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Abstract

Uncertainty relations in quantum mechanics express bounds on our ability to

simultaneously obtain knowledge about expectation values of non-commuting

observables of a quantum system. They quantify trade-offs in accuracy between

complementary pieces of information about the system. In quantum multipa-

rameter estimation, such trade-offs occur for the precision achievable for differ-

ent parameters characterizing a density matrix: an uncertainty relation emerges

between the achievable variances of the different estimators. This is in contrast

to classical multiparameter estimation, where simultaneous optimal precision is

attainable in the asymptotic limit. We study trade-off relations that follow from

known tight bounds in quantum multiparameter estimation. We compute trade-

off curves and surfaces from Cramér–Rao type bounds which provide a com-

pelling graphical representation of the information encoded in such bounds, and

argue that bounds on simultaneously achievable precision in quantum multipa-

rameter estimation should be regarded as measurement uncertainty relations.

From the state-dependent bounds on the expected cost in parameter estimation,

we derive a state-independent uncertainty relation between the parameters of

a qubit system.
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trade-off, quantum multiparameter estimation
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Ever since its �rst formulation, the uncertainty principle has seen many re�nements and

clari�cations. As quantum theory developed, its state-of-the-art concepts and mathematical

tools were used to formulate in precise terms the ideas which were put forward in Heisenberg’s

1927 paper [1]. As a result, our current understanding of the uncertainties inherent in quantum

mechanics is spelled out in a collection of theorems pertaining to well de�ned operational

tasks.

Soon after Heisenberg’s paper, rigorous proofs of his uncertainty relations were formulated

[2–4]. Those are usually referred to as preparation uncertainty relations. Most well known is

the relation due to Weyl and Robertson

σAσB >
1

2
| 〈[A,B]〉 |, (1)

where σA =
√

〈(A− 〈A〉)2〉 is the standard deviation of an observable A in a given state

ψ (〈·〉 ≡ 〈ψ| · |ψ〉). For canonically conjugate observables such as position and momen-

tum the right-hand side of equation (1) equals ~/2. This relation implies that it is impos-

sible to prepare a particle in a state with arbitrarily sharp statistics for both position

and momentum. Note that such uncertainty relations do not tell anything about statis-

tics of joint measurements of both observables. Rather, the standard deviations on the

left-hand side of equation (1) correspond to measurements of A and B on two indepen-

dent ensembles of identical copies of the state |ψ〉. The preparation uncertainty relation

between position and momentum is tight, as equality is achieved for speci�c states [5].

The relation equation (1) hence quanti�es an attainable trade off between the sharpness of

the position and momentum measurement statistics. Subsequent works formulated prepa-

ration uncertainty relations which involve other measures for the spread of a distribution

[6–9].

The development of quantum measurement theory [10–12] allowed to formulate accu-

racy–disturbance uncertainty relations which quantify the disturbance caused by a pos-

itive operator valued measure (POVM) measurement to the statistics of a subsequent

measurement of another POVM [13–19]. Joint measurement uncertainty relations have

been discussed by many authors [20–24] and most recently in reference [25]. They

describe the deviation of the statistics in a joint approximate measurement of two

quantities from their statistics when measured separately. Many more authors have con-

sidered these two notions of uncertainty, for a more complete list see references in refer-

ences [18, 19]. There is still debate between the proponents of the most recent approaches

regarding which of them most properly captures Heisenberg’s qualitative considerations

[26–30].

Quantum parameter estimation theory provides yet another way to quantify quantum

uncertainty. In this framework one considers a family of quantum states parameterized by

real numbers, and the task is to estimate the parameters corresponding to a given state by

performing measurements on identical copies of the state. In the one parameter case, the

quantum Fisher information (QFI) Cramér–Rao bound provides a lower bound on the asymp-

totic scaling of the variance of an unbiased estimator [31, 32]. The bound is achievable in

the asymptotic limit of many copies of the state with a separable measurement [33, 34]. Of

particular importance is the case when the parameter to be estimated is elapsed time t for a

state |ψ(t)〉 = exp(−itH)|ψ(0)〉 evolved with a given Hamiltonian. In that case, the quantum

Cramér–Rao bound is proportional to the expectation value of the Hamiltonian [35], and hence

yields the well known time-energy uncertainty relation [36]. Results of this type can be seen as

hybrid preparation–measurement uncertainty relations, as they describe a trade off between

the accuracy of a measured quantity, namely, the estimator for the desired parameter; and the
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variance of the operator generating translations in that parameter—a quantity pertaining to the

preparation.Quantum parameter estimation has been also used to formulate joint measurement

uncertainty relations [37, 38] and error-disturbance relations [39].

Classically, going from single parameter estimation to a multiparameter setting involves

replacing the scalar Cramér–Rao bound by a matrix inequality. This multiparameter bound

is still asymptotically achievable [40], which means that the optimal precision can be

achieved for all parameters simultaneously. In quantum multiparameter estimation how-

ever, the quantum Cramér–Rao bound is in general no longer attainable as the measure-

ments required to attain the single parameter bound for the individual parameters might not

be compatible [41]. In this setting one expects there to be trade-offs between the preci-

sion achievable for the estimators of different parameters. This is clearly a pure quantum

phenomenon, and such trade-offs should hence be viewed as yet another manifestation of

quantum uncertainty. Such bounds on quantum multiparameter estimation belong to the mea-

surement type of uncertainty relations. The ‘no go’ part of such uncertainty relations is

the unattainability of the multiparameter QFI Cramér–Rao bound. It implies that, in con-

trast to the classical case, optimal precision for all parameters simultaneously is impossi-

ble to achieve—acquiring better statistics for one parameter automatically leads to worse

statistics for the complementary ones. The positive content is the characterization of the

achievable trade-off and the measurement schemes attaining it. Various bounds on quantum

multiparameter estimation that appear in the literature already encode such trade-off rela-

tions. The aim of this paper is to focus attention on this particular feature of the known tight

bounds.

A point of distinction from other kinds of uncertainty relations is that in quantum mul-

tiparameter estimation, the quantities that one tries to estimate do have simultaneously

well de�ned values. The task is to uncover classical information encoded in the state,

e.g. the settings that were chosen on the device that prepared the state. Furthermore,

given arbitrarily many copies of the state, all of the parameters can be estimated with

arbitrary precision. Trade-offs appear when one considers the precision increase for each

unknown parameter per copy of the state. A sharp distinction has to be also made between

bounds for separable measurements—the realistic situation in experiments—versus collec-

tive measurements—which involve highly entangled measurements between the different

copies.

Quantum multiparameter estimation has been an active �eld of research for nearly �ve

decades. It has seen signi�cant recent developmentwhichwas stimulated in part by the increas-

ing relevance of multiparameter estimation to quantum metrology tasks. We do not attempt

to provide a comprehensive review of the �eld. Rather, we present the minimal background

needed for the presentation of our results in a self containedmanner. For a proper and up-to-date

introduction to the �eld we refer to several very recent reviews which cover the state-of-the-art

theoretical results as well as applications to concrete tasks [42–45].

Attainable bounds for multiparameter estimation are known for several quantum sta-

tistical models. For estimation of shift parameters of Gaussian states, Holevo proved an

achievable bound [32]; this bound is referred to in the literature as the Holevo Cramér–Rao

bound [41, 46]. The theory of local asymptotic normality [47, 48] implies that this bound

is achievable for �nite dimensional quantum systems if one allows collective measurements

to be performed on many identical copies of the state. Attainable bounds for a qubit sys-

tem have been proven by Nagaoka, Hayashi, and Gill and Massar [49–51]. Attainability of

the quantum Fisher information Cramér–Rao bound with collective measurements has been

shown to be equivalent to what is called the commutation condition [41], which involves

3
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the commutators of the operators whose measurement provides the optimal one parameter

precision.

In this paper, we translate the various known bounds on quantum multiparameter esti-

mation into trade-off curves (or hyper-surfaces, in the case of more that two parame-

ters). Such curves provide a visually clear representation of the information encoded in

bounds on estimation. They highlight the trade-off, which is not evident when the bounds

are written down as inequalities. To demonstrate this, we use trade-off curves to com-

pare the bounds for estimation in a qubit system such as the Gill–Massar (GM) bound

(which is attainable with separable measurements) and the Holevo Cramér–Rao bound

(which is only attainable with collective measurements). We show how to sample points

from the trade-off surface corresponding to the GM bound for different parameterizations

of a qubit state and discuss the family of measurements which attain the bound in different

parameterizations.

