
PHYSICAL REVIEW C 102, 065204 (2020)
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Background: Deep-inelastic scattering (DIS) on the polarized deuteron with detection of a proton in the nuclear
breakup region (spectator tagging) represents a unique method for extracting the neutron spin structure functions
and studying nuclear modifications. The tagged proton momentum controls the nuclear configuration during
the DIS process and enables a differential analysis of nuclear effects. Such measurements could be performed
with the future electron-ion collider (EIC) and forward proton detectors if deuteron beam polarization could be
achieved.
Purpose: Develop a theoretical framework for polarized deuteron DIS with spectator tagging. Formulate
practical procedures for neutron spin structure extraction.
Methods: A covariant spin density matrix formalism is used to describe general deuteron polarization in collider
experiments (vector/tensor, pure/mixed). Light-front (LF) quantum mechanics is employed to factorize nuclear
and nucleonic structure in the DIS process. A four-dimensional representation of LF spin structure is used to
construct the polarized deuteron LF wave function and efficiently evaluate the spin sums. Free neutron structure is
extracted using the impulse approximation and analyticity in the tagged proton momentum (pole extrapolation).
Results: General expressions of the polarized tagged DIS observables in collider experiments are presented.
The polarized deuteron LF spectral function and nucleon momentum distributions are characterized in analytic
and numerical form. Practical procedures for neutron spin structure extraction from the tagged deuteron spin
asymmetries are proposed.
Conclusions: Spectator tagging provides new tools for precise neutron spin structure measurements. D-wave
depolarization and nuclear binding effects can be eliminated through the tagged proton momentum dependence.
The methods can be extended to tensor-polarized observables, spin-orbit effects, and diffractive processes.
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I. INTRODUCTION

Exploring the spin-dependent partonic structure of the nu-
cleon and the numerous polarization-induced phenomena in
QCD processes is a principal objective of modern nuclear
physics; see Refs. [1–4] for a review. This program requires
measurements of deep-inelastic lepton scattering (DIS) on
both the proton and the neutron. Proton and neutron data are
needed to separate the isovector and isoscalar combinations
of the nucleon spin structure functions, which are subject
to different short-distance dynamics (QCD evolution, higher
twist effects, small-x asymptotics) and give access to different
combinations of the parton densities (nonsinglet quarks versus
gluons and singlet quarks) [5–9].
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The isovector structure function g1p−g1n exhibits pure
nonsinglet QCD evolution and provides direct access to the
flavor-nonsinglet polarized quark densities. Its moment (inte-
gral over x) can be used for precision studies of perturbative
QCD and extraction of the strong coupling constant (see
Refs. [10–17] and references therein) and is asymptotically
constrained by the Bjorken sum rule, a fundamental prediction
of current algebra that can be tested experimentally [18]. The
isoscalar structure function g1p + g1n exhibits singlet evolu-
tion and can be used to extract the polarized gluon density
and the flavor-singlet polarized quark densities. Both isospin
combinations are needed to determine the flavor decomposi-
tion of the polarized quark densities and their contributions
to the nucleon spin; see Refs. [5–9] and references therein.
The subasymptotic power corrections to the spin structure
functions give access to higher twist matrix elements describ-
ing nonperturbative quark-gluon correlations in the nucleon,
for which theoretical calculations predict a significant isospin
dependence [19–22], consistent with empirical extractions
[23,24]. Neutron and proton data together are also needed to
explore the dynamical mechanisms causing single-spin asym-
metries in semi-inclusive DIS, where there are signs of large
isovector structures; see Refs. [25,26] and references therein.
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Neutron spin structure functions are measured in DIS on
polarized light nuclei, principally the deuteron d ≡ 2H and
3He. Measurements have been performed at the Stanford
Linear Accelerator Center (SLAC) [27–34], the HERMES
experiment at the German Electron Synchrotron (DESY)
[35,36], the SMC [37] and COMPASS [38–40] experiments
at the European Organization for Nuclear Research (CERN),
and at Jefferson Lab (JLab) 6 GeV [13,41–44], and will be
extended further with the JLab 12 GeV Upgrade [45]. The
extraction of the neutron structure functions from the nu-
clear DIS data faces considerable theoretical challenges; see
[46–54] and references therein. The DIS process can happen
on the protons or neutrons in the nucleus, causing dilution of
the neutron signal. Spin depolarization occurs due to higher
partial waves in the nuclear wave function. Nuclear binding
modifies the apparent neutron structure functions through the
Fermi motion and dynamical effects (the so-called EMC effect
at x > 0.3; antishadowing at x ≈ 0.1; nuclear shadowing at
x < 0.01). These modifications reveal different aspects of nu-
cleon interactions in QCD and are themselves objects of study.
In spin structure measurements with polarized 3He, the pres-
ence of � isobars in the nuclear wave function (non-nucleonic
degrees of freedom) [52,53] modifies the effective neutron
polarization compared to nonrelativistic nuclear structure cal-
culations [48,55].

The main difficulty in the theoretical treatment of the nu-
clear modifications lies in the fact that they strongly depend
on the nuclear configurations present during the DIS process.
Both the state of motion and the strength of interaction of the
active nucleon depend on the configuration and exhibit con-
siderable variation, as determined by the quantum-mechanical
motion of the interacting system. In inclusive measurements,
one attempts to account for these effects by modeling their
dependence on the nuclear configuration and summing over
all configurations. The resulting theoretical uncertainty repre-
sents a significant source of the systematic error in neutron
spin structure function extraction. Efforts should be made to
reduce this theoretical uncertainty as the experimental data
are becoming more precise. Another strategy is to consider
alternative measurements that permit control of the nuclear
configuration during the DIS process.

DIS on the deuteron with detection of a proton in the nu-
clear fragmentation region, e + d → e′ + X + p, represents
a unique method for performing neutron structure measure-
ments in controlled nuclear configurations [56]. The proton is
detected with momenta pp � 300 MeV in the deuteron rest
frame. At such momenta, the deuteron can be described with
good accuracy in terms of nucleonic degrees of freedom (pn),
and its wave function is known well both in nonrelativistic
and in LF quantum mechanics (see below). Configurations
with � isobars are suppressed in the isospin-0 system [56].
The detection of the proton identifies DIS events with active
neutron and eliminates dilution. The measurement of the pro-
ton momentum controls the nuclear configuration during the
DIS process and enables a differential treatment of nuclear
effects. By extrapolating the proton momentum dependence to
the unphysical region, one can reach pn configurations where
the neutron is effectively free, and nuclear binding effects
and final-state interactions disappear, which makes possible

the extraction of free neutron structure (pole extrapolation,
or on-shell extrapolation) [57]. The technique is theoretically
appealing and practically feasible. If it could be applied to
polarized electron-deuteron scattering with proton tagging,
one could use it to extract the free neutron spin structure
function.

Measurements of DIS on the deuteron with proton tagging
have been performed in fixed-target experiments at JLab with
6 GeV beam energy with the CEBAF Large-Angle Spectrom-
eter (CLAS) and the BoNuS proton detector [58,59]. The data
provide constraints on the F2n/F2d structure function ratio
and the d/u quark density ratio at large x. The measure-
ments will be extended to 11 GeV energy with the BoNuS
(Barely Off-Shell Nucleon Structure) and ALERT (Large-
Angle Recoil Tracker) detectors [60,61]. The BoNuS setup
detects only protons with momenta pp � 70 MeV, as slower
protons cannot escape the target; the measurements therefore
use only a small part of the deuteron momentum distribution
and preclude accurate on-shell extrapolation. The setup is also
limited to unpolarized targets. Other DIS experiments with
proton and neutron tagging at larger momenta pp,n ≈ few
100 MeV explore the EMC effect and its connection with
nucleon short-range correlations [62–64].

The future electron-ion collider (EIC) at Brookhaven Na-
tional Laboratory will greatly expand the capabilities for
DIS measurements on the proton and on light and heavy
ions [65,66]. The proposed design will enable electron-proton
collisions at center-of-mass (c.m.) energies

√
sep ≈ 20–140

GeV and luminosities ≈1033–1034 cm−2 s−1, and electron-
deuteron collisions at electron-nucleon c.m. energies

√
seN ≈

20–100 GeV and similar luminosities per nucleon [67,68].1

In DIS on the deuteron at the collider, the spectator nucleon
moves forward with approximately half the deuteron beam
momentum and can be detected with forward detectors in-
tegrated into the interaction region. The development and
integration of such forward detectors have been a priority
of the machine design effort and have made major progress.
The current conceptual design includes a magnetic dipole
spectrometer with multiple active elements for forward proton
detection, and a zero-degree calorimeter for forward neutron
detection. The apparatus can detect protons with transverse
momenta from zero to ≈ few 100 MeV with a resolution
� 30 MeV, and longitudinal momenta from ≈0.5–1.5 times
the nominal spectator momentum; for details and neutron
detection, see Ref. [69]. The EIC thus provides excellent ca-
pabilities for deuteron DIS with proton tagging. The collider
offers many advantages over the fixed-target setup: Protons
can be detected down to zero momentum in the deuteron rest
frame, the magnetic spectrometer provides good momentum

1For a given ion/proton storage ring design (ring radius, magnetic
field, etc.), the energy per nucleon in a relativistic ion beam with
A > 1 is generally lower than that of a proton beam by a factor
Z/A (the nuclear charge to mass number ratio). When the ion/proton
beams collide with an electron beam of fixed energy, the squared
c.m. energies per nucleon of the collision are therefore related as
seN ≈ (Z/A) sep.
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resolution, and tagged measurements can be performed with
polarized deuteron beams.

Polarization of the deuteron beams in the EIC is regarded
as technically possible and considered as a future option [68].
Maintaining deuteron polarization in a storage ring is more
challenging than proton polarization, as the small magnetic
moment of the deuteron renders spin manipulation more dif-
ficult. Possibilities for realizing deuteron polarization in the
EIC circular storage ring are under investigation; see, e.g.,
Ref. [70]. (A unique solution to the problem of deuteron polar-
ization is a figure-8 layout of the ion ring that compensates the
spin precession within one turn, as was proposed in an earlier
alternative EIC design [71].) Together with the forward de-
tection capabilities, deuteron polarization raises the prospect
of using polarized deuteron DIS with proton tagging for preci-
sion measurements of neutron spin structure at EIC. The setup
could also be used for measurements of bound proton spin
structure with neutron tagging, of spin-dependent diffractive
processes on the deuteron with proton and neutron tagging,
and of tensor-polarized deuteron structure. The physics po-
tential such measurements at EIC has been explored in a
Research and Development project [72–74].

In this article, we develop the theoretical framework for
DIS on the polarized deuteron with spectator tagging. The
development proceeds in three steps. In the first step, we
derive the general expressions of the differential cross section
of polarized electron-deuteron DIS with spectator tagging for
the case of arbitrary deuteron polarization (vector and ten-
sor), including the spin asymmetry observables corresponding
to specific polarization states in colliding-beam experiments
(depolarization factors). In the second step, we separate the
high-energy DIS process from the low-energy nuclear struc-
ture using methods of light-front quantization, calculate the
deuteron structure elements entering in the description of
tagged DIS in the impulse approximation (IA), and study their
properties (limiting cases, sum rules). In the third step, we
evaluate the longitudinal spin asymmetries in polarized tagged
DIS, study their dependence on the tagged proton momentum
analytically and numerically, and formulate the procedures
for neutron spin structure extraction, including pole extrap-
olation. We find that the neutron spin structure function g1n

can be extracted efficiently from the tagged longitudinal spin
asymmetry formed with the deuteron’s ±1 spin states only
(without the 0 state, involving effective tensor polarization).
We comment on possible extensions of the methods to the
study of tensor-polarized observables, spin-orbit effects in
deuteron breakup, and exclusive scattering processes. Many
of the applications considered here were originally discussed
in the work of Ref. [75]. Some preliminary results of our study
were reported earlier in Ref. [76].

Our theoretical treatment of deuteron structure in tagged
DIS employs the methods of LF quantization of nuclear sys-
tems developed in Refs. [46,56] and summarized in Ref. [77]
(for a general review of LF quantization, see Refs. [78–80]).
High-energy processes such as DIS probe the nucleus at fixed
LF time x+ = x0 + x3. The description of the nucleus in terms
of nucleonic degrees of freedom at fixed x+ permits a smooth
matching of nuclear and nucleonic structure and preserves
the partonic sum rules for the nucleus (baryon number, LF

momentum, spin). The description is frame independent and
provides a close connection with nonrelativistic nuclear struc-
ture in the rest frame. The LF wave function of the deuteron
in nucleon degrees of freedom can be obtained by solving
the dynamical equation with realistic NN interactions or con-
structed approximately from the nonrelativistic wave function.
The deuteron and nucleon spin states are introduced as LF
helicity states, or boost-invariant extensions of the rest-frame
spin states, and the deuteron LF spin structure is obtained in
direct analogy to the nonrelativistic system (S and D waves).
In the traditional “three-dimensional” formulation of LF spin
structure, one describes the nucleons by LF 2-spinors that
are related to the canonical 2-spinors by the Melosh rotation,
and constructs the deuteron LF wave function from the three-
dimensional wave function in the center-of-mass frame. In
the present work, we employ a “four-dimensional” formu-
lation [75,81], in which the nucleons are described by LF
bispinors and the coupling to the deuteron is implemented
through a four-dimensional vertex function (the equivalence
of the two formulations is demonstrated in Appendix B). It
permits efficient evaluation of the sums over the nucleon LF
helicities and leads to LF formulas in close analogy with those
of relativistically covariant quantum field theory (Feynman
diagrams). In particular, in the four-dimensional formulation,
the effective polarization of the neutron in the deuteron (at
a given LF momentum) can be described by a spin density
matrix of the same form as that in covariant field theory,
with the entire deuteron structure information condensed in
an axial 4-vector (polarization vector).

The article is organized as follows. In Sec. II, we review the
formalism of relativistic spin density matrices of the spin-1/2
and spin-1 system, which will be used throughout this work.
In Sec. III, we present the general expressions of the cross
section and structure functions of tagged DIS on the polarized
deuteron with vector and tensor polarization, including the
spin asymmetries measured in colliding-beam experiments.
We express the kinematic factors (effective polarizations,
depolarization factors) in manifestly relativistically invariant
form as suitable for colliding-beam experiments. In Sec. IV,
we summarize the elements of LF quantization and describe
the deuteron LF wave function in the four-dimensional for-
mulation of the spin structure, including its correspondence
with the nonrelativistic wave function. In Sec. V, we develop
the formalism for the evaluation of nucleon one-body op-
erators in the polarized deuteron at fixed LF momentum of
the spectator. We derive the effective spin density matrix of
the neutron, calculate the LF momentum distribution of the
neutron in the polarized deuteron, and study its momentum
and spin dependence. In Sec. VI, we calculate the polarized
tagged DIS cross section and the spin asymmetries in the
IA, separating nuclear and nucleonic structure, and study the
dependence on the tagged proton momentum. In Sec. VII, we
study the analytic properties in the tagged proton momentum
and discuss the strategies for neutron spin structure extrac-
tion through pole extrapolation. In Sec. VIII, we summarize
the methodological and practical results and discuss possible
extensions of the methods to other scattering processes and to
nuclei with A > 2. Appendix A summarizes the definition and
properties of the LF helicity spinors used in the calculations.

