  For example, surface temperatures 

downstream of the boxed area in Figs. 3.26a and 3.28a are strongly anticorrelated to 

mean precipitation within the boxed region.  Yet, precipitation in the same region is 

strongly correlated with SLPf, which indicates that the negative effects of downdrafts do 

not outweigh the benefits of PV production.  In fact, convection in this area continues 

producing low-level PV through at least 2100 UTC (see Figs. 3.19 and 3.27), and this 

 
 

Figure 3.26.  The relationship between SLPf and 3-h rainfall ending at 2100 (a), 0000 (b), and 0300 

UTC (c).  Ensemble-mean rainfall is shaded every 20 mm, and correlation is contoured as in Fig. 

3.13.  Analysis is completed in a Lagrangian coordinate system with the center of each panel at the 

ensemble mean center location. 
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Figure 3.27.  The evolution of PV (contoured at every 5 PVU with increasing thickness indicating 

increasing values) and simulated radar reflectivity (shaded every 10 dBZ) for members 1 (a-c), 10 (d-

f), 16 (g-i), and 19 (j-m). 
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PV eventually becomes ingested into the circulation center.  In addition, other core 

precipitation that is strongly correlated with SLPf produces downstream cold pools 

through 0000 UTC 13 June (Figs. 3.26b-c, Fig. 3.28b-c).  In a cyclone-mean sense, 

Figure 3.28.  Ensemble-mean precipitation (shaded every 10 mm) from 1800 to 2100 UTC (a-b), 

2100 to 0000 UTC (c), and 0000 to 0300 UTC (d) and correlation between Tsfc and area-average 

precipitation within the gray box.  Correlation is contoured as in Fig. 3.13, and surface wind vectors 

are also shown.  Analysis is completed in a Lagrangian coordinate system with the center of each 

panel at the ensemble mean center location. 
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anticorrelation between azimuthally averaged precipitation totals and Tsfc is present 

through 2100 UTC (Fig. 3.22).  Importantly, the strength of the cold pools decreases 

through the day (not shown).The above results are especially interesting in light of the 

fact that the entire ensemble intensifies at the same time that convection produces cold 

downdrafts (e.g., see Fig. 3.2).  Only after 0000 UTC does anticorrelation between Tsfc 

and core convection cease to be statistically significant immediately surrounding the 

cyclone center (Fig. 3.26c).  By this time, pressure has dropped by greater than 5 hPa, 

and wind has increased beyond tropical storm strength in most ensemble members.  

Thus, cessation of cool downdrafts is not necessary for intensification.  Rather, as 

intensification proceeds, downdrafts either weaken, or some other process mitigates their 

effects. 

In fact, it appears that enhanced oceanic heat flux (hereafter in this chapter, FLUX) 

both directly and indirectly increases Tsfc and maintains storm intensity in face of 

downdraft activity.  First, strongly negative (FLUX:Tsfc) near the mean center in Fig. 

3.29c shows that Tsfc variance directly modulates FLUX variance until about 0300 UTC 

13 June.  Thus, any decrease in Tsfc due to downdrafts is likely associated with an 

increase in FLUX, which probably contributes to the diminishing statistical relationship 

between precipitation and cold pools in Fig. 3.28d.  Indeed, ensemble mean Tsfc inside 

40 km rises from 1800 UTC 12 June until 0000 UTC 13 June (Fig. 3.22a) despite the 

fact that mean, downdraft-producing convection near the center increases markedly 

during the same time period (Fig. 3.22b).  (FLUX:SLPf) in Fig. 3.29a indicates that 

stronger storms at 0600 UTC 13 June have had generally higher FLUX on 12 June.  
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Thus, the high FLUX in stronger storms more efficiently combats their more widespread 

cold pools.  Second, increased FLUX through the afternoon of 12 June should also 

indirectly contribute to warming Tsfc by leading to more convection, which itself 

moistens the mid-troposphere (note that mid-level moisture indeed rises through the day 

in Fig. 3.22c).  With a more humid mid troposphere, the temperature of downdrafts 

should increase and downdrafts themselves should weaken.  .   

The rapid increase in ensemble-mean FLUX in Fig. 3.29 and diminished relationship 

between stronger convection and cold pools essentially signals the onset of WISHE and 

evolution to a mature tropical cyclone.  Tropical cyclone dynamics are also strongly 

implied by 0600 UTC (FLUX:Tsfc) and (FLUX:qsfc).  The rapid strengthening of these 

correlation fields indicates that storms with stronger surface fluxes begin to have warm, 

 
 

Figure 3.29.  Ensemble-mean total heat fluxes (FLUX, shaded every 100 W ) overlain with 

(FLUX:SLPf) (a), (FLUX:qsfc) (b) and (FLUX:Tsfc) (c) as a function of radius and time.  All 

variables are averaged in 20-km annuli before computing the correlation, and correlation is contoured 

as in Fig. 3.13. 
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moist surface air over a large area surrounding their centers.  With enhanced FLUX 

easily overcoming the effects of downdrafts and the weakening of downdrafts, Tsfc and 

qsfc increase and provide a more favorable environment for strong convection.  Thus, 

stronger storms are able to strengthen more quickly because they have stronger heat 

fluxes; this is the essence of the WISHE mechanism. 

Both the continuation of processes ongoing before 1800 UTC and strength-

dependent oceanic heat fluxes lead to further organization and strength differences in the 

ensemble.  From 2100 UTC 12 June to 0300 UTC 13 June, the 2-km PV core is 

significantly stronger in member 1 (Fig. 3.27a-c) than in members 10, 16, and 19 (Fig. 

3.27 d,g,j).  Though members 10 and 19 are initially similar in terms of 2-km PV and 

surface intensity, they also begin to diverge by 0300 UTC.  Member 19 lags farthest 

behind with less high PV at 2 km, fairly high SLP, and low winds.   

Finally, differences in landfall time after 0600 UTC have an effect on the ensemble 

that is dynamically similar to but increasingly more pronounced than the front.  Because 

the front lies parallel to the coast, variance in frontal interaction must necessarily be 

associated with differences in the time that a storm is over water.  While entrainment of 

post-frontal air certainly lowers instability and hinders convection, landfall is a much 

more severe instantaneous effect that completely shuts off the source of instability.  The 

above correlation analysis was constructed in a way that minimizes the effects of landfall 

on the diagnosed dynamics (by using SLPf at 0600 UTC, before most members have 

made landfall in Fig. 3.6b) so that the above other factors could be investigated, but the 
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landfall of storms thereafter leads to increasing spread until storms in most members 

have made landfall (Fig. 3.3c-d). 

 

3.4.5. Other processes relevant to intensification 

Deep-layer shear is also known to inhibit genesis, so its relation to intensification in 

the ensembles is also briefly shown here.  The positive early correlation between SLPf 

and deep-layer shear in Fig. 3.5 indicates that either the initial shear is beneficial for 

genesis or the pre-1800-UTC analysis increments do not correctly capture the 

relationship between upper level winds, convection, and storm intensity.  Since 

ensemble-mean shear is quite low before 1800 UTC, it is possible that shear helps to 

organize convection during this time frame (e.g., as in Molinari et al. 2004).  After 1800 

UTC, however, shear intensifies and clearly becomes an inhibitor to intensification.  The 

magnitude-dependent effects of shear are similar to the results of Chapter II. 