Our main result is the derivation of a state-independent trade-off relation between the three

parameters of a qubit system when estimated using separable measurements. This result fol-

lows from theGMboundwhich is state-dependent—likemany other Cramér–Rao type bounds

in quantum parameter estimation. Our state-independent result is obtained by superimposing

the trade-off surfaces corresponding to different states in the same plot to obtain a region

in the 3-dimensional space of the variances of the estimators which is unattainable for all

states and all separable measurements. This result implies a state-independent measurement

uncertainty relation between the three Pauli operators σx, σy, σz. We prove the correspond-

ing uncertainty relation for two parameters which turns out to have a simple additive form

Var(θ̂i)+ Var(θ̂ j) > 1/(4N), for i 6= j ∈ {x, y, z}, where Var(θ̂i) is the variance of the estimator

for the parameter θi = 〈σi/2〉 and N is the number of copies of the state. We further show that

the bound Var(θ̂x)+ Var(θ̂y)+ Var(θ̂z) > 1/N holds and forms part of the trade-off surface.

Finally, we compute the Holevo Cramér–Rao bound for a three level system model and

describe the structure of its trade-off surface which is generic to any d-dimensional quantum

system.

The paper is organized as follows. In section 1 we brie�y review the required background

and set up our notation; in section 2 we show how to obtain trade-off curves from Cramér–Rao

type bounds for two parameters; in section 3 we present our results for the qubit model which

include a state-independent trade-off surface; section 4 describes the structure of the trade-

off surface of the Holevo Cramér–Rao bound for a qutrit; we conclude with a discussion in

section 5.

1. Preliminaries

We start by reviewing estimation theory. In classical estimation theory [40] we are given a

family of probability distributions with probability density p (θ) parametrized by a vector

of parameters θ = (θ1, . . . , θK). The task is to estimate the unknown values θ0 by sampling

from p(θ0). In order to do so we shall pick an estimator, a function that produces an esti-

mated value θ̂(x1, x2, . . . , xN) given the N samples drawn {xi}. The estimation statistics are

then described by the random variable θ̂(X1,X2, . . . , XN), where the random variables Xi are

distributed according to p(xi|θ0) := p(X = xi|θ0). An estimator is called locally unbiased if

Eθ̂ = θ0, where E is the expectation value is with respect to p(θ0).

4
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1.1. The Cramér–Rao bound

Let θ be a single parameter. The Cramér–Rao bound is a lower bound on the variance of

the estimator Var(θ̂) = E(θ̂ − θ0)
2. When the estimator is unbiased the bound is given by the

inverse of the Fisher information f(θ0) := E

(

d log p(x|θ)
dθ

)2
∣

∣

∣

∣

θ=θ0

Var(θ̂) >
1

Nf(θ0)
, (2)

with N the number of samples.

In the multiparameter case we de�ne the covariance matrix of the estimators (we shall

suppress the θ0 dependence in the notation)

V(θ̂)i j = E(θ̂i − θi)(θ̂ j − θ j),

and the Fisher information matrix

Fi j = E
d log p

dθi

d log p

dθ j
. (3)

The Cramér–Rao bound then takes the form of an inequality between positive semi de�nite

matrices

V(θ̂) > F(θ0)
−1/N. (4)

This bound is achievable asymptotically by the maximum likelihood method. More precisely,

it is shown that there is a locally unbiased estimator for which the rescaled covariance matrix

NV ≈ F−1 in the limit of large N [40]. To compensate for the overall 1/N improvement in

precision due to the use of many copies of the source p(θ), we pick the rescaled covariance

matrix NV as the �gure of merit for the precision of the estimators in the asymptotic regime.

We keep the N explicit in the notation as a reminder.

1.2. Quantum parameter estimation

In quantum parameter estimation, instead of a probability distribution we are given a quan-

tum state ρ(θ) (satisfying ρ > 0, Trρ = 1) which depends on θ. For a given measurement

M with POVM elements {Mi} (satisfying Mi > 0,
∑

Mi = I) we obtain a probability dis-

tribution for the outcomes pM(i|θ) = TrMiρ(θ) which depends on θ through the state ρ(θ).
Classical estimation theory can now be applied to the estimation of θ from pM. The problem

of quantum parameter estimation is hence equivalent to the one of �nding the measurement

which maximizes this classical Fisher information. The Fisher information associated with the

measurementM is

fM(θ0) :=E

(

d log pM

dθ

)2

=
∑

i

(

Tr Mi
dρ
dθ

)2

Tr Miρ(θ0)
, (5)

where dρ
dθ is evaluated at θ0. The symmetric logarithmic derivative quantum Fisher information

(SLD-QFI) is de�ned as

5
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h(θ0) = Tr(ρ(θ0)L(θ0)
2),

where L(θ0) is the symmetric logarithmic derivative (SLD) de�ned implicitly by

dρ

dθ

∣

∣

∣

∣

θ0

=:
1

2
(L(θ0)ρ(θ0)+ ρ(θ0)L(θ0)). (6)

When ρ is of full rank, solutions to equation (6) are unique as the only matrix that anti-

commutes with ρ is the zero matrix. We will always assume that this is the case. For treatment

of the case of degenerate states see references [33, 52, 53]. The SLD-QFI bound [33] states

that for any measurementM

fM(θ0) 6 h(θ0), (7)

(we shall suppress the θ0 dependence from now on). The proof is obtained by the use of the

Cauchy–Schwarz inequality:

fM =
∑

i

(

Tr Mi
dρ
dθ

)2

Tr Miρ
=
∑

i

Re(Tr MiρL)
2

Tr Miρ
6
∑

i

|Tr MiρL|2
Tr Miρ

=
∑

i

∣

∣Tr
√
Mi

√
Mi

√
ρ
√
ρL
∣

∣

2

Tr Miρ
6
∑

i

Tr(Miρ)Tr(ρLMi L)

Tr Miρ
= Tr(ρL2) = h,

where we used the de�nition of the SLD in the second equality and
∑

Mi = I in going to the

last line. Braunstein and Caves [33] proved that equality in equation (7) is attained when M

is a projective measurement in the basis which diagonalizes L, hence identifying the optimal

measurement strategy.

One can also de�ne the right logarithmic derivative (RLD) and corresponding to it is the

right logarithmic derivative quantum Fisher information (RLD-QFI) bound. This bound will

be discussed later.

In the case of multiple parameters, the Fisher information matrix of the measurementM is

de�ned according to equation (3) as

FMi j :=E
d log pM

dθi

d log pM

dθ j
=
∑

k

Tr Mk
dρ
dθi
Tr Mk

dρ
dθ j

Tr Mkρ
.

The quantum Fisher information matrix is de�ned as

Hi j =
1

2
Tr ρ(LiL j + L jLi),

where Li is the symmetric logarithmic derivative with respect to θi. The multiparameter SLD-

QFI bound is an inequality in the sense of positive semide�nite matrices:

FM 6 H. (8)

This bound is a consequence of the one parameter bound equation (7). To see this, let

v be a vector in the space of parameters R
K ,5 let θv :=

∑

i viθi. From linearity of the

5A note on notation: to reduce confusion between state vectors in Hilbert space and vectors in parameter space we

will stick to Dirac notation 〈ψ|O|φ〉 for the former and vector notation v
⊺Mv for the latter.

6
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de�nition of the SLD equation (6), it follows that the corresponding symmetric logarithmic

derivative is

Lv =
∑

i

viLi. (9)

We then have

v
⊺FMv =

∑

i jk

vi
Tr Mk

dρ
dθi
Tr Mk

dρ
dθ j

Tr Mkρ
v j =

∑

k

Tr Mk
dρ
dθv

Tr Mk
dρ
dθv

Tr Mkρ
= fv 6

hv = Tr ρLvLv =
∑

i j

vi
1

2
Tr ρ(LiL j + LiL j)v j = v

⊺Hv,

where fMv , and hv denote the one parameter Fisher information of the measurementM and the

quantum Fisher information for the estimation of θv respectively.

