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Simple Summary: Dairy cows experience immune suppression around calving, which can result in
the development of uterine diseases. White blood cells, and more specifically polymorphonuclear
leukocytes (PMN), are important components of the immune system. Although it is regarded as
a common research approach to study PMN isolated from blood, it would be interesting to know
more about the viability and functionality of uterine PMN. We developed a method to isolate PMN
from the bovine postpartum uterus to perform viability and functionality tests. We also evaluated
whether we could identify uterine PMN using a specific antibody. Uterine cells were recovered using
an adapted medical brush, and PMN were successfully isolated and identified. The percentage of
viable intra-uterine PMN in postpartum cows (9–37 days in milk) roughly ranged from 10 to 80%,
indicating that the viability of the uterine PMN is highly dynamic. We could also identify PMN
that ingested labeled particles, which lets us conclude that uterine PMN are functional. Using the
presently described methods, further research can be performed to unravel the role of uterine PMN
viability and functionality in bovine uterine health.

Abstract: Postpartum dairy cows experience impaired peripheral polymorphonuclear leukocyte
(PMN) functionality, which has been associated with reproductive tract inflammatory diseases. How-
ever, it has not been elucidated yet whether endometrial PMN functionality is (equally) impaired.
We developed a method for endometrial PMN isolation and flow cytometric assessment of their
viability and functionality. We also evaluated PMN immunolabeling, using a specific bovine granulo-
cyte marker, CH138A. Blood and endometrial cytobrush samples were collected in duplicate from
seventeen clinically healthy Holstein-Friesian cows between 9 and 37 days in milk. The proportion
of viable, apoptotic, and necrotic PMN in endometrial samples roughly ranged from 10 to 80%,
indicating highly dynamic endometrial PMN populations in the postpartum uteri. Endometrial
PMN functionality testing revealed that PMN immunolabeling increased the accuracy, although this
protocol might influence the median fluorescence intensity of the sample. Phagocytosis seemed the
most stable and reliable endometrial PMN function and could be assessed satisfactorily without
prior CH138A immunolabeling. However, the interpretation of oxidative burst and intracellular
proteolysis tests remains challenging. The correlation between peripheral and endometrial PMN
functionality was poor. Further research is warranted to unravel the role of uterine PMN viability
and functionality in bovine uterine health.
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1. Introduction

Periparturient dairy cows experience an increased energy demand due to steady
growth of the foetus, commencement of lactation, and immune system activation [1–3].
Simultaneously, feed intake is decreased, resulting in negative energy balance (NEB) and
consequent fat mobilization accompanied by increased concentrations of circulating non-
esterified fatty acids (NEFA) and ketone bodies (e.g., β-hydroxybutyrate, BHB) [1,4,5].
Excessive lipolysis and the limited availability of amino acids and glucogenic compounds
may result in maladaptation to this NEB. High circulating concentrations of NEFA, BHB
and the acute-phase protein haptoglobin are risk factors for reproductive tract inflammatory
diseases, which affect almost 50% of postpartum dairy cows [6–8]. Reproductive tract
inflammatory diseases interfere with key reproductive events such as folliculogenesis,
sperm function, and (early) embryo development and implantation, resulting in an overall
reduction of reproductive performance [9–11].

Polymorphonuclear leukocytes (PMN) are the most extensively studied component
of the innate immune response against invading pathogens in the bovine genital tract
postpartum [12,13]. Besides their role in the first-line defense, PMN are important for
maintaining homeostasis, tissue remodeling, and wound healing [13,14]. Nevertheless,
peripheral PMN function is impaired postpartum [15,16], which partially explains the
increased risk for postpartum reproductive tract inflammatory diseases in cows with
excessive NEB and systemic inflammation [8,17].

After calving, fresh PMN are rapidly recruited from the bone marrow, and migrate
via the bloodstream towards the uterine lumen [12,18,19]. On the one hand, a swift and
well-regulated PMN uterine migration and subsequent local function are required for
the timely and efficient elimination of pathogens, preventing reproductive disease in the
early postpartum period [20,21]. On the other hand, an increased abundance of PMN
(i.e., >5%) within the uterine lumen after the completion of the involution process (in the
fifth week postpartum), is associated with subfertility [22,23]. Calculating the proportion
of PMN in endometrial cytology smears is a simple technique commonly performed to
assess the uterine inflammatory status in dairy cows [22,24]. Nevertheless, neither the
viability, nor the functionality of endometrial PMN can be assessed using conventional
endometrial cytology.

Traditionally, PMN function has been tested on PMN isolated from blood. After
their isolation and in vitro stimulation with either bacteria or chemokines, flow cytometric
assessment of their per-cell capacity of phagocytosis or production of reactive oxygen
species (ROS) is routinely performed [25–27]. Though, to date, it remains unclear whether
the outcome of in vitro function tests of circulating PMN correlates with the functionality
of (activated) PMN at their target site.

The present study had three main objectives: firstly, to develop a method for the
isolation of endometrial PMN and the subsequent evaluation of their viability; secondly,
to flow cytometrically assess the endometrial PMN functions—oxidative burst, phagocy-
tosis, and intracellular proteolysis, adapting validated protocols for blood PMN [27,28];
thirdly, to evaluate the correlation between the functionality of endometrial PMN and their
concurrently isolated blood counterparts in postpartum dairy cows. While blood PMN
can easily be differentiated and gated based on their characteristic morphometrical size
(forward scatter, FSC) and granularity (side scatter, SSC), the differentiation of endometrial
PMN from debris and epithelial cells is challenging. Therefore, we included some extra
intra- and inter-assay validation steps to evaluate the added value of the simultaneous
immunolabeling with a specific bovine granulocyte marker, CH138A [29–31]. Based on
these objectives, we hypothesized that PMN isolated from the uterus of postpartum dairy
cows are viable and functional, and that their functionality is positively correlated with the
functionality of circulating PMN.
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2. Materials and Methods
2.1. Ethical Statement

All animal handling and sampling procedures were approved by the ILVO (Flan-
ders Research Institute for Agriculture, Fisheries and Food) animal ethics committee (EC
2018/329, Melle, Belgium).

2.2. Animals and Management

The present study was carried out at the experimental dairy farm of ILVO (Melle,
Belgium) between February and October 2020. During the time frame of the study, the per
farm average daily milk yield was 31.5 kg/cow, with a mean of 4.3% fat and 3.6% protein
(test-day recording, Cattle Improvement Co-operative CRV, Arnhem, the Netherlands).
The transition cow management was as follows: pregnant dry cows were housed in a free
stall barn and moved to calving pens when imminent calving indicators were observed
(e.g., udder distension, teat filling, pelvic ligament relaxation) or 3 days before the expected
calving date. Three days after calving, cows were moved to a free stall lactating pen,
where they were fed a totally mixed ration from individually assigned automated feed bins
(Insentec B.V., Marknesse, The Netherlands), and were milked twice daily in a parlour.