The tendency for (qmid:SLPf) to be highly variable beyond a radius of about 60 km 

is also similar to the results of Chapter II.  Initial mid-level moisture there was well-

correlated with final intensity over a large area.  However, at later times, only mid-level 

moisture very near the center was correlated with intensity.  It was found that the 

varying correlation between large-scale, mid-level moisture and final intensity was due 

to the establishment of a secondary circulation; subsidence outside of the immediate 

vicinity of the cyclone is stronger with increasing cyclone strength.  In the case of 

Humberto, it was shown that strong positive (qmid:SLPf) around 1500 UTC is the result 

of mid-level moisture favoring more precipitation.  Meanwhile, the substantial drop in 
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correlation later in the day may very well be due to subsidence outside of the peak 

condensational heating annulus, as in Chapter II. Interestingly, (qmid:SLPf) changes sign 

again around 0600 UTC 13 June.  This change might be due to convection forced by the 

eventual interaction of stronger circulations with the front (not shown). 

 

3.5. Discussion 

It has been shown that an ensemble initialized with EnKF perturbations can 

accurately capture the genesis and intensification of Hurricane Humberto, a storm 

deemed highly unpredictable in the operational environment.  Not only does the EnKF-

initialized ensemble produce storms that span the observed strength of the cyclone, but 

some ensemble members produce cyclones with reasonable structure and mesoscale 

interaction with a nearby front.  Even the poorest performing ensemble members 

perform better than operational models, which completely failed in this event.  Yet, the 

EnKF-initialized ensemble produces huge spread, which further highlights the lack of 

predictability of this event.   The large ensemble spread and good ensemble performance 

make this an ideal case to test the results of Chapter II and further investigate the source 

of error in the forecast of an actual tropical cyclone. 

Perhaps the most significant result of this chapter is that the results of Chapter II 

have generally been confirmed.  Though the ensemble initialization method, the genesis 

environment, and the storm itself are very different here than in Chapter II, MUCAPE 

and mid-level moisture have once again been found very important at determining how 

quickly cyclones strengthen in various ensemble members.  Thus, it appears that the 
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main sources of uncertainty (spread) in the ensemble forecast here are the instability and 

mid-level moisture fields.  Spread in the instability analysis and forecast appears to be a 

result of differing positions of the front and the extent to which the front and cyclone 

interact.  Meanwhile, mid-level moisture differences among ensemble members might 

stem from the lack of in-situ moisture observations over the Gulf of Mexico.   

With respect to the above result, one significant difference between the current case 

and Chapter II is in regard to the areal extent of positive correlation.  In Chapter II the 

correlation between SLPf and both MUCAPE and mid-level moisture extended to the 

synoptic scale (not shown, but implied to some extent by the averaging area of the 

variables), but in the current chapter the correlation is limited to inflow regions of 

convective areas.  This difference is very likely due to the difference in ensemble 

initialization.  For instance, with only large-scale initial perturbations and no convection 

in the analysis, the cold-start technique in the Chapter II ensembles produces initial 

spread only at large scales.  Thus the correlation length scale is very large, and 

convective intensity is well related to CAPE and moisture in the entire surrounding 

region.  Meanwhile, the presence of cold pools and mesoscale variations associated with 

the hot-start technique in the current case leads to a shorter correlation length scale in the 

analyses.  Specifically, CAPE and mid-level moisture are correlated to precipitation only 

in the convective inflow regions. 

Improvements in analyses and model physics could likely reduce some of the above 

uncertainty.  For example, more numerous in situ observations can also further refine the 

exact position of features such as fronts and better estimate the state of the atmosphere in 
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regions that are currently only remotely sensed.  A practical result of these 

improvements would be less ensemble spread later in the forecast period and more 

accurate specification of the true intensification.   

Yet, the behavior of the various ensemble members here indicates that a certain 

(fairly large) degree of uncertainty might always be expected in some situations.  For 

instance, the RMS spread of lower tropospheric variables in the 1800-UTC EnKF 

analysis is comparable to typical analysis error (not shown).  Even if significant 

improvements were made to the analysis, it is likely that large (albeit less) strength 

spread would remain simply because of small differences in the trajectory of the cyclone 

and the time it would take for the cyclone to interact with both the front and land.  In 

order to understand how minute differences in initial conditions can impact the forecast 

of a tropical cyclone, the next chapter in this dissertation will return to the 2004 gulf low 

and examine the sensitivity to error far smaller than can be detected by any analysis or 

observation system.  
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CHAPTER IV 

AN ASSESSMENT OF THE LIMIT OF INTRINSIC 

PREDICTABILITY OF THE GULF LOW* 

 

4.1. Introduction 

With probabilistic dynamic analyses completed and similar results obtained for a 

case independent of the gulf low (i.e., Chapter III), it is more certain that the results from 

the gulf low case (i.e., Chapter II) represent realistic processes and are  relevant to more 

than just an isolated event.  This chapter therefore now turns back to select ensemble 

members from Chapter II to investigate the effects of very small changes in initial 

conditions on tropical cyclone formation.  The purpose of this chapter is to better 

understand the inherent limit of tropical cyclone predictability arising from initial errors 

with amplitudes far smaller than any observation and analysis system.   

In particular, this chapter analyzes the effects of initial condition differences on both 

larger scale structure and smaller scale variations during tropical cyclone formation.  

Although the results of Chapter II imply that large-scale thermodynamics play an 

important role in tropical cyclone formation, the mesoscale area averages utilized in 

Chapter II preclude insight into the importance of smaller scale features such as VHTs.  

This paper investigates how both larger mesoscale variations and VHT 

generation/evolution are impacted by initial condition error.   

                                                 
* Reprinted with permission from “Effects of Moist Convection on Hurricane Predictability” by F. Zhang 
and J. A. Sippel.  J. Atmos. Sci., in press. 
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Figure 4.1.  Difference between surface and 850-hPa temperature (thick; every 0.5K), mixing ratio 

(thick lined and shaded; every 0.5 g ) and horizontal wind vectors (full barb 5 represents ) 

for (a-b) ensemble members 6 and 20 and (c-d) the NCEP/NCAR and ECMWF global reanalyses 

interpolated to the MM5 grids at 00 UTC 30 July. 

-1kg -1s m

4.2. Methodology 

In this chapter initial-condition sensitivity experiments are used to explore the 

dynamics that leads to drastic difference in storm development between members 6 and 

20 in the CTRL ensemble of Chapter II.  Recall from Chapter II that member 6 develops 

a strong tropical storm and member 20 remains very weak after 36 hours.  These strong 

final differences come in spite of initial RM-DTE between the two members being less 
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than typical analysis error (e.g., Fig. 2.2).  Furthermore, Fig. 4.1 shows that the initial 

surface and 700-hPa wind, temperature and mixing-ratio differences the two members 

are generally equal to or smaller in magnitude than differences between the NNRP and 

ERA reanalyses.  Thus, the discrepancies between these two extreme members are 

comparable to realistic analysis uncertainties in the large-scale environment.  Additional 

analysis uncertainties related to the mesoscale and microscale structure of the tropical 

disturbances, along with errors in the forecast model, may lead to even stronger forecast 

divergence and thus further limit hurricane predictability.  However, the current study 

focuses only on the effect of large-scale environment initial uncertainty on the 

predictability of tropical cyclones. 

