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Abstract: A range of potentially disruptive changes to research strategies have been taking root 

in the field of transport research. Many of these relate to the emergence of data sources and 

travel applications reshaping how we conduct accessibility analyses. This paper, based on 

Meire et al. (in press) and Meire and Derudder (under review), aims to explore the potential of 

some of these data sources by focusing on a concrete example: we introduce a framework for 

(road and air) transport data extraction and processing using publicly available web-based 

resources that can be accessed via web Application Programming Interfaces (APIs), illustrated 

by a case study evaluating the combined land- and airside accessibility of Australia at the level 

of statistical units. Given that car and air travel (or a combination thereof) are so dominant in 

the production of Australia’s accessibility landscape, a systematic bimodal accessibility 

analysis based on the automated extraction of web-based data shows the practical value of our 

research framework. With regard to our case study, results show a largely-expected 

accessibility pattern centred on major agglomerations, supplemented by a number of 

idiosyncratic and perhaps less-expected geographical patterns. Beyond the lessons learned 

from our case study, we show some of the major strengths and limitations of web-based data 

accessed via web-APIs for transport related research topics. 

 

Keywords: “web-based data”, “application programming interfaces (APIs)”, “road and air 
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1. Introduction 

 

A range of potentially disruptive changes to research strategies have been taking root in the 

field of transport research. Many of these relate to the emergence of new data sources and travel 

applications reshaping how we conduct accessibility analyses. Although ‘big data’ can be an 

inflated and hyped term (Ahmadi, Dileepan, & Wheatley, 2016; Jagadish, 2015), it is clear that 

new types of often-extensive datasets are increasingly supplementing more conventional data 

sources and approaches to data gathering such as activity-travel diaries and retrospective 

interviews (Tranos & Mack, 2018; Witlox, 2015). Examples of big data that can be used in 

transport and accessibility studies include, among others, mobile phone call detail records (see, 

e.g., Becker et al., 2011; Demissie, Correia, & Bento, 2015; González, Hidalgo, & Barabási, 

2008; Kung, Greco, Sobolevsky, & Ratti, 2014), Bluetooth data (see, e.g., Barceló, Montero, 

Marqués, & Carmona, 2010; Hainen et al., 2011; Malinovskiy, Saunier, & Wang, 2012; 

Versichele et al., 2014), social media data (see, e.g., Mogaji & Erkan, 2019; Rashidi, Abbasi, 

Maghrebi, Hasan, & Waller, 2017; Serna & Gasparovic, 2018; Zhang & Zhou, 2018), as well 

as data acquired by means of global positioning systems (see, e.g., Cui et al., 2016; Stipancic, 

Miranda-Moreno, Labbe, & Saunier, 2017; Wong, Szeto, Wong, & Yang, 2014; Zuo, Wei, & 

Rohne, 2018). Against this backdrop, consumer-oriented travel data provided by online route 

planners, meta-search engines and/or web-crawling services (e.g. Cheapflights, Connections, 

Google Maps, etc.) provide new and potentially rich data sources in the field of transport 

research in general and accessibility research in particular. This paper, based on Meire et al. (in 

press) and Meire and Derudder (under review), aims to explore the potential of some of these 
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data sources by focusing on a concrete example: we present a bimodal accessibility analysis of 

Australia based on publicly available, web-based resources that can be accessed via web 

Application Programming Interfaces (APIs). Australia is an interesting case to conduct bimodal 

accessibility analyses as it is characterised by a spatially dispersed settlement pattern: the 

distances between the main population centres are on average relatively large. Since public 

transport services such as train and bus are relatively unimportant to connect centres on the 

national scale, or often even almost completely absent outside the urban areas, (private) road 

and air transport are the only viable alternatives to cover often vast distances (Donehue & 