The sample size for this experiment consisted of seventeen randomly selected Holstein-
Friesian cows from 9 to 37 days in milk (DIM), but some cows were sampled more than
once at different DIM. All included cows were without signs of clinical disease (e.g., no
fever) at the moment of sampling, and were multiparous, ranging from parity 2–6. Their
prepartum body condition score was (3.3 ± 0.6) [32].

We performed two experiments in different cohorts (first experiment between February
and July, second experiment between August and October). Cows were randomly included
in either experiment. Fifteen blood and endometrial samples were collected for Experiment
1, and 11 blood and endometrial samples were collected for Experiment 2. Sample sizes
were calculated to enable the detection of a fairly high correlation (0.7–0.8) between two
variables at a significance level of 0.05 (power = 0.8), appropriate for a validation study [33].
Blood and endometrial samples were collected in the morning (between 9 h and 10 h).

2.3. Experiment 1: Assessment of PMN Viability in Blood and Endometrial Samples

We aimed to validate a flow cytometric test to evaluate blood and endometrial PMN
viability. To do so, blood and endometrial samples were collected in duplicate (A and B).
Samples were processed in parallel, to assess the repeatability of the assay.

2.3.1. Blood Sample Collection and PMN Isolation

Blood samples were collected in duplicate from the coccygeal vessels, using 20-gauge
blood collection needles (BD Vacutainer, PrecisionGlide, Becton Dickinson, Plymouth, UK)
into sterile glass tubes containing 1.5 mL acid citrate dextrose-A (ACD-A; 22 g/L trisodium
citrate, 8 g/L citric acid, and 24.5 g/L dextrose; BD Vacutainer, Becton Dickinson, Plymouth,
UK). After collection, blood tubes were gently inverted 10 times, enabling adequate mixing,
and placed in ice for transportation. The PMN isolation protocol started within 2 h after
sampling. At room temperature, 8 mL of blood was diluted in 20 mL of a stock solution
containing 1× phosphate buffered saline (PBS; Gibco/Thermo Fisher Scientific, Waltham,
MA, USA) and 0.5 mM of ethylenediaminetetraacetic acid (EDTA) disodium salt (Sigma-
Aldrich, Oakville, ON, Canada). The diluted blood was carefully layered on 8 mL of
Ficoll-Paque PLUS (General Electric Healthcare Bio-Sciences AB, Uppsala, Sweden) and
centrifuged at 340× g for 30 min at room temperature. The upper layers (plasma and buffy
coat) were drawn off using a 10 mL serological pipette, and the erythrocytes were lysed
by adding 30 mL of sterile water (water for injection, B. Braun, Melsungen, Germany)
followed by gentle inversion for 45 s. To restore osmolarity, 15 mL of 3× concentrated
PBS was added, mixing by gentle inversion. The samples were centrifuged at 4 ◦C at
220× g for 10 min. Next, the supernatant was removed, and the resultant pellet was
washed with 500 µL of 1× PBS. The lysis steps (adding 30 mL of sterile water for 45 s and
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15 mL of 3× concentrated PBS) were repeated and the samples were centrifuged again at
4 ◦C at 220× g for 10 min. After this, the supernatant was removed and the pellet was
re-suspended in 1 mL of a stock solution containing RPMI medium 1640 (Gibco/Thermo
Fisher Scientific, Waltham, MA, USA) and 0.1% bovine serum albumin (BSA, ≥96%, Sigma-
Aldrich, Oakville, ON, Canada), hereafter referred to as RPMI-BSA. The concentration of
PMN was assessed using a Bürker counting chamber, and the cell suspension was diluted
to a final concentration of 5 × 106 of PMN in RPMI-BSA.

2.3.2. Endometrial Sample Collection and PMN Isolation

After the collection of the blood sample, the perineum of the cows was cleaned with
fresh water and iodide soap, dried with paper towels, and disinfected with ethanol 70%.
A double-guarded sterile cytobrush device (cytology brush equine, Minitube, Tiefenbach,
Germany; or Puritan histobrush, Guilford, ME, USA, adapted to a stainless-steel artificial
insemination gun and covered with a plastic sanitary sheath) was introduced into the
vagina and manipulated through the cervix, under rectal guidance. Once the tip of the
device reached the uterine body, the outer guard, or the sanitary sheath, was pulled back,
and the cytobrush was exposed from the inner guard. The cytobrush was rotated 3 times
against the dorsal wall of the uterine body with gentle pressure of the index finger through
the rectum. The cytobrush was then retracted and removed from the vagina. Once outside
the genital tract, the cytobrush was gently rolled onto a clean microscope slide which was
then air-dried. The head of the cytobrush was then cut with scissors and placed in a 1.5 mL
microcentrifuge tube containing 1 mL of RPMI-BSA supplemented with 0.18% K2EDTA
(BD Vacutainer, Becton Dickinson, Plymouth, UK), hereafter referred to as RPMI-BSA-
EDTA. A second, identical cytobrush sample was collected and processed as described
above, and both samples were transported on ice to the laboratory. The PMN isolation
protocol started within 2 h after sampling.

Cytology slides were stained with Diff-Quick (Speedy-Diff complete kit, Clin-Tech
Ltd., Guildford, UK) and mounted with Eukitt (O. Kindler GmbH, Freiburg, Germany).
Light microscopic evaluation was done at a magnification of ×40 (Kyowa Optical, Tokyo,
Japan). A total of 300 nucleated cells were counted in randomly selected fields, and the
PMN-to-other cell ratio was calculated. All specimens were counted by the same observer
(trained veterinarian).

The microcentrifuge tubes containing 1 mL of RPMI-BSA-EDTA and the endometrial
samples were vortexed for 1 min to dislodge cells from the cytobrush. The cytobrush
was then gently rubbed against the border while removed from the vial. Samples were
centrifuged at 4 ◦C at 376× g for 10 min. Then, supernatant was removed, and the pellet
was washed for 45 s in 800 µL of sterile water (water for injection, B. Braun, Melsungen,
Germany) to enable the lysis of the erythrocytes. To restore osmolarity, 400 µL of 3× PBS
was added and gently mixed by pipetting up and down. The samples were again cen-
trifuged at 4 ◦C at 376× g for 10 min, next the supernatant was removed, and the pellet
was re-suspended with 2 mL of RPMI-BSA and filtered through a 40 µm mesh cell strainer
(Falcon, Corning Life Sciences, Tewksbury, MA, USA). The concentration of PMN was
assessed manually using a Bürker counting chamber (Marienfeld GmbH & Co. KG, Lauda-
Königshofen, Germany), and the cell suspension was diluted to a final concentration of
5 × 106 PMN in RPMI-BSA. Samples with lower concentrations of PMN were not diluted.