Nomenclature for the experiments in this chapter is as follows.  For simplicity, the 

non-developed member 20 is defined to have an initial perturbation of zero (hereafter 

member 20 will be “QRT0”).  The difference between members 6 and 20 for all 

prognostic variables is defined as one unit state vector (hereafter referred to as the 

“difference vector”).  Thus the perturbation magnitude for member 6 is 1 unit, or 4 

quarters (hereafter member 6 will be “QRT4”).  Also performed is a series of sensitivity 

experiments, each with an initial perturbation added to QRT0 that varies in amplitude 

from -0.5 to 1.5 in units of the difference vector.  For example, an initial perturbation 

value of 1.5 (which is experiment QRT6) corresponds to adding 1.5 times the initial 

difference between QRT0 and QRT4 to the reference experiment QRT0, and a 

perturbation value of -0.5 corresponds to subtracting the half the difference from QRT0 

(which is experiment QRTM2). Values of 0.5 and 0.75 correspond to experiments QRT2 



 98

 

M
in

im
um

  
S

LP
 (

hP
a)

 

 

Figure 4.2.  Sensitivity of the 36-h minimum SLP to initial-perturbation amplitude. The x-axis 

depicts the initial perturbation magnitude scaled by the difference vector, which is the initial 

difference for all prognostic variables between QRT4 (i.e., member 6) with a circle and QRT0 (i.e., 

member 20) with a square. 

and QRT3, which respectively add perturbations to QRT0 with amplitudes of 2 and 3 

quarters that of the difference vector.  Experiments QRTM1 and QRT5 respectively 

correspond to perturbations of -0.25 and 1.25. 

As in Chapter II, the results here carry the caveat of using a cold-start technique to 

initialize the ensemble.  The probable result of having no convection in the initial 

analysis is that the model produces very strong convection during the spin-up period.  

Despite this limitation, the results of Chapter III suggest that the basic principles 

governing the Chapter II results are indeed physically relevant to the atmosphere. 
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Figure 4.3.  Comparison of the 36-h surface wind speed (only >10 m , color filled every 2 m s ) 

and sea-level pressure forecasts of the Gulf low (a) QRT0, (b) QRT2, (c) QRT3 and (d) QRT4. The sea-

level pressure (contoured every 2 hPa) is smoothed 9 times with a 5-point smoother. Tick marks denote 

a horizontal distance of 100 km. 
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4.3. General characteristics of experiments 

Figures 4.2 and 4.3 demonstrate that the above simulations can be clearly grouped as 

“developing” and “non-developing”.  Figure 4.2 shows sensitivity of the 36-h minimum 

SLP change to adding different perturbations.  The 36-h minimum SLP has a strongly 

nonlinear distribution with a fairly strong first-order discontinuity around 0.75.  The 
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transition zone in Fig. 4.2 is very narrow, and a change as small as one quarter of the 

difference vector (i.e., from QRT2 to QRT3) distinguishes whether or not a well-

organized tropical cyclone will form.  Figure 4.3, which shows the 36-h surface wind 

and SLP from QRT0, QRT2, QRT3, and QRT4, further demonstrates the narrow 

transition zone. QRT3 and QRT4 are both near category 1 hurricane strength, and each 

has an impressive primary rain band and a nearly closed eyewall (not shown).  In the 

meantime, there is virtually no tropical development in QRT0, while QRT2 forms a 

generally unorganized tropical cyclone.   

The simulations with developing systems can also be distinguished in terms of 

organization as early as 6 h, a result that will be discussed in much more detail in 

sections 4 and 5.  For now, it is sufficient to say that simulations QRT2 through QRT6 

develop both a larger scale circulation and strong, 20-50-km vortices, which will be 

referred to as VHTs5.  Examples of VHTs in QRT5 and QRT6 at 9 h are shown in Fig. 

4.4, where 985-hPa e , wind vectors, and vertical vorticity are shown along with 500-

hPa vertical velocity.  The towers of strong vorticity are always initially associated with 

updrafts (as in anomalies A1, B1, C1, B2, and C2 in Fig. 4.4), though sometimes the 

vorticity remains long after the updraft dies (as in A2; such features which will be 

referred to as a remnant vortices since a VHT must be associated with an updraft).  Both 

QRT0 and QRT1 also initially develop weaker larger scale circulations and a few small-

                                                 
5 The vortices here do not seem to precisely match the characteristics of any features heretofore discussed 
in literature.  Their association with deep convective updrafts suggest a formation mechanism similar to 
that of VHTs (Hendricks et al. 2004; Montgomery et al. 2006), though they appear to be somewhat larger 
than the 10-30-km scale suggested in Montgomery et al. (2006).  Since the vorticity features here are 
analyzed only on the 10-km grid due to data processing and storage constraints, aliasing error might make 
such features appear to be larger than they actually are.  Considering this possibility, and since this is a 
numerical study and the vortices here generally resemble VHTs, the ‘VHT’ term is used. 
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scale vorticity anomalies near their limited convective cells.  However, their small-scale 

features are weak, isolated, ephemeral, and they hardly resemble VHTs.  Meanwhile, 

QRTM1 and QRTM2 take 12-18 h to even develop a very weak larger scale circulation.  

Finally, in light of the small initial condition differences between QRT0 and QRT4, 

the stark differences between QRT0 and QRT4 cyclone development is somewhat 

alarming.  In particular, the initial root-mean square difference between QRT0 and 

QRT4 is smaller than NCEP-assumed observational errors and differences between 

 

Figure 4.4.  Surface (985-hPa) wind vectors (scaled differently in each panel), absolute vorticity 

(black contours every 2.5  beginning at 5 1 ), -4 -110  s -4 -10 s e  (color filled every 1 K), and 500-

hPa vertical velocity (solid white contours at 0.5 and 1.0 m s ) at 9 h in simulations (a) QRT5 and 

(b) QRT6.  The axes are labeled every 5 grid points (50 km) on the 10-km grid, and several VHTs or 

remnant vortices are labeled in bold.  

-1
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global analyses of lead operational centers for all variables at nearly every vertical level 

(Figs. 2.3 and 4.1).  The large difference in outcome due small initial uncertainty in the 

large-scale environment further highlights the potential for extreme difficulty in 

deterministic prediction of hurricane formation and intensity. 

 

4.4. Effects of moist convection: Storm scale 

In the previous section, it was demonstrated that a sharp transition occurs around an 

initial perturbation of 0.5.  The following section examines the detailed the role of moist 

convection in the extreme sensitivity of model solutions to very small initial-condition 

differences between the simulations shown in Fig. 4.2 (though the main focus will be on 

those from Fig. 4.3).  Due to time and storage issues related to post-processing large 

quantities of data from the 3.3-km grid, all analysis will take place on the 10-km grid. 

The choice of initial variables/parameters to examine is motivated by the findings of 

Chapter II.  In particular, Fig. 4.5 shows the time evolution of responses to the different 

initial conditions in all simulations in Fig. 4.2 averaged over a 300  box 

area (hereafter referred to as a “storm-scale” average)

 km   300 km 

6 except for maximum surface 

vorticity (panel f) and wind speed (panel d).  Chapter II found that initial MUCAPE was 

well correlated to cyclone intensification, but this chapter instead examines surface e .  

                                                 
6Before convection begins, the box center is near the 700-hPa circulation center in all simulations between 
from QRT0 to QRT6, which is where convective initiation occurs.  Thereafter, the box center follows the 
surface to 850-hPa vorticity center in those same simulations.  Because convection is almost completely 
inactive in simulations weaker than QRT0, a surface low is very slow to form.  Therefore, the box center 
in those simulations follows that of QRT0 for the entire simulation.  Only small changes in storm-scale 
averages occur if the box center is defined by other metrics. 
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Initial MUCAPE and e  were strongly correlated at early times in Chapter II, so 

differences in e  represent similar differences in MUCAPE.  In addition, surface e  has 

the added benefit of demonstrating cold pool strength and the extent of planetary 

boundary layer (PBL) recovery after cold pool formation. Meanwhile, storm-scale 700-

hPa vertical velocity (w) and 3-h precipitation totals demonstrate differences in 

convection, and average wind speed and vorticity show differences in intensity on the 

system scale.  Maximum surface wind speed and vorticity are metrics of system strength 

on local scales.  