Baker, 2012; Nutley, 2003). As such, given that car and air travel (or a combination thereof) 

are so dominant in the production of Australia’s accessibility landscape, a systematic bimodal 

accessibility analysis based on the automated extraction of web-based data shows the practical 

value of our research framework. The objective of this paper is therefore twofold: (1) to 

introduce a framework for transport data extraction and processing using publicly available 

web-based resources, and (2) to enhance our understanding of the uneven geographies of 

accessibility across Australia. To this end, we evaluate the accessibility of locations from a car-

air-car travel perspective (or any subset of combinations as long as it produces the shortest 

travel time) using (shortest) travel time as the primary indicator of accessibility. Focusing on 

passenger transport, we incorporate and combine both road and air travel to quantify how fast 

people can travel from every statistical area to all other statistical areas. This combination of 

land- and airside accessibility consists of three route segments: (1) travel from the origin to a 

departure airport using the road network, (2) air travel (including transfer time in case of 

connections requiring a stopover), and (3) travel from an arrival airport to the destination using 

the road network. In addition to this, unimodal car travel is also taken into account. In this 

respect, our approach conceptually resembles the bimodal accessibility perspective in Redondi, 

Malighetti, & Paleari (2011). 

 

2. Literature review 

 

Previous studies adopting web-based data sources in transport research (e.g. Dumbliauskas, 

Grigonis, & Barauskas, 2017; Fuellhart, Derudder, O’Connor, & Zhang, 2015; Grubesic & 

Zook, 2007) reveal that there are three predominant approaches through which consumer-

oriented, web-based travel data may be extracted, and which largely depend on the resources 

available. 

A first approach consists of using a web API developed by a meta-search engine or online route 

planner. An API is an interface to communicate with a web service in order to be able to access 

its content. Through the implementation of an API in a programming script, large volumes of 

data can be efficiently extracted and processed. Examples of overland travel APIs include, 

among others, those provided through the Google Maps Platform that allow accessing Google’s 

anonymised and aggregated travel data, collected from smartphone users (Dumbliauskas et al., 

2017; García-Albertos, Picornell, Salas-Olmedo, & Gutiérrez, in press). Although Google’s 

route planner has not yet been widely adopted in scientific research (García-Albertos et al., 

n.d.), a number of research projects have used Google’s travel API services. To the best of our 

knowledge, Gu, Wang, & McGregor (2010) were the first to adopt the Google Maps API in 

their study on the optimization of preventive health care facility locations. In Padeiro (2018), 

the Google Maps Directions API is used to evaluate the pedestrian access of elderly people in 

metropolitan Lisbon to community pharmacies. The Directions API provided by the Google 

Maps Platform is adopted by García-Albertos et al. (in press), Wang & Xu (2011) and Xia et 

al. (2018). In Wang & Xu (2011), for example, a desktop tool is developed that implements the 

Google Maps Directions API in order to automatically estimate an origin-destination travel time 

matrix, after which the results are compared with travel times generated through the use of the 

ArcGIS Network Analyst module. Xia et al. (2018), in turn, propose an accessibility framework 
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that integrates both travel costs and potential opportunities at a variety of scales in Australia. 

Each of the abovementioned studies adopts a static perspective on accessibility, and therefore 

does not account for changing travel times during the day due to variations in congestion levels 

and/or destination attractiveness. Yet more dynamic uses are also possible, as shown by the use 

of the Google Maps Directions API by García-Albertos et al. (in press) in a longitudinal analysis 

of urban accessibility in Madrid. In addition to the Google Maps Directions API, the Google 

Maps Platform also provides travel information through its Google Maps Distance Matrix API 

service. Dumbliauskas et al. (2017), for example, use the Google Maps Distance Matrix API 

complemented with open source software in order to conduct a unimodal travel time analysis 

of Kaunas, Lithuania. 

In addition to the different APIs provided by Google, there are a range of other travel APIs. In 

a study by Hajinasab, Davidsson, Holmgren, & Persson (2017) on the use of online services for 

transport simulation models, the API of the local online travel planner Skånetrafiken is adopted 

to collect data on available public transport options. This API is complemented with the Google 

Maps Directions API to gather cycling, walking and driving routes, together with a weather 

forecasting service API. Niu, Wang, Xia, Wu, & Tang (2018), in turn, use an API provided by 

the Chinese local map service provider AMap to gather shortest travel durations between a 

range of origin points and park entrances in Wuhan, China. Based on these data, they evaluate 

the accessibility and effective service ratio of Wuhan’s main urban parks. A comparative 

analysis of the Google Maps API, the Bing Maps API and the MapQuest API was conducted 

by Socharoentum & Karimi (2015), showing that the different APIs might generate slightly 

different results. 