2.3.3. Blood and Endometrial PMN Immunolabeling

Blood PMN and uterine cells were isolated as described above and labeled with
a specific primary mouse anti-bovine IgM monoclonal granulocyte antibody, CH138A
(Washington State University, Monoclonal Antibody Center, BOV2067, Pullman, WA,
USA) [29–31]. Briefly, two 1.5 mL microcentrifuge tubes were filled with 1 × 106 PMN
suspended in 200 µL of in RPMI-BSA. In the first tube (V+), primary and secondary
fluorescent labeling were applied, while in the second tube (V−) no antibodies were added
(autofluorescence). All tubes were centrifuged at 10 ◦C at 376× g for 5 min and the pellet
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was resuspended in 100 µL flow cytometry staining buffer (FACS buffer; 1× PBS with 1%
BSA and 0.073% EDTA). Cells were incubated in FACS buffer containing 1 µL of CH138A
(final concentration of 10 µg/mL) (V+), or FACS buffer only (V−) for 30 min at 4 ◦C in the
dark. After incubation, cells were washed with FACS buffer (200 µL, 376× g, 5 min, 10 ◦C).
Next, cells were incubated for 15 min at 4 ◦C in the dark in 100 µL FACS buffer with a
secondary antibody (goat anti-mouse IgM Alexa-647; final concentration of 4.8 µg/mL,
A-21238, Molecular Probes, Invitrogen, Carlsbad, CA, USA) (V+) or in FACS buffer only
(V−). After incubation, cells were washed twice in FACS buffer (200 µL, 376× g, 5 min,
10 ◦C). A total of 1 mL of Ca++-rich incubation buffer (10 mM HEPES, 140 mM NaCl, 5 mM
CaCl2, pH 7.4) was prepared and mixed with 20 µL of Annexin-V-FLUOS (fluorescein;
Roche Diagnostics GmbH, Mannheim, Germany) and 20 µL of propidium iodide (PI; final
concentration of 1 µg/mL, Molecular Probes, Invitrogen, Belgium). After immunolabeling
with CH138A, 100 µL of the Annexin-PI working solution was added to the cell pellet (V+),
or 100 µL of FACS buffer (V−). Cells were incubated for 10 min at room temperature in the
dark. Then, all samples were put on ice and protected from light until analysis.

2.3.4. Sorting CH138A Positive Cells

To confirm the specificity of CH138A immunolabeling in endometrial PMN, we used
3 endometrial samples from 3 postpartum cows. Briefly, endometrial cytobrush samples
were collected, and endometrial cells were isolated and CH138A labeled as described above.
Then, PMN were purity-sorted, based on CH138A+ expression, using a BD FACS Aria III
Cell Sorter (BD Biosciences, San Jose, CA, USA). Next, cytocentrifuge (Shandon Scientific,
London, UK; 800 rpm for 10 min) slides were prepared and stained with Diff-Quick (Speedy-
Diff complete kit, Clin-Tech Ltd., Guildford, UK) and mounted with Eukitt (O. Kindler
GmbH, Freiburg, Germany). Light microscopic evaluation was done at magnification ×40
(Kyowa Optical, Tokyo, Japan). A total of 300 nucleated cells were counted in randomly
selected fields. All samples had >85% PMN purity. Thus, CH138A PMN labeling was
considered successful and we were able to continue with further experiments.

2.3.5. Flow Cytometric Approach to Evaluate PMN Viability

Blood and endometrial samples were analyzed using a CytoFLEX 3-laser flow
cytometer (Beckman Coulter Inc., Indianapolis, IN, USA). For all samples, the event
recording threshold was set at 10,000 events in a high forward (FSC) × high side scat-
ter (SSC) gate on FSC vs. SSC plots, or in a measuring time of 120 s (the acquisition
velocity was 30–60 µL/min). Cell fluorescence was excited at 488 and 638 nm, and
all fluorescent emissions were measured: CH138A fluorescent immunolabeling was
measured using the emission filters of 660 ± 10 nm (APC channel), PI was measured
using the 585 ± 21 nm filter (PE channel), and Annexin-V-FLUOS was measured with
the 525 ± 20 nm filter (FITC channel) (Supplementary Table S1). All acquired data were
processed using CytExpert software (v2.0.0.153, Beckman Coulter, Inc., Brea, CA, USA).
Compensation was applied in multicolor setups. Blood PMN were identified based on
their characteristic FSC and SSC values (PMN gate, Supplementary Figures S1 and S2).
For endometrial samples, all events were included, only excluding a debris fraction on
the FSC vs. SSC plot (cells excluding debris; Supplementary Figures S1 and S3). Next,
the single cell population was gated on an FSC-A vs. FSC-H scatter plot to exclude ag-
gregates (Supplementary Figure S1). Using tricolor labeling for PMN viability (CH138A
× Alexa Fluor 647/Annexin-V-FLUOS/PI), three populations can be differentiated: vi-
able CH138A+ PMN (Annexin−/PI−), apoptotic CH138A+ PMN (Annexin+/PI−), and
necrotic CH138A+ PMN (Annexin+/PI+) (Figure 1).
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Figure 1. Viability of isolated blood and endometrial polymorphonuclear leukocytes (PMN) repre-
sented by Annexin-V-FLUOS (FITC channel) versus the propidium iodide (PI; PE channel) scatter
plot. This figure shows the viable (Q1 = Annexin−/PI−), apoptotic (Q2 = Annexin+/PI−) and
necrotic (Q3 = Annexin+/PI+) CH138A+ PMN in a representative blood and endometrial (70% PMN
on endometrial cytology) sample from a Holstein-Friesian cow 21 days in milk. In total, 15 blood
and endometrial samples were collected from Holstein-Friesian cows at 9–37 days in milk. Samples
were processed in duplicate (A and B), with prior CH138A immunolabeling (CH138A = bovine
granulocyte marker). The repeatability of the viability assessment was calculated between samples A
and B in endometrium and blood.