In a manner consistent with Chapter II, storm intensity appears to vary with initial e  

differences and the amount of initial precipitation that falls.  Simulations with higher 

 

Figure 4.5.  Time evolution of storm-scale averaged (a) 700-hPa vertical velocity ( ), (b) 3-h 

accumulated precipitation (mm), (c) surface wind speed ( ), (e) surface vorticity ( ), (g) 

surface heat fluxes ( ), and (h) surface 

-1m s
-1m s -4 -110 s 

-2W m e (K) as well as (d) maximum surface wind ( ) and 

(f) vorticity ( )  in all simulations shown in Fig. 4.2.  

-1m s
-3 -110 s 
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initial instability in Fig. 4.5h have stronger mean upward velocity at 700 hPa through 6 h 

(Fig. 4.5a), and they generate more precipitation during the first 9 h (Fig. 4.5b).  

Likewise, these same simulations have generally stronger storm-scale surface wind 

speeds and vorticity by 6-12 h (Fig. 4.5c-f).  The apparent inability to develop a cyclone 

without an initial round of convection is quite evident by the similarly low storm-scale 

winds and vorticity in QRT0, QRTM1, and   QRTM2. 

 

4.4.1. Convective instability and convection 

While the initial differences in most variables in Fig. 4.5 are quite small compared to 

their later differences, differences in surface e  (due to both temperature and moisture 

differences) are considerably larger at the initial time than they are at later times.  For 

example, initial surface e  in QRT4 (i.e., member 6) is a little more than 4.5 K higher 

than in QRT0 (i.e., member 20), but it decreases to less than 2 K at later times.  The 

initial difference in surface e  between QRT0 and QRT4 (Fig. 4.6a), though seemingly 

big, is comparable to the difference between NCEP and ECMWF global reanalyses over 

this region (Fig. 4.6b).  This difference therefore grossly represents the realistic large-

scale initial-condition uncertainties in tropical cyclone prediction.  The following 

discussion will show that the underlying cause for diminishing e  variation is that 

convection tends to equilibrate convective instability among the simulations.  Meanwhile, 

the same differences in convection tend to increase variation with other variables and 

metrics of strength. 
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Figure 4.6.  The initial difference in surface e  (every 0.5K; negative dotted) between (a) QRT0 and 

QRT4, and (b) between the NCEP/NCAR (NNRP) and ECMWF (ERA) reanalyses interpolated to the 

MM5 grids. 

If, as found in Chapter II, higher initial surface instability results in more 

precipitation, then it must do so as a result of more intense and/or widespread updrafts.  

Although mean 700-hPa w is indeed stronger in simulations with higher initial instability, 

general updraft (and downdraft) characteristics are not clear from such a mean.  In order 

to better understand early updrafts, the analysis in Fig. 4.7a-b is undertaken by first 

calculating vertical mass flux per unit area at every point and every -level in the storm-

scale region every 30 m from 0-6 h, 6-9 h, and from 0-9 h.  The first time period 

encompasses the strongest convection in all simulations and ends generally before strong 

cold pools form, the second period begins about when significant cold pools begin to 

form, and the sum of the two periods spans the duration of the heaviest precipitation for 

all simulations in Fig. 4.5.  Mass flux per unit area is calculated by multiplying vertical 

velocity by density at each grid point.  Grid point values are sorted into 0.5  vertical  m s-1
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Figure 4.7.  Difference in total vertical mass flux per unit area between (a-c) QRT4 and QRT3 and (d-f) 

QRT3 and QRT2 as a function of vertical velocity ( ; x-axis) and height.  Differences are shown 

from (a,d) 0-6 h, (b,e) 6-9 h and (c,f) 0-9 h with positive (negative) differences shaded (dash-contoured) 

every 20  beginning at 5 (-5) kg s  . 

-1m s

-1 -2kg s m -1 -2m

velocity bins (from -2 m s  to 6.5 m s ) with each -level retaining its own set of bins.  

Vertical mass flux is then summed for all grid point w values in each bin, and the 

difference in resulting sums between QRT4 and QRT3 and between QRT3 and QRT2 is 

contoured as a function of updraft velocity and height.  Positive values in Fig. 4.7a,c 

indicate greater upward flux in QRT4 than QRT3, and positive values in Fig. 4.7b,d 

indicate greater upward flux in QRT3 than QRT2.  

-1 -1

Convection is clearly stronger during the first 6 h in simulations with higher 

instability.  Figure 4.7a,d shows that net 0-6-h upward mass flux increases incrementally 

from QRT2 to QRT4 for nearly all updraft speeds at any given level.  An exception is 
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that the very strongest updrafts in QRT3 are stronger than those in QRT4, but this 

represents only one or two updrafts.  The greatest upward fluxes in QRT4 indicate that 

updrafts of a particular intensity cover a greater area and/or last longer in that simulation.  

Likewise, QRT2 has weaker upward mass flux than the other two simulations.  

 

4.4.2. Cold pools 

Also associated with the stronger convection in the more unstable simulations are 

stronger downdrafts that lead to substantial drops in surface e .  While e  rises during 

the first few hours due to horizontal advection and oceanic heat fluxes, it drops 

proportionally with 6-h precipitation totals after convective initiation in QRT1 through 

QRT6.  For example, although simulations QRT4 through QRT6 have higher initial e , 

they also have more initial precipitation, and downdrafts quickly cool their surface to a 

value below that seen in the other simulations (Fig. 4.5h).  As a testament to the strong 

downdrafts in QRT4, Fig. 4.7 shows that downward mass flux is unambiguously 

stronger for all downdraft speeds at all levels in QRT4 than in QRT3.  Likewise, QRT3 

has generally stronger downward mass flux than QRT2, especially during the first 6 h. 

An interesting result in Fig. 4.5h is that the cold pool strength in QRT3 is more 

similar to QRT2 than the other convectively active cases from 6-12 h.  Although the 

reason for this is not entirely clear, it will be discussed in more detail in section 5.  For 

now, the important result is that QRT3 has substantially more convection than QRT2, 

but it does not have as strong of a cold pool as QRT4, QRT5, and QRT6. 
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Widespread colder surface air eventually diminishes updrafts near the centers, 

especially in QRT4 through QRT6.  Figure 4.7b reveals that 6-9-h total updraft flux in 

QRT3 surpasses that in QRT4 for stronger updrafts over much of the troposphere, which 

is a substantial change from the 0-6-h total in Fig. 4.7a.  The difference between Fig. 

4.7a-b is a result of the surface cold pool in QRT4 reducing instability and therefore the 

number of strong updrafts near the center after 6 h.  Although mean vertical motion in 

QRT4 remains positive through 9 h (Fig. 4.5a), it becomes negative for a period between 

9 and 12 h.  There is also subsidence from 9-12 h in QRT5 and QRT6, and storm-scale 

700-hPa w is lower in QRT4 through QRT6 than any of the other simulations during this 

period (Fig. 4.5a).  QRT4 through QRT6 also generally produce less precipitation than 

QRT2 and QRT3 from 9-15 h (Fig. 4.5b).  Simulations QRT2 and QRT3 also exhibit 

substantial drops in e  and precipitation totals due to cold downdrafts by 12 h, and the 

period from 12 to 24 h is convectively the least active period for all developing 

simulations.   