065204-3



W. COSYN AND C. WEISS PHYSICAL REVIEW C 102, 065204 (2020)

Appendix B describes the three-dimensional formulation of
the deuteron spin structure in LF quantization and demon-
strates the equivalence to the four-dimensional formulation
used in the calculations.

Some explanations are in order regarding the limitations
of the present study. In the polarized tagged DIS cross
section, we consider only the structures after integration over
the azimuthal angle of the proton (in the frame where the
deuteron and the virtual photon momenta are collinear); these
structures correspond to those measured in “untagged” DIS
and are used for neutron spin structure function extraction.
When the azimuthal angle dependence is included, the number
of independent structures in the polarized tagged DIS cross
section for the spin-1 target becomes very considerable, espe-
cially in the case of tensor polarization; this extension will be
considered in a separate study [82].

In the treatment of nuclear structure effects, we limit our-
selves to the IA, which is sufficient for studying the tagged
spin asymmetries used for neutron structure extraction and
their analytic properties at small proton momenta. Final-state
interactions (FSI) in unpolarized tagged DIS at intermediate
x (≈0.1–0.5) were calculated in Ref. [77] and found to be
moderate at proton momenta �100 MeV (in the deuteron
rest frame); the calculations could be extended to the po-
larized case. In the practical applications, we consider the
leading-twist longitudinal spin asymmetries used for tagged
measurements of the neutron spin structure function g1n; our
general expressions cover also the power-suppressed trans-
verse spin asymmetry and the contributions of g2n, and the
IA calculations could easily be extended to these observables.

In the present study, we consider tagged DIS on the
deuteron at nonexceptional x < 1 and proton momenta pp �
few 100 MeV and focus on the extraction of free neutron
structure, particularly using the method of pole extrapolation
to select noninteracting nuclear configurations. For this pur-
pose, we employ a description of nuclear structure in terms of
nucleonic degrees of freedom (for a discussion of its adequacy
and limitations, see Refs. [46,56]); the use of LF quantiza-
tion permits the consistent matching of the nuclear structure
with the partonic structure of the free nucleons (see above).
In average nuclear configurations, the partonic structure of
the nucleus is modified by nuclear interactions, which entail
the presence of non-nucleonic degrees of freedom in the nu-
cleus. Modeling these modifications would become necessary
if one wanted to accurately predict and interpret the tagged
deuteron structure functions at finite proton momenta. Our
present calculation using nucleon degrees of freedom and
the IA provides a baseline upon which such nuclear modi-
fications could be discussed in a future study. The nuclear
modifications become qualitatively important in tagged DIS
at larger proton momenta pp ≈ 300–600 MeV, which select
exceptional nuclear configurations with strong interactions.
Models for the nuclear modifications in this domain can be
constructed using a QCD-based picture of the nucleons and
their nuclear interactions. In particular, so-called hidden color
configurations have been proposed as a mechanism modify-
ing the partonic structure of the deuteron in high-momentum
configurations [83–85]; see Refs. [86,87] for a review. A de-
scription of tagged DIS at larger proton momenta in such a

QCD-based picture of deuteron structure would be an interest-
ing subject for future study. We emphasize that the hadronic
and the QCD-based pictures of the deuteron are to be regarded
as dual, and that interaction effects must be discussed consis-
tently within each picture (non-nucleonic degrees of freedom
such as � isobars and meson exchanges in the hadronic pic-
ture; hidden color configurations and other mechanisms in the
QCD picture); attempts to “combine” the two pictures in the
treatment of interactions generally lead to inconsistent results.
Further aspects of the QCD-based description of the deuteron
are discussed in Refs. [88,89].

II. SPIN DENSITY MATRICES

A. Spin-1/2 particle

We begin by reviewing the formalism of spin density ma-
trices for ensembles of spin states (mixed polarization states)
of spin-1/2 and spin-1 particles. We focus on the relativisti-
cally covariant representation of the density matrices in terms
of 4-vectors and tensors, which will be used throughout the
subsequent calculations.

Consider a relativistic spin-1/2 particle with spin states
labeled by the quantum number λ = ± 1

2 ; the exact definition
of the spin states is not needed here and will be specified later.
An ensemble of spin states is described by the density matrix
in spin quantum numbers,

ρ(λ, λ′),
∑

λ

ρ(λ, λ) = 1. (2.1)

Each spin state of the particle corresponds to a bispinor wave
function u(p, λ), normalized such that ūu = 2m, where p is
the 4-momentum and m is the mass. The spin density matrix
in bispinor representation is defined as

ρ ≡
∑
λ,λ′

ρ(λ, λ′)u(p, λ)ū(p, λ′), tr[ρ] = 2m. (2.2)

A general spin observable is given by a matrix in spin
quantum numbers O(λ′, λ). In the bispinor representation, it
corresponds to a bilinear form

O(λ′, λ) ≡ ū(λ′, p)�u(λ, p), (2.3)

where the specific form of the matrix � depends on the ob-
servable. The expectation value of the observable in the spin
ensemble is then obtained as

〈O〉 ≡
∑
λ,λ′

ρ(λ, λ′)O(λ′, λ) = tr[ρ�]. (2.4)

The spin density matrix Eq. (2.2) transforms covariantly under
Lorentz transformations. It can be decomposed into an unpo-
larized and a polarized part,

ρ = ρ[unpol] + ρ[pol]. (2.5)

The unpolarized part depends only on the particle 4-
momentum and is given by

ρ[unpol] = 1
2 (pγ + m) [pγ ≡ pμγμ]. (2.6)
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The polarized part is parameterized in terms of a real axial
4-vector s (“polarization 4-vector”)

ρ[pol] = 1

2
(pγ + m)(sγ )γ 5, sp = 0, (2.7a)

sμ = − 1

2m
tr[ργ μγ 5], (2.7b)

where we follow the conventions of Ref. [90],2

γ 5 ≡ −iγ 0γ 1γ 2γ 3, (2.8a)

tr [γ αγ βγ γ γ δγ 5] = 4iεαβγ δ, ε0123 = 1. (2.8b)

The polarization 4-vector is, up to a factor, equal to the axial
current of the particle. Specifically, in the particle’s rest frame,
p[RF] = (m, 0), the components of the polarization 4-vector
are

s[RF] = (0, S), 0 � |S|2 � 1, (2.9a)

Si =
∑
λ,λ′

ρ(λ, λ′)σ i(λ′, λ). (2.9b)

S is the polarization 3-vector in the rest frame, and σ i(λ′, λ) ≡
〈λ′|σ i|λ〉(i = 1, 2, 3) are the matrix elements of the spin oper-
ator between states with spin projections λ and λ′ [if the spin is
quantized along the z axis, these matrix elements are the Pauli
matrices: σ i(λ′, λ) = (σ i )λ′λ]. It follows that the 4-vector in
any frame satisfies

s2 < 0, 0 � |s2| � 1. (2.10)

B. Spin-1 particle

The spin-1 particle can be treated in analogy with the spin-
1/2 case; see Refs. [91,92] for a general discussion. The spin
states of the spin-1 particle are labeled by the quantum number
λ = (−1, 0, 1). An ensemble of spin states is described by the
density matrix

ρ(λ, λ′),
∑

λ

ρ(λ, λ) = 1. (2.11)

Each spin state corresponds to a 4-vector wave function,

εα (p, λ), ε2 = −1, εp = 0. (2.12)

The spin density matrix in 4-tensor representation is defined
as

ραβ ≡
∑
λ,λ′

ρ(λ, λ′)εα (p, λ)εβ∗(p, λ′), (2.13a)

pαραβ = ραβ pβ = 0, ρα
α = −1. (2.13b)

A general spin observable is given by a matrix in spin quantum
numbers O(λ′, λ). In the 4-tensor representation, it corre-
sponds to a bilinear form

O(λ′, λ) ≡ εβ∗(λ′)Rβαεα (λ), (2.14)

2In this convention, the sign of γ 5 is opposite to the Bjorken-Drell
convention.

and the expectation value in the ensemble is obtained as

〈O〉 ≡
∑
λ,λ′

ρ(λ, λ′)O(λ′, λ) = ραβRβα. (2.15)

The spin density matrix Eq. (2.13a) can be decomposed into
an unpolarized, a vector-polarized, and a tensor-polarized
part,

ραβ = ραβ [unpol] + ραβ [vector] + ραβ [tensor]. (2.16)

The unpolarized part is given by

ραβ [unpol] = 1

3

(
−gαβ + pα pβ

p2

)
. (2.17)

The vector-polarized part is parameterized in terms of a real
axial 4-vector s [cf. Eq. (2.7b) for the spin-1/2 particle]

ραβ [vector] = i

2M
εαβγ δ pγ sδ, sp = 0, (2.18a)

sμ = ραβ (Lμ)βα, (2.18b)

(Lμ)βα ≡ i

M
εμνβα pν, (2.18c)

(Lμ)αβ = −(Lμ)βα, (Lμ)αβ pμ = 0. (2.18d)

Here M is the particle mass, and the antisymmetric matrices
(Lμ)αβ are the four-dimensional representation of the genera-
tors of spatial rotations. In the particle’s rest frame p = (M, 0)
the components of the axial vector are

s[RF] = (0, S), 0 < |S|2 < 1, (2.19a)

Si =
∑
λ,λ′

ρ(λ, λ′)Li(λ′, λ). (2.19b)

S is the polarization 3-vector in the rest frame, and Li(λ′, λ) =
〈λ′|Li|λ〉 is the angular momentum operator, represented as a
matrix in the spin quantum numbers λ′ and λ. Again it follows
that in any frame

s2 < 0, 0 < |s2| < 1. (2.20)

The description of vector polarization of the spin-1 particle is
thus completely analogous to that of the spin-1/2 particle.

The tensor-polarized part of the density matrix Eq. (2.13a)
is specific to the spin-1 system. It can be parameterized in
terms of a real, symmetric, traceless 4-tensor tμν ,

ραβ [tensor] = −tαβ, (2.21a)

tαβ = tβα, tα
α = 0, pαtαβ = tαβ pβ = 0. (2.21b)

In the rest frame, the 4-tensor components are

t0β [RF] = tα0[RF] = 0, t i j[RF] ≡ T i j, (2.22a)

T i j = T ji, T ii = 0. (2.22b)

T i j is the conventional three-dimensional polarization tensor
in the rest frame. Its general decomposition, positivity con-
ditions, and other properties, are described in Ref. [92].3 In

3The prefactor accompanying the tensor in Eq. (2.21a) is conven-
tional. We choose −1 in order to simplify the subsequent covariant
expressions. Reference [92] uses −√

2/3.
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the present study, we need only a special tensor structure,
which can be constructed directly in four-dimensional form
(see below); we therefore do not need to consider the general
properties of the three-dimensional tensor.

In applications, we need the spin density matrices of pure
states polarized along some given direction. They can be con-
structed in four-dimensional form, as a superposition of the
unpolarized, vector-polarized, and tensor-polarized parts with
certain parameters. The vector-polarized part is expressed in
terms of the special axial 4-vector

sμ(N,) ≡ Nμ, pN = 0, N2 = −1, (2.23)

where the 4-vector N defines the direction of polarization and
 = (−1, 0,+1) is the spin projection along that direction.
Note that sμ = 0 in the state with  = 0. The tensor-polarized
part is expressed in terms of the special tensor

tαβ (N,) ≡ 1

6

(
gαβ − pα pβ

p2
+ 3NαNβ

)
×
{ 1,  = ±1

(−2),  = 0

}
. (2.24)

The density matrices of the pure states polarized in the direc-
tion N are then given by

ραβ (N,) = ραβ[unpol] + ραβ[vector, s(N,)]

+ ραβ [tensor, t (N,)], (2.25a)

ραβ (N,±1) = 1

2

(
−gαβ + pα pβ

p2
− NαNβ

)
± i

2M
εαβγ δ pγ Nδ, (2.25b)

ραβ (N, 0) = NαNβ. (2.25c)

Equations (2.25b) and (2.25c) can be verified in the rest
frame, by considering the case of polarization along the z axis,
N = (0, ez ), and comparing with the explicit expression of the
density matrix in terms of the polarization vectors; the general
relation then follows from relativistic covariance.

Notice that the pure states with projections ±1 involve the
unpolarized, vector-polarized and tensor-polarized parts of the
density matrix, while the state with projection 0 involves only
the unpolarized and tensor-polarized parts. Conversely, the
unpolarized, vector-polarized, and tensor-polarized parts are
expressed as combinations of pure spin states as

ραβ [unpol]

= 1
3 [ραβ (N,+1) + ραβ (N,−1) + ραβ (N, 0)], (2.26a)

ραβ [vector, s(N,±1)]

= ± 1
2 [ραβ (N,+1) − ραβ (N,−1)], (2.26b)

ραβ [vector, s(N, 0)] = 0, (2.26c)

ραβ [tensor, t (N,±1)]

= 1
6 [ραβ (N,+1) + ραβ (N,−1) − 2ραβ (N, 0)], (2.26d)

ραβ [tensor, t (N, 0)]

= − 1
3 [ραβ (N,+1) + ραβ (N,−1) − 2ραβ (N, 0)]. (2.26e)

The relations demonstrate how vector and tensor polariza-
tion can be prepared as a superposition of pure polarization
states. The vector-polarized part can be prepared by taking the
difference of the two pure states with ±1. To prepare the un-
polarized or tensor polarized parts, one needs a superposition
of all three polarization states with ±1 and 0.