2.4. Experiment 2: Blood and Endometrial PMN Functionality Tests

We tested a flow cytometric assay to evaluate endometrial PMN functionality. PMN
functionality tests have already been performed in blood, so blood samples were processed
in parallel and were used as a positive control [27,28]. We also evaluated the use of
CH138A immunolabeling to simultaneously identify PMN and assess their functions.
The collection of blood and endometrial samples and the PMN isolation were performed
in duplicate as described above. However, based on the high repeatability of duplicate
samples obtained in Experiment 1 (see Section 3) and because we aimed for a higher (a
single cytobrush sample will not provide sufficient PMN for all the tests) and equal yield
in all PMN suspensions (duplicate cytobrush may contain different PMN numbers) for the
validation of the functionality tests, suspensions from Samples A and B were combined in a
single microcentrifuge tube after isolation. The PMN functionality tests were performed in
duplicate, one with and one without CH138A immunolabeling (Figure 2, Supplementary
Figures S4 and S5), each of them with their respective control group (for autofluorescence).
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Figure 2. Experimental setup for blood and endometrial polymorphonuclear leukocyte (PMN) func-
tionality tests assessing PMN oxidative burst (OB), phagocytosis (PC), and intracellular proteolytic
degradation by DQ-ovalbumin (DQ-ova). Blood and endometrial samples (n = 11) were collected
from Holstein-Friesian cows at 9–37 days in milk. The PMN functionality tests were performed in
duplicate, once with prior CH138A immunolabeling and once without CH138A immunolabeling
(CH138A = bovine granulocyte marker). In samples with CH138A immunolabeling, we compared
the functionality outcome intra-assay of CH138A+ events versus a gating strategy solely based on
the morphometric characteristics high forward scatter (FSC) vs. high side scatter (SSC). An inter-
assay comparison was made between immunolabeled PMN and non-immunolabeled PMN, gating
PMN solely based on the morphometric characteristics high FSC and high SSC. Figure created with
BioRender.com (accessed on 10 February 2021).

2.4.1. Oxidative Burst

For every sample (blood and endometrium), two 1.5 mL microcentrifuge tubes were
filled with 1 × 106 PMN suspended in 200 µL of in RPMI-BSA, and 2 µL of H2DCFDA
(final concentration of 10 µM; 2′,7′-dichlorodihydrofluorescein diacetate, Life Technologies
Corporation, Eugene, OR, USA) was added to both tubes (OB+ and OB−). Next, cells
were incubated in the dark at 38.5 ◦C under gentle agitation. After 15 min of incubation,
200 µL of phorbol 12-myristate 13-acetate (PMA; Sigma-Aldrich, Winston Park, Oakville,
ON, Canada; 200 ng/mL in RPMI-BSA) was supplemented to the first tube (OB+), and
200 µL of RPMI-BSA was supplemented in the second tube (OB−). Cells were incubated
in the dark at 38.5 ◦C under gentle agitation for another 15 min. After incubation, cells
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were washed and diluted in RPMI-BSA buffer (200 µL, 376× g, 5 min, 10 ◦C), put on ice
and protected from light until analysis.

2.4.2. Phagocytosis

A stock solution of zymosan-activated serum (ZAS) was prepared beforehand by
incubating 10 mL of pooled blood serum from healthy cows with 100 mg of Zymosan A
from Saccharomyces cerevisiae (Sigma-Aldrich, Winston Park, Oakville, ON, Canada) at 37 ◦C
under gentle agitation for 60 min. After incubation, the activated serum was centrifuged at
390× g for 10 min, aliquoted and stored at −20 ◦C.

For every sample (blood and endometrium), two 1.5 mL microcentrifuge tubes were
filled with 1 × 106 PMN suspended in 200 µL of RPMI-BSA, and 50 µL of ZAS was added
to both tubes (PC+ and PC−). In the first tube (PC+), 1 µL fluorescently labeled 1 µm
beads (FluoSpheres carboxylate, yellow-green (505/515), Life Technologies Corporation,
Eugene, OR, USA) was added per 1 × 106 PMN, while no FluoSpheres were supplemented
in the second tube (PC−, autofluorescence). Next, cells were incubated in the dark at
38.5 ◦C under gentle agitation for 30 min. After incubation, cells were washed and diluted
in RPMI-BSA buffer (200 µL, 376 × g, 5 min, 10 ◦C), put on ice and protected from light
until analysis.

2.4.3. Intracellular Proteolytic Degradation by DQ Ovalbumin

For every sample (blood and endometrium), two 1.5 mL microcentrifuge tubes were
filled with 2 × 106 PMN suspended in 400 µL of in RPMI-BSA. Next, all tubes were
centrifuged at 10 ◦C at 376× g for 5 min and the pellet was re-suspended in 120 µL of
RPMI-BSA. In the first tube (DQ+), 10 µL of DQ ovalbumin (10 µg/mL, Life Technologies
Corporation, Eugene, OR, USA) was applied, while in the second tube (DQ−) no DQ
ovalbumin was supplemented for the assessment of autofluorescence. Cells were then
incubated in the dark at 38.5 ◦C under gentle agitation for 45 min [27]. After incubation,
cells were washed and diluted in RPMI-BSA buffer (200 µL, 376× g, 5 min, 10 ◦C), put on
ice and protected from light until analysis.

2.4.4. Flow Cytometric Approach to Evaluate PMN Functionality

Samples were evaluated as described for Experiment 1 with some modifications.
Briefly, the fluorescence emitted in the oxidative burst (OB), phagocytosis (PC), and DQ
ovalbumin (DQ-ova) assays were measured with the 525 ± 20 nm filter (FITC channel)
(Supplementary Table S1). First, a high FSC × high SSC subpopulation was gated (Sup-
plementary Figures S4 and S5). Second, the single cell population was gated on an FSC-A
vs. FSC-H scatter plot to exclude aggregates. For the samples without CH138A immunola-
beling, blood and endometrial PMN were identified solely based on morphometry (high
FSC and high SSC values; Figure 2, Supplementary Figures S4 and S5). Within this gate,
the percentage of cells that performs PC (PPC) was calculated based on the positive green
signal of the FluoSpheres. To evaluate OB (MFIOB), PC (MFIPC), or proteolytic degradation
via DQ-ova (MFIDQ), the difference between the median fluorescence intensity (MFI) of
positive cells and the MFI of the respective autofluorescence control was calculated (Supple-
mentary Figure S6). For the samples with CH138A immunolabeling, two gating strategies
were applied (Figure 2, Supplementary Figures S4 and S5): one as described above as for
samples without CH138A immunolabeling, and another one in which CH138A+ events
were identified and gated before measuring PPC, MFIOB, MFIPC and MFIDQ (in respect
to their autofluorescence controls).