In otherwords, in themulti parameter setting, the SLD-QFI bound equation (8) can be stated

as the following: for any linear combination of the parameters θv =
∑

viθi, a one parameter

SLD-QFI bound fv 6 hv applies. In addition, for any v the bound is attainable with a projective

measurement in the basis diagonalizing Lv.
6

Further notice that because of their quadratic forms, the covariance matrix V, the Fisher

information matrix F, and the quantum Fisher information matrix H all transform in the same

way under linear coordinate transformations. When θi 7→ θ̃i :=
∑

j Ri jθ j, all three matrices

transform as (·) 7→ R(·)R⊺. This implies that matrix inequalities between them are invariant

under rotations of coordinates7.

2. Trade-off

If two linear combinations of the parameters {θi} de�ned by the vectors u and v result in

commuting SLDs [Lu, Lv] = 0, then optimal estimation of the two parameters θu and θv can

be achieved simultaneously by performing a measurement in the basis which diagonalizes both

of them.

However, [Lu, Lv] = 0 will typically not be satis�ed. In general, we expect there to be a

trade-off between the achievable precision in the two parameters in the following sense. Let

M(λ),λ ∈ [0, 1] be a family of measurements with POVM elements {Mi(λ)} such thatM(0) is

the optimal measurement for θv andM(1) is the optimal measurement for θu. For intermediate

values of λ the precisions of the estimators for θx ({x}={u} or {v}) which we quantify by

Var(θx) will take values larger than optimal.

6Note that for the measurement M̃ which is optimal for the estimation of the parameter θ1 in a one parameter setting

(i.e. when all other parameters are kept �xed) we have asymptotically NV ≈ FM̃
−1

which implies

NV1 = (FM̃
−1
)11 > (H−1)11 > 1/H11 = 1/h1 = 1/fM̃1 ,

where the second inequality is a general property of positive matrices, and the last equality is due to the optimality

assumption about M̃. That is, the optimal measurement for one parameter when estimated alone might perform worse

for the estimation of the same parameter when additional parameters are unknown [41].
7Because we are dealing with local estimation, only linear coordinate transformations are of interest (see reference

[51]). An arbitrary (smooth) coordinate transformation will be approximated to �rst order by a linear one θi 7→ θ̃i(θ) =
θ̃i(θ0)+

∑

j∂θ j θ̃i(θ0)(θ j − θ0 j)+ o(|θ − θ0|).

7
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Trade-off curves are commonly used in detection theory. In particular receiver operat-

ing characteristic curves (ROC curves) are a convenient way to represent how the probabil-

ity for false positive detection increases as one increases the sensitivity [54]. In the context

of uncertainty relations, a similar representation was used in [55] for preparation uncer-

tainties of angular momentum components. As we will now show, trade-off curves (or sur-

faces) are a convenient representation of the data which is typically encoded in uncertainty

relations.

The known bounds on precision in parameter estimation are most often stated as lower

bounds on the expected cost, resulting from a given positive de�nite K× K cost matrix G [32,

46, 51].8 In general these are bounds of the form

Tr VG > f (G), ∀G > 0,

where V is the covariance matrix of the estimator θ̂ and f is a real scalar function on semi

de�nite matrices. This family of inequalities de�nes a region in R
K of allowed values for the

vector of variances (Var(θ1), Var(θ2), . . . , Var(θK)). The boundary of this region is the trade-off
surface. We now show how this is obtained by considering speci�c examples.

2.1. Classical trade-off curves: the quantum Fisher information Cramér–Rao bound

By classical we refer to the situation when the optimal precision values for the different

parameters are independent of each other. This is automatically the case in classical param-

eter estimation where the maximum likelihood method asymptotically achieves the optimal

values for all the variances Var(θi) simultaneously [40].

Let us begin by plotting the trade-off curve resulting from the SLD-QFI bound equation (8).

As discussed above, this bound can be interpreted as the assertion that for every direction in

parameter space, the single parameter bound applies. Therefore we do not expect to be able to

extract nontrivial trade-off relations from it.

The matrix inequalities equations (4) and (8) imply

Tr NVG > Tr H−1G, ∀G > 0. (10)

Consider the case of two parameters and let G =

(

t

1− t

)

for t ∈ (0, 1). This form of cost

matrix corresponds to a �xed total cost of 1 which is divided between θ1 and θ2 with proportion

t/(1− t). Let H−1 =

(

u1 b

b u2

)

. equation (10) becomes

N(tV1 + (1− t)V2) > tu1 + (1− t)u2,

where Vi is the variance of θi. This implies that for every value of t ∈ (0, 1) the points in the

(NV1,NV2) plane which are not excluded by equation (10) lie above the lineNV2 = u2 + (u1 −
NV1)

t
1−t . All of these lines pass through the point (u1, u2) and as t varies between 0 and 1 the

8Once again, because we are dealing with local estimation representing the cost function by a positive

matrix is general enough. Expanding an arbitrary cost function f (θ̂ − θ0) around the minimum θ0 and tak-

ing the expectation value we obtain E f (θ̂ − θ0) = f (θ0)+ 1/2
∑

(∂θi∂θ j f )E(θ̂i − θ0 i)(θ̂ j − θ0 j)+ o(|θ̂ − θ0|2) =
f (θ0)+ 1/2Tr GV + o(|θ̂ − θ0|2), where Gi j := ∂θi∂θ j f is the Hessian.

8
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Figure 1. Trade-off curves for the rescaled variances of the estimators of a 2-parameter

density matrix with quantum Fisher information matrix H =

(

u1 b
b u2

)−1

. The SLD-

QFI bound equation (8) implies the dotted blue classical trade-off curve. The curves
resulting from the GM bound equation (12) are plotted for �xed values of u1 = 0.25
and u2 = 0.75 for systems of different Hilbert space dimensions: d = 2 (black solid
curve), and d = 3, 4, 5, 6 (red dashed curves). The GM curves are obtained as the upper
envelopes of the lines given by equation (14), several of which are plotted (green) for
the d = 2 case. For d = 2 the GM trade-off curve is asymptotic to the SLD-QFI curve,
whereas for d > 2 the GM curves are below the SLD-QFI curve.

slope of the line varies between 0 and −∞. The allowed region (not excluded by any value

of t) is {NV1 > u1} ∩ {NV2 > u2}. In particular, the bound equation (10) does not exclude

the point (NV1 = u1,NV2 = u2), which corresponds to optimal precision for both θ1 and θ2
simultaneously. This classical—or trivial—trade-off bound is plotted in �gure 1 as the blue

dotted curve.

2.2. Non-trivial trade-off curves: the Gill–Massar bound

To demonstrate nontrivial trade-off we shall introduce the bound proved by Gill and Massar in

reference [51]. They showed that for separable measurements on N identical copies of �nite,

d-dimensional quantum systems the following holds:

Tr FMH−1
6 N(d − 1). (11)

This bound implies [51] that for any G > 0

9
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Tr NVG ≈ Tr(FM)−1G >
1

d − 1

(

Tr

√√
GH−1

√
G

)2

. (12)

We will refer to equation (12) as the Gill–Massar (GM) bound.

The non-linear dependence of the right-hand side of equation (12) on G results in a

non-trivial trade-off curve. Let G and H be parameterized as before. Using the following

expression for the �delity of 2× 2 matrices [56] which appears in the right-hand side of

equation (12)

(

Tr

√√
AB

√
A

)2

= Tr AB+ 2
√

det(AB), (13)

we obtain the following family of lines in the (NV1,NV2) plane:

tNV1 + (1− t)NV2 =
1

d − 1

(

tu1 + (1− t)u2 + 2
√

t(1 − t)
√

detH−1

)

. (14)

To obtain a formula for the trade-off curve �x V1 andmaximizeV2 with respect to t. This results

in the following parameterization of the curve in terms of t ∈ (0, 1):

NV1(t) =
1

d − 1

(

u1 +

√

1− t

t

√

detH−1

)

NV2(t) =
1

d − 1

(

u2 +

√

t

1− t

√

detH−1

)

.

Figure 1 shows the trade-off curves obtained for �xed values of u1, u2 and for d =

2, 3, . . . , 6. In addition the trivial trade-off curve resulting from the SLD-QFI bound is shown.

The �gure clearly shows that for d > 2 the GM bound is unattainable as it allows a higher

precision for each of the parameters than that allowed by the SLD-QFI bound. Furthermore,

�gure 1 shows that for d > 2 the GM bound does not exclude any region above the trivial

trade-off curve. This is in agreement with reference [51] where it was concluded that when

the number of parameters K satis�es K 6 d− 1, the SLD-QFI bound is stronger then the GM

bound.