In spin asymmetry measurements we encounter the differ-
ence and sum of pure states with projection ±1,

1

2
[ραβ (N,+1) − ραβ (N,−1)]

= ραβ [vector, s(N,+1)]

= i

2M
εαβγ δ pγ Nδ, (2.27a)

1

2
[ραβ (N,+1) + ραβ (N,−1)]

= ραβ [unpol] + ραβ [tensor, t (N,+1)]

= 1

2

(
−gαβ + pα pβ

p2
− NαNβ

)
. (2.27b)

The difference Eq. (2.27a) involves only the vector-polarized
part of the density matrix; the sum Eq. (2.27b), involves both
the unpolarized and the tensor-polarized parts. The sum ap-
pears in the denominator of spin asymmetry measurements
(see below). Inclusion of the tensor-polarized part of the
density matrix is therefore necessary in the calculation of
spin asymmetries of the spin-1 system. Notice one important
difference between spin-1/2 and spin-1 systems: In the spin-
1/2 system, both the polarized and the unpolarized density
are formed from the “maximum-spin” ±1/2 states, while in
the spin-1 system only the polarized density is formed from
the “maximum-spin” ±1 states, and the unpolarized density
requires the 0-spin state in addition. This has consequences
for the number of experimental spin asymmetries that can be
formed in the spin-1 case (see Sec. III G).

III. POLARIZED TAGGED ELECTRON-DEUTERON
SCATTERING

A. Kinematic variables and cross section

We now discuss the general form of the cross section and
structure functions of tagged DIS on the polarized deuteron.
The structural decomposition and kinematic factors are pre-
sented in invariant form. The information on the polarization
of the deuteron enters through invariants formed out of the
4-vector sμ and the 4-tensor tμν (cf. Sec. II), which can be
evaluated in any frame (“effective polarizations”). The cross-
section formulas presented here are general and make no
assumption regarding composite nuclear structure; results of
specific dynamical calculations will be described in Sec. VI.
The expressions are given with exact kinematic factors includ-
ing 1/Q2 suppressed terms; simplifications pertaining to the
DIS limit will be made only in the dynamical calculations
in Sec. VI. Our notation and conventions follow those of
Ref. [77] unless stated otherwise.

We consider polarized deep-inelastic electron scattering
on the deuteron with detection of an identified proton in the
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FIG. 1. Polarized tagged DIS on the deuteron, Eq. (3.1).

deuteron fragmentation region (“tagged DIS,” see Fig. 1),

e(pe, pole) + d (pd , pold ) → e′(pe′ ) + X + p(pp). (3.1)

pe and pd are the 4-momenta of the electron and deuteron in
the initial state; pole and pold indicate the variables character-
izing their experimental polarization, which will be specified
below. pe′ and pp are the 4-momenta of the scattered electron
and the detected proton in the final state. The 4-momentum
transfer is defined as the difference of the initial and final
electron 4-momenta,

q ≡ pe − pe′ . (3.2)

The kinematics is described by the invariants

(pd pe) > 0, (pd q) > 0, Q2 ≡ −q2 > 0. (3.3)

The conventional scaling variables are defined as

xd ≡ −q2

2(pd q)
, 0 < xd < 1, (3.4a)

y ≡ (pd q)

(pd pe)
, 0 < y < 1. (3.4b)

The variable xd is the conventional Bjorken variable for scat-
tering on the deuteron. The rescaled variable

x ≡ 2xd , 0 < x < 2, (3.5)

corresponds to the effective Bjorken variable for scattering
from a nucleon in the deuteron in the absence of nuclear
binding. We use xd in the general kinematic formulas in this
section (for easier comparison with standard formulas) and
x in the dynamical calculations (for simpler matching with
nucleon structure functions). The invariant variables involv-
ing the tagged proton momentum are described in detail in
Ref. [77] and will be quoted below.

The differential cross section of polarized tagged DIS,
Eq. (3.1), in leading order of the electromagnetic interaction
is given by

dσ [ed → e′X p] = 2πα2
emy2

Q6
dxd dQ2 dφe′

2π

× [wμν
e (Wd )μν

]
d�p, (3.6)

where αem ≡ e2/(4π ) ≈ 1/137 is the fine structure constant,
dφe′ is the differential of the azimuthal angle of the scattered
electron around the incident electron direction, and d�p is the
invariant phase space element in the tagged proton momentum
[77]. The expression in brackets is the contraction of the elec-
tron and deuteron scattering tensors. The initial electron is in a
pure spin state described by its helicity e = ± 1

2 ; we neglect

the electron mass (me → 0) and assume helicity conservation
′

e = e. The electron tensor is given by

wμν
e ≡ wμν

e (pe′ , pe,e)

= 〈e′(p′
e,e)|Jμ|e(pe,e)〉∗

× 〈e′(p′
e,e)|Jν |e(pe,e)〉, (3.7)

where Jμ is the electromagnetic current operator at space-time
point x = 0. The tensor consists of an unpolarized (helicity-
independent) and a polarized (helicity-dependent) part,

wμν
e = wμν

e [unpol] + wμν
e [pol], (3.8a)

wμν
e [unpol] = 4pμ

e pν
e − 2

(
qμ pν

e + pμ
e qν
)+ q2gμν, (3.8b)

wμν
e [pol] = (2e)2iεμναβqα pe,β . (3.8c)

The deuteron is in an ensemble of spin states described by
a general density matrix in spin quantum numbers, ρd ; cf.
Eq. (2.11). The deuteron tensor is given by the ensemble
average

W μν

d ≡ W μν

d (pd , q, pp|ρd )

=
∑
λ′

d ,λd

ρd (λd , λ
′
d )W μν

d (pd , q, pp|λ′
d , λd ), (3.9a)

W μν

d (pd , q, pp|λ′
d , λd )

≡ (4π )−1
∑

X

(2π )4δ(4)(q + pd − pp − pX )

×〈p(pp), X |Jμ|D(pd , λ
′
d )〉∗ 〈p(pp), X |Jν |D(pd , λd )〉.

(3.9b)

The last expression is a generalized scattering tensor defined
as a matrix between pure spin states, λ′

d and λd , which
generally involves nondiagonal elements λ′

d 
= λd . The
deuteron density matrix can be expressed in covariant form
and parameterized by an axial 4-vector and a 4-tensor; cf.
Eqs. (2.16) et seq.,

ρd ↔ sμ

d , tμν

d . (3.10)

The averaged deuteron tensor Eq. (3.9a) can therefore be
organized into an unpolarized part, a vector-polarized part
linear in sd , and a tensor-polarized part linear in td ,

W μν

d (pd , q, pp|ρd )

= W μν

d [unpol] + W μν

d [vector] + W μν

d [tensor]. (3.11)

The further structural decomposition of these terms can be
performed by using the polarization parameters sd and td
as building blocks in the construction of independent tensor
structures. This technique permits a simple derivation of the
spin structure of the polarized cross section and represents
the main motivation for working with the covariant form
of the spin density matrix (Sec. II). The deuteron tensor
satisfies the transversality conditions

qμW μν

d = 0, W μν

d qν = 0, (3.12)

which express the conservation of the electromagnetic current.
Because they hold for any polarization state, the conditions
must be satisfied by the individual terms in the decomposition
Eq. (3.11) and constrains their tensor structure.
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For constructing the independent tensor structures, we in-
troduce a set of orthonormal basis vectors in the subspace
spanned by the 4-momenta pd and q (“longitudinal sub-
space”). With

Lμ ≡ pμ

d − (pd q)qμ

q2
, (qL) = 0, L2 > 0, (3.13a)

L2 = (pd q)2

Q2
(1 + γ 2) = Q2

4x2
d

(1 + γ 2), (3.13b)

γ 2 ≡ M2
d Q2

(pd q)2
= 4x2

d M2
d

Q2
, (3.13c)

where Md is the deuteron mass, we define the unit vectors

eμ
L ≡ Lμ

√
L2

, eμ
q ≡ qμ√

−q2
,

e2
L = 1, e2

q = −1, (eLeq) = 0. (3.14)

By constructing normalized tensors out of the unit vectors, we
separate “geometry” from “structure” and obtain the invariant
structure functions with a natural normalization.

B. Unpolarized part

The unpolarized part of the deuteron tensor Eq. (3.11) is
symmetric in the indices μν. Its decomposition is of the form
(this is different from Ref. [77]; see below)

W μν

d [unpol] = −1

2
gμν

T F[UU,T ]d + 1

2
gμν

L F[UU,L]d

+ (ppT -dependent structures), (3.15)

gμν
T ≡ gμν + eμ

q eν
q − eμ

L eν
L, (3.16)

gμν
L ≡ eμ

L eν
L. (3.17)

gμν
T is the projector on the “transverse” subspace, orthogonal

to the longitudinal subspace. In Eq. (3.15), we omit tensor
structures that depend on the transverse part of the proton
momentum; these structures correspond to terms in the cross
sections that depend on the azimuthal angle of the tagged
proton momentum in the collinear frame and vanish upon in-
tegration over the latter (cf. Sec. III H). The invariant structure
functions multiplying the tensors depend on xd and Q2, as well
as on variables specifying the momentum of the final-state
proton (to be described in Sec. III I),

F[UU,T ]d ≡ F[UU,T ]d (x, Q2, {pp}), etc. (3.18)

Here and in the following, we use a notation analogous to
that of Refs. [82,93] to identify the structure functions cor-
responding to different electron, deuteron, and virtual photon
polarizations:

F[electron–deuteron,photon]d ,{electron = U, L
deuteron = U, SL, ST , TLL, TLT , TT T

photon = L, T
(3.19)

(the precise meaning of the labels will become clear in
the following). While more burdensome than the conven-
tional notation in simple cases, the new notation is physically
meaningful and greatly helps with managing more complex

expressions involving vector and tensor polarization. The un-
polarized deuteron structure functions in Eq. (3.15) are related
to those of Ref. [77] as

FLd (Ref. [77]) = F[UU,L]d , (3.20a)

FT d (Ref. [77]) = F[UU,T ]d + F[UU,L]d (3.20b)

They are related to the conventional unpolarized structure
functions F1d and F2d as

F[UU,T ]d = 2F1d , (3.21a)

F[UU,L]d = (1 + γ 2)
F2d

xd
− 2F1d , (3.21b)

F1d = 1

2
F[UU,T ]d , (3.21c)

F2d = xd (F[UU,T ]d + F[UU,L]d )

1 + γ 2
. (3.21d)

The longitudinal-transverse (L/T ) ratio is defined as

Rd ≡ F[UU,L]d

F[UU,T ]d
= (1 + γ 2)F2d

2xd F1d
− 1. (3.22)

For computing the contraction of the unpolarized elec-
tron tensor Eq. (3.8b) with the unpolarized deuteron tensor
Eq. (3.15), one introduces the virtual photon polarization pa-
rameter

ε ≡ gμν
L (we)μν[unpol]

−gμν
T (we)μν[unpol]

= 1 − y − γ 2y2/4

1 − y + y2/2 + γ 2y2/4
, (3.23)

which satisfies the relation

(2 − y)2

y2

1 − ε

1 + ε
= 1 + γ 2. (3.24)

The contractions of the electron momentum pe with the mo-
menta pd and q can then be expressed in terms of either of the
variables y or ε. Specifically, the contractions of pe with the
longitudinal basis vectors Eq. (3.14) are

(eL pe) = Q

2

√
1 + ε

1 − ε
= Q(1 − y/2)

y
√

1 + γ 2
, (3.25a)

(eq pe) = −Q

2
. (3.25b)

The contraction of the unpolarized electron tensor Eq. (3.8b)
with the unpolarized deuteron tensor Eq. (3.15) is obtained as

(we)μν[unpol]W μν

d [unpol]

= Q2

1 − ε
(F[UU,T ]d + εF[UU,L]d )

+ (ppT -dependent structures) (3.26a)

= Q2

1 − ε
F[UU,T ]d (1 + εRd )

+ (ppT -dependent structures). (3.26b)

The expression does not include structures that explicitly de-
pend on the proton transverse momentum. We note that if

065204-8



POLARIZED ELECTRON-DEUTERON DEEP-INELASTIC … PHYSICAL REVIEW C 102, 065204 (2020)

such structures were included, the unpolarized deuteron tensor
would no longer be symmetric and have a nonzero contraction
with the polarized electron tensor, resulting in an electron
single-spin-dependent term in the cross section [82].

C. Vector-polarized part

The vector-polarized part of the deuteron tensor Eq. (3.11)
depends linearly on the axial 4-vector sd and contains terms
antisymmetric and symmetric in μν (the symmetric term
corresponds to a single-spin dependence of the unpolarized
electron scattering cross section that is forbidden in strictly
inclusive DIS but allowed in tagged DIS; see below). In con-
structing the independent tensor structures, we must take into
account that the axial 4-vector is orthogonal to the deuteron
momentum, (pd sd ) = 0. It is convenient to introduce an alter-
native set of longitudinal basis vectors aligned with pd rather
than q. With

Lμ
∗ = qμ − (pd q)

p2
d

pμ

d , (pd L∗) = 0, (3.27a)

L2
∗d = − (pd q)2

p2
d

(1 + γ 2) = − Q2

M2
d

L2, (3.27b)

we define unit vectors

eμ

d ≡ pμ

d√
p2

d

, eμ
L∗ ≡ Lμ

∗√−L2∗
,

e2
d = 1, e2

L∗ = −1, (ed eL∗) = 0. (3.28)

The relation between the two sets of unit vectors, Eqs. (3.14)
and (3.28), is(

ed

eL∗

)
= 1

γ

(√
1 + γ 2 −1

−1
√

1 + γ 2

)(
eL

eq

)
. (3.29)

The antisymmetric term in the vector-polarized deuteron ten-
sor is then decomposed as

W μν

d [vector] = i

2
εμνρσ eq,ρ

{
eL∗,σ eL∗,τ γ F[LSL]d

+ (eL∗,σ eL∗,τ + gστ )F[LST ]d
}
sτ

d

+ (ppT -dependent structures). (3.30)

Again we omit terms corresponding to azimuthal-angle de-
pendent structures. The factor γ in first term ensures proper
normalization of the tensor,

γ = 1√
(eqeL∗)2 − 1

. (3.31)

The polarized deuteron structure functions in Eq. (3.30) are
related to the conventional structure functions g1d and g2d as

F[LSL]d = 2(g1d − γ 2g2d ), (3.32a)

F[LST ]d = −2γ (g1d + g2d ), (3.32b)

g1d = F[LSL]d − γ F[LST ]d

2(1 + γ 2)
, (3.32c)

g2d = −γ F[LSL]d − F[LST ]d

2γ (1 + γ 2)
. (3.32d)

The symmetric term of the vector-polarized deuteron tensor is
parameterized as

W μν

d [vector] = −1

2
(eμ

L X ν + X μeν
L ) F[UST ]

+ (ppT -dependent structures), (3.33a)

X μ ≡ εμαβγ eL,α eq,β sd,γ (3.33b)