2.4.5. Intra-Assay Validation Approach

We evaluated if PMN immunolabeling using CH138A is necessary to assess the
endometrial PMN function. To do so, in samples with CH138A immunolabeling, we
compared the functionality outcome intra-assay of CH138A+ events versus a gating strategy
solely based on the morphometrical characteristics high FSC vs. high SSC (Figure 2,



Animals 2021, 11, 1081 9 of 18

Figures S4 and S5). Briefly, samples were immunolabeled with CH138A as described for
Experiment 1. After immunolabeling with CH138A, all tubes were centrifuged at 10 ◦C at
376× g for 5 min and the pellet was resuspended in 200 µL RPMI-BSA. PMN function tests
were then performed as described above and results were compared intra-assay.

2.4.6. Inter-Assay Validation Approach

We evaluated the effect of CH138A immunolabeling on PMN functionality inter-assay.
PMN function tests were performed as described above. The PMN gating strategy was
solely based on the morphometrical characteristics high FSC vs. high SSC and results were
compared inter-assay between samples with versus without CH138A immunolabeling
(Figure 2).

2.5. Statistics

Data were exported and processed using the R language for statistical program-
ming [34] (v3.6.0). Descriptive statistics were calculated for all cows and flow cytometry
parameters. The normality of the distributions was verified using histograms and Shapiro–
Wilk tests (p≥ 0.05 is normally distributed). Lin’s concordance correlation coefficient (CCC)
analysis was calculated to assess the degree of agreement between the different correspond-
ing or repeated measurements and flow cytometric variables. p-values for the CCC were
calculated by the corresponding Pearson (parametric data) or Spearman (non-parametric
data) correlation tests. Furthermore, pairwise t-tests (parametric data) or Wilcoxon signed
rank sum tests (non-parametric data), and corresponding p-values were calculated for all
functionality outcomes for the intra- and inter-assay validation experiments to evaluate
potential differences caused by immunolabeling and/or gating strategies. Results were
similarly assessed (CCC and pairwise t-tests) between PMN functionality tests in blood
and endometrium. Analyses and visualization were done using the R-packages Rcmdr [35]
(v2.7.1), DescTools [36] (v0.99.40), ggplot2 [37] (v3.3.3), and ggpubr [38] (v0.4.0). Differences
were considered significant at p < 0.05.

3. Results
3.1. PMN Isolation and Immunolabeling

The number of PMN isolated from a single blood sample (n = 41) was 23.1 ± 11.8 × 106

(mean ± standard deviation (SD); range 6 × 106–60 × 106). The number of PMN isolated
from a single endometrial cytobrush sample (n = 41) was 7.4 ± 13.1 × 106 (range 4 × 105–
76 × 106). The proportion of CH138A+ events in endometrial cell suspensions (n = 41) was
28 ± 20.5% (range 1–68%), which was positively correlated (CCC = 0.7; confidence interval
(CI) = 0.53–0.82; p < 0.001) with the proportion of PMN identified in endometrial cytology
samples (n = 41; 27 ± 28%; range 0–95%).

For 15 endometrial samples (Table 1), a positive correlation was found between dupli-
cate samples (A and B) for the proportion of PMN in endometrial cytology (CCC = 0.97;
p < 0.001) and for the proportion of CH138A+ events in endometrial cell suspensions
(CCC = 0.85; p < 0.001).

3.2. PMN Viability

Descriptive statistics and reproducibility (CCC tests) of the PMN viability assessment
in blood and endometrium are presented in Table 1. After PMN isolation from the blood,
the proportion of viable, apoptotic, and necrotic PMN in the samples was 91.9± 5.2% (range
80.3–99.1%), 7.1 ± 5.1% (range 0.3–18.9%), and 0.7 ± 0.3% (range 0.2–1.2%), respectively. In
endometrial PMN, the proportion of viable, apoptotic, and necrotic PMN was 38.8 ± 17.3%
(range 10.9–75.7%), 23.6 ± 16.9% (range 4.6–63.1%), and 33.5 ± 20.9% (range 6.1–70.6%),
respectively. All viability outcomes were positively correlated between the duplicate
samples (A and B) in blood and endometrium (CCC range 0.67–0.86 in blood, and 0.68–0.95
in endometrium; p < 0.01).
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Table 1. Descriptive statistics and reproducibility of identification of polymorphonuclear leukocytes (PMN) in endome-
trial samples (cytology and endometrial cell suspensions), and viability assessment of PMN isolated from blood and
endometrium. The proportion of PMN identified in endometrial cytology samples (in %), and the proportion of CH138A+

events (labeled by a specific bovine granulocyte marker) in endometrial cell suspensions (in %), in duplicate (A and B)
endometrial samples (n = 15). Flow cytometric evaluation of PMN viability (percentage viable, apoptotic, or necrotic) in
duplicate (A and B) blood (n = 15) and endometrial samples (n = 15). All samples were collected from Holstein-Friesian
cows from 9–37 days in milk. For flow cytometry, PMN were isolated, and immunolabeled using CH138A. Viability was
assessed using bicolor labeling (Annexin-V-FLUOS/propidium iodide). Samples (A and B) were processed in parallel to
assess the repeatability of the assay. Lin’s concordance correlation coefficient (CCC) and 95% confidence interval (CI) are
reported with the p-value from the corresponding Pearson (parametric) or Spearman (non-parametric) test. Correlations
were considered significant at p < 0.05.