2.3. The right logarithmic derivative quantum Fisher information bound and the Holevo

Cramér–Rao bound

We shall now introduce the right logarithmic derivative quantum Fisher information (RLD-

QFI) bound. This bound exhibits nontrivial trade-off, with the ‘strength’ of the trade-off

between the variances of θi and θj depending directly on the expectation value of the

commutator of the corresponding SLDs Trρ[Li, Lj].
The right logarithmic derivative (RLD) is de�ned implicitly by

∂ρ

∂θi
= ρŁi.

The RLD-QFI matrix is then de�ned by

Ri j = Tr ρŁ jŁ
†
i .

10
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Just as the SLD-QFI matrix, the RLD-QFI matrix bounds the covariance matrix of any

locally unbiased estimator [46]:

V(θ̂) > R−1/N.

This bound implies, as before, a lower bound on the expected cost associated with any

positive cost matrix G > 0, which, due to the fact that R is a Hermitian matrix (whereas H is

real and symmetric) takes the form [32, lemma 6.6.1]

Tr NVG > Tr GRe
(

R−1
)

+ Tr
∣

∣

∣

√
G Im

(

R−1
)
√
G

∣

∣

∣
, (15)

where | · | is the absolute value function de�ned for Hermitian matrices via their spectral

decomposition; and Re and Im refer to the real and imaginary parts of a matrix taken entry-

wise. The imaginary part results in a non-trivial trade-off curve. To see this, consider the

case of two parameters. Because R−1 is Hermitian, its imaginary part is anti-symmetric. Let

R−1 =

(

r1 b+ ia

b− ia r2

)

, and G =

(

t

1− t

)

. Equation (15) becomes

tNV11 + (1− t)NV22 > tr1 + (1− t)r2 + 2a
√

t(1− t). (16)

The right-hand side has the same functional dependence on t as in equation (14) with d = 2.

From this we conclude that this bound results in a non-trivial trade-off curve which is

asymptotic to the lines NV1 = r1 and NV2 = r2.

In certain cases, it is possible to express the RLD-QFI matrix in terms of the SLDs. In the

case of what is called a D-invariant model9 [32, 46] the following holds:

R−1
= H−1

+
i

2
H−1DH−1, (17)

whereD is a matrixwhose entries are proportional to the expectation values of the commutators

of the SLDs:

Di j = iTr ρ
[

Li, L j
]

. (18)

As H and D are real, the imaginary part of R−1 is H−1DH−1/2, which together with

equation (15) implies

Tr NVG > Tr GH−1
+

1

2
Tr
∣

∣

∣

√
GH−1DH−1

√
G

∣

∣

∣ . (19)

Comparing to equation (16) we see that in this case Tr ρ
[

Li, L j
]

determines how much

area the trade-off curve excludes above the trivial curve resulting from the SLD-QFI bound

equation (10) (which has only the Tr GH−1 term).

We mention the Holevo Cramér–Rao bound, which is in general stronger than both the

SLD-QFI and the RLD-QFI bounds [46]. In the D-invariant case the Holevo bound coincides

9The D operator is de�ned implicitly by D(X)ρ0 + ρ0D(X) = 2i[X, ρ0]. A model is called D–invariant if the space

spanned by the SLDs is invariant under the action of D. For a further classi�cation of statistical models see reference

[57].

11
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with the RLD-QFI bound [32, 46]. As we will be dealing only with such cases, we shall not

present the Holevo Cramér–Rao bound here and only mention results we will need for our

discussion10. The Holevo Cramér–Rao bound was shown to be equal to the SLD-QFI bound if

the expectation values of the commutators between all SLDs vanish [41]. In Gaussian state shift

models where one estimates the displacement parameters, it has been shown that the Holevo

Cramér–Rao bound is attainable [32]. The theory of local asymptotic normality maps any

quantum estimation problem involvingmany copies of the same state to a Gaussian shift model

[47]. This implies asymptotic attainability of the Holevo Cramér–Rao bound with collective

measurements [41, 48].

3. The qubit model

Let us next move to the estimation of the most general density matrix of a qubit, which is

parameterized by three parameters. This problem is also known as quantum state tomography

[60]. In order to observe trade-off relations between more than two parameters, it is enough

to consider a qubit system. In the qubit case, the GM bound is attainable with a measurement

performed on single copies of the state [51, 61].

In this sectionwe compare the GMbound and the Holevo Cramér–Rao bound (which in this

case is equal to the RLD bound) through the resulting trade-off surfaces. We also investigate

the set of optimal measurementswhich saturate the inequalities. We characterize this set in two

cases: when the parameterization is aligned with ρ0 (when the z axis is pointing in the direction
of the Bloch vector of ρ0); and when it is not aligned. Finally we use the trade-off surfaces

computed for different parameterizations to obtain a state-independent trade-off surface, and

derive state-independent uncertainty relations.

We work in the Bloch sphere parameterization, using Pauli matrices as a basis, and with

ρ0 = [I+ z0σz]/2, the full parameterization is ρ(θ) = ρ0 +
∑

θiσi (in this parameterization

the true parameter value is θ0 = (0, 0, 0)). Note that the initial state can always be brought to

this form by rotating the Bloch sphere and working in the appropriate basis. We will call this

coordinate system the adjusted one, and later—in section 3.3—we shall return to describe

things in a general coordinate system. We will identify θ1 ≡ x, θ2 ≡ y and θ3 ≡ z. When

the state is full rank (z0 < 1) the solution to the equation de�ning the SLDs is unique and

given by

Lx = 2σx, Ly = 2σy

Lz = 2

(

(1+ z0)
−1 0

0 −(1− z0)
−1

)

.
(20)

The resulting SLD-QFI is diagonal and takes the form

H = 4





1

1

(1− z20)
−1



 . (21)

10 I addition we mention that it has been recently shown that the bound in equation (19) is always greater or equal

than the Holevo Cramér–Rao bound, and that the Holevo Cramér–Rao bound is less or equal than two times the SLD

bound equation (10) [58, 59].

12
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Figure 2. Comparison between the trade-off surfaces obtained from the Gill and Massar
(GM) bound (grayscale and �lled) and the right logarithmic derivative (RLD) or Holevo
Cramér–Rao bound (blue and transparent) for estimation of the three Bloch parame-
ters x, y and z for a qubit state ρ0 = (I+ 0.7σz). The axes are the rescaled variances of
the parameters, i.e. the variance multiplied by N—the number of copies of ρ0. The GM
trade-off surface lies strictly above the RLD surface. The RLD surface shows nontriv-
ial trade-off only between the x and y parameters (it has a ‘�at bottom’), whereas the
GM bound exhibits nontrivial trade-off between all three parameters simultaneously.
Both surfaces are asymptotic to the trivial trade-off surface implied by the symmetric
logarithmic derivative quantum Fisher information bound equation (8).

3.1. Comparison between Gill–Massar and Holevo Cramér–Rao bounds

Let us take a cost matrix parameterized as

G =





s

t

r := 1− t − s



 ; s > 0, t > 0, s+ t 6 1. (22)

The GM bound is given by equation (12):

Tr NVG >
1

4

(

s+ t + r(1− z20)+ 2
√
ts+ 2

√

r(1− z20)(
√
t +

√
s)

)

. (23)

13



J. Phys. A: Math. Theor. 53 (2020) 244001 Ilya Kull et al

The Holevo Cramér–Rao bound is equal to the RLD bound because the model is D-

invariant (this is veri�ed by a direct computation). Computing the matrix Di j = iTr ρ
[

Li, L j
]

we obtain

D = 8z0





0 −1 0

1 0 0

0 0 0



 . (24)

According to equation (19) the RLD-QFI bound is then given by

Tr NVG >
1

4

(

s+ t + r(1− z20)+ 2z0
√
ts
)

. (25)

From this expression one can already guess that the RLD bound exhibits nontrivial trade-off

only between the x and y parameters as r appears only in the term coming from Tr GH−1 on

the right-hand side. This is a generic feature of the RLD-QFI bound for �nite dimensional

quantum systems. We will show that this is the case in a 3-level system in section 4.