 

4.4.3. Vorticity production: A response to convection  

Simulations with greater net vertical mass flux should also have stronger production 

of vertical vorticity via stretching deformation.  Vorticity budgets (not shown) and the 

time evolution of storm-scale vertical vorticity (displayed as a function of height in Fig. 

4.8) indicate that there indeed is a tendency for vorticity to strengthen from simulation 

QRT2 to QRT4.  A vorticity maximum initially between 700 and 850 hPa grows 

stronger and deeper with time, and around 6 h there is a rapid increase in storm-scale 
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vorticity through the entire depth of the troposphere in all three simulations.  Thus, 

incrementally higher precipitation totals in QRT3 and QRT4 lead to incrementally 

higher vorticity values through much of the troposphere.   

The response in storm-scale vorticity to the widespread downdrafts and cold pools 

can also be seen in Fig. 4.8.  Storm-scale vorticity decreases somewhat after 9 h in 

QRT3 (Fig. 4.8b), and it decreases strongly in QRT4 (Fig. 4.8c).  This is consistent with 

stronger downdrafts and negative mean 700-hPa w in QRT4.   

 
              12 h                  24 h              36 h               12 h                  24 h               36 h               12 h                  24 h              36 h 

Figure 4.8.  Evolution of the vertical distribution of vorticity (every ) averaged over  the 

storm scale  region for (a) QRT2, (b) QRT3 and (c) QRT4, respectively. 

5 -12 10 s

 

4.4.4. Recovery period and beyond 

In the absence of widespread convection, the planetary boundary layer (PBL) 

recovers from the prolific cold pools present at 12 h. When e  reaches 355-357 K (at 

about 24 h), persistent convection begins again at the circulation centers of the active 

simulations.  Storm-scale e  becomes higher in the simulations with weaker 

cyclogenesis because there is less convection producing downdrafts in those simulations. 

As rainfall begins to increase again in QRT2 through QRT4, the vortices grow stronger 
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and deeper (Fig. 4.8) with higher surface wind speeds and heat fluxes (Fig. 4.5).  

Simulations QRT4, QRT5, and QRT6 all exhibit impressive increases in maximum wind 

speed after 24 h, and peak surface winds at 36 h are nearly twice those at 24 h.    

Interestingly, stronger storms tend to have more storm-scale precipitation after the 

recovery period.  One possible reason for this is that Ekman pumping is stronger in the 

simulations with stronger storm-scale circulations.  Increased boundary layer forcing in 

these simulations could conceivably ignite more widespread convection than in the 

weaker simulations.  Another possible reason for the relationship between precipitation 

and system strength is quasi-geostrophic lift caused by shear-vortex interaction.  For 

example, when convection reignites in the developing cases, it tends to do so downshear 

to downshear-left of the vortex center (not shown).  Since this is known to be a favorable 

location for lift due to shear-vortex interactions (Frank and Ritchie 1999, 2001; Rogers 

et al. 2003; Jones 1995, 2000a,b), it is plausible that this mechanism acts to enhance 

convection in these experiments.  If this is the case, stronger lift is expected when either 

the vortex or shear is stronger (to the limiting extent that shear does not destroy the 

vortex).  In the present simulations, it appears that a combination of both stronger 

vortices and stronger deep-layer (i.e., 200-850-hPa) shear could be enhancing 

precipitation after 24 h (deep-layer shear is 4-8 m s  in QRT5 and QRT6 during this 

period, while it is 3-4 m s  in the other simulations), but the full extent to which this is 

the case is beyond the scope of this study. 

-1

-1
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4.5 Effects moist convection: Local scales  

Although the previous section showed that storm-scale quantities are well behaved in 

the sense that very small incremental changes in initial conditions produce incremental 

changes in storm-scale strength, local-scale strength metrics are less predictable.  For 

example, from 6 to 24 h the absolute maximum vorticity in QRT4 is significantly less 

than that in QRT3 and about the same as that in QRT2 (Fig. 4.5f).  Maximum wind 

speed, another local-scale strength metric that is used operationally to classify tropical 

cyclones, is also greater in QRT3 than QRT4 for an extended period of time. This 

section explores precisely why local-scale metrics are less predictable and can give 

significantly different estimates of relative strength than their storm-scale counterparts 

might imply. 

 

4.5.1 Divergence between QRT3 and QRT4 

What physical processes lead to the seemingly chaotic behavior that QRT3 has the 

highest maximum surface vorticity of all simulations and maximum winds much stronger 

than in QRT4 (Fig. 4.5) despite having lower instability? First, recall from section 4 that 

the developing cyclone in QRT4 has both stronger updrafts and downdrafts during the 

first 6 h.  Accompanying the strong downdrafts in QRT4 is low-e  air that quickly 

diminishes convective intensity near its center.  It will be shown here that, not only do 

the strong downdrafts in QRT4 diminish its convection, but they also catastrophically 

interfere with the primary VHT that forms during the first 6 h of QRT4.  Although 
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QRT4 does develop more numerous VHTs than QRT3, they are all weaker than the 

strongest VHT in QRT3. 

In order to answer the introductory question to this subsection, a period is examined 

before QRT3 and QRT4 strongly diverge, and around when convection reaches its peak 

intensity (as determined by mean 700-hPa w in Fig. 4.5).  Specifically, Fig. 4.9 shows 

the spatial distribution of updrafts and downdrafts in relation to the incipient VHT in 

both QRT3 and QRT4.  Time averaged (i.e, an average of 4, 4.5 and 5-h) wind vectors, 

absolute vorticity, vertical velocity, and e  at different levels are displayed.  

Figure 4.9.  As in Fig. 4.4 except that all variables are time averaged from 4-5 h and displayed for the 

simulation and level indicated in each panel.  In addition, vertical velocity is contoured every 0.5  

for positive values (solid white) and every 0.1  for negative values (dashed white). 

-1m s
-1m s
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Figure 4.10.  As in Fig. 4.4 except that all variables are displayed for the simulation, level, and time 

indicated in each panel. 
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In a manner consistent with Fig. 4.7, the initially stronger convection in QRT4 is 

associated with more numerous and stronger downdrafts in the vicinity of the VHT than 

in QRT3.  A band of downdraft wraps from southeast to north of the vorticity tower in 

QRT4 (Fig. 4.9b), but in QRT3 the downdraft area is discontinuous and weaker (Fig. 

4.9d-e).  Associated with the encircling band of downdraft in QRT4 is a band of low-e  

air at mid levels.  The slightly lower e  air northeast of the center in QRT4 at 985 hPa 

(compare Fig. 4.9c and Fig. 4.9f) is a sign that the effects of the downdraft have begun to 

reach the surface.   

Though generally stronger downdrafts decrease initial e  around the VHT in QRT4 

more than in QRT3, the formation of a convective line and an associated cold pool 

reduces QRT4 e  to even lower values.  To demonstrate this, Fig. 4.10 shows 

instantaneous velocity vectors, vertical velocity, and e  at 5, 7, and 9 h for QRT3 and 

QRT4.  After the low-e  air on the north side of the vorticity center in QRT4 penetrates 

to the surface (Figs. 4.9c and 4.10d), a north-south oriented convective line forms on the 

Figure 4.11.  As in Fig. 4.4, except that variables are shown for QRT2 at the time indicated in each panel. 
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interface of high- and low-e  air immediately west of the center (Fig. 4.10b).  The 

convective line, which seems to form as a result of forcing along the e  boundary, lasts 

from about 6.5 to 8.5 h.  Downdraft formation behind the line strongly reinforces the 

cold pool (Fig. 4.10e-f) and seems to be a primary reason why storm-scale surface e  

decreases more in QRT4 than in QRT2 and QRT3 (which do not have such a line).   