Variable Sample Mean ± SD (in %) Range (in %) CCC (95% CI) p-Value

PMN in endometrial
cytology

A 29.3 ± 30.7 0–80
0.97 (0.90–0.99) <0.001B 28.7 ± 30.5 1–90

CH138A+ cells in
endometrium

A 31.7 ± 22.0 1.4–62.0
0.85 (0.62–0.95) <0.001

B 30.6 ± 21.5 5.7–68.1

Viable PMN in blood
A 91.6 ± 5.82 80.3–99.1

0.86 (0.66–0.95) <0.001
B 92.1 ± 4.76 82.5–99.0

Apoptotic PMN in blood
A 7.4 ± 5.7 0.3–18.9

0.86 (0.67–0.95) <0.001
B 6.9 ± 4.7 0.3–15.9

Necrotic PMN in blood
A 0.7 ± 0.29 0.2–1.1

0.67 (0.26–0.87) 0.006
B 0.7 ± 0.3 0.3–1.2

Viable PMN in
endometrium

A 40.0 ± 15.7 14.2–75.7
0.68 (0.25–0.88) 0.008

B 37.6 ± 19.4 10.9–75.1

Apoptotic PMN in
endometrium

A 24.3 ± 17.6 4.6–59.9
0.95 (0.25–0.88) <0.001

B 23.0 ± 16.8 5.5–63.1

Necrotic PMN in
endometrium

A 32.2 ± 19.1 6.1–58.3
0.77 (0.44–0.92) 0.001

B 34.7 ± 23.2 8.0–70.6

3.3. Blood and Endometrial PMN Functionality Tests
3.3.1. Intra-Assay Validation Approach

Descriptive statistics of the function tests OB, PC, and DQ-ova in CH138A immuno-
labeled blood and endometrial PMN are shown in Table 2. In blood, all functionality
outcomes were positively correlated between CH138A+ events and events gated solely
based on morphometrical characteristics (high FSC and high SSC) (CCC range 0.7–0.97;
p < 0.021). However, all functionality outcomes in blood were higher in CH138A+ events
than in events gated solely based on morphometrical characteristics (p < 0.002).

For endometrial PMN, the PPC and the MFIPC of CH138A+ events was positively
correlated with PPC and MFIPC of events gated solely based on morphometrical char-
acteristics (CCC = 0.65 (PPC) and 0.86 (MFIPC); p < 0.001 for both). PPC and MFIPC
were higher in CH138A+ events than in events gated solely based on morphometrical
characteristics (p = 0.005 and 0.03, respectively). Conversely, the MFIOB and MFIDQ were
not significantly correlated between CH138A+ events versus events gated solely based
on morphometrical characteristics (CCC = 0.87 (MFIOB) and 0.41 (MFIDQ), p = 0.07 and
0.15, respectively). Interestingly, the MFIOB and MFIDQ of CH138A+ events were not
different from the MFIOB and MFIDQ of events gated solely based on morphometrical
characteristics (p = 0.13 and 0.25 for MFIOB and MFIDQ, respectively).
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Table 2. Flow cytometric evaluation of polymorphonuclear leukocyte (PMN) functionality via oxidative burst (OB),
phagocytosis (PC), and intracellular proteolytic degradation by DQ ovalbumin (DQ-ova) by CH138A immunolabeling
or morphometrical characteristics. Blood and endometrial samples (n = 11) were collected from Holstein-Friesian cows
at 9–37 days in milk. All samples were CH138A immunolabeled (CH138A = specific bovine granulocyte marker) to
identify PMN. The functionality outcomes of CH138A+ events versus a gating strategy solely based on morphometrical
characteristics (high FSC and high SSC) were compared intra-assay. The functionality outcomes included: percentage of
PMN that performs PC (PPC, in %), median fluorescence intensity (MFI) of PMN that displayed OB (MFIOB), PC (MFIPC),
or DQ-ova (MFIDQ) relative to the MFI of the respective autofluorescence control. Lin’s concordance correlation coefficient
(CCC) and 95% confidence interval (CI) are reported with the p-value from the corresponding Pearson (parametric) or
Spearman (non-parametric) test. Correlations were considered significant at p < 0.05.

Variable Gating Strategy Outcome Range CCC (95% CI) p-Value

PPC in blood (in %)
Morphometrics 83.82 69.36–92.03

0.70 (0.38–0.87) 0.021
CH138A+ 88.21 71.96–96.56

MFIPC in blood
Morphometrics 1,780,888 483,827–4,043,406

0.89 (0.72–0.96) <0.001
CH138A+ 2,156,790 505,748–4,659,214

MFIOB in blood
Morphometrics 242,081 58,924–573,332

0.97 (0.93–0.99) <0.001
CH138A+ 273,634 114,311–595,864

MFIDQ in blood
Morphometrics 2519 1092–4631

0.94 (0.86–0.98) <0.001
CH138A+ 2845 1223–5447

PPC in endometrium (in %)
Morphometrics 40.35 15.44–70.15

0.65 (0.24–0.87) <0.001
CH138A+ 49.92 20.02–91.76

MFIPC in endometrium
Morphometrics 90,579 445–421,532

0.86 (0.56–0.96) <0.001
CH138A+ 140,235 384–424,773

MFIOB in endometrium
Morphometrics −3073 −172,034–116,458

0.87 (0.71–0.95) 0.07
CH138A+ 14,643 −198,069–234,887

MFIDQ in endometrium
Morphometrics 11,498 2392–19,693

0.41 (−0.25–0.81) 0.15
CH138A+ 8410 1982–18,191

3.3.2. Inter-Assay Validation Approach

Descriptive statistics of the function tests OB, PC, and DQ-ova in CH138A immuno-
labeled versus non-immunolabeled blood and endometrial PMN are shown in Table 3.
For blood, PPC and MFIOB were positively correlated between CH138A immunolabeled
versus non-immunolabeled samples (CCC = 0.57 (PPC) and 0.69 (MFIOB), p = 0.03 and
0.007, respectively). CCC between CH138A immunolabeled versus non-immunolabeled
samples for MFIPC in blood was 0.2 (p = 0.06), while for MFIDQ it was 0.19 (p = 0.001).
Functionality outcomes PPC, MFIPC, and MFIDQ in blood were significantly higher for
CH138A immunolabeled versus non-immunolabeled samples (p < 0.002), while MFIOB was
higher in non-immunolabeled samples (p = 0.01). For endometrial PMN, PPC and MFIPC
were positively correlated between CH138A immunolabeled versus non-immunolabeled
samples (CCC = 0.80 (PPC) and 0.61 (MFIPC), p = 0.02 for both). CCC between CH138A
immunolabeled versus non-immunolabeled samples for MFIOB in endometrium was 0.43
(p = 0.07) and for MFIDQ in endometrium was 0.74 (p = 0.17). Functionality outcomes be-
tween immunolabeled and non-immunolabeled samples were not different in endometrial
samples (p > 0.06).
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Table 3. Flow cytometric evaluation of polymorphonuclear leukocyte (PMN) functionality via oxidative burst (OB),
phagocytosis (PC), and intracellular proteolytic degradation by DQ ovalbumin (DQ-ova) with or without prior CH138A
immunolabeling. Blood and endometrial samples (n = 11) were collected from Holstein-Friesian cows at 9–37 days in milk.
Samples were processed in duplicate, with or without prior CH138A immunolabeling. For both cases, the PMN gating
strategy was solely based on morphometrical characteristics (high FSC and high SSC) and results were compared inter-assay.
The functionality outcomes included: percentage of PMN that performs PC (PPC), median fluorescence intensity (MFI) of
PMN that displayed OB (MFIOB), PC (MFIPC), or DQ-ova (MFIDQ) relative to the MFI of the respective autofluorescence
control. CH138A = specific bovine granulocyte marker. Lin’s concordance correlation coefficient (CCC) and 95% confidence
interval (CI) are reported with the p-value from the corresponding Pearson (parametric) or Spearman (non-parametric) test.
Correlations were considered significant at p < 0.05.