X is a true 4-vector constructed from the axial 4-vector sd .
To compute the contraction with electron tensor, we ex-

pand the electron 4-momentum in the basis vectors Eq. (3.28),

pμ
e = (ed pe) eμ

d − (eL∗ pe) eμ
L∗ + pμ

eT , (3.34)

where

(ed pe) = Q

2γ

(√
1 + γ 2

√
1 + ε

1 − ε
+ 1

)
= Q

γ y
, (3.35a)

(eL∗ pe) = − Q

2γ

(√
1 + ε

1 − ε
+
√

1 + γ 2

)

= −Q(1 + γ 2y/2)

γ y
√

1 + γ 2
, (3.35b)

p2
eT = − Q2ε

2(1 − ε)

= −Q2(1 − y − γ 2y2/4)

(1 + γ 2)y2
. (3.35c)

The spacelike 4-vector peT is the “transverse” part of the
electron 4-momentum, i.e., the component orthogonal to the
longitudinal subspace spanned by pd and q or the related unit
vectors. We define transverse unit vectors as

eμ
T 1 ≡ pμ

eT√
−p2

eT

,

eμ
T 2 ≡ εμαβγ ed,α eL∗,β eT 1,γ = εμαβγ eL,α eq,β eT 1,γ ,

e2
T 1 = e2

T 2 = −1. (3.36)

eT 1 is along the direction of peT in transverse space, while eT 2

is orthogonal to it. With these definitions, the set

{ed , eL∗, eT 1, eT 2} (3.37)

provides a complete orthonormal basis of the four-
dimensional space and can be used to expand other kinematic
vectors [the relation to the other basis set with eq and eL is
given by Eq. (3.29)]. We expand the deuteron polarization
4-vector sd in the second basis set. The contraction of the
electron tensor with the vector-polarized deuteron tensor is
obtained as

(we)μν[pol] W μν

d [vector]

= (2e)
Q2

1 − ε

{√
1 − ε2SLF[LSL]d

+
√

2ε(1 − ε)ST cos φSF[LST ]d

+ (ppT -dependent structures)
}
, (3.38a)

065204-9



W. COSYN AND C. WEISS PHYSICAL REVIEW C 102, 065204 (2020)

(we)μν[unpol] W μν

d [vector]

= Q2

1 − ε

√
2ε(1 + ε)ST sin φSF[UST ]d

+ (ppT -dependent structures), (3.38b)

where the effective vector polarizations are defined as

SL ≡ (eL∗sd ), (3.39a)

ST cos φS ≡ −(eT 1sd ), (3.39b)

ST sin φS ≡ −(eT 2sd ). (3.39c)

They are given in invariant form, as contractions of the
deuteron polarization 4-vector sd with the kinematic vectors
of the scattering process, and can be evaluated in any frame,
depending on the experimental setup.4 In Sec. III F, we derive
their specific values in colliding-beam experiments with po-
larized beams. Note that the effective polarizations satisfy the
relation (“sum rule”)

S2
L + S2

T = −s2
d = |Sd |2, (3.40)

where |Sd |2 is the squared modulus of the deuteron polariza-
tion vector in the rest frame; cf. Eq. (2.19a).

Some comments are in order regarding the symmetric term
of the vector-polarized deuteron tensor Eq. (3.33b) and the
resulting deuteron spin dependence in unpolarized electron
scattering Eq. (3.38b). This term describes a dependence
of the unpolarized electron scattering cross section on the
deuteron spin perpendicular to the electron scattering plane
(normal single-spin asymmetry). In strictly inclusive elec-
tron scattering such a single-spin dependence is forbidden in
leading order of the electromagnetic interaction (one-photon
exchange) and can appear only in higher orders (two-photon
exchange) [94,95]. Because tagged DIS is semi-inclusive scat-
tering, in which one places conditions on the hadronic final
state, the standard argument prohibiting a single-spin depen-
dence in leading order is not applicable. We therefore cannot
rule out a single-spin dependence of the tagged DIS cross
section, even after integration over the azimuthal angle of the
tagged proton momentum in the collinear frame (see below).
There certainly are nonzero single-spin dependent terms in the
azimuthal-angle-dependent tagged DIS cross section [82].

D. Tensor-polarized part

The tensor-polarized part of the deuteron tensor Eq. (3.11)
depends linearly on the 4-tensor td , Eq. (3.10). Its decom-
position in independent structures can be derived using the
same methods as for the vector-polarized part in Sec. III C. We

4In Eqs. (3.39b) and (3.39c), we express the contractions of sd with
the transverse basis vectors, eT 1 and eT 2, in terms of a magnitude
ST > 0 and an angle φS . This does not imply reference to any
particular frame, as both parameters are unambiguously defined in
terms of the invariant 4-vector contractions. In the collinear frames
of Sec. III H, ST and φS do indeed correspond to the magnitude
and azimuthal angle of the transverse component of the spin vector.
The same applies to the effective tensor polarizations introduced in
Sec. III D.

expand the tensor td in the basis Eq. (3.37) and construct all
independent structures satisfying the transversality condition
Eq. (3.12). In this way, we obtain the decomposition

W μν

d [tensor]

= 1
2 eρ

L∗eσ
L∗(td )ρσ

(− gμν
T F[UTLL,T ]d + eμ

L eν
LF[UTLL,L]d

)
− 1

2 eρ
L∗
(
gσμ

T eν
L + gσν

T eμ
L

)
(td )ρσ F[UTLT ]d

+ 1
2

(
gμρ

T gσν
T − ε

μρ
T εσν

T

)
(td )ρσ F[UTT T ]d

− i
2 εμνρσ eq,ρ (εT )στ eL∗,ω (td )τω F[LTLT ]d

+ (ppT -dependent structures), (3.41)

where

gμν
T = gμν + eμ

q eν
q − eμ

L eν
L = gμν + eμ

L∗eν
L∗ − eμ

d eν
d

= −eμ
T 1eν

T 1 − eμ
T 2eν

T 2, (3.42a)

ε
μν
T = εμνρσ eL,ρ eq,σ = εμνρσ ed,ρ eL∗,σ

= eμ
T 1eν

T 2 − eμ
T 2eν

T 1 . (3.42b)

Again we omit terms corresponding to azimuthal-angle de-
pendent structures. The first two terms in Eq. (3.41) are
symmetric in μν and have the same structure as the un-
polarized deuteron tensor Eq. (3.15). The third and fourth
terms are likewise symmetric in μν. These terms contribute
to the cross section of unpolarized electron scattering from
the tensor-polarized deuteron. For reference, we note that our
symmetric tensor-polarized structure functions in Eq. (3.41)
are related to the b1d , ...b4d structure functions of Ref. [91]
by5

F[UTLL,L]d

= 1

xd

[
2(1 + γ 2)xd b1d − (1 + γ 2)2

(1

3
b2d + b3d + b4d

)
− (1 + γ 2)

(1

3
b2d − b4d

)
−
(1

3
b2d − b3d

)]
, (3.43a)

F[UTLL,T ]d

= −
[

2(1 + γ 2)b1d − γ 2

xd

(1

6
b2d − 1

2
b3d

)]
, (3.43b)

F[UTLT ]d

= − γ

2xd

[
(1 + γ 2)

(1

3
b2d − b4d

)
+
(2

3
b2d − 2b3d

)]
,

(3.43c)

F[UTT T ]d = −γ 2

xd

(1

6
b2d − 1

2
b3d

)
. (3.43d)

The tensor-polarized part of the deuteron tensor also contains
a structure antisymmetric in μν, analogous to that appearing

5Reference [91] considers inclusive DIS on the tensor-polarized
deuteron, while we consider tagged DIS. The correspondence per-
tains to the tagged structure functions that survive integration over
the proton momentum, which are the ones listed in Eq. (3.41).
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in the vector-polarized part Eq. (3.33b). This structure is ab-
sent in inclusive DIS but may be nonzero in tagged DIS (cf.
the discussion in Sec. III C).

The contraction of the electron tensor with the tensor-
polarized part of the deuteron tensor Eq. (3.41) is computed
in the same way as for the vector-polarized part. We obtain

(we)μν[unpol]W μν

d [tensor]

= Q2

1 − ε

{
TLL (F[UTLL,T ]d + εF[UTLL,L]d )

+
√

2ε(1 + ε)TLT cos φTL F[UTLT ]d

+ εTT T cos 2φTT F[UTT T ]d

+ (2e)
√

2ε(1 − ε)TLT sin φTL F[LTLT ]d

+ (ppT -dependent structures)
}
, (3.44)

where the effective tensor polarizations are defined as

TLL ≡ (eL∗ td eL∗) ≡ eρ
L∗ (td )ρσ eσ

L∗, (3.45a)

TLT cos φTL ≡ −(eT 1 td eL∗), (3.45b)

TLT sin φTL ≡ −(eT 2 td eL∗), (3.45c)

TT T cos 2φTT ≡ (eT 1 td eT 1) − (eT 2 td eT 2). (3.45d)

They are given in invariant form, as contractions of the
deuteron polarization 4-tensor td with the kinematic vectors
of the scattering process. Regarding the representation of the
transverse contractions in terms of magnitudes and angles, the
same comments apply as in the vector-polarized case.

E. Cross-section summary

Combining the results of Secs. III B, III C, and III D, and
using Eq. (3.6), we can now assemble the general expression
of the cross section of polarized tagged electron-deuteron
scattering. We separate the terms independent of the electron
helicity (U ) and proportional to the electron helicity (L).

dσ [ed → e′X p] = 2πα2
emy2

Q4(1 − ε)
dxd dQ2 dφe′

2π

× (F[U ]d + F[L]d )d�p, (3.46a)

F[U ]d = F[UU,T ]d + εF[UU,L]d

+ TLL
(
F[UTLL,T ]d + εF[UTLL,L]d

)
+
√

2ε(1 + ε)ST sin φSF[UST ]d

+
√

2ε(1 + ε)TLT cos φTL F[UTLT ]d

+ εTT T cos 2φTT F[UTT T ]d

+ (ppT -dependent structures), (3.46b)

F[L]d = (2e)
{√

1 − ε2SLF[LSL]d

+
√

2ε(1 − ε)ST cos φSF[LST ]d

+
√

2ε(1 − ε)TLT sin φTL F[LTLT ]d

+ (ppT -dependent structures)
}
.

(3.46c)

The expression includes all terms that do not depend on
the azimuthal angle of the tagged proton momentum in the

FIG. 2. The experimental deuteron polarization in a frame where
the deuteron and electron momenta are collinear (beam axis). The
vectors N‖ and N⊥ indicate the directions of parallel and perpen-
dicular polarization. The angle φN of N⊥ is measured relative to the
plane defined by the beam axis and the scattered electron momentum.

collinear frame and do not vanish upon integration over that
variable. The effective polarization parameters are defined
in Eqs. (3.39) and (3.45). The invariant structure functions
depend on x and Q2, as well as on variables specifying the
tagged proton momentum (to be described in Sec. III I); cf.
Eq. (3.18).

F. Effective polarizations

In the cross section Eq. (3.46), the information about
deuteron polarization is contained in the invariant effective
polarizations Eqs. (3.39) and (3.45), which are defined in
terms of contractions of the deuteron polarization 4-vector
and 4-tensor with kinematic vectors of the scattering process.
In experiments, the deuteron polarization is prepared with
respect to some fixed axes determined by the experimental
setup. In order to evaluate the cross section and spin asymme-
tries, one has to express the invariant effective polarizations
in terms of the experimental polarizations specific to that
setup. Here we consider the situation that the experimental
polarizations are specified in a reference frame in which the
electron and deuteron 3-momenta are collinear and define an
axis (see Fig. 2),

pe ‖ pd . (3.47)

This covers two cases of interest: (a) fixed-target experiments
(pd = 0), in which the deuteron polarization is specified
relative to the electron beam axis, and (b) colliding-beam ex-
periments, in which the beams collide head on (zero crossing
angle) and the deuteron polarization is specified relative to
the common beam axis. We refer to the common axis as the
“beam axis” and denote the directions parallel and perpen-
dicular to it by ‖ and ⊥. We consider pure deuteron spin
states polarized along a fixed axis (parallel or perpendicular
to the beam axis) and denote the spin projection along this
axis by d = {±1, 0}.6 The covariant deuteron density matrix

6It is important to distinguish between the frames in which the elec-
tron and deuteron momentum are collinear, Eq. (3.47) (in which the
experimental polarization is prepared), and the frames in which the
virtual photon and the deuteron momentum are collinear, Sec. III H
(in which the theoretical analysis of the cross section is performed).
We use “parallel” and “perpendicular” to refer to the directions
in electron-deuteron frame and “longitudinal” and “transverse” to
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for these pure polarization states is obtained from the general
expressions in Sec. II B, Eqs. (2.23) et seq.

In pure deuteron spin states polarized parallel to the beam
axis, the polarization 4-vector is of the form in Eq. (2.23),

sμ

d = d Nμ, pd N = 0, N2 = −1. (3.48)

The 4-vector N can be expanded covariantly in the electron
and deuteron 4-momentum as

Nμ = 1

Md

[
pμ

d − M2
d

(pe pd )
pμ

e

]
. (3.49)

In the deuteron rest frame, its components are

Nμ[RF] =
(

0,− pe

|pe|
)

, (3.50)

and one sees that d = +1(−1) corresponds to deuteron
polarization opposite to the direction (in the direction) of
the electron momentum. The effective vector polarizations
Eq. (3.39) are calculated as contractions of Eq. (3.48), using
Eqs. (3.35b) and (3.40). We obtain

SL = 1 + γ 2y/2√
1 + γ 2

d , (3.51a)

ST cos φS = −γ
√

1 − y − γ 2y2/4√
1 + γ 2

d , (3.51b)

ST sin φS = 0. (3.51c)

The polarization 4-tensor in the same pure states is given
by the general formula Eq. (2.24), with the unit vector N of
Eq. (3.49) and the spin projection d . The effective tensor
polarizations, Eq. (3.45), are calculated as contractions of that
4-tensor. In the case d = ±1, they can be obtained from the
vector polarizations Eq. (3.51) as

TLL = 1
6

(
3S2

L − 1
)
, (3.52a)

TLT cos φTL = 1
2 SLST cos φS, (3.52b)

TLT sin φTL = 1
2 SLST sin φS, (3.52c)

TT T cos 2φTT = 1
2 S2

T (cos2 φS − sin2 φS ) (3.52d)

[d = ±1 only].