As a result of the widespread cold pool, the QRT4 VHT loses its access to unstable 

air and begins to dissipate.  Figure 4.11e shows that low  e  air has been drawn into the 

VHT by 7 h, and most of the substantial updrafts are to the south and west.  After 9 h 

(not shown) the 700-hPa vorticity maximum becomes displaced to the southwest of the 

surface-850-hPa remnant vortex, and the original surface vorticity maximum further 

weakens in the absence of convection.    

The 700-hPa remnant vortex in QRT4 survives as it moves southwest and encounters 

further convection, but its survival is short-lived (not shown).  At 9 h the 700-hPa 

vorticity center is about 20 km north of the leading edge of the cold pool (Fig. 4.10c,f), 

and by 9.5 h the anomaly is being strengthened again by convective updrafts forming on 

the boundary.  In fact, a new VHT builds all the way down to the surface amidst the new 

convection, and surface vorticity beneath the mid-level anomaly strengthens 

dramatically by 10.5 h.  However, by 12 h the new VHT moves back over the cold pool, 

the convection diminishes, and the 700-hPa remnant vortex begins to dissipate.  Around 

20 h, the vorticity remnants of the newer VHT merge with the old low-level vortex from 

the first VHT (not shown). 
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While the spreading cold pool in QRT4 clearly leads to the demise of the principal 

VHT that forms within the first 6 h, storm-scale vorticity remains stronger in QRT4 than 

in QRT3 (Fig. 4.5e, Fig. 4.8).  Though the ultimate reason for the stronger storm-scale 

vorticity in QRT4 is more storm-scale convection, phenomenologically, the stronger 

QRT4 vorticity is associated with more numerous VHTs.  In QRT2 through QRT6, 

convection first forms on an inverted-V shaped convergence line, and the main VHT 

forms at the apex of the ‘V’.  After VHT formation, the western extension of the 

convergence line (i.e., that oriented southwest to northeast and terminating at the 

circulation center in Fig. 4.10d-f) acts as a focus for further convection, which is where 

the additional VHTs in QRT4 form.  Although the primary VHT in QRT4 is disrupted, 

there are more VHTs in QRT4 along the western leg of the convergence line (e.g., 

compare Fig. 4.10e,k).  These VHTs have access to the pristine air to the southwest of 

the center, which is more unstable in QRT4 than that in QRT3, and their individual 

circulations contribute to the storm-scale circulation.  The more abundant QRT4 VHTs 

in Fig. 4.10 represent a trend for the simulation; through the first 20 h, a total of 12 

VHTs form in QRT4, whereas only 6 form in QRT3. 

The local-scale evolution in QRT3 is clearly much different than QRT4, largely 

because QRT3 lacks the strong cold pool that forms on the northwest side of the QRT4 

VHT.  With initially weaker updrafts from 4 to 5 h in QRT3 (Fig. 4.7), the compensating 

downdrafts and cold pool are weaker by 5 h.  Perhaps not coincidentally, a convective 

line fails to materialize along the edge of the weaker cold pool (Fig. 4.10h,k), though 

some convection does occur at that location.  Without the convective line, significantly 
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less low- e  air penetrates to the surface, and the QRT3 VHT enjoys practically 

uninhibited access to the unstable air to its southwest.  The effect on the surface vorticity 

field is substantial in Fig. 4.10k-m, where a strong surface vorticity core builds beneath 

the 700-hPa anomaly.   

An additional factor that contributes to low-level vortex intensification in QRT3 is 

the merger of multiple smaller vorticity anomalies with the main VHT.  As in QRT4, the 

western extension of the initial convergence line acts as a focus for further convection, 

and vorticity anomalies form within convective cells as they move northeastward toward 

the circulation center (see Fig. 4.10m).  In QRT4 the spreading cold pool prevents these 

anomalies from reaching the center, but in QRT3 the primary VHT merges with a 

number of these anomalies strengthens between 6 and 12 h.  

 

4.5.2 Divergence between QRT2 and QRT3 

The previous subsection demonstrates that unobservable large-scale initial condition 

differences between QRT3 and QRT4 result in strong differences in the intensity and 

placement of updrafts and cold pools.  This eventually leads to a different route to 

tropical cyclogenesis between QRT3 and QRT4. The initial condition difference 

between QRT2 and QRT3 is exactly the same as that between QRT3 and QRT4, and this 

subsection examines what physical processes lead QRT2 to fail to develop a well-

organized tropical cyclone (e.g., Fig. 4.3b). 

Recall from Figs. 4.5 and 4.8 that storm-scale changes in strength correspond to 

incremental changes in initial conditions.  Just as QRT4 has more initial storm-scale 
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precipitation than QRT3 due to higher initial instability, QRT3 also has more 

precipitation than QRT2.  Likewise, despite the fact that QRT2 is significantly less 

organized than QRT3 after 36 h (Fig. 4.3), its storm-scale strength follows the general 

pattern of incremental differences in Fig. 4.7.  

In addition to being weaker on the storm scale, QRT2 is significantly weaker than 

QRT3 on the local scale after about 9 h (Fig. 4.5).  The cause of the local-scale weakness 

is the failure of QRT2 to maintain a predominant VHT (or even a remnant VHT vortex), 

as in QRT4 (discussed below).  An important difference between QRT2 and QRT4, 

however, is that QRT4 establishes a stronger storm-scale vortex during the first 6-12 h.  

Even if it produced the same convection after the recovery period (i.e., after 24 h), QRT2 

should take longer to re-establish a strong VHT than QRT4 since the storm-scale 

vorticity in QRT2 is considerably lower (and thus there is less potential for stretching 

deformation).  Not only is the vorticity environment less favorable for strong VHT 

formation in QRT2, but QRT2 also has less storm-scale convection/precipitation from 

24-36 h (see section 4.4).  Seeing as how convection clearly contributes to VHT 

formation (e.g., Hendricks et al. 2004, Montgomery et al. 2006), it appears that 

differences in storm-scale intensity strongly modulate the ability of QRT2 to develop a 

stronger VHT after 24 h.  The remainder of this subsection will focus on the reasons why 

the original vorticity tower in QRT failed to maintain itself in the first place. 

Surface cold pools ultimately lead to the destruction of the QRT2 VHT, but the 

precise sequence of events here is somewhat different than in QRT4.  Low e  air forms 

on the east side of the circulation center in QRT2 as early as 7 h and has some negative 
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impact on the low-level vortex (not shown).  However, because this cold pool is to the 

east of the VHT, the warm inflow from the southwest is not disrupted at this time.  It is a 

few hours later that surface outflow from convection to the southwest of the QRT2 

center is well positioned to disturb VHT inflow and suppress updrafts.  After 9 h all 

convection in QRT2 is well southwest of the remnant vorticity center (Fig. 4.11).    