Using equations (23) and (25) we �nd for each bound the smallest allowed value of NVz
for a grid of values of NVx,NVy (for �xed NVx,NVy we can �nd NVz by requiring equality

in equations (23) and (25) and maximizing over a grid of values for s and t). The results

are plotted in �gure 2. For states with z0 < 1, the Holevo Cramér–Rao (=RLD) bound is

strictly weaker than the GM bound. Recall that the GM bound is attainable with single copy

measurements whereas the Holevo Cramér–Rao bound with collective measurements. This

conforms with our expectation that collective entangled measurements should provide an

advantage over separable ones. As the state ρ0 tends towards a pure state, the GM bound tends

towards the Holevo Cramér–Rao bound, as can be seen from equations (23) and (25) by setting

z0 = 1.

3.2. Measurements attaining the Gill–Massar bound

The bound equation (11) is achievable for qubits. Gill and Massar show that for a qubit system

(d= 2), everymatrixF that satis�es equation (11) is obtainable as the Fisher informationmatrix

of a measurementMF. MF is a probabilistic mixture of three projective measurements along

the directions which diagonalize F (seen as Bloch vectors). By probabilistic mixture we mean

combiningmeasurements in the followingway: letM(1) andM(2) bemeasurementswith POVM

elements {M(1)
i }Ii=1 and {M(2)

j }Jj=1. We say thatM is a probabilistic mixture of M(1) andM(2)

if M has I+ J POVM elements Mk = λM(1)
k for k = 1, . . . , I and Mk = (1− λ)M(2)

k−I for k =

I+ 1, . . . , I+ J for some λ ∈ (0, 1); and denote M = λM1 ∪ (1− λ)M(2). With the obvious

generalization to mixtures of more than two measurements. This corresponds to measuring

M(1) in λN copies of ρ out of an ensemble of N copies, andM(2) on the rest. From equation (5)

it is easily veri�ed that probabilistic mixtures of measurements result in convex combinations

of the Fisher information matrices with the same mixing coef�cients, i.e. FM = λFM
(1)
+ (1−

λ)FM
(2)
.

In the rest of this section, we will require more detailed notation. We denote the Fisher

information matrix corresponding to ρn = (I+ n · σ)/2, the estimation of parameters θ, and

to a projective measurement M = Pv along a Bloch vector v as F(ρn, θ,Pv). The following

calculation shows that this matrix equals 4
1−(n·v)2 vv

⊺.

14
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F(ρn, θ,Pv)i j :=
Tr P+

v

dρ
dθi
Tr P+

v

dρ
dθ j

Tr P+
v ρ

+
Tr P−

v

dρ
dθi
Tr P−

v

dρ
dθ j

Tr P−
v ρ

= 2viv j

(

1

1+ n · v +
1

1− n · v

)

= 4
viv j

1− (n · v)2 (26)

In reference [51] it is shown, as part of the proof of the bound equation (11), that the optimal

rescaled covariance matrix for a given cost matrix G is given by

NVopt(G) =
1

d − 1

(

Tr
√

G1/2H−1G1/2
)

G−1/2
√

G1/2H−1G1/2G−1/2 (27)

Plugging in d = 2, H from equation (21) and a cost matrix parameterized as in equation (22)

we obtain

NVopt(s, t) =
1

4

(√
s+

√
t +

√

(1− s− t)(1− z20)

)











s−1/2 0 0

0 t−1/2 0

0 0

√

1− z20
(1− s− t)











Comparing this with the Fisher information of a probabilistic mixture with proportions

(α, β, 1− α− β) of projective measurement in the x̂, ŷ and ẑ directions (M(α, β) = αPx̂ ∪
βPŷ ∪ (1− α− β)Pẑ):

F(ρz0 ẑ, θ,M(α, β)) = 4









α 0 0

0 β 0

0 0
1− α− β

1− z20









,

we can �nd ᾱ(s, t) and β̄(s, t) such that

F(ρz0 ẑ, θ,M(ᾱ, β̄))−1
= NVopt(s, t).

Those are given by

ᾱ(s, t) =

√
s

√
s+

√
t +

√

(1− s− t)(1− z20)
; β̄(s, t) =

√
t

√
s+

√
t +

√

(1− s− t)(1− z20)

This gives a simple characterization of the optimal measurements, i.e. the measurements

for which the obtained variances lie on the trade-off surface. They are probabilistic mixtures

of projective measurements in the x, y and z directions, with different proportions optimizing

for different cost matrices. These projective measurements happen to be the optimal ones in

the one-parameter estimation scenario as the SLDs are diagonal in the x, y and z bases respec-

tively (see equation (20)). Note, however, that we have thus far been working in the adjusted

coordinate system, where the z axis is aligned with ρ0. In the next paragraph we analyze the

case of a general coordinate system.
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3.3. General coordinates

So far we have considered a general state ρ0 but in order to simplify the analysis, we adjusted

our coordinate system such that the z axis was aligned with the Bloch vector of ρ0. In the

last paragraph we saw that in this adjusted coordinate system the optimal trade-off is attained

by probabilistic mixtures of the Pauli operators (rotated to the adjusted basis). We are not

always free to choose the coordinate system we work in, and it is likely that we would like

to optimize our measurement for a cost matrix which is diagonal in a different coordinate

system than the one adjusted to ρ0. We now look at the trade-off surface in a coordinate sys-

tem which is not aligned with the state, and investigate the measurements which achieve the

trade-off surface. This will turn out to be useful for deriving our state-independent result in

section 3.4.

Changing the coordinate system rotates the covariance matrix, the SLDs, and the quan-

tum Fisher information matrix as described in section 1.2. In reference [51] it is described

how to �nd the measurement which achieves a desired Fisher information matrix satisfying

equation (11) (this is achieved by mixing the projective measurements corresponding to the

Bloch vectors which constitute the eigen basis of the desired Fisher information matrix). We

used their method to compute the optimal measurements, �nding the measurements which

result in the inverse of equation (27) for different diagonal costs G. The result is that the

optimal measurements no longer belong to an easily characterizable family. As G is varied,

the three Bloch vectors describing the projectors of which the measurement is composed

travel around the Bloch sphere. The SLD measurements, which when working in the adjusted

coordinates could be mixed in different proportions to get variances anywhere on the trade-

off surface, no longer play a role. Below we demonstrate that they are far from optimal

even in the case of a pure cost matrix (one which assigns all the cost to one parameter),

and that in fact, the optimal for such a cost matrix is to measure the corresponding Pauli

operator.

In the following we �x an arbitrary coordinate system and test the performance of two

families ofmeasurements—one consisting of probabilisticmixtures of the SLDmeasurements,

and the other of the Pauli operators in the chosen coordinate system—and see how they fare

compared to the measurements attaining the GM bound. Let ρ0 = (I+ z0σz)/2 as before and

let θ be the adjusted coordinate system as before. Any orthogonal coordinate system is related

to the adjusted one by a rotation. Let θ̃i =
∑

j Ri jθ j be the coordinates in which we would like
to work, where R ∈ O(3) is a rotation matrix. The state ρ in these coordinates reads

ρ(θ̃) = ρ0 + θ · σ = ρ0 + R⊺
θ̃ · σ = ρ0 + θ̃ · Rσ.

We denote the Pauli matrices in the chosen coordinates by σ̃i := (Rσ)i =
∑

j Ri jσ j. As

explained in section 1.2, the quantum Fisher information matrix now takes the form

H = RHdiagR
⊺, (28)

where Hdiag is the QFI matrix in the adjusted coordinates given in equation (21). Accord-

ing to equation (9), the SLDs corresponding to this coordinate system Lθ̃i are given by linear

combinations of the SLDs in the adjusted coordinates:

Lθ̃i =
∑

j

Ri jLθ j ,
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Figure 3. The variances of the estimators for three parameters of a qubit in a param-
eterization rotated with respect to ρ0 resulting from three families of measurements.
The variances are obtained as the diagonal elements of the inverse of the Fisher infor-
mation matrix F(M)−1 of a measurement M. Plot (a) shows the variances of the mea-
surements optimizing the expected cost for randomly sampled diagonal cost matrices
(red circles), these all lie on the trade-off surface; the variances of random probabilis-
tic mixtures of rotated Pauli measurements (black asterisks); and random probabilistic
mixtures of SLD measurements (blue squares). Plot (b) is a projection of the points in
plot (a) on to the (NV1,NV3) plane. ρ0 = (I+ 0.92σz)/2 and the rotated coordinates are
given by θ̃i =

∑

jRi jθ j, where θi are the coef�cients of the Pauli matrices in the coordi-
nate system aligned with ρ0, and the rotation matrix R is de�ned by three Euler angles
R = Rx(α)Ry(β)Rz(γ);α = 25◦,β = 25◦, γ = 55◦. It is clearly seen that the SLD mea-
surements perform much worse than the rest, and that the variances of the rotated Pauli
measurements lie above, but close to, the trade-off surface. The rotated Pauli measure-
ments approach the trade-off surface far away from the origin as shown in the main
text.