The explicit expressions are

TLL = 1

6

[
3(1 + γ 2y/2)2

1 + γ 2
− 1

]
, (3.53a)

TLT cos φTL = 1

2

γ (1 + γ 2y/2)
√

1 − y − γ 2y2/4

1 + γ 2
, (3.53b)

TLT sin φTL = 0, (3.53c)

TT T cos 2φTT = 1

2

γ 2(1 − y − γ 2y2/4)

1 + γ 2
(3.53d)

[d = ±1].

refer to the directions in virtual photon-deuteron frame. The term
“collinear frame” per se always refers to the virtual photon-deuteron
frame.

In the case d = 0, the effective tensor polarizations are given
by (−2) times the expressions in Eq. (3.53); cf. Eq. (2.24).

In pure deuteron spin states polarized perpendicular to the
beam direction, the deuteron polarization vector is again of the
form of Eqs. (2.23) and (3.48), but with a different 4-vector N ,
satisfying the conditions

peN = 0, pd N = 0, N2 = −1 (3.54)

(in a frame where pe and pd are collinear, the first two condi-
tions require that peN = 0). An explicit representation can be
found by expanding the 4-vector in the basis Eq. (3.37) and
imposing the conditions Eq. (3.54),

Nμ = cos φN
(eT 1 pe) eμ

L∗ − (eL∗ pe) eμ
T 1√

(eT 1 pe)2 + (eL∗ pe)2
+ sin φN eμ

T 2,

(3.55)

where the angle φN is a free parameter. In the deuteron rest
frame, the vector components become

Nμ[RF] = (0, N), peN = 0, (3.56a)

N = cos φN
pe′ − (pe pe′ )pe/|pe|2√|pe′ |2 − (pe pe′ )2/|pe|2

+ sin φN
pe′ × pe

|pe′ × pe|
, (3.56b)

and one identifies φN as the angle of the polarization
direction relative to the plane spanned by the vectors pe
and pe′ (electron scattering plane). With the polarization
4-vector given by Eqs. (3.48) and (3.55), the effective vector
polarizations Eq. (3.39) for perpendicular polarization are
evaluated in the same manner as in the case of parallel
polarization, and we obtain

SL = γ
√

1 − y − γ 2y2/4√
1 + γ 2

cos φNd , (3.57a)

ST cos φS = 1 + γ 2y/2√
1 + γ 2

cos φNd , (3.57b)

ST sin φS = sin φNd . (3.57c)

The deuteron polarization tensor in the perpendicular
polarized states is again given by the general formula
Eq. (2.24), with the unit vector N given by Eq. (3.55). The
effective tensor polarizations for perpendicular polarization
are evaluated in the same manner as for parallel polarization.
In the case d = ±1, they again can be obtained from the
perpendicular vector polarizations Eq. (3.57) through the
relations Eq. (3.52). The explicit expressions are

TLL = 1

6

[
3γ 2(1 − y − γ 2y2/4)

1 + γ 2
cos2 φN − 1

]
,

(3.58a)

TLT cos φTL = 1

2

γ (1 + γ 2y/2)
√

1 − y − γ 2y2/4

1 + γ 2
cos2 φN ,

(3.58b)

TLT sin φTL = 1

2

γ
√

1 − y − γ 2y2/4√
1 + γ 2

cos φN sin φN , (3.58c)
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TT T cos 2φTT = 1

2

[
1 + γ 2y + γ 4y2/4

1 + γ 2
cos2 φN − sin2 φN

]
[d = ±1]. (3.58d)

In the case d = 0, the effective tensor polarizations are
given by (−2) times the expressions in Eq. (3.58).

The effective polarizations depend on the kinematic vari-
ables xd , y, and Q2. For a fixed ed collision energy, y is
determined by xd and Q2, and the polarizations are functions
of xd and Q2 only. For the following applications, it is useful to
study their scaling behavior in the DIS limit, Q2 → ∞ with xd

fixed. The effective vector polarizations Eqs. (3.51) and (3.57)
scale as

{SL, ST cos φS} = O{1, γ } (‖ pol.), (3.59a)

{SL, ST cos φS, ST sin φS} = O{γ , 1, 1} (⊥ pol.), (3.59b)

where γ = 2xd Md/Q is the parameter governing kinematic
power corrections; cf. Eq. (3.13c). Thus, ‖ polarization along
the beam axis induces mostly L polarization, while ⊥ po-
larization induces mostly T polarization, as expected. The
scaling behavior of the effective tensor polarizations follows
from that of the vector polarizations [cf. Eqs. (3.53) and
(3.58)], {

TLL, TLT cos φTL , TLT sin φTL , TT T cos 2φTT

}
=
{O{1, γ , 0, γ 2} (‖ pol.)

O{1, γ , γ , 1} (⊥ pol.)

}
. (3.60)

TLL is of order unity for both ‖ and ⊥ deuteron polarization.
Other than it, the only tensor polarization that is not power
suppressed in the DIS limit is TT T cos 2φTT for ⊥ deuteron
polarization. Note that these statements refer to the kinematic
scaling of the effective polarizations, not to the dynamical
scaling of the structure functions.

In this section, we have derived the effective polariza-
tions for the two idealized situations of pure deuteron spin
states polarized parallel or perpendicular to the beam direc-
tion (in a frame where the deuteron and electron momenta
are collinear). More complex experimental situations can be
treated as a superposition of the cases considered here: The
cross section is linear in the deuteron density matrix, and more
general polarization vectors and tensors can be represented as
sums of the ones considered here. This includes the case of
colliding-beam experiments with finite crossing angle at an
EIC [67,71].

G. Spin asymmetries

Experiments typically measure sums and differences of
cross sections in different electron and deuteron polarization
states and their ratios (spin asymmetries). We now derive the
expressions for the spin asymmetries between pure deuteron
spin states polarized parallel or perpendicular to the beam
axis (see Sec. III F). We consider the asymmetries formed
with all three deuteron spin states (d = ±1, 0) and those
formed with the two maximum-spin states only (d = ±1)
and compare their properties. In the following, we write the
dependence of the differential cross section Eq. (3.46) on the

electron and deuteron spin projections as

dσ‖(e,d ), dσ⊥(e,d ), (3.61)

where ‖ and ⊥ distinguish parallel and perpendicular deuteron
polarization with respect to the beam axis.

We first consider sums of the cross section over deuteron
spin states. The average of the cross section in all three
deuteron spin states is

1
3

[
dσ‖

(± 1
2 ,+1

)+ dσ‖
(± 1

2 ,−1
)+ dσ‖

(± 1
2 , 0

)]
= 1

3

[
dσ⊥

(± 1
2 ,+1

)+ dσ⊥
(± 1

2 ,−1
)+ dσ⊥

(± 1
2 , 0

)]
= [...]

(
F[UU,T ]d + εF[UU,L]d

)
, (3.62)

where [...] denotes the differential phase space and flux factors
of Eq. (3.46). The average involves only the unpolarized struc-
ture functions. The result is the same when averaging over ‖
and ⊥ deuteron spin states. It does not depend on the electron
spin [as expressed by the notation ± 1

2 in Eq. (3.62)], so that
no additional averaging over the electron spin is required in
order to isolate the unpolarized structure functions.

The averages of the cross section in the two deuteron spin
states with projection ±1 only are

1
2

[
dσ‖

(± 1
2 ,+1

)+ dσ‖
(± 1

2 ,−1
)]

= [...]
[
F[UU,T ]d + εF[UU,L]d

+D‖[TLL]
(
F[UTLL,T ]d + εF[UTLL,L]d

)
+D‖[UTLT ]F[UTLT ]d + D‖[TT T ]F[UTT T ]d

]
, (3.63)

1
2

[
dσ⊥

(± 1
2 ,+1

)+ dσ⊥
(± 1

2 ,−1
)]

= [...]
[
F[UU,T ]d + εF[UU,L]d

+ D⊥[TLL]
(
F[UTLL,T ]d + εF[UTLL,L]d

)
+ D⊥[UTLT ]F[UTLT ]d + D⊥[TT T ]F[UTT T ]d

± D⊥[LTLT ]F[LTLT ]d
]
. (3.64)

They involve the unpolarized and tensor-polarized structure
functions. The functions D(...) (“depolarization factors”) are
given by

D‖[TLL] = TLL[d = ±1]

= 1

6

[
3(1 + γ 2y/2)2

1 + γ 2
− 1

]
, (3.65a)

D‖[UTLT ] =
√

2ε(1 + ε)TLT cos φTL [d = ±1]

= γ (1 + γ 2y/2)(1 − y − γ 2y2/4)(1 − y/2)

(1 + γ 2)(1 − y + y2/2 + γ 2y2/4)
,

(3.65b)
D‖[TT T ] = εTT T cos 2φTT [d = ±1]

= 1

2

γ 2(1 − y − γ 2y2/4)2

(1 + γ 2)(1 − y + y2/2 + γ 2y2/4)
; (3.65c)

D⊥[TLL] = TLL[d = ±1]

= 1

6

[
3γ 2(1 − y − γ 2y2/4)

1 + γ 2
cos2 φN − 1

]
, (3.66a)
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D⊥[UTLT ] =
√

2ε(1 + ε)TLT cos φTL [d = ±1]

= γ (1+ γ 2y/2)(1− y− γ 2y2/4)(1− y/2)

(1 + γ 2)(1 − y + y2/2 + γ 2y2/4)
cos2 φN ,

(3.66b)

D⊥[LTLT ] =
√

2ε(1 − ε)TLT sin φTL [d = ±1]

= 1

2

γ y(1 − y − γ 2y2/4)

1 − y + y2/2 + γ 2y2/4
cos φN sin φN . (3.66c)

D⊥[TT T ] = εTT T cos 2φTT [d = ±1]

= 1

2

(
1 + γ 2y + γ 4y2/4

1 + γ 2
cos2 φN − sin2 φN

)
× 1 − y − γ 2y2/4

1 − y + y2/2 + γ 2y2/4
, (3.66d)

In Eq. (3.65), TLL etc. are the effective tensor polarizations
for ‖ polarization with d = ±1 as given in Eq. (3.53); in
Eq. (3.66), they are the same quantities for ⊥ polarization as
given in Eq. (3.58). Note that the results are different for ‖
and ⊥ polarizations. In the case of ‖ polarization, Eq. (3.63),
the summation over the two deuteron spin states has canceled
all electron-spin dependent terms in Eq. (3.46), so that the
result is independent of the electron spin. It is therefore not
necessary to average explicitly over the electron spin. In the
case of ⊥ polarization, Eq. (3.64), the summation over the two
deuteron spin states leaves intact the electron spin-dependent
term in Eq. (3.46),

∼ (2e)TLT sin φTL F[LTLT ]d . (3.67)

One must therefore average explicitly over the electron spins
if one wants to remove the electron spin dependence.

We now turn to differences of the cross section between
deuteron spin states. Here we must take into account that the
tagged DIS cross section Eq. (3.46) contains the term

∼ ST sin φSF[UST ]d , (3.68)

which depends on the deuteron spin but not on the electron
spin. In order to isolate the electron spin-dependent structure
functions F[LSL] and F[LST ], we form double spin differences
with respect to both the deuteron and electron spin, in which

the single-spin-dependent term Eq. (3.68) drops out. The dou-
ble differences of the cross section with respect to the deuteron
spin ±1 (‖ or ⊥) and the electron spin are given by

1
4

[
dσ‖

(+ 1
2 ,+1

)− dσ‖
(− 1

2 ,+1
)

−dσ‖
(+ 1

2 ,−1
)+ dσ‖

(− 1
2 ,−1

)]
= [...]

(
D‖[SL]F[LSL]d + D‖[ST ]F[LST ]d

)
, (3.69)

1
4

[
dσ⊥

(+ 1
2 ,+1

)− dσ⊥
(− 1

2 ,+1
)

−dσ⊥
(+ 1

2 ,−1
)+ dσ⊥

(− 1
2 ,−1

)]
= [...]

(
D⊥[SL]F[LSL]d + D⊥[ST ]F[LST ]d

)
, (3.70)

where the depolarization factors are

D‖[SL] =
√

1 − ε2SL[d = 1]

= y(1 − y/2)(1 + γ 2y/2)

1 − y + y2/2 + γ 2y2/4
, (3.71a)

D‖[ST ] =
√

2ε(1 − ε)ST cos φS[d = 1]

= −γ y(1 − y − γ 2y2/4)

1 − y + y2/2 + γ 2y2/4
; (3.71b)

D⊥[SL] =
√

1 − ε2SL[d = 1]

= γ y(1 − y/2)
√

1 − y − γ 2y2/4

1 − y + y2/2 + γ 2y2/4
cos φN , (3.72a)

D⊥[ST ] =
√

2ε(1 − ε)ST cos φS[d = 1]

= y(1 + γ 2y/2)
√

1 − y − γ 2y2/4

1 − y + y2/2 + γ 2y2/4
cos φN . (3.72b)

In Eq. (3.71), SL and ST cos φS are the effective vector polar-
izations for ‖ polarization with d = 1 as given in Eq. (3.51);
in Eq. (3.72), they are the same quantities for ⊥ polarization
as given in Eq. (3.57).