Such an API-based approach can of course not be adopted if there is no API available or in case 

the API does not meet the concrete needs of the research question at hand. A second, alternative 

approach therefore consists of ‘screen-scraping’ online route planners, meta-search engines 

and/or web-crawling services using programming code and/or specific software packages (e.g. 

ParseHub), albeit that often a number of legal constraints must be considered in such cases. In 

such an approach, web pages’ content is ‘scraped’ in order to automatically extract the travel 

options they display. To the best of our knowledge, the only studies applying web-scraping to 

gather travel data were conducted by Grubesic, Horner, Zook, & Leinbach (2006) and Grubesic 

& Zook (2007). Through the use of a Perl script and several object-oriented modules therein, 

they automate online flight searches on Expedia.com to collect flight ticket options from a 

Global Distribution System. As such, the collected data represent (real-time) ‘choice-based 

information provided to consumers during the booking process’ (Grubesic et al., 2006). 

Grubesic & Zook (2007) then use these data to analyse air travel accessibility in the United 

States in terms of flight connections, flight time and ticket costs. 

A third and final approach consists of manually browsing the meta-search engine, web-crawling 

service or online route planner to gather air/car travel data, although this obviously entails a 

more time consuming process in case an excessive dataset is required. In Fuellhart et al. (2015), 

for example, the travel search engine Skyscanner is used to manually access the lowest available 

airfares for 226 inter-city connections throughout Australia. Hence, paralleling the approach 

adopted in Grubesic et al. (2006) and Grubesic & Zook (2007), they apply a ‘consumer 

perspective’ to accessibility by mimicking the consumer’s online flight search before the actual 

booking takes place. 

In this paper, we will focus on web-based data accessed via two specific web-APIs for transport 

related research topics: Google’s QPX Express API and the Google Maps Distance Matrix API. 

 

3. Study area, data and method 

 

3.1. Study area 
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The analysis was carried out at the Australian Statistical Areas Level 2 (Australian Bureau of 

Statistics, 2016b), including 2289 out of 2310 statistical areas. Twenty-one statistical areas were 

thus excluded from the analysis, involving eighteen non-spatial statistical areas and three 

statistical areas consisting of an island with neither a bridge to the Australian mainland nor an 

airport. The population weighted centroids of the statistical areas, modelled in ArcGIS using a 

1x1 km population grid in raster format (Australian Bureau of Statistics, 2016a), served as the 

points of origin and destination. However, due to insufficient population data and the spatial 

configuration of some statistical areas, 57 population weighted centroids were replaced by 

geometric centroids using ArcGIS. These 57 geometric centroids were near-randomly 

distributed within Australia (see Figure 1). During the data collection process, 21 centroids (of 

which 18 population weighted centroids and three geometric centroids) had to be manually and 

marginally moved towards the road network in order to rectify geocoding errors. With respect 

to the airside accessibility, 159 Australian airports were included in the analysis. These airports 

are a subset of the 317 certified and/or registered airports providing regular public transport 

services or having (potential) charter use (Australian Airports Association, 2012), since we only 

included the airports that are commercially accessible as evidenced by their presence in meta-

search engines and/or web-crawling services (i.e. Skyscanner, Google Flights and/or ITA 

Matrix). In this way, we take a consumer’s perspective throughout the data collection process 

by mimicking the booking process of travellers. The study area is visualised in Figure 1. 

 

 

Figure 1 : Study area. Source vector data on SA2 boundaries are obtained from the Australian 

Bureau of Statistics (2016b). Source vector data on country boundaries are obtained from Esri 

(2018). (Meire and Derudder, under review) 

 

3.2. Data 

 