The disruption of convection near the center in QRT2 comes at a time when low-

level vertical wind shear is fairly high, a factor that leads to the quick demise of the 

QRT2 VHT.  Figure 4.12 shows both the evolution of maximum 500-hPa w within 50 

km of the center and 700-985-hPa vertical wind shear averaged over the storm-scale 

region for QRT2 and QRT3.  In QRT2, 500-hPa w quickly diminishes after 9 h, a time 

when shear is still fairly high. Figure 4.13, which shows data similar to Fig. 4.10 at 500 

Figure 4.12.  The time evolution of (a) maximum 500-hPa vertical velocity ( ) within 50 km 

of the center (smoothed with a 3-point smoother) and (b) 500-985-hPa vertical wind shear ( m s ) 

averaged in the storm-scale region in QRT2 and QRT3. 

-1m s
-1
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Figure 4.13.  As in Fig. 4.4, except that all variables are displayed for the simulation, level, and  

time indicated at the top of each panel. 
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 hPa and 850 hPa, demonstrates the combined negative effects of surface cold pools and 

shear in QRT2.  The surface cold pool disrupts convection through the vorticity tower, 

and the last updraft through the tower occurs around 9 h (Fig. 4.13j).  Thereafter, the 

low-level remnant vortex weakens (Fig. 4.13k-m), and the mid-level vortex advects to 

the southwest under the influence of northeasterly wind shear (Fig. 4.13h-i).  Meanwhile, 

convective updrafts in QRT3 continue to strengthen its VHT well past 9 h (Fig. 4.13a-f) 

due to continued access to warm surface air from the southwest (as in Fig. 4.11).  The 

VHT-sustaining convection in QRT3 also weakens somewhat (Fig. 4.12a), but it reaches 

a minimum after wind shear has significantly diminished (Fig. 4.12b).  Thus, the low-

level vortex in QRT3 remains intact long enough to get into a weaker shear environment, 

which is more favorable for development.  A similar evolution to that seen in QRT2 and 

QRT3 (i.e., a ‘fight’ between convection and wind shear for the strength of the vortex) 

was found in Tory et al. (2007).  

In short summary, this section demonstrates that unobservable large-scale initial 

condition uncertainties may result in strong differences in the intensity and maintenance 

of VHTs.  In QRT2, the destruction of the primary VHT is particularly disastrous for the 

cyclone’s later organization since the larger scale vortex is weaker and less able to 

support the rapid redevelopment of another strong VHT.  In some sense, this and the 

previous subsection demonstrated that QRT3 is an anomaly since surface cold pools lead 

to the demise of the principal VHT in QRT2 and QRT4, but not in QRT3.  The cyclone 

in QRT3 seems to enjoy the benefits of more convection than QRT2, but it does not have 

quite enough convection (or quite the necessary convective mode) to develop the strong 
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cold pool seen in QRT4.  With a strong, low-level remnant vortex intact through 24 h, 

the QRT3 cyclone is primed to establish a very strong central vortex (and well organized 

core, see Fig. 4.3c).  Thus, small initial condition differences can lead to different routes 

to tropical cyclogenesis (e.g., QRT3 and QRT4) or to differences in whether or not a 

well-organized tropical cyclone will form (e.g., QRT2 and QRT3).  Such randomness in 

moist convection may ultimately limit the predictability of some tropical cyclones. 

 

4.5.3 Simulations QRT5 and QRT6 

Simulations QRT5 and QRT6 behave similarly to QRT4, though they do exhibit 

hints of QRT3 behavior.  Like QRT4, they have strong, cold downdrafts near the initial 

VHT center, and they both develop a convective line with a substantial cold pool (which 

is still evident at 9 h in Fig. 4.4).  Also as in QRT4, the strongest local-scale vorticity 

anomaly that develops within the first 6 h of QRT5 and QRT6 is destroyed by the 

downdrafts.  The VHTs in both simulations, which are stronger and more numerous than 

those QRT4 (see Fig. 4.4 and Fig. 4.5f), incrementally contribute to stronger storm-scale 

circulations. 

The VHT-destroying downdrafts in QRT5 behave similarly to the downdrafts in 

QRT4 (Figs. 4.9c, 4.11d-f), though the QRT5 downdrafts are colder.  A similar 

convective line to that in QRT4 forms with very low  e  air behind it, and the initial 

VHT does not survive (the only trace of it in Fig. 4.4a is the decaying vorticity 

maximum immediately northwest of A1).  However, another VHT (B1 in Fig. 4.4a) 

advects into the storm-scale region around 6-7 h and is one of the stronger vortices 
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present in QRT5.  Updrafts more or less remain over B1 through 13 h, and the remnant 

vortex stays intact through 24 h and eventually becomes collocated with the storm-scale 

center.  Around 24 h, new convection ignites over B1 at the same time that other strong 

vortices develop within nearby convection, and the collection of vortices merge to form 

an even stronger center (not shown). 

There are several differences between QRT5 and QRT6.  First, initial downdrafts in 

QRT6 are even colder than those in QRT5.  In fact, they are sufficient to extinguish 

updraft of the primary VHT before the convective line even forms (the VHT remnants 

are no longer identifiable in Fig. 4.4b).  Also, although VHT B2 advects into the storm-

scale region of QRT6 similarly to B1 in QRT5, B2 never becomes associated with the 

storm-scale center.  Rather, convection with B2 dissipates after 9 h, and its remnant 

vorticity decays.  The low-level vorticity eventually associated with the system center in 

QRT6 can be traced back to a VHT that forms to the southwest of the initial QRT6 VHT 

as it decays around 6 h (not shown).  Although its updrafts also diminish, its remnant 

low-level vorticity (A2 in Fig. 4.4b) becomes collocated with the storm-scale circulation 

center around 18-20 h. 

 

4.6. Discussion  

Through sensitivity experiments of a Gulf of Mexico tropical disturbance, this study 

highlights limited predictability that can be present in short-term tropical cyclone 

intensity forecasts given minute analysis uncertainties in the large-scale environment.  

Whether or not a tropical cyclones forms is found to depend on initial condition 
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differences much smaller than current analysis error.  The sensitivity is the result of how 

initial convection responds to differences in the initial environment from one simulation 

to the next.  The amount of convection early in the simulations, which is modulated by 

the initial convective instability, is instrumental in forming a deep vortex.  Also, 

widespread cold convective downdrafts that form during the convection subsequently 

damp convective activity in a period that sees neither vortex growth nor decay.  After the 

boundary layer recovers, convection reignites and stronger vortices strengthen more 

quickly.   

In some ways the large-scale flow sets the tone for small-scale convective details, 

but randomness in the details of small-scale convection may also lead to differences in 

storm-scale organization and subsequent error growth to larger scales.  For example, 

there is a tendency to have more small-scale VHTs when there is stronger initial 

convective instability in the larger-scale environment (despite immeasurable differences 

in the initial analyses).  These VHTs incrementally contribute to the storm-scale 

circulation in simulations with stronger storms.  Yet the details of how the storm-scale 

vortex is built (i.e., the route to genesis) significantly depend on the same initial 

condition differences.  This is due to chaotic interactions of mesoscale features whose 

timing and placement significantly vary with slight initial condition differences.   

Both storm-scale and local-scale evolution are quite unpredictable in the Gulf low, 

but the local scales are less predictable than the storm scale. Storm-scale differences 

vary approximately linearly with the differences in storm-scale initial conditions, which 

implies some degree of predictability.  Yet, the storm-scale evolution is unpredictable 
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from a practical standpoint because unobservable changes in initial conditions result in 

very large changes in the system evolution.  The local scales are less predictable because 

differences in maximum winds and/or vorticity vary nonlinearly with initial condition 

differences and depend on the timing and intensity of small mesoscale features such as 

VHTs and cold pools.  This demonstrates that, from a predictability standpoint, the 

operational “maximum sustained wind” metric is far more difficult to predict than an 

area-average metric of intensity.  