From the spin sums and differences, one can form two
different ratios (spin asymmetries). The ratios of the spin
differences Eqs. (3.69) and (3.70) to the three-state average
of the cross section Eq. (3.62) are

A‖(3)d ≡
1
4

[
dσ‖

(+ 1
2 ,+1

)− dσ‖
(− 1

2 ,+1
)− dσ‖

(+ 1
2 ,−1

)+ dσ‖
(− 1

2 ,−1
)]

1
6

[
dσ‖

(+ 1
2 ,+1

)+ dσ‖
(− 1

2 ,+1
)+ dσ‖

(+ 1
2 ,−1

)+ dσ‖
(− 1

2 ,−1
)+ dσ‖

(+ 1
2 , 0

)+ dσ‖
(− 1

2 , 0
)]

= D‖[SL]F[LSL]d + D‖[ST ]F[LST ]d

F[UU,T ]d + εF[UU,L]d
, (3.73)

A⊥(3)d ≡
1
4

[
dσ⊥

(+ 1
2 ,+1

)− dσ⊥
(− 1

2 ,+1
)− dσ⊥

(+ 1
2 ,−1

)+ dσ⊥
(− 1

2 ,−1
)]

1
6

[
dσ⊥

(+ 1
2 ,+1

)+ dσ⊥
(− 1

2 ,+1
)+ dσ⊥

(+ 1
2 ,−1

)+ dσ⊥
(− 1

2 ,−1
)+ dσ⊥

(+ 1
2 , 0

)+ dσ⊥
(− 1

2 , 0
)]

= D⊥[SL]F[LSL]d + D⊥[ST ]F[LST ]d

F[UU,T ]d + εF[UU,L]d
. (3.74)

[Here we have written the denominator as a sum over the electron spin in order to emphasize the similarity with the numerator;
because the expression in Eq. (3.62) is independent of the electron spin, this sum is optional and we could just as well use the
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expression for a fixed electron spin.] The ratios of the spin differences Eqs. (3.69) and (3.70) to the two-state averages of the
cross section, Eqs. (3.63) and Eqs. (3.64), are

A‖(2)d ≡
1
4

[
dσ‖

(+ 1
2 ,+1

)− dσ‖
(− 1

2 ,+1
)− dσ‖

(+ 1
2 ,−1

)+ dσ‖
(− 1

2 ,−1
)]

1
4

[
dσ‖

(+ 1
2 ,+1

)+ dσ‖
(− 1

2 ,+1
)+ dσ‖

(+ 1
2 ,−1

)+ dσ‖
(− 1

2 ,−1
)]

= D‖[SL]F[LSL]d + D‖[ST ]F[LST ]d

F[UU,T ]d + εF[UU,L]d + D‖[TLL]
(
F[UTLL,T ]d + εF[UTLL,L]d

)+ D‖[UTLT ] F[UTLT ]d + D‖[TT T ]F[UTT T ]d
, (3.75)

A⊥(2)d ≡
1
4

[
dσ⊥

(+ 1
2 ,+1

)− dσ⊥
(− 1

2 ,+1
)− dσ⊥

(+ 1
2 ,−1

)+ dσ⊥
(− 1

2 ,−1
)]

1
4

[
dσ⊥

(+ 1
2 ,+1

)+ dσ⊥
(− 1

2 ,+1
)+ dσ⊥

(+ 1
2 ,−1

)+ dσ⊥
(− 1

2 ,−1
)]

= D⊥[SL]F[LSL]d + D⊥[ST ]F[LST ]d

F[UU,T ]d + εF[UU,L]d + D⊥[TLL]
(
F[UTLL,T ]d + εF[UTLL,L]d

)+ D⊥[UTLT ] F[UTLT ]d + D⊥[TT T ] F[UTT T ]d
. (3.76)

Now the tensor-polarized structure functions appear in the denominators with the depolarization factors Eqs. (3.65) and (3.66).
Both the three-state asymmetries, A‖(3)d and A⊥(3)d , and the two-state asymmetries, A‖(2)d and A⊥(2)d , can be used for neutron
structure extraction from tagged DIS and other spin physics studies and are calculated below.

The scaling behavior of the depolarization factors in the DIS limit can be inferred from that of the effective polarizations,
Eqs. (3.59) and (III F), and from the explicit expressions given above,{

D‖[SL], D‖[ST ]
} = O{1, γ }, (3.77){

D‖[TLL], D‖[UTLT ], D‖[TT T ]
} = O{1, γ , γ 2}, (3.78){

D⊥[SL], D⊥[ST ]
} = O{γ , 1}, (3.79){

D⊥[TLL], D⊥[UTLT ], D⊥[LTLT ], D⊥[TT T ]
} = O{1, γ , γ , 1}. (3.80)

Up to power corrections O(γ ), the three-state and two-state asymmetries therefore simplify to

A‖(3)d = D‖[SL]F[LSL]d

F[UU,T ]d + εF[UU,L]d
, (3.81)

A‖(2)d = D‖[SL]F[LSL]d

F[UU,T ]d + εF[UU,L]d + D‖[TLL]
(
F[UTLL,T ]d + εF[UTLL,L]d

) , (3.82)

A⊥(3)d = D⊥[ST ]F[LST ]d

F[UU,T ]d + εF[UU,L]d
, (3.83)

A⊥(2)d = D⊥[ST ]F[LST ]d

F[UU,T ]d + εF[UU,L]d + D⊥[TLL]
(
F[UTLL,T ]d + εF[UTLL,L]d

)+ D⊥[TT T ] F[UTT T ]d
. (3.84)

Note that with our definition of the structure functions, all asymmetries are O(1) in the DIS limit. In the asymmetries for ‖
polarization, the numerators involve the longitudinal spin structure function F[LSL]d . The denominator of A‖(2)d differs from that of
A‖(3)d by the tensor-polarized term F[UTLL,T ]d + εF[UTLL,L]d , which has a form similar to the unpolarized term F[UU,T ]d + εF[UU,L]d

(this will become apparent in the dynamical calculations below). In the asymmetries for ⊥ polarization, the numerators involve
the transverse spin structure function F[LST ]d . The denominator of A⊥(2)d differs from that of A⊥(3)d by two independent tensor-
polarized terms and thus has a more complex structure.

For reference, we note that in terms of the conventional structure functions the three-state asymmetries Eqs. (3.73) and (3.74)
are expressed as

A‖(3)d = D‖1g1d + D‖2g2d

2(1 + εRd )F1d
, (3.85)

A⊥(3)d = D⊥1g1d + D⊥2g2d

2(1 + εRd )F1d
, (3.86)
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where the depolarization factors are now given by

D‖1 = 2
(
D‖[SL] − γ D‖[ST ]

)
= 2(1 + γ 2)y(1 − y/2 − γ 2y2/4)

1 − y + y2/2 + γ 2y2/4
, (3.87a)

D‖2 = −2γ
(
γ D‖[SL] + D‖[ST ]

)
= −γ 2(1 + γ 2)y2

1 − y + y2/2 + γ 2y2/4
, (3.87b)

D⊥1 = 2
(
D⊥[SL] − γ D⊥[ST ]

)
= −γ (1 + γ 2)y2

√
1 − y − γ 2y2/4

1 − y + y2/2 + γ 2y2/4
cos φN , (3.88a)

D⊥2 = −2γ
(
γ D⊥[SL] + D⊥[ST ]

)
= −2γ (1 + γ 2)y

√
1 − y − γ 2y2/4

1 − y + y2/2 + γ 2y2/4
cos φN , (3.88b)

and scale as

{D‖1, D‖2} = O{1, γ 2}, (3.89)

{D⊥1, D⊥2} = O{γ , γ }. (3.90)

In A‖(3)d , the structure function g1 appears in the scaling limit,
while g2 appears as a power correction ∼1/Q2. In A⊥(3)d , the
structure functions g1 and g2 appear at the same level, but the
entire asymmetry is power-suppressed ∼1/Q.

H. Collinear frames

In the theoretical description of tagged DIS, we consider
the process Eq. (3.1) in a frame where the deuteron mo-
mentum pd and the momentum transfer q are collinear and
define the z axis of the coordinate system (see Fig. 3). This
condition does not specify a unique frame but rather a class of
frames that are related by boosts along the z axis (“collinear
frames”). We describe the 4-vectors in this frame by their LF
components

v± ≡ v0 ± vz, vT ≡ (vx, vy), (3.91)

and use the notation

v = [v+, v−, vT ]. (3.92)

The LF components of the 4-momenta pd and q in the
collinear frame are

pd =
[

p+
d ,

M2
d

p+
d

, 0T

]
, (3.93a)

q =
[
−ξd p+

d ,
Q2

ξd p+
d

, 0T

]
, (3.93b)

where the parameter ξd is related to the scaling variable xd

ξd = 2xd

1 +
√

1 + γ 2
= xd + O(γ 2). (3.94)

Note that in our convention the 3-vector q points in the nega-
tive z direction, qz = (q+ − q−)/2 < 0.

FIG. 3. Tagged deuteron DIS in the collinear frame, Eq. (3.93).
The deuteron 3-momentum pd and the momentum transfer q are
collinear and define the z axis (q points in the negative z direction).
The initial and final electron momenta, pe and pe′ , define the xz plane
(both have positive x components). The deuteron vector polarization
is described by the longitudinal (z) spin SL and the transverse (xy)
spin vector ST (the azimuthal angle φS is measured relative to the
positive x axis). The tagged proton momentum pp has both longitu-
dinal and transverse components (azimuthal angle φp).

The collinear frames are a class of frames related by boosts
along the z axis (longitudinal boosts). The boosts are per-
formed by changing the LF components of the 4-vectors as

[v+, v−, vT ] → [eηv+, e−ηv−, vT ], (3.95)

where η is the rapidity. If the + and − components are
expressed as multiples of p+

d and 1/p+
d , the boosts can be

effected by simply changing the value of p+
d from the one in

the “old” frame to the one in the “new” frame. In this sense, p+
d

serves as a parameter that identifies a particular representative
of the class. In particular, the class of collinear frames includes
the deuteron rest frame, in which

p+
d = Md . (3.96)

In this way, one can construct a boost-invariant theoretical
description that can easily be matched with the deuteron rest
frame. The deuteron polarization 4-vector in any collinear
frame is given by

sd =
[

p+
d

Md
Sz

d ,−
Md

p+
d

Sz
d , SdT

]
, (3.97)

where Sz
d and SdT ≡ (Sx

d , Sy
d ) are the components of the polar-

ization 3-vector in the rest frame [cf. Eq. (2.19a)],

Sd = (
SdT , Sz

d

)
, (3.98a)

|Sd |2 = (
Sz

d

)2 + |SdT |2 � 1. (3.98b)
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In the collinear frames, the longitudinal unit 4-vectors
Eq. (3.28) have only + and − components,

ed =
[

p+
d

Md
,

Md

p+
d

, 0T

]
, (3.99a)

eL∗ =
[
− p+

d

Md
,

Md

p+
d

, 0T

]
. (3.99b)

The transverse unit 4-vectors have only transverse compo-
nents, which are chosen as the x and y directions,

eT 1 = [0, 0, ex], eT 2 = [0, 0, ey], (3.100)

such that the electron scattering plane is the xz plane, and
the electron has a transverse momentum along the positive x
axis. It is straightforward to compute invariants from these 4-
vectors and express them in terms of deuteron rest-frame vari-
ables. Specifically, one sees that the invariant effective vector
polarization parameters, defined in Eq. (3.39), coincide with
the longitudinal and transverse component of the three-
dimensional deuteron polarization vector in the rest frame

SL ≡ Sz
d , (3.101a)

(ST cos φS, ST sin φS ) ≡ (
Sx

d , Sy
d

) = SdT . (3.101b)

The angle φS can be regarded as the angle of the transverse
component of the deuteron spin in the rest frame (or any
collinear frame) relative to the electron scattering plane, mea-
sured from the positive x-axis (see Fig. 3).

In a similar way, one can infer the form of the deuteron
polarization 4-tensor in any collinear frame. For the LF com-
ponents of a 4-tensor wμν , we use the notation [cf. Eq. (3.95)]

w =

⎡⎢⎢⎣
w++ w+− w+ j

w−+ w−− w− j

wi+ wi− wi j

⎤⎥⎥⎦ (i, j = x, y). (3.102)

The LF components of the deuteron polarization 4-tensor in
any collinear frame are then given by

td =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

(p+
d )2

M2
d

T zz
d −T zz

d

p+
d

Md
T z j

d

−T zz
d

M2
d

(p+
d )2

T zz
d −Md

p+
d

T z j
d

p+
d

Md
T zi

d −Md

p+
d

T zi
d T i j

d

⎤⎥⎥⎥⎥⎥⎥⎥⎦
, (3.103)

where T zz
d , T zi

d and T i j
d (i, j = x, y) are the components of the

deuteron polarization 3-tensor in the rest frame,

Td =
(

T i j
d T iz

d

T z j
d T zz

d

)
(i, j = x, y). (3.104)

Equation (3.103) for the polarization 4-tensor is a straightfor-
ward generalization of Eq. (3.97) for the polarization 4-vector.

In experimental or theoretical applications, one needs to
infer the LF components of a 4-vector in the collinear frame

from those given in another frame. This can easily be accom-
plished using the 4-vector basis, Eq. (3.37). From the timelike
and spacelike longitudinal vectors, ed and eL∗, we construct
the light-like vectors ed ± eL∗,

(ed ± eL∗)2 = 0, (ed + eL∗)(ed − eL∗) = 2. (3.105)

Their components in the collinear frame are [cf. Eq. (3.99)]

ed + eL∗ =
[

0,
2Md

p+
d

, 0T

]
, (3.106a)

ed − eL∗ =
[

2p+
d

Md
, 0, 0T

]
. (3.106b)

The scalar products of the vectors with an arbitrary vector v
are

(ed + eL∗) v = Md

p+
d

v+, (3.107a)

(ed − eL∗) v = p+
d

Md
v−. (3.107b)

They project out the + and − LF components of the vector.
The transverse components are projected out as

vx = −(eT 1v), vy = −(eT 2v). (3.108)

The expressions in Eqs. (3.107) and (3.108) are invariant and
can be used to compute the LF components starting from an
arbitrary representation of the vector v and the basis vectors
(e.g., in a frame associated with the experimental setup). Con-
versely, the components of v in any frame can be obtained
from the LF components in the collinear frame by expanding
v in the basis vectors,

vμ = Md

2p+
d

v+(ed − eL∗)μ + p+
d

2Md
v−(ed + eL∗)μ

+ vxeμ
T 1 + vyeμ

T 2 (3.109)

and evaluating the expression with the basis vector compo-
nents in the desired frame.

I. Spectator momentum variables

The invariant structure functions in the tagged DIS cross
section, Eq. (3.46), depend on kinematic variables specifying
the final-state proton momentum; cf. Eq. (3.18). Several sets
of variables are used in experimental analysis and theoreti-
cal studies (proton 3-momentum in deuteron rest frame, LF
components in collinear frame, invariant momentum trans-
fer); their relation and kinematic limits are summarized in
Ref. [77]. In the following calculations, the proton momentum
is specified by its LF components in the collinear frames,

αp ≡ 2p+
p

p+
d

, ppT . (3.110)

The fraction αp is boost invariant (same in all collinear
frames) and can be expressed in terms of invariants that can
be evaluated in any frame [cf. Eq. (3.107)],

αp = 2(ed + eL∗)pp

(ed + eL∗)pd
; (3.111)
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the same applies to ppT [cf. Eq. (3.108)]. In the deuteron rest
frame, αp is given by

αp = 2
(
Ep + pz

p

)
Md

= 1 + pz
p

m
+ O

( |pp|2
m2

,
εd

m

)
, (3.112)

where m is the nucleon mass and εd is the deuteron binding
energy; typical values of αp are therefore of the order

|αp − 1| ∼ |pp|
m

� 0.1. (3.113)

The range of αp is kinematically limited by the conservation
of 4-momentum in the tagged DIS process, which implies the
conservation of LF plus momentum [Eq. (3.93)],

αp/2 < 1 − ξd . (3.114)

The invariant phase space element in the proton momentum is
expressed in terms of αp and ppT as

d�p ≡ [2(2π )3]−1 d3 pp

Ep
= [2(2π )3]−1 dαp

αp
d2 ppT . (3.115)

The structure functions in Eq. (3.46) depend on αp and the
modulus of the transverse momentum, |ppT |. The dependence
on the azimuthal angle of the transverse momentum with
respect to the z axis, φp (see Fig. 3), is realized explicitly in
the decomposition of the cross section, which follows from the
decomposition of the hadronic tensor; Eq. (3.46) shows only
the terms that are independent of φp and survive integration
over that variable.