In order to map the combined land- and airside accessibility within Australia in terms of travel 

time, road and air travel data were collected. 
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With regard to air travel, we collected web-based data on scheduled flight itineraries through 

the use of a publicly available travel API. Hence in parallel to Fuellhart et al. (2015), Grubesic 

et al. (2006) and Grubesic & Zook (2007), we mimic the online flight search of travellers before 

the actual booking takes place. To this end, Google’s web-based QPX Express API was 

implemented in a Python 3.6 script in order to automatically gather real-time data on flight 

durations between each pair of airports. As most air transport databases only provide data on 

individual flight legs (Derudder & Witlox, 2005b, 2005a), Google’s QPX Express API allows 

the user to collect data on full, scheduled flight itineraries (origin-destination data). The API is 

based on QPX Software developed by ITA Software, which ‘uses algorithms to combine and 

parse multiple sets of flight information from airlines, including pricing and availability data, 

to create an up-to-date database that can be searched across’ (Google Company, 2018a, 

2018b). With the aim of reducing the influence of booking time and seasonal fluctuations, 

scheduled flight data were collected for three different departure dates (i.e. Monday 16 April 

2018, Thursday 16 August 2018 and Sunday 16 December 2018), after which the median value 

(of the fastest flights) was used in subsequent calculations in order to mitigate possible outliers. 

The air travel data acquisition took place on 13 February for the first departure date, on 14 

February 2018 for the second departure date, and on 15 and 16 February for the third departure 

date. Since 159 airports are included in the analysis, 75 366 API requests were sent (25 122 for 

each departure date). We provided Google’s QPX Express API’s request body with the 

following input data: one adult passenger, the departure and arrival airport, the date of 

departure, a maximum of five transfers, no obligation of refundable fares and a request to return 

as many solutions as possible; supplemented by the API key, the URL and the headers. After 

each flight request, Google’s QPX Express API generated a response body containing the air 

travel data in a JavaScript Object Notation (JSON) format, a structured and lightweight data 

interchange format that is independent of a specific programming language (Bassett, 2015). 

These response bodies were saved in a shelf file using the Python 3.6 shelve module, allowing 

us to store the extracted data objects on the hard drive in order to be re-opened and retrieved in 

subsequent PyDev modules (Sweigert, 2015). The architecture of a shelf file follows a 

dictionary-like format, meaning a key or object ID (in our case, the airport pair) is linked to a 

certain value (in our case, Google’s QPX Express API’s response body). We then extracted the 

shortest flight duration per airport pair and per date from the JSON response bodies, after which 

the median shortest air travel time between each pair of airports was quantified. 

In order to empirically evaluate the accuracy of Google’s QPX Express API’s data on flight 

durations, we compared the shortest flight durations generated via Google’s QPX Express API 

with data extracted from Skyscanner (www.skyscanner.com), a well-known (travel) web-

crawling service. To this end two random samples of 50 origin-destination airport pairs were 

selected for each departure date using a Python script, for which the shortest flight durations 

were extracted via both data sources. The two samples respectively represent (1) airport pairs 

between which Google’s QPX Express API could not generate any flights, and (2) airport pairs 

between which Google’s QPX Express API generated at least one flight itinerary. As such, 300 

out of 75 366 queries were manually conducted via Skyscanner (on 20 and 21 February 2018). 

For 141 out of 300 flight queries, however, neither data source could generate a travel option. 

In four cases Skyscanner generated a flight itinerary while Google’s QPX Express API did not. 

In contrast, in twelve cases Google’s QPX Express API generated a flight itinerary while 

Skyscanner could not find any flights. The shortest travel time results generated by Google’s 

QPX Express API and Skyscanner were then plotted against each other (Figure 2). Although a 

number of outliers are observed, we may assume that both meta-search engines generate similar 

(shortest) flight durations. 
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Figure 2 : Comparison between Google’s QPX Express API and Skyscanner data. The X-axis 

represents the shortest flight duration between random airport pairs (on 16 April 2018, 16 

August 2018 and 16 December 2018) generated via Google’s QPX Express API. The Y-axis 

represents the shortest flight duration between the same airport pairs generated via Skyscanner. 