Finally, the strong sensitivity exemplifies the inherent uncertainties in hurricane 

intensity prediction where moist convection is the key that limits predictability, a result 

similar to findings regarding extratropical winter snowstorms (Zhang et al. 2002, 2003, 

2007) and idealized tropical cyclones (Van Sang et. al 2008).  Yet, the current results are 

apparently limited by how accurately the 3.3-km simulations can faithfully represent the 

essential dynamics of moist convection.  In addition, small-scale uncertainty is not 

included in the initial conditions of this study. Therefore, future studies should examine 

how both model error and smaller scale uncertainty may lead to even stronger forecast 

divergence.   
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CHAPTER V 

CONCLUSIONS 

 

Through methodology unique for tropical cyclones in peer-reviewed literature, this 

study uses ensemble forecasts and sensitivity analysis to explore how the dynamics of 

moist convection affects predictability of tropical cyclogenesis in the MM5 and WRF 

models.  The statistical analyses are largely congruent with those of H07, but this study 

refines their correlation methodology by looking at both large and small scale processes.  

Additional steps are taken by investigating the sensitivity of predictability and dynamics 

to cumulus parameterization (model error) and to ensemble initial condition changes that 

produce weaker and stronger cyclones.  Finally, the sensitivity to practically 

immeasurable changes in initial conditions is analyzed to help understand the intrinsic 

predictability limit of tropical cyclones. 

Chapter II shows that the rate of intensification of a 2004 Gulf-of-Mexico 

disturbance in an ensemble MM5 forecast depends on the amount of initial convective 

instability (MUCAPE) and deep moisture in the ensemble.  MUCAPE is related to the 

strength of surrounding quasi-geostrophic lift, and along with mid-level moisture it 

modulates convective intensity during the first 6-12 h.   Differences in convection result 

in quicker genesis in some ensemble members than others.  Thus, these factors are the 

primary source for ensemble spread by 12 h, and spread is thereafter amplified by 

differences in convection related to oceanic heat fluxes.  Eventually the WISHE 

mechanism results in even larger ensemble spread.  The above results generally hold 
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even in the face of model error (i.e., cumulus parameterization) and changes to the initial 

ensemble mean, though such changes do alter properties of convection, ensemble spread 

and the time it takes to exit the CAPE-based intensification regime. 

Chapter III is intended as a follow-up study to Chapter II and investigates the 

intensification of Hurricane Humberto, which made landfall along the upper Texas coast 

in September 2007.  Perhaps the most important result from Chapter III is general 

confirmation of the results from Chapter II.  In the Humberto ensemble, mid-level 

moisture and MUCAPE again modulate the intensity of convection, which governs the 

rate of intensification.  In this case, MUCAPE variance is related to the proximity and 

strength of a nearby surface front, and thus varying degrees of interaction between the 

developing cyclone and the front ultimately cause much of the ensemble spread.  As in 

the 2004 low, strength-dependent heat fluxes and WISHE also act to increase existing 

ensemble spread.  In addition, ensemble members make landfall at different times, which 

drives spread even higher. 

With the mechanism by which spread increases in Chapter II confirmed as generally 

realistic, Chapter IV returns to the 2004 gulf low to investigate the sensitivity of its 

genesis to minute changes in initial conditions.  Whether or not a tropical cyclones forms 

is found to depend on initial condition differences much smaller than current analysis 

error.  The sensitivity is the result of how initial convection responds to differences in 

the initial environment from one simulation to the next.  The amount of convection early 

in the simulations, which is modulated by the initial convective instability, is 

instrumental in forming a deep vortex.   
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Both storm-scale and local-scale evolution are quite unpredictable in the Gulf low, 

but the local-scales are less predictable than the storm scale. Storm-scale differences 

vary approximately linearly with the differences in storm-scale initial conditions, which 

implies some degree of predictability.  Yet, the storm-scale evolution is unpredictable 

from a practical standpoint because unobservable changes in initial conditions result in 

very large changes in the system evolution.  The local scales are less predictable because 

differences in maximum winds and/or vorticity vary nonlinearly with initial condition 

differences and depend on the timing and intensity of small mesoscale features such as 

VHTs and cold pools.  This demonstrates that, from a predictability standpoint, the 

operational “maximum sustained wind” metric is far more difficult to predict than an 

area-average metric of intensity. 

In general, this study has pinpointed the source of error in forecasts of two very 

different tropical cyclones; to the knowledge of the author, this has never before been 

accomplished.  Generally similar results were obtained in spite of differences in storm 

development, methodology, and uncertainty source.  For instance, Chapter II studied a 

non-developing gulf low with a cold-start MM5 ensemble and found the source of 

uncertainty to largely stem from uncertainty associated with the quasi-geostrophic 

circulation.   Chapter III studied a formidable landfalling, Category 1 hurricane with a 

hot-start WRF ensemble and found the source of uncertainty to largely originate from 

uncertainty in the cyclone’s interaction with a front.  Yet in both of these cases, high 

MUCAPE and mid-level moisture were found to benefit genesis.   
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The importance of initial deep moisture here agrees with numerous other tropical 

cyclone modeling and observational studies, but the demonstrated importance of CAPE 

is new.  Montgomery et al. (2006) noted that vertical hot towers (VHTs) appear to 

“compete” with one another for ambient CAPE, and the results of Chapter IV suggest 

that higher CAPE in the case of the gulf low generally favors stronger and/or more 

numerous VHTs.  The vorticity in these VHTs incrementally contributes to the system-

scale circulation, and their convective cores contribute to system-scale heating.  

The strong sensitivity to initial condition differences in both cases exemplifies the 

inherent uncertainties in hurricane intensity prediction where moist convection is the key 

that limits predictability, a result similar to findings regarding extratropical winter 

snowstorms (Zhang et al. 2002, 2003, 2007).  The current study implies that the 

predictability of tropical cyclones may be strongly limited at all time scales, ranging 

from day 1 to long-term projections.  This remains true regardless of whether one uses 

statistical methods (Hoyos et al. 2006) or numerical weather/climate prediction models 

(Davis et al. 2008; Houze et al. 2007; Oouchi et al. 2006).  The limit of intensity 

predictability given realistic initial condition and model errors (which are still large at 

present) in numerical weather prediction models may be alleviated through improving 

our understanding of dynamics and physics, development of better numerical models, 

and improved data coverage and assimilation techniques. However, there will always be 

forecast errors due to the inherent limit of predictability arising from initial errors with 

amplitudes far smaller than any observation and analysis system; these are errors that 

society will always have to cope with (Pielke et al. 1997).   
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Finally, inherent uncertainties in hurricane forecasts illustrate the need for 

developing advanced ensemble prediction systems to provide event-dependent 

probabilistic forecasts and risk assessment.  In practice, despite an increasing role and 

demonstrated benefits of using ensembles in aiding deterministic hurricane forecasting 

(Krishnamurti et al. 1999; Z08), the uncertainty issued with today’s operational 

hurricane forecasts is still based on averaged climatological errors and is not case-

dependent.  Thus, this study also has strong implications related to how society might 

better distribute resources to combat future hurricane-related disasters given that the 

number of hurricanes and their intensity/destructiveness are reportedly on the rise with 

the warming climate (Emanuel 2005; Webster et al. 2005).  
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