IV. DEUTERON LIGHT-FRONT STRUCTURE

A. Light-front nuclear structure

We now describe the elements of LF nuclear structure
used in the theoretical calculation of the tagged DIS cross
section. The basic method was developed in Refs. [46,56] and
is summarized in Ref. [77]. In this section, we present the
formalism for the treatment of polarized deuteron structure
in the covariant approach of Refs. [75,81] and its connection
to nonrelativistic deuteron spin structure. The evaluation of
nucleonic operators and the calculation of the tagged DIS
cross section are discussed in Secs. V and VI.

High-energy processes such as DIS probe the nucleus with
energy transfers much larger than the hadronic mass scale and
result in hadron production over wide rapidity intervals. One
would like to construct a theoretical description that starts
from the nucleus as a system of protons and neutrons and
produces the DIS final state by scattering on the nucleons,
with eventual corrections due to nuclear binding effects. That
such an approximation can be obtained is not obvious, as the
nuclear initial states relevant for the process might a priori
involve states with energies of the order of the excitation
energy, which in a relativistic context can no longer be de-
scribed in terms of nucleonic degrees of freedom. The notion
of energy, and therefore the relevant states, depend on the
relativistic quantization scheme adopted for the description of
the process. LF quantization, which describes the evolution
of the process in LF time x+ = t + z (with the z direction
along the reaction axis), is unique in that the energies of the

FIG. 4. LF helicity and canonical spin states. The diagram shows
the sequence of boosts leading from the rest frame to the particle state
with LF momentum p+ and pT .

intermediate states do not grow with the collision energy but
remain finite in the high-energy limit. It therefore permits a
composite description of the nuclear initial state in terms of
nucleon degrees of freedom, which is then matched with the
high-energy scattering process on the nucleons, with finite
effects due to nuclear binding.

In LF quantization, the spin degrees of freedom of particles
and composite systems are described by light-front helicity
states; see Ref. [79] for a review. They are prepared by starting
from the spin states in the rest frame, p+ = m and pT = 0,
quantized along the z direction, performing first a longitudinal
boost to the desired plus momentum p+ 
= m, and then a trans-
verse boost to the desired transverse momentum pT 
= 0 (see
Fig. 4). The states thus defined are invariant under longitudinal
boosts and transform kinematically under transverse boosts.
They differ from the so-called canonical spin states, which are
prepared by performing a standard boost along the particle’s
3-momentum direction as in equal-time quantization, because
boosts along different directions do not commute. The differ-
ence between the two states is a spin rotation, the so-called
Melosh rotation. The explicit form of the nucleon bispinors
for LF helicity states and canonical spin states, and the Melosh
rotation connecting them, is given in Appendix A. In the
following, we use a representation of the deuteron LF wave
function in which the LF helicity character of the nucleon spin
states is encoded in the explicit form of the bispinors and thus
no explicit Melosh rotations appear; the rotations are needed
only in proving the equivalence of this representation to the
three-dimensional canonical spin structure in the c.m. frame
in Sec. IV C and Appendix B.

The LF description of the nucleus in terms of nucleonic
degrees of freedom is independent of the reference frame
(boost invariant) [79]. On one hand, the frame independence is
an essential aspect of the treatment of high-energy scattering
processes on the composite system as discussed above. On
the other hand, it allows one to consider the LF description in
the nuclear rest frame—more precisely, the c.m. frame of the
nucleonic configurations in the nucleus (see Sec. IV C)—and
match it with the nonrelativistic theory of nuclear structure.
This is particularly important for the description of spin
degrees of freedom and polarization phenomena, whose for-
mulation relies on three-dimensional rotational invariance.
The LF helicity states are frame independent and connect the
nucleon spin states in the c.m. frame with the invariant spin
structure functions, which correspond to LF helicity ampli-
tudes. Our treatment of DIS on the polarized deuteron makes
extensive use of these features.
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FIG. 5. The deuteron LF wave function, Eq. (4.2), describing the
expansion of the deuteron state in pn states.

B. Light-front wave function in four-dimensional form

The LF quantization is performed in the collinear frames,
Sec. III H, where the deuteron has LF plus momentum p+

d
(arbitrary) and transverse momentum pdT = 0; the deuteron
4-momentum components are [cf. Eq. (3.93)]

pd =
[

p+
d ,

M2
d

p+
d

, 0T

]
. (4.1)

The deuteron spin is described by the LF helicity, λd , which
coincides with the rest-frame spin projection because the
states have zero transverse momentum. The expansion of the
deuteron state in pn states is described by the LF wave func-
tion (see Fig. 5)

�d (αp, ppT ; λp, λn|λd ); (4.2)

the definition of the matrix element and normalization of the
states are given in Ref. [77]. The wave function is normalized
such that∑

λp,λn

∫
dαpd2 ppT

αp(2 − αp)
�∗

d (αp, ppT ; λp, λn|λ′
d )

× �d (αp, ppT ; λp, λn|λd ) = δ(λ′
d , λd ). (4.3)

It is a function of the proton LF momentum fraction αp and
transverse momentum ppT ; the corresponding values for the
neutron are

αn = 2 − αp, pnT = −ppT . (4.4)

The wave function is symmetric under the interchange of pro-
ton and neutron variables (momentum and spin) and satisfies
the relation

�d (αp, ppT ; λp, λn|λd )

= �d (2 − αp,−ppT ; λn, λp|λd ). (4.5)

The spin structure of the deuteron LF wave function can be
established on general grounds. It describes the coupling of
the proton and neutron LF helicities, and the LF orbital angu-
lar momentum, to the overall LF helicity of the deuteron. In
the following, we use a representation in which this coupling
is expressed in four-dimensional form, through invariants
constructed out of the nucleon LF bispinors and a deuteron
polarization 4-vector [81]. The LF wave function is written in
the form

�d (αp, ppT ; λp, λn|λd )

= ūLF(pn, λn) �α (pp, pn) vLF(pp, λp)εα
pn(ppn, λd ). (4.6)

Here pp and pn are the 4-momenta of the proton and neutron,
whose LF components are

pp =
[
αp p+

d

2
,

2(|p2
pT | + m2)

αp p+
d

, ppT

]
, (4.7a)

pn =
[

(2 − αp)p+
d

2
,

2(|p2
pT | + m2)

(2 − αp)p+
d

,−ppT

]
, (4.7b)

p2
p = p2

n = m2. (4.7c)

The LF plus and transverse components are determined by the
variables αp and ppT ; the minus components are fixed by the
mass-shell conditions in Eq. (4.7c). Furthermore,

uLF(pn, λn), vLF(pp, λp), (4.8a)

(pnγ − m)uLF = 0, (ppγ + m)vLF = 0 (4.8b)

are the LF bispinor wave functions of the nucleon states with
4-momenta pp and pn and LF helicities λp and λn, whose
explicit form is given in Appendix A. In Eq. (4.6), ppn is the
total 4-momentum of the pn pair,

ppn ≡ pp + pn =
[

p+
d ,

M2
pn

p+
d

, 0T

]
, (4.9a)

p2
pn = M2

pn ≡ 4
(∣∣p2

pT

∣∣+ m2
)

αp(2 − αp)
. (4.9b)

Mpn is known as the invariant mass of the pn pair. Note that the
plus and transverse 4-momentum components (LF momenta)
of the pn pair are the same as those of the external deuteron
state, but the minus component (LF energy) is different,

p+
pn = p+

d , ppn,T = pdT (= 0), (4.10a)

p−
pn 
= p−

d , (4.10b)

and the invariant mass of the pn pair is different from the
deuteron mass

M2
pn 
= M2

d . (4.11)

These relations reflect the choice of momentum and energy
variables specific to LF quantization. Finally, in Eq. (4.6), εpn

is the 4-vector spin wave function of the pn system with 4-
momentum ppn and mass Mpn,

εpn(ppn, λd ) =
[

p+
d

Mpn
εz

d ,−
Mpn

p+
d

εz
d , εdT

]
, (4.12a)

εpn ppn = 0, ε2
pn = −(εz

d

)2 − ε2
dT = −1, (4.12b)

in which εz
d and εdT ≡ (εx

d , ε
y
d ) are the components of the

deuteron 3-vector spin wave function in the deuteron rest
frame,

εd ≡ εd (λd ) = (
εdT , εz

d

)
, ε2

d = 1. (4.13)

Note that the pn 4-vector in Eq. (4.12) is different from the
deuteron 4-vector,

εd (pd , λd ) =
[

p+
d

Md
εz

d ,−
Md

p+
d

εz
d , εdT

]
, (4.14a)

εd pd = 0, ε2
d = −(εz

d

)2 − ε2
dT = −1. (4.14b)
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The particular form of Eq. (4.12) is necessary to ensure the
equivalence of Eq. (4.6) with the three-dimensional spin struc-
ture of the pn pair in the c.m. frame, as explained in Sec. IV C
and Appendix B.

The function �α in Eq. (4.6), a matrix in bispinor space and
a 4-vector, connects the nucleon bispinors and the deuteron
4-vector to an invariant form. It may be regarded as a function
of the 4-momenta pp and pn, and its form is constrained by
standard four-dimensional relativistic covariance. Taking into
account the equations for the nucleon spinors, Eq. (4.8), it can
be decomposed in independent covariant structures as7

�α ≡ �α (pp, pn) = γ αG1 + �αG2, (4.15)

where � is the difference of the nucleon 4-momenta,

� ≡ pp − pn, �ppn = 0, �2 = −M2
pn + 4m2, (4.16)

and G1,2 are scalar functions of the invariant mass of the pn
pair,

G1,2 ≡ G1,2(Mpn). (4.17)

The functions G1,2 contain the dynamical information about
deuteron structure in LF quantization. They can be matched
with the three-dimensional radial wave functions in equal-
time quantization, and their explicit form is given in Sec. IV C.

Together, Eqs. (4.6) and (4.15) provide a representation
of the LF spin structure of the deuteron in four-dimensional
form. Its advantages are as follows: (a) The representation
of Eqs. (4.6) and (4.15) avoids the use of explicit Melosh
rotations, which appear in the standard construction of the
LF wave function starting from a three-dimensional wave
function with canonical spinors. The rotations are contained
in the explicit form of the LF bispinors. (b) The representation
of Eqs. (4.6) and (4.15) permits efficient evaluation of the
sums over nucleon spin degrees of freedom in observables,
given by overlap integrals of the LF wave functions. Sums
over the nucleon LF helicities can be converted to traces
over spin density matrices in bispinor representation, which
can be evaluated using standard techniques. (c) Overall, the
representation enables a four-dimensional treatment of spin
structure within the essentially three-dimensional approach of
LF quantization.

C. Center-of-mass frame variables

In the LF wave function, Eq. (4.6), the pn configuration
is specified by the LF momentum variables αp and ppT . An
alternative representation of the LF wave function is obtained
by using as variables the proton 3-momentum in the c.m.
frame of the pn pair. This representation offers a simple
way of realizing rotational invariance in LF quantization, per-
mits matching of the invariant functions Eq. (4.17) with the
equal-time wave functions, and enables the construction of a
nonrelativistic approximation to the LF wave functions. In the
following calculations, we deal with the LF components and

7The decomposition of the nucleon-deuteron coupling Eq. (4.15)
is analogous to that of the nucleon coupling to the electromagnetic
current and involves the same number of independent structures.

FIG. 6. The c.m. frame variables for the deuteron LF wave func-
tion. In a general collinear frame, the wave function depends on
the longitudinal and transverse momenta, αp and ppT (right). By
a longitudinal boost, any such frame is connected with the c.m.
frame of the pn pair, in which the wave function depends on the
3-momentum k and exhibits rotational symmetry (left).

the ordinary components of 4-vectors at the same time and use
the notation [cf. Eq. (3.92)]

[v+, v−, vT ], (v0, v), (4.18)

to distinguish both sets of components in a given frame.
The c.m. frame of a given pn configuration is defined as

the frame in which the proton and neutron have opposite 3-
momenta in the sense of ordinary vector components. This
frame is a member of the class of collinear frames and can
be reached from any other collinear frame by a longitudinal
boost (see Fig. 6). To show this, we use the fact that a collinear
frame in the class is specified by the value of p+

d in that frame
(see Sec. III H). The c.m. frame of the pn configuration is the
special collinear frame with

p+
d [c.m.] = Mpn. (4.19)

In this frame, the total 4-momentum of the pn configuration,
Eq. (4.9a), has LF components

ppn[c.m.] = [Mpn, Mpn, 0T ], (4.20)

and therefore ordinary components

ppn[c.m.] = (Mpn, 0). (4.21)

The individual proton and neutron 4-momenta have LF com-
ponents

pp[c.m.] =
[αpMpn

2
,

(2 − αp)Mpn

2
, ppT

]
, (4.22a)

pn[c.m.] =
[ (2 − αp)Mpn

2
,
αpMpn

2
,−ppT

]
, (4.22b)
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such that the ordinary components satisfy (we suppress the
label [c.m.])

p0
n = 1

2 (p+
n + p−

n ) = 1
2 (p+

p + p−
p ) = p0

p, (4.23a)

pz
n = 1

2 (p+
n − p−

n ) = − 1
2 (p+

p − p−
p ) = −pz

p, (4.23b)

pnT = −ppT ; (4.23c)

i.e., they have the same energy and opposite 3-momenta. In
this frame, the proton and neutron 4-momenta can therefore
be expressed in terms of the common 3-momentum vector as

pp[c.m.] = (E , k), (4.24a)

pn[c.m.] = (E ,−k), (4.24b)

E ≡ E (k) ≡
√

|k|2 + m2. (4.24c)

The relation of the c.m. momentum k to the LF variables αp

and ppT is

kz = Mpn

2
(αp − 1), kT = ppT , (4.25a)

αp = 1 + kz

E
, Mpn = 2E . (4.25b)

The c.m. momentum can therefore serve as a kinematic vari-
able alternative to the LF variables,

k ↔ {αp, ppT }. (4.26)

The relation between the integration measures is∫
dαpd2 ppT

αp(2 − αp)
=
∫

d3k

E (k)
. (4.27)

In the c.m. frame, the polarization vector of the pn system,
Eq. (4.12), has 4-vector components (LF and ordinary)

εpn[c.m.] = [
εz

d ,−εz
d , εdT

] = (0, εd ). (4.28)

This is the same form that the deuteron polarization vector has
in the deuteron rest frame; cf. Eq. (4.14) with p+

d = Md . The
c.m. frame thus permits a particularly simple representation
of the deuteron spin structure. We use this representation
extensively in the calculations in Secs. V and VI.