 

With regard to the landside accessibility, three sub-components can be identified: (1) the 

overland travel time between the point of origin and the departure airport, (2) the overland 

travel time between the arrival airport and the final point of destination, and (3) the overland 

travel time between the origin and destination centroids in case they are geographically so 

close that including an air travel segment would not improve travel time. The potential 

departure/arrival airports of the origin/destination centroids were selected based on a 

Euclidian distance criterion, which itself depended on Australia’s Remoteness Area Structure 

(Australian Bureau of Statistics, 2011): if a statistical area’s centroid is situated in an area that 

is considered to be ‘Remote’ or ‘Very Remote’ in terms of its relative access to services as 

outlined in Australia’s Remoteness Area Structure, all airports within a Euclidian distance of 

750 km from the centroid involved are considered to be potential departure/arrival airports. A 

500 km distance limit was applied to all other centroids (i.e. those situated in ‘Outer Regional 

Australia’, ‘Inner Regional Australia’ and Australia’s ‘Major Cities’). These large distance 

limits were (arbitrarily) selected to ensure the inclusion of all potential departure/arrival 

airports while maintaining the feasibility of the overland data collection process. With regard 

to unimodal travel, all trips between centroid pairs situated within a Euclidian distance of 500 

km from each other are considered potential unimodal (car) travel trips. In total, 41 091 origin 

centroid – departure airport pairs, 41 091 arrival airport – destination centroid pairs and 1 179 

117 origin centroid – destination centroid pairs were identified. 

Following the (primary) aim of this study, data on overland (car) travel times were collected 

by invoking the web-based Google Maps Distance Matrix API in a Python script. Since we 

did not specify a departure date nor time for the car travel component, no specific or real-time 

traffic/road conditions were taken into account, and we thus generated general values. The 

overland data acquisition concerning the origin centroid – departure airport pairs and the 

arrival airport – destination centroid pairs took place on 8 and 9 March 2018, respectively. 

From 10 March 2018 until 23 March 2018, the Python script was run for all origin centroid – 
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destination centroid pairs. The travel data extraction was executed on a 100 000 queries/day 

basis and the results were saved in Python shelf files. 

 

3.3. Method 

 

As previously mentioned, the combination of land- and airside accessibility consists of three 

route segments: (1) travel from the origin centroid to a departure airport using the road network, 

(2) air travel (including transfer time in case of connections requiring a stopover), and (3) travel 

from an arrival airport to the destination centroid using the road network. Depending on the 

centroid’s position in Australia’s Remoteness Area Structure, all airports within a Euclidian 

distance limit of 500/750 km from the centroid involved are considered to be potential departure 

or arrival airports. In case the origin and destination centroids are within a Euclidian distance 

of 500 km from each other, unimodal car travel is also taken into account. The land- and airside 

accessibility framework is visualised in Figure 3. 

 

 

Figure 3 : Land- and airside accessibility framework 

 

Using Python 3.6 software, we combined all possible route configurations with the aim of 

finding the shortest possible travel time between every pair of centroids. This combination 

process is visualised in Figure 4. The data collection process resulted in four shelf files, 

containing: (1) the overland, unimodal travel time between centroids that are within a Euclidian 

distance of 500 km from each other (the CODO shelf), (2) the overland travel time between the 

origin centroids and their potential departure airports (the COAD shelf), (3) the overland travel 

time between the potential arrival airports and the destination centroids (the AACD shelf), and 

(4) the fastest flights (including transfer time if relevant) between every pair of Australian 

airports (the ADAA shelf). In order to determine the shortest travel time between a pair of 

centroids, we first search the COCD shelf for the centroid pair involved. If the centroid pair is 

present, the corresponding unimodal travel time is temporarily considered to be the shortest 

travel time. If not, an infinite travel time is assigned to the centroid pair involved. In a next step, 

we search for all centroid-airport pairs in the COAD shelf containing the origin centroid 

involved, and add these pairs to a new, empty Python dictionary. The same procedure is 
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followed with regard to the airport-centroid pairs in the AACD shelf, albeit that we search for 

airport-centroid pairs involving the destination centroid involved instead of the origin centroid. 

Thereafter, all centroid-airport pairs containing the origin centroid and all airport-centroid pairs 

containing the destination centroid (i.e. those present in the abovementioned Python 

dictionaries) are combined. We then examine each combination for an available airside 

segment. In case an airside segment is present in the ADAA shelf, the corresponding land- and 

airside travel times are aggregated. When the aggregated travel time is less that the previously 

defined travel time, the latter is replaced by the former. This procedure is repeated for all 

possible route configurations involving the origin and destination centroids involved in order 

to find the shortest travel time between them. Any remaining infinite travel times were replaced 

by the observed (shortest) maximum travel time. Finally, the mean shortest travel time for each 

centroid to reach all other centroids was calculated. 