Variable CH138A Outcome Range CCC (95% CI) p-Value

PPC in blood (in %)
No 78.20 61.38–87.82

0.57 (0.20–0.80) 0.031
Yes 83.82 69.36–92.03

MFIPC in blood
No 1,116,458 450,894–1,841,761

0.20 (−0.19–0.53) 0.06
Yes 1,780,888 483,827–4,043,406

MFIOB in blood
No 373,274 85,403–1,013,163

0.69 (0.39–0.85) 0.007
Yes 242,081 58,924–573,332

MFIDQ in blood
No 974 404–1998

0.19 (0.01–0.35) 0.001
Yes 2519 1092–4631

PPC in endometrium (in %)
No 37.67 15.05–57.66

0.80 (0.44–0.94) 0.017
Yes 40.35 15.44–70.15

MFIPC in endometrium
No 38,637 375–244,415

0.61 (0.23–0.83) 0.021
Yes 169,632 445–421,532

MFIOB in endometrium
No 56,358 −13,006–477,606

0.43 (0–0.73) 0.067
Yes −3073 −172,034–116,458

MFIDQ in endometrium
No 16,513 763–66,290

0.74 (0.11–0.95) 0.17
Yes 11,498 2392–19,693

3.4. Blood Versus Endometrial PMN Functionality

The correlations between blood and endometrial PMN functionalities are shown
in Table 4. The CCC between blood and endometrial PMN functions were positive
(CCC < 0.1), but not significant for PPC (p = 0.34), for MFIPC (p = 0.61), and for MFIOB
(p = 0.18). However, there was a significant (p = 0.005), negative correlation (CCC = −0.01)
between blood and endometrial MFIDQ. Functionality outcomes PPC, MFIPC, and MFIOB
in non-immunolabeled samples were significantly higher in blood versus endometrium
(p < 0.004), while MFIDQ was higher in endometrium (p = 0.02).
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Table 4. Flow cytometric evaluation of polymorphonuclear leukocyte (PMN) functionality in blood versus endometrium
via oxidative burst (OB), phagocytosis (PC), and intracellular proteolytic degradation by DQ ovalbumin (DQ-ova). Blood
and endometrial samples (n = 11) were collected from Holstein-Friesian cows at 9–37 days in milk. The functionality
outcomes of endometrial PMN were related to blood PMN. Functionality measures included percentage of PMN that
performs PC (PPC), median fluorescence intensity (MFI) of PMN that displayed OB (MFIOB), PC (MFIPC), or DQ-ova
(MFIDQ) relative to the MFI of the respective autofluorescence control. Samples were not immunolabeled, and gating was
performed based on morphometrical characteristics (high FSC and high SSC). Lin’s concordance correlation coefficient
(CCC) and 95% confidence interval (CI) are reported with the p-value from the corresponding Pearson (parametric) or
Spearman (non-parametric) test. Correlations were considered significant at p < 0.05.

Variable Outcome Range CCC (95% CI) p-Value

PPC (in %)
Blood 78.20 61.38–87.82

0.04 (−0.04–0.12) 0.34Endometrium 37.67 15.05–57.66

MFIPC
Blood 1,116,458 450,894–1,841,761

0.01 (−0.03–0.04) 0.61Endometrium 38,637 375–244,415

MFIOB
Blood 373,274 85,403–1,013,163

0.08 (−0.21–0.36) 0.18Endometrium 56,358 −13,006–477,606

MFIDQ
Blood 974 404–1998 −0.01 (−0.03–0.00) 0.005Endometrium 16,513 763–66,290

4. Discussion

Circulating PMN function is impaired during the transition period between late preg-
nancy and early lactation in dairy cows [15,16]. However, it has not been elucidated yet
whether an impaired peripheral PMN functionality implies an (equally) impaired function-
ality of PMN in the uterus. In the present study, we first tested a straightforward method
for the isolation of endometrial PMN from postpartum dairy cows and subsequently
evaluated their viability. A high correlation was observed between duplicate cytobrush
samples in their isolated endometrial PMN viability. Secondly, we described different
protocols for endometrial PMN functionality testing, OB, PC and DQ-ova, and compared
these with and without prior CH138A immunolabeling. Overall, PMN immunolabeling
increased the accuracy of the functionality assays. However, results of most functionality
assays, when based on morphometrical characteristics (i.e., high FSC and high SSC) highly
correlated with those of the CH138A immunolabeling. Thirdly, in both datasets, blood and
endometrial PMN functionality were poorly correlated.

When interpreting these data, a major finding was that the number of PMN isolated
from the highest yielding endometrial cytobrush was almost 200 times greater than the
number isolated from the lowest yielding sample. In marked contrast, in blood there
was only a 10-fold difference between the highest and lowest yielding samples. This
indicates that PMN are highly dynamic during the early postpartum period in dairy
cows, influenced by both the number of days postpartum when samples are collected and
the uterine health status [20,21,39,40]. Moreover, while flow cytometrical differentiation
of blood PMN based on their morphometrical characteristic size (FSC) and granularity
(SSC) is straightforward, the differentiation of PMN from the high number of debris and
epithelial cells in endometrial samples is challenging, as also reported by our group for
milk PMN [31]. Indeed, cell characteristics are expected to be severely altered by apoptosis
and necrosis [41–44]. Therefore, we immunolabeled endometrial PMN, using a specific
bovine granulocyte marker, CH138A, as also described for milk PMN by our group [29–31].
The specificity of the CH138A immunolabeling was high, resulting in >85% of PMN purity
in sorted cells based on CH138A+ expression. This validation was essential since aspecific
antibody binding to Fc-receptors of leukocytes is frequently reported in flow cytometrical
assays [45]. Although we did not apply isotype control antibodies for this study, the
usefulness and interpretation of isotype control antibodies is still unclear [45–48]. In this
regard, we hypothesize that the complexity of the uterine environment would result in
an intricate background signal, making the isotype control experiment highly unreliable.
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For instance, the (pro-inflammatory) environment of the postpartum uterus is rich in
immunoglobulins which may compete with the Fc receptors, minimizing the possibility
for aspecific binding of the CH138A × Alexa Fluor 647 [18,49]. Notably, the proportion
of CH138A+ events in endometrial cell suspensions highly correlated with the proportion
of PMN in endometrial cytology samples. The latter suggests that CH138A is a valuable
marker for the correct identification of endometrial PMN.