Each Lθ̃i is diagonal in a basis consisting of two pure states corresponding to two

antipodal points on the Bloch sphere. For a general rotation R, the three bases diag-

onalizing Lθ̃i , i = 1, 2, 3 no longer correspond to three mutually orthogonal lines

through the center of the Bloch sphere (because of the non zero I component in Lz, see

equation (20)).

We will now show that the Pauli measurements in the chosen coordinates achieve the opti-

mal expected cost for a pure cost matrix, i.e.Gi := eie
⊺

i (where e1 = (1, 0, 0)⊺ etc.). The optimal

cost according to equation (27) is given by

Tr NVopt(Gi)Gi =

[

Tr
√

GiH−1Gi

]2

= (H−1)ii =
1

4



R





1 0 0

0 1 0

0 0 1− z20



R⊺





ii

=
1

4
(R2

i1 + R2
i2 + (1− z20)R

2
i3) =

1

4
(1− z20R

2
i3) (29)

where the last equality is due to orthogonality of R. The Fisher information for a Pauli

measurement is given by
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F
(

ρ0, θ̃,PR⊺ei

)

= F
(

ρz0 ẑ,Rθ,PR⊺ei
)

= RF
(

ρz0 ẑ, θ,PR⊺ei
)

R⊺

=
4

1− z20(R
⊺ei)

2
z

ei e
⊺

i =
4

1− z20R
2
i3

ei e
⊺

i ,

where we used equation (26) for the calculation of the Fisher information of a projective mea-

surement in the adjusted coordinates (θ), and the transformation rule for F under change

of coordinates. Taking probabilistic mixtures of the three Pauli measurements and invert-

ing the resulting Fisher information matrix we obtain the following family of covariance

matrices:

NV(α, β) = F(ρ0, θ̃, M̃(α, β))−1
=

1

4















1− z20R
2
13

α
0 0

0
1− z20R

2
23

β
0

0 0
1− z20R

2
33

(1− α− β)















,

where M̃(α, β) is a probabilistic mixture with proportions (α, β, 1− α− β) of the measure-

ments in the Pauli bases corresponding to our chosen coordinates. We see this achieves the

optimal cost for pure cost matrices equation (29) for i = 1, 2, 3 in the limits α→ 1, β → 1 and

α, β→ 0 respectively.

For randomly sampled diagonal cost matrices as in equation (22) we computed the optimal

covariancematrix using equations (21), (27) and (28). In addition we computed the covariance

matrices corresponding to random probabilistic mixtures of the Pauli measurements, and to

random probabilistic mixtures of SLD measurements. Figure 3 shows the resulting trade-off

surfaces between the variances of the three parameters θ̃i. It is clearly seen that the Pauli mea-

surements lie above the optimal surface, and that the SLD measurements preform signi�cantly

worse than the other two. This is due to correlations between the parameters in the SLD mea-

surements. In further numerical calculations we performed it was observed that the separation

between the Pauli measurements and the optimal measurements is noticeable for states closer

to the sphere of pure states (z0 > 0.5), and that it vanished when one of the coordinate axes

came close to alignment with ρ0.

3.4. state-independent trade-off surface

So far we have always considered state-dependent bounds. Indeed, all the bounds we used

in order to plot our trade-off surfaces involved explicit dependence on the state ρ0 (recall

that the quantum Fisher information matrix H always depends on ρ0). A state-independent

trade-off surface can be obtained as the boundary of the union over all states ρ0 of the

attainable regions—the regions laying above the trade-off surface (equivalently, as the bound-

ary of the intersection of the unattainable regions). To obtain a graphical representation

of this state-independent trade-off surface, we would need to plot the trade-off surfaces

corresponding to different state ρ0 all on the same plot, and see what region remains

uncovered.

We �x our standard coordinate system to be in terms of the usual Pauli operators ρ(θ) =
ρ0 +

∑

θiσi, and for every state ρ0 in the Bloch sphere we use equations (21), (27) and (28) to
sample points from the trade-off surface corresponding to the GM bound with that state. More

precisely, we compute the quantum Fisher information matrixH(z0) in the coordinates aligned
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Figure 4. state-independent trade-off surface. Plot (a) shows points sampled from trade-
off surfaces corresponding to different states. The region which is �lledwith points is the
attainable region, and the region which is empty is unattainable for all measurements and
all states. The boundary between the regions is the state-independent trade-off surface.
Plot (a) shows in addition the planeNVx + NVy + NVz = 1which forms part of the trade-
off surface, as proven in the main text. Black corresponds to purer states and red to
states closer to the center of the Bloch ball. Plot (b) is a projection of plot (a) to the x, z
plane (black points were plotted under the red ones) and shows in addition a straight
line NVz = 0.25− NVx �tted to the boundary of the region by maximizing the point
of intercept. The plots are obtained by random sampling of points from the trade-off
surfaces in different coordinate systems, speci�ed by a rotation matrix R ∈ O(3) which
relates the z axes to the Bloch vector of the state ρ0. As explained in the main text, this is
equivalent to varying over all states. The values used for the length of the Bloch vector
of ρ0 are z0 ∈ {0.5, 0.9, 0.99, 0.999, 1− 10−4, 1− 10−6} and the rotations run over a
grid of Euler angles: R = Rx(α)Ry(β)Rz(γ);α,β, γ ∈ {0, 3◦, 6◦, . . . , 360◦}. The spikes
visible on the edge of the covered region in plot (b) are the result of this discrete grid of
rotation angles. Pure states (z0 = 1) were avoided for numerical stability.

with ρ0 (z0 is the length of the Bloch vector of ρ0) and then rotate it back to the standard coordi-
nates with the appropriate rotation R ∈ O(3). We plug the result into equation (27) and plot the

diagonal entries ofVopt(G) for randomly sampled diagonal costmatricesG.We do this for a grid

of values of z0 ∈ [0, 1] and of the angles parameterizing the rotation (R = Rx(α)Ry(β)Rz(γ),
where Rx(α) is a rotation around the x axis by an angle α). This procedure is equivalent to
running over a grid of states ρ0.

The result is shown in �gure 4. The �gure shows that a non-trivial state-independent trade-

off relation holds between the three parameters of a qubit state. This result relies on the GM

bound equation (12) and therefore applies whenever the parameters are estimated from the

outcomes of separable measurement strategies.

The shape of the trade-off surface in �gure 4(a) has features similar to the boundary of the

preparation uncertainty regions found in [55, �gures 6 and 7]. Its projection to the x, z plane

shown in �gure 4(b) suggests that the following uncertainty relation holds for the rescaled

variances11:

NV(θ̂i)+ NV(θ̂ j) >
1

4
, i 6= j ∈ {x, y, z}. (30)

11Recall that in our parameterization θi is the deviation of 〈σi/2〉 from its true value, if we were to parametrize the

state as ρ(θ) = ρ0 + θ · σ/2 the lower bounds in equations (30), (34) and (35) would be 4 times bigger.
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This bound coincides with the preparation uncertainty relation ∆(σx/2)
2 +∆(σz/2)

2 > 1/4
proven in [55, 62].

We now prove equation (30). It is enough to prove the case i = 1, j = 2, this will become

clear from equation (31) below, where we have the freedom to rotate H−1. We therefore prove

V1 + V2 = TrVP2 > 1/4, where P2 is the following matrix:

P2 =





1

1

0



 .