 

 

Figure 4 : Data collection and processing framework. BME, MEB, MEL, WOL, AYQ, ABX, 

SYD, SNB, ADL, PUG and KNS respectively correspond to Broome International Airport 

(Broome), Essendon Airport (Melbourne), Melbourne Airport (Melbourne), Illawarra Airport 
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(Wollongong), Connellan Airport (Uluru), Albury Airport (Albury), Kingsford Smith Airport 

(Sydney), Snake Bay Airport (Milikapiti), Adelaide International Airport (Adelaide), Port 

Augusta Airport (Port Augusta) and King Island Airport (King Island). The combinations of 

specific centroids and/or airports are for illustrative purposes only and therefore do not 

correspond to the actual combinations. (Meire and Derudder, under review) 

 

4. Results 

 

Figure 5 visualises the bimodal accessibility index of the Australian Statistical Areas Level 2. 

Results show that the southeastern part of Australia is generally characterised by high levels of 

accessibility, with a gradual transition from well accessible areas situated along Australia’s 

coastline to less accessible areas situated more inland. To the (north)west of Sydney and to the 

east of Melbourne, however, a small number of less accessible statistical areas can also be 

observed, abruptly interrupting the abovementioned gradual transition. A similar abrupt low-

accessibility zone embedded in a well-accessible matrix can also be observed to the west of 

Rockhampton, Queensland. Central and northern Australia are in turn for the greater part 

comprised of less accessible areas. Exceptions include the surrounding area of the Northern 

Territory’s capital city Darwin and two centrally located statistical areas involving key sites of 

Australia’s tourism industry in this region, i.e. Uluru and Alice Springs. In Western Australia, 

the most accessible areas are again situated along the coastline, whereas the less accessible 

areas are situated more inland or towards the north. Especially the region around Perth stands 

out as a high accessibility zone. Also the area near Karratha, one of Australia’s small mining 

towns, is marked as a relatively high accessibility region. 

Overall, the most populated cities are, unsurprisingly, hotspots of accessibility: the mean 

shortest travel time to reach all statistical areas is lowest in or nearby the most dominant cities. 

These cities are mainly located near Australia’s coastline and are generally characterised by a 

hub airport. However, the results do not simply represent the configuration of Australia’s airport 

system: the layout of the road network also plays a major role in rendering (in)accessible 

statistical areas. Access to main highways that are connected to relatively distant airports with 

a diverse and extensive network may lead to a higher accessibility overall. In South Australia, 

for example, the area around a number of low-service airports (i.e. Coober Pedy Airport, 

Ceduna Airport, Port Augusta Airport and Olympic Dam Airport) stand out as relatively 

accessible areas since they are situated alongside the state’s main highways (i.e. the west-east 

directed Eyre Highway/Augusta Highway and the north-south direct Stuart Highway) which 

facilitate access to relatively distant and well-serviced airports – our mapping of this process 

conforms to what has been referred to in literature as ‘air traveller leaking’ (Ryerson & Kim, 

2018). 

The opposite pattern also emerges: the lack of main roads may prevent travellers from reaching 

well-connected (and sometimes even nearby) airports, consequently lowering the landside 

accessibility in particular and the overall accessibility in general. The abovementioned abrupt 

low-accessibility lobe to the northwest of Sydney, for example, is for the greater part comprised 

of wildlife area (i.e. the Wollemi and Blue Mountains National Parks), giving rise to a poor 

road network and, consequently, diminished accessibility. Similarly, the Alpine National Park 

lowers the accessibility index to the east of Melbourne to some extent. In the western part of 

Tasmania, Cradle Mountain-Lake St Clair and Franklin-Gordon Wild Rivers National Parks 

might have given rise to the low-accessibility zone in that area. The low accessibility zone to 

the west of Rockhampton might also be related to a local relief increase: the centroid of the less 

statistical area involved is situated next to Arthurs Bluff State Forest and, in the extension 

thereof, Blackdown Tableland National Park. These areas rise abruptly above the surrounding 

lowlands (Queensland Government; Department of National Parks; Recreation; Sport and 