The proportions of viable, apoptotic, and necrotic PMN isolated from endometrial
samples all roughly ranged from 10 to 80%. Thus, not only is the proportion of PMN num-
bers highly dynamic in the uterus of postpartum cows, but also their life cycle substantially
fluctuated. Hence, the multicolor flow cytometric protocol for endometrial PMN viability
assessment described here provides an elegant tool aiding to understand the biorhythm
of these innate immune cells within the uterine lumen. In future experiments, it will be
interesting to examine associations between endometrial PMN viability at different days
postpartum, including the eventual establishment of uterine disease.

For the second objective, we compared our two methodological approaches to study
the endometrial PMN functionality in postpartum cows. We CH138A immunolabeled
PMN prior to each functionality test and compared the functionality outcomes of CH138A+

events with those of the events gated solely based on the morphometrical characteristics
(high FSC vs. high SSC). Although PPC and MFIPC were highly correlated between both
events, results were systematically higher in the CH138A+ events. This suggests that there
is no complete agreement between both populations, so that some of the non-PMN events
(i.e., other cell types and debris) or (non-responsive) CH138A negative PMN end up in
the high FSC × high SSC gate. Because function tests are traditionally performed in blood
PMN without prior immunolabeling, blood samples were processed in parallel, to confirm
our findings. Similar to endometrial samples, function tests of peripheral PMN highly
correlated between CH138A+ events and events gated solely based on morphometrical
characteristics. This was expected, since this PMN gating strategy is highly specific for
blood [41]. However, all functionality outcomes in blood were again slightly higher in
CH138A+ events than in events gated solely based on morphometrical characteristics. The
latter suggests that also in blood a small number of non-PMN events (e.g., monocytes and
mast cells), or (non-responsive) CH138A negative PMN end up in the high FSC × high
SSC gate (Figure S2) [50]. Therefore, as stated before, CH138A immunolabeling resulted in
a more accurate flow cytometric identification of both blood as well as endometrial PMN
when assessing PMN functions.

Apart from the advantage of CH138A immunolabeling, the (extra) immunolabeling
step is time consuming and labor intensive, and costly. Moreover, we hypothesize that it
might also influence the MFI of the assays. Consequently, we evaluated the effect of the
immunolabeling protocol on PMN functionality tests, by inter-assay comparison of the
functionality outcomes between samples with and without CH138A immunolabeling. For
endometrial samples, correlations for PPC and MFIPC between immunolabeled versus
non-immunolabeled PMN were >0.6 and no significant differences were found. Moreover,
our PPC results (15–60% of PMN phagocytosis in endometrium) are in line with those
described by Brodzki et al. [51] (with values ranging from 20 to 45%), and slightly lower
than results from Hussain and Daniel [52] and Mateus et al. [53] (both ranging from 40
to 90%). However, in blood we observed low correlations between PPC, MFIPC, and
MFIDQ in immunolabeled versus non-immunolabeled PMN. In marked contrast, a good
correlation was found between CH138A immunolabeled versus non-immunolabeled events
for MFIOB, and remarkably higher MFI values were observed in non-immunolabeled PMN.
The MFI of PC, OB, and DQ-ova assays can be influenced by cell type, cell activation, and
time after sampling [27,54,55]. Consequently, we hypothesize that the extra centrifugation
and incubation steps for the immunolabeling (pre-)activated blood PMN and resulted in
higher PPC, MFIPC, and MFIDQ. Furthermore, it is plausible that the fluorescence intensity
of OB, PC and DQ-ova is influenced by the fluorescence intensity of the CH138A × Alexa
Fluor 647 itself. As for the endometrial samples, we hypothesize that the (pre-)activation
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effect of the immunolabeling might have been minimal, because cells originating from the
postpartum uterine lumen might already have been activated [16,56]. In conclusion, we
suggest that the immunolabeling protocol itself might influence the outcome of the PMN
functionality tests. In addition, since endometrial PMN already might have been activated,
function tests might be more difficult to interpret, especially OB and DQ-ova, which are
probably a poor estimator for PMN functionality in endometrial samples.

For the third objective, we showed that the correlations between blood and endome-
trial PMN functionality were weak. Phagocytosis was significantly lower in endometrial
versus blood PMN. This is in agreement with Zerbe et al. [57], who evaluated PMN func-
tions after experimental mobilization of PMN towards the uterine lumen using Leukotriene
B4 (LTB4). Also, Brodzki et al. [51] found higher PPC in circulating PMN than in endome-
trial PMN of healthy cows. In contrast to our results, Zerbe et al. [57] found that OB was
not different between blood and uterine PMN. We can assume that the uterine environment
and the time frame of 24 h between LTB4 injection and the retrieval of PMN were not com-
pletely identical with the physiological, non-experimentally induced uterine inflammatory
response postpartum in our experiments.

In conclusion, we found that the population of endometrial PMN in clinically healthy
postpartum dairy cows is highly dynamic, containing viable, apoptotic, and necrotic cells in
variable proportions, which are probably depending on the days postpartum when samples
were collected and uterine health status. Future studies, with the inclusion of a higher
number of systematically collected samples, should be further investigated. Endometrial
PMN are functional and capable of phagocytosis. However, the interpretation of OB and
DQ-ova tests remains challenging. Due to the high correlation with immunolabeled PMN
and because the CH138A itself (or its procedure) may interfere with the functionality tests,
we hypothesize that flow cytometrical identification of endometrial PMN solely based on
morphometrical characteristics might be a valid gating strategy for first-line evaluation
of endometrial PMN phagocytosis. No evidence was found for correlations between
PMN functions of circulating and endometrial PMN. Future research examining factors
influencing endometrial PMN viability and phagocytosis will broaden our knowledge on
PMN characteristics in the bovine uterus postpartum.

Supplementary Materials: The following data are available online at https://www.mdpi.com/
article/10.3390/ani11041081/s1, Table S1: Fluorescent dyes and their excitation and emission charac-
teristics, Figure S1: Gating strategy for flow cytometric assessment of viability in bovine circulating
(A) versus endometrial (B) polymorphonuclear leukocytes (PMN), Figure S2: Flow cytometric identi-
fication of blood polymorphonuclear leukocytes (PMN) using CH138A, Figure S3: Flow cytometric
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