Denote the optimal covariance matrix for a state ρ0 with Bloch vector of length z0 and the

cost matrix P2 in a coordinate frame rotated by a rotation R ∈ O(3) with respect to ρ0 as

Vopt(P2,R, z0). As explained above, minimizing the expected cost TrVP2 over all states ρ0 is
equivalent to minimizing TrVopt(P2,R, z0)P2 over all choices of coordinate systems (speci�ed

by R ∈ O(3)) and all z0 ∈ [0, 1]. According to equations (27) and (28) we have

Tr NVopt(P2,R, z0)P2 =

(

Tr

√√
P2RH−1(z0)R⊺

√
P2

)2

. (31)

We now proceed to minimize equation (31) over R ∈ O(3) and z0 ∈ [0, 1]. First notice that the

minimum is always obtained for pure states (z0 = 1) because:

(

Tr

√√
P2RH−1(z0)R⊺

√
P2

)2

=
1

4






Tr

√

√

√

√

√P2R



P2 +





0

0

1− z20







R⊺P2







2

>
1

4

(

Tr
√
P2RP2R⊺P2

)2
= TrNVopt(P2,R, z0 = 1)P2,

where we used the operator monotonicity of the square root function (A > B > 0 ⇒
√
A >√

B) going to the second line. We would now like to perform the minimization over R ∈ O(3).

A convenient parameterization of R for this purpose is given by R(u,φ) where u is a unit

vector and φ is the angle of rotation. Using the Rodrigues’ rotation formula [63], R(u,φ) is
given explicitly by

R(u,φ) =





c+ u2x(1− c) uxuy(1− c)− uzs ∗
uxuy(1− c)+ uzs c+ u2y(1− c) ∗

∗ ∗ ∗



 ,

where we used the shorthand c := cosφ and s := sinφ and where ∗ stands in place of entries we
will not use. Plugging this into equation (31) and setting z0 = 1 we obtain

Tr NVopt(P2,R(u,φ), z0 = 1)P2 =
1

4

(

Tr
√

P2R(u,φ)P2R(u,φ)⊺P2

)2

=
1

4

(

Tr

√

[R(u,φ)]12[R(u,φ)]
⊺

12

)2

=
1

4
Tr[R(u,φ)]12[R(u,φ)]

⊺

12 +
1

2
|det [R(u,φ)]12|

=
1

2

[

f (c, uz)+ | f (c, uz)|
]

+
1

4
(1− c2)(1− u2z )

2,

where [R(u,φ)]12 denotes the upper left 2× 2 block of R(u,φ), the function f is given by

f (c, uz) := c2 + c(1− c)(1− u2z )+ u2z (1− c2), and we used equation (13) to evaluate Tr
√·2
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for a 2× 2 matrix. Our original minimization problem

min
|u|=1,φ∈[0,2π],z0∈[0,1]

(

Tr
√

P2R(u,φ)H−1(z0)R(u,φ)⊺P2

)2

(32)

was therefore reduced to

min
uz∈[−1,1],c∈[−1,1]

1

2

[

f (c, uz)+ | f (c, uz)|
]

+
1

4
(1− c2)(1− u2z )

2, (33)

which we performed numerically to obtain the value 1
4
.

The two-parameter relations equation (30) fully characterize the attainable region for two

parameters, as seen from �gure 4(b). As a partial characterization of the shape of the region

attainable for all three parameters in �gure 4(a) we prove the following12:

NV(θ̂x)+ NV(θ̂y)+ NV(θ̂z) > 1, (34)

i.e. that the planeNV(θ̂x)+ NV(θ̂y)+ NV(θ̂z) = 1 is a supportingplane of the attainable region,

as can be seen in �gure 4(a). As before, the minimum of Tr Vopt(I,R, z0)I is obtained when

z0 = 1. There is no need to minimize over R as we can use the cyclicity of the trace to eliminate

R with R⊺. We obtain

Tr NVopt(I,R, z0 = 1)I =
(

Tr
√

RH−1(z0 = 1)R⊺

)2

=
1

4

(

Tr
√
RP2R⊺

)2
=

1

4

(

Tr
√
P2

)2
= 1.

Weconclude this section bymentioning that the same reasoning can be applied to theHolevo

Cramér–Rao bound. Starting from equation (19) with a rotated QFI matrix and a rotated D

matrix (equation (18)):

Tr NVG > Tr GRH(z0)
−1R⊺

+
1

2
Tr
∣

∣

∣

√
GRH(z0)

−1DH(z0)
−1R⊺

√
G

∣

∣

∣ ,

and setting G = I we obtain

Tr NV > Tr H(z0)
−1

+
1

2
Tr
∣

∣H(z0)
−1DH(z0)

−1
∣

∣

=
1

4
(3− z20)+

1

2

8z0

16
Tr

∣

∣

∣

∣

(

0 −1

1 0

)∣

∣

∣

∣

=
1

4
(3− z20 + 2z0),

where we used equation (24). This is minimized when z0 = 0 and we obtain the bound13

NV(θ̂x)+ NV(θ̂y)+ NV(θ̂z) >
3

4
, (35)

which is a state-independent bound implied by the Holevo Cramér–Rao bound and therefore

holds for collective measurements. It is saturated in the case of a maximally mixed state. In

this case the commutation condition Tr ρ
[

Li, L j
]

= 0 is satis�ed, which means that the Holevo

12 see footnote 10.
13 see footnote 10.
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bound coincides with the SLD-QFI bound [41] and is attainable due to local asymptotic nor-

mality [47, 48]. This also shows that the state-independent trade-off surface for estimation

using collective measurements is different from the one for separable measurements shown in

�gure 4, as with collective measurements equation (34) can be violated. It would be interesting

to compute the state-independent trade-off surface implied by the Holevo Cramér–Rao bound.

We leave this for future works.

4. The Holevo Cramér–Rao bound in the qutrit model

In this section, we compute the Holevo Cramér–Rao bound for a qutrit, i.e. a three level system.

We use a model for which the Holevo Cramér–Rao bound is equal to the RLD bound and can,

therefore, be computed by equation (19). As in the qubit case, the obtained bound exhibits both

trivial and non trivial trade-offs between various parameters.

We compute the SLDs for a parameterization of a state of a 3-level system in terms of the

Gell–Mann matrices.

λ1 =





0 1 0

1 0 0

0 0 0



 λ2 =





0 −i 0

i 0 0

0 0 0





λ4 =





0 0 1

0 0 0

1 0 0



 λ5 =





0 0 −i

0 0 0

i 0 0





λ6 =





0 0 0

0 0 1

0 1 0



 λ7 =





0 0 0

0 0 −i

0 i 0





λ3 =





1 0 0

0 −1 0

0 0 0



 λ8 =
1√
3





1 0 0

0 1 0

0 0 −2



 .

The state is parameterized as follows:

ρ(θ) = exp

(

−i
∑

i∈I
θiλi

)

ρd(θ3, θ8) exp

(

i
∑

i∈I
θiλi

)

,

where I = {1, 2, 4, 5, 6, 7} contains only indices of non diagonal λs and ρd is a diagonal state
parameterized as14

ρd(θ3, θ8) =
1

3
I+ (θ3 + θ03)λ3 + (θ8 + θ08)λ8.

By choosing θ03 and θ
0
8 we can specify any diagonal state ρ0 := ρd(0, 0).

14This parameterization is general enough for local estimation because for a given expansion ρ = ρ0 +
∑

tkρk,
with t small enough, the following equation ρ0 +

∑

tkρk = exp
(

i
∑

tkHk

) (

ρ0 +
∑

tkXk
)

exp
(

−i
∑

tkHk

)

admits

a solution with Hk having zero entries on the diagonal and Xk diagonal.
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ρ0 =





k1 0 0

0 k2 0

0 0 k3



 ,

with k3 = 1− k1 − k2. The diagonal entries ki are related to θ
0
3 , θ

0
8 by

k1 − k2 = 2θ03, 3(k1 + k2)− 2 = 2
√
3θ08.

The derivatives of ρ, evaluated at θ = 0 are

∂ρ

∂θi
= −i [λi, ρ0] , i ∈ {1, 2, 4, 5, 6, 7}

∂ρ

∂θ j
= λ j, j ∈ {3, 8}.

(36)

In reference [53] the SLDs for a three level system were computed in a more general setting.

For simplicity, assume the state is full rank, and using the structure constants of su(3) (given

in reference [53]), simply verify that the SLDs are given by

L1 = −2
k1 − k2

k1 + k2
λ2, L2 = 2

k1 − k2

k1 + k2
λ1

L4 = −2
k1 − k3

k1 + k3
λ5, L5 = 2

k1 − k3

k1 + k3
λ4

L6 = −2
k2 − k3

k2 + k3
λ7, L7 = 2

k2 − k3

k2 + k3
λ6

L3 =





1/k1 0 0

0 −1/k2 0

0 0 0



 , L8 =
1√
3





1/k1 0 0

0 1/k2 0

0 0 −2/k3



 .