Racing, 2013). As such, the cliff tops of Blackdown Tableland National Park’s undulating 
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plateau (Queensland Government; Department of National Parks; Recreation; Sport and 

Racing, 2013) act as a local barrier. In Australia’s more inland regions, the less accessible 

statistical areas also partly coincide with Australia’s major deserts, which are again 

characterised by a low(er)-density road network. Hence, an inadequate road network 

infrastructure may lead to extended travel times and thus lower accessibility regions, even when 

a well-connected or hub airport (e.g. Sydney Airport or Melbourne Airport) is situated in the 

vicinity of the origin location involved. At the same time, the way in which the points of origin 

and destinations were defined may also influence the bimodal accessibility index to a 

considerable degree. This is of particular interest in cases where the population weighted 

centroid was replaced by the geometric centroid, since this may artificially increase the distance 

between the centroid involved and the main road network. Hence, Error! Reference source 

not found. is not simply a map of ‘major airports’, but indicates the combined effects of land- 

and airside connectivity on the accessibility of locations. 

 

 

Figure 5 : The bimodal accessibility pattern within Australia. (Adapted from Meire et al., in 

press) 
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5. Discussion 

 

Our case study shows some of the possibilities of gathering web-based data accessed via web 

APIs for accessibility related research topics. In this respect, a number of strengths of such an 

automated API-based approach to assessing transport networks can be identified. A major 

strength of the Google Maps API involves the provision of recent and/or real time information 

(Hajinasab et al., 2017; Wang & Xu, 2011). According to Wang & Xu (2011), for example, the 

Google Maps service is generally updated twice a month, which is likely to be significantly 

more than, for example, static road network shapefiles for GIS network analysis. Second, 

although not adopted in our study, the Google Maps API provides a diversity of traffic 

configurations among which different traffic models, potentially producing additional insights. 

Third, the outsourcing of the travel data collection itself reduces the need for self-preparing a 

transport network (e.g. in a GIS environment), which contributes to a faster data collection 

process (Hajinasab et al., 2017; Wang & Xu, 2011). Finally, a major strength of such an API-

based approach involves the public availability of Google’s travel APIs. Although the use of 

Google’s APIs is charged according to the amount of requests sent, no restrictions apply on 

who may access and use Google’s API services. However, we recognise that the use of web-

based travel data, accessed via web APIs, also contains a number of limitations: the dependency 

on corporate web-based data might raise both operational and ethical concerns. Google’s QPX 

Express API service, for example, has been ended as from April 10, 2018. The reproducibility 

of our research approach might therefore be questioned. However, provided that the 

programming code is adjusted to an alternative travel API, our framework for assessing the 

combined land- and airside accessibility can be considered a generic approach, which can be 

applied in similar research. Ethical concerns in turn relate to the selective openness and limited 

transparency of corporate (web-based) data. Related to this, the reliability of web-based travel 

data, and in this study Google-based data in particular, should be evaluated.  

 

6. Concluding remarks 

 

In this study, based on Meire et al. (in press) and Meire and Derudder (under review), we 

introduced a framework for transport data extraction and processing using publicly available 

web-based resources (i.e. the Google Maps Distance Matrix and QPX Express APIs), illustrated 

by a case study evaluating the combined land- and airside accessibility of Australia at the level 

of statistical units. The results of our case study have demonstrated some of the main 

possibilities, strengths and weaknesses of gathering web-based data via web APIs for transport 

and accessibility related research topics. A main avenue for future research involves a detailed 

quality assessment of Google’s web-based travel data, including the operational and ethical 

issues related to this. With regard to our case study, future research could focus on further 

developing the bimodal accessibility index (e.g. by incorporating complementary transport 

variables such as traffic conditions) and monitoring how and to which extent the accessibility 

pattern changes over time. In conclusion, we argue that the development of new data gathering 

and processing methods in the realm of big data offers new and exciting opportunities for 

transport research in general and accessibility research in particular. 
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