When all the ki are different, the model isD-invariant (see footnote 8; this also follows from the

su(3) structure constants). We compute the expectation values of the commutators of the SLDs

Tr[Li, Lj]ρ0 to obtain the matrix elements ofD (equation (18)). The only non-zero elements are

|D12| = 8
(k1 − k2)

3

(k1 + k2)2

|D45| = 8
(k1 − k3)

3

(k1 + k3)2

|D67| = 8
(k2 − k3)

3

(k2 + k3)2
.

The quantum Fisher information matrix has only two non-zero entries off from the diagonal

(H83 = H38 6= 0). Combining these observations we can use equation (19) to understand the

trade-offs which the Holevo Cramér–Rao bound exhibit in this model. We treat the matrices

appearing in equation (19) as block diagonal. InH−1 the only blockwhich contains off diagonal

terms corresponds to the parameters θ3, θ8. Since in this block, D is zero, we do not need to
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consider its contribution. In the other blocks (corresponding to (θ1, θ2), (θ4, θ5) and (θ6, θ7)),
the result of taking the absolute value of the restriction of D to this block conjugated with a

diagonal positive matrix (the restriction of
√
GH−1 to the same block), results in a functional

dependence of the right-hand side of equation (19) which is a sum of three terms similar to

equation (16). More precisely, for Gij = δijgi with gi > 0 and
∑

gi = 1

Tr GV(θ̂) > Tr GH−1
+

1

2
Tr

∣

∣

∣

√
GH−1DH−1

√
G

∣

∣

∣

= Tr GH−1
+
a2

2
|D12|

√
g1g2 +

b2

2
|D45|

√
g4g5 +

c2

2
|D67|

√
g6g7,

where a, b and c are the values of H−1 in the corresponding blocks (which we do not compute

explicitly as we just want to demonstrate the qualitative behavior). The functional dependence

of the above on {gi} implies that non-trivial trade-off appears only between pairs of parameters

corresponding to the x and y Pauli matrices within each of the 3 su(2) sub-algebras of su(3),

and within each sub-algebra the trade-off is as the RLD bound in �gure 2 (trivial trade-off with

the diagonal element).

5. Discussion

This paper illustrated the fact that the unsaturability of the quantum Fisher information

Cramér–Rao bound for multi parameter estimation gives rise to a rich variety of quan-

tum uncertainty relations in the form of trade-off curves. Those trade-off curves relate to

each other the pre-factors cij of the covariances Vij = cij/N of the optimal estimators for

the unknown parameters {θi} in the limit when a large number of copies N of the state

are available. This can be seen as a parameter estimation analogue of the quantum Cher-

noff and Hoeffding bounds [64] in quantum hypothesis testing, where trade-off curves are

obtained for the error exponentsαi for the error of the �rst versus the second kind—scaling as

exp (−αiN).
Trade-off curves bring into direct view the property which distinguishes quantum multi

parameter estimation from its classical statistics counterpart—the unattainability of simul-

taneous optimal precision. This property was often discussed in the literature, however,

we have never seen such trade-off curves plotted for the known tight bounds. In refer-

ences [65, 66] the trade-off between two parameters is quanti�ed by considering the set of

allowed pairs
(

(NV1H11)
−1, (NV2H22)

−1
)

, which for separable measurements is determined

by equation (11). Reference [45] provides a comparison between the Holevo Cramér–Rao

bound and the GM bound by comparing the bounds they put on the expected cost for a

single (although state-dependent) cost matrix. In another work, reference [67], the authors

present the difference between the regions of variances excluded by bounds on their arith-

metic, geometric and harmonic means. What distinguishes our approach from the above

works is that to obtain the trade-off curve we use the bound on the expected cost for

a family of different costs all at once. This is best illustrated in �gure 1 which shows

how the trade-off curve is obtained as the point-wise maximum over a family of lines.

We can also apply this in the reverse to obtain tight bounds on the expected cost given a

convex region of attainable variances, as the latter is determined by its supporting hyper

planes.

Trade-offs in quantum parameter estimation belong to the joint-measurement type of uncer-

tainty relations. They show that when we wish to estimate certain parameters by performing a
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measurement on a quantum state, increased precision in one parameter will typically come at

the cost of increased uncertainty in other parameters.

Investigation of the trade-off surfaces implied by the GM bound led us to our main result: a

state-independent uncertainty relation between the three parameters of a qubit system. We pro-

vided numerical evidence for this trade-off relation (�gure 4(a)) and proved an additive bound

equation (34) which forms part of the trade-off surface. In addition, we proved two-parameter

additive uncertainty relations equation (30) which coincide with the uncertainty relation for

state preparation proven in references [55, 62].We showed that theHolevo Cramér–Rao bound

also implies an additive uncertainty relation with a smaller lower bound than in equation (34).

Our method for deriving state-independent trade-off surfaces from state-dependent bounds

could be applied to the Holevo Cramér–Rao bound for a qubit to obtain a trade-off surface

for estimation with collective measurements.

The attainability of the symmetric logarithmic derivative quantumFisher information (SLD-

QFI) bound, which exhibits classical (or trivial) trade-off, with collective measurements has

recently been shown to be equivalent to the commutation conditionTr[Li, Lj]ρ0 = 0, the vanish-

ing of the expectation values of the commutators between all SLDs [41]. The degree to which

this fails to be the case has been suggested in reference [58] as a measure of incompatibility

between parameters. In section 2.3 we demonstrated this by relating the algebraic form of the

Holevo Cramér–Rao bound to the strength of the resulting trade-off curve. Equations (16) and

(19) show how as the expectation value Tr[Li, Lj]ρ0 approaches zero, the corresponding trade-
off curve becomes closer and closer to the trivial one. We have also provided two examples of

systems—the qubit (section 3) and qutrit (section 4) models—where the commutation condi-

tion is satis�ed only between some pairs of parameters, and demonstrated how this re�ects in

their trade-off surfaces.

The attainable bounds we dealt with in this paper pertain to two different measurement

scenarios. The GM bound equation (12), is attainable for qubit ensembles (d = 2) with sep-

arable measurements, whereas the Holevo Cramér–Rao bound equation (17) is attainable

for �nite dimensional systems with collective entangled measurements. From the algebraic

form of the GM bound equation (12) and the Holevo Cramér–Rao bound equation (17)

the trade-off structure is not immediately visible. In �gure 2 we plotted the trade-off sur-

faces for each of the bounds for the qubit case to show the qualitative difference between

the two. The Holevo Cramér–Rao bound allows for higher precision and exhibits non-trivial

trade-off only between the x and y parameters, whereas the GM bound—between all three

parameters.

The attainability of the Holevo Cramér–Rao bound for �nite dimensional systems relies on

the theory of quantum local asymptotic normality. As described in [47], in the asymptotic limit

the statistical model of a �nite dimensional quantum system splits into a product of a classical

Gaussian shift model corresponding to the diagonal elements of the density matrix, and inde-

pendent harmonic oscillator models for the off-diagonal elements. The trade-off surfaces of the

Holevo Cramér–Rao bound, which we described for the qubit (�gure 2) and qutrit (section 4)

systems, are exactly what one would expect to �nd in the corresponding asymptotic models.

In both cases the parameters corresponding to the diagonal components behave like classical

systems, i.e. they have trivial trade-off with any other parameter. In the three level system we

observe the splitting of the off-diagonal parameters into independent pairs that have non-trivial

trade-off within the pair, and trivial trade-off with elements of other pairs. The trade-off struc-

ture described in section 4 is therefore generic to �nite dimensional systems when collective

measurements can be implemented.

Finally, we studied the optimal single copy measurements in the qubit model. We showed

that the strategy of measuring different SLD operators on parts of an ensemble of identical
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states, which is optimal for the case of a coordinate system aligned with the state ρ0, is far
from optimal in the case of general coordinates. We further demonstrated that measuring the

Pauli operators (rotated to the coordinate frame) achieves the optimal cost when all the cost is

assigned to one parameter. Our numerical calculations �gure 3 further showed that the rotated

Pauli measurements are not very far from the optimal for general cost matrices.
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