In the c.m. frame, the pn LF wave function can be formu-
lated as a three-dimensional relativistic wave function in the
3-momentum variable k. It is constructed using angular mo-
mentum wave functions (S and D waves), canonical nucleon
spinors, and the Melosh rotations mediating the transition
from canonical spin to LF helicity (see Appendix B). The dy-
namical information is contained in the radial wave functions
of the S and D waves,

f0(k), f2(k) [k ≡ |k|], (4.29)

which are normalized such that

4π

∫
dk k2

E (k)

[
f 2
0 (k) + f 2

2 (k)
] = 1. (4.30)

Using the fact that the c.m. frame is a special collinear frame,
one can then establish the correspondence between the general
LF wave function Eq. (4.6) and the three-dimensional wave
function in the c.m. frame. The proof involves expressing the
LF bispinors in Eq. (4.6) in terms of canonical bispinors in

the c.m. frame, reducing the bilinear form in the canonical
bispinors to two-component spinors, and comparing it with
the three-dimensional wave function (see Appendix B). As a
result, one obtains the relation between the invariant functions
G1,2(M2

pn), Eq. (4.17), and the three-dimensional radial wave
functions in the c.m. frame, f0(k) and f2(k):

G1 = 1

4E
(
√

2 f0 − f2), (4.31a)

G2 = 1

8Ek2
[
√

2(E − m) f0 + (2E + m) f2][
G1,2 ≡ G1,2

(
M2

pn

)
, f0, f2 ≡ f0(k), f2(k)

]
, (4.31b)

where the LF and c.m. variables are related by Eq. (4.25). In
particular, the correct normalization of the LF wave function,
Eq. (4.3), is obtained from the normalization condition for the
radial wave functions Eq. (4.30). Equation (4.31) allows one
to express the dynamical elements in the four-dimensional
representation of the deuteron LF wave function in terms
of three-dimensional wave functions with well-known prop-
erties and represents an essential tool in the LF structure
calculations.

D. Nonrelativistic approximation

The dynamical elements in the deuteron LF wave function
can be determined by solving the dynamical equation for the
two-nucleon bound state (in its differential or integral form)
with an effective NN interaction formulated at fixed LF time.
The specific form of the dynamical equation, the physical
conditions for the truncation to the two-nucleon sector, and
the technical issues relating to rotational invariance are dis-
cussed in Refs. [56,96]. Alternatively, one may construct an
approximation to the deuteron LF wave function from the
nonrelativistic wave function obtained with an effective non-
relativistic NN interaction (potential). This approach allows
one to incorporate the extensive knowledge of NN interac-
tions in nonrelativistic nuclear theory into the LF nuclear
structure calculations. The nonrelativistic approximation turns
out to be fully adequate for nucleon rest-frame momenta
|pp| � 300 MeV and is used in the present study.

In the nonrelativistic limit k2 � m2, the relativistic radial
wave functions in the c.m. frame, Eq. (4.29), approach the
nonrelativistic radial wave functions,

fL(k) → √
m fL,nr (k) (L = 0, 2). (4.32)

The factor
√

m results from the normalization convention
for the nonrelativistic radial functions, which differs from
Eq. (4.30),

4π

∫
dk k2

[
f 2
0,nr (k) + f 2

2,nr (k)
] = 1. (4.33)

A nonrelativistic approximation to the relativistic radial func-
tions is provided by

fL(k) =
√

E (k) fL,nr (k) (L = 0, 2). (4.34)

The approximation becomes exact at small momenta k2 �
m2; it satisfies the relativistic normalization condition
Eq. (4.30) and is therefore correct “on average” also at large
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momenta; altogether, the approximation thus has an interpo-
lating quality.8 In the numerical studies in this work, we use
Eq. (4.34) with the nonrelativistic deuteron wave functions
obtained from the AV18 NN potential [97].

V. NUCLEON OPERATORS

A. Matrix elements of nucleon operators

We now present the methods for evaluating matrix ele-
ments of nucleon operators in the polarized deuteron state
described by the LF wave function of Sec. IV. In the following
applications, we consider nucleon one-body operators (vector
and axial current, tagged DIS cross section in IA); the methods
can easily be extended to two-body operators (correlations,
FSI). The matrix elements of nucleon one-body operators in
the polarized deuteron state can be computed in a simple man-
ner using the four-dimensional form of the deuteron LF wave
function, Eq. (4.6). We limit ourselves to matrix elements
at zero momentum transfer (charges, nucleon LF momentum
densities); the formulas can easily be generalized to include
momentum transfer.

Let On denote a generic nucleon one-body operator cou-
pling to the neutron. Its expectation value in a polarized
deuteron ensemble is given by

〈On〉 ≡
∑
λ′

d ,λd

ρd (λd , λ
′
d ) 〈d, pd , λ

′
d |On|d, pd , λd〉, (5.1)

where ρd is the deuteron spin density matrix, and λ′
d and λd

are the LF helicities of the deuteron states, which coincide
with the rest-frame spin projections (pdT = 0). The matrix
element of the nucleon operator between deuteron states with
LF helicities λd and λ′

d in Eq. (5.1) can be calculated with
standard methods, by inserting a complete set of proton-
neutron intermediate states, and is obtained as [77] (see Fig. 7)

〈d, pd , λ
′
d |On|d, pd , λd〉

=
∫

dαp

αp
d2 ppT

∑
λp,λ′

n,λn

2

(2 − αp)2

× �∗
d (αp, ppT ; λp, λ

′
n|λ′

d )�d (αp, ppT ; λp, λn|λd )

× 〈n, pn, λ
′
n|On|n, pn, λn〉. (5.2)

The integration is over the LF momentum variables of the
proton; the LF momentum of the neutron is given by

αn = 2 − αp, pnT = −ppT . (5.3)

8In Eq. (4.34), the nonrelativistic wave function on the right-hand
side is evaluated at the LF c.m. momentum k ≡ |k| defined in
Eq. (4.25), which is not identical to the proton 3-momentum in the
deuteron rest frame, |pp|, but differs from it by corrections of the
order pp/m in the nonrelativistic limit. By expanding the variable |k|
in pp/m, one can derive a simplified version of the nonrelativistic
approximation, in which the nonrelativistic wave function is evalu-
ated directly at the rest-frame momentum |pp|, and certain factors
(1 − pz

p/m) account for the anisotropy of the LF description; see
Ref. [77] for details. This approximation no longer has the interpo-
lating quality of Eq. (4.34).

FIG. 7. The deuteron matrix element of a one-body neutron oper-
ator (zero momentum transfer). The intermediate proton state has LF
momentum αp and ppT and LF helicity λp; the neutron states have LF
momentum 2 − αp and −ppT , and helicities λn and λ′

n. The variables
describing the intermediate state are integrated and summed over.

The factor 2/(2 − αp)2 results from the normalization of
the deuteron and nucleon states in LF quantization [77]. In
Eq. (5.2), the summation is over the LF helicities of the proton
and neutron intermediate states, λp, λn, and λ′

n. �d and �∗
d

are the deuteron LF wave function Eq. (4.2) and its complex
conjugate. Furthermore,

〈n, pn, λ
′
n|On|n, pn, λn〉 (5.4)

denotes the matrix element of the operator between neutron
states with 4-momentum pn [with LF components given by
Eq. (5.3)] and LF helicities λn and λ′

n. To evaluate the spin
sums in Eq. (5.2), we substitute the deuteron LF wave func-
tions by their representation as bilinear forms in LF bispinors,
Eq. (4.6). The matrix element of the nucleon operator between
neutron states can likewise be represented as a bilinear form

〈n, pn, λ
′
n|On|n, pn, λn〉 = ūLF(pn, λ

′
n) �n uLF(pn, λn),

(5.5)

where the bispinor matrix �n is specific to the operator and
governs the dependence of the matrix element on the LF
helicities λ′

n and λn. The summations over λp, λ′
n, and λn in

Eq. (5.2) can then be carried out and give rise to the bispinor
projectors [cf. Appendix A]∑

λp

vLF(pp, λp)v̄LF(pp, λn) = (ppγ − m), (5.6a)

∑
λn

uLF(pn, λn)ūLF(pn, λn) = (pnγ + m) (same for λ′
n).

(5.6b)

The deuteron expectation value Eq. (5.1) is then obtained as a
bispinor trace,

〈On〉 =
∫

dαp

αp
d2 ppT

2 tr[�n�n]

(2 − αp)2
, (5.7a)

�n ≡ (ρpn)αβ (pnγ + m)�α (ppγ − m)�β (pnγ + m),

(5.7b)

(ρpn)αβ ≡ 〈
εα

pnε
β∗
pn

〉 = ∑
λ′

d ,λd

ρd (λd , λ
′
d )εα

pn(λd )εβ∗
pn (λ′

d ).

(5.7c)

�n in Eq. (5.7b) is a matrix in bispinor indices and represents
the effective neutron spin density matrix in the deuteron for a
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given proton LF momentum αp and ppT [or equivalently, for
a given neutron momentum Eq. (5.3)]. It depends covariantly
on the neutron and proton 4-momenta, pp and pn, and the pa-
rameters characterizing the deuteron polarization. It satisfies
the conditions

(pnγ − m)�n = 0, �n(pnγ − m) = 0, (5.8)

which follow from the Dirac equation of the neutron bispinors.
ρpn in Eq. (5.7c) is the ensemble average of the pn polarization
vectors, Eq. (4.12), with the deuteron spin density matrix and
represents the spin density matrix of the pn configuration in
the polarized deuteron in LF quantization. It depends covari-
antly on the total 4-momentum of the pn system, ppn, as
well as on the axial 4-vector and 4-tensor characterizing the
deuteron polarization, sd and td . It satisfies the conditions

ppn,α (ρpn)αβ = 0, (ρpn)αβ ppn,β = 0, (5.9)

which follow from Eq. (4.12); they are analogous to those
satisfied by the deuteron density matrix but involve the 4-
momentum of the pn system rather than that of the deuteron.
Explicit expressions for �n and ρpn will be derived in the
following.

The representation of the expectation value of Eq. (5.7a)
has several important advantages: (a) The projectors resulting
from the summation over the nucleon LF helicities, Eq. (5.6),
do not “remember” the specific form of the LF helicity
spinors; they are the same as for canonical spinors summed
over the canonical spin. (In the three-dimensional formula-
tion of spin structure, this comes about because the Melosh
rotations cancel when summing over the nucleon LF helici-
ties; see Appendix A). This implies that the “knowledge” of
the specific choice of the LF spin states resides only in the
function �α , Eq. (4.15), and the spin density matrix of the
pn configuration, ρpn, Eq. (5.7c). (b) The covariant definition
of ρpn and �n constrains their dependence on the proton and
neutron 4-momenta and the deuteron polarization vector and
tensor and greatly simplifies the calculation. (c) The neutron
spin density matrix Eq. (5.7b) can be computed in closed
form and has a simple structure. It can be compared with the
density matrix of a free neutron, Eq. (2.5), and interpreted
accordingly. (d) Products of γ matrices and bispinor traces
are easily evaluated. Equation (5.7a) will be our main tool in
the subsequent deuteron structure calculations.

B. Neutron spin density matrix

We now evaluate the effective neutron spin density matrix
in the polarized deuteron, Eq. (5.7b). We first derive explicit
expressions for the spin density matrix of the pn system,
Eq. (5.7c), taking into account the properties of the LF spin
wave functions Eq. (4.12) and the conditions Eq. (5.9). We
then calculate the contraction in Eq. (5.7b) with these expres-
sions and convert the result to a form that can be compared
with the free neutron density matrix. We consider separately
the contributions of the unpolarized, vector-polarized, and
tensor-polarized parts of the deuteron spin density matrix,
Eq. (2.16), to the neutron density matrix, Eq. (5.7b), and write

�n = �n[unpol] + �n[vector] + �n[tensor]. (5.10)

The unpolarized part of the pn spin density matrix is given
by

(ρpn)αβ[unpol] = 1

3

(
−gαβ + pα

pn pβ
pn

M2
pn

)
. (5.11)

It corresponds to the general form of Eq. (2.17) but involves
the 4-momentum of the pn configuration instead of that of the
deuteron; cf. Eq. (4.12). Substituting Eq. (5.11) in Eq. (5.7b),
we obtain the effective neutron density matrix in the unpolar-
ized as

�n[unpol] = 1
3 (pnγ + m)

[
(12m2 − 2�2)G2

1

−4m�2G1G2 + (�2)2G2
2

]
(5.12)

[G1,2 ≡ G1,2(Mpn)].

The result has been simplified by making use of γ matrix
identities and the properties of the projectors, Eq. (5.6). The
effective neutron density matrix has the form of the density
matrix of a free neutron with 4-momentum pn, multiplied by
a certain function of the invariant mass of the pn pair, which
is quadratic in the scalar functions G1,2, Eq. (4.17).

The vector-polarized part of the pn spin density matrix is
given by

(ρpn)αβ[vector] = i

2Mpn
εαβγ δ ppn,γ spn,δ. (5.13)

Here spn is the polarization vector of the pn configuration in
the collinear frame,

spn ≡
[

p+
d

Mpn
Sz

d ,−
Mpn

p+
d

Sz
d , SdT

]
, (5.14a)

(spn ppn) = 0, (5.14b)

s2
pn = −(Sz

d

)2 − |SdT |2 = −|Sd |2, (5.14c)

where Sz
d and SdT are the components of the deuteron polar-

ization vector in the rest frame,

Sd = (
SdT , Sz

d

)
, |Sd |2 � 1. (5.15)

Again the form of Eqs. (5.13) and (5.14) corresponds to that
of the deuteron spin density matrix and polarization vector [cf.
Eq. (3.97)], only the quantities are constructed with the pn
4-momentum rather than the deuteron 4-momentum. Substi-
tuting Eq. (5.13) in Eq. (5.7b), we obtain the effective neutron
density matrix induced by deuteron vector polarization,

�n[vector] = 1

2
(pnγ + m)(snγ )γ 5, (5.16a)

sα
n = 2Mpn

(
2mG1aα

1 − �2G2aα
2

)
G1, (5.16b)

aα
1 =

(
gαβ − pα

n pβ
n

m2

)
spn,β , (5.16c)

aα
2 =

(
gαβ − �α�β

�2

)
spn,β , (5.16d)

sn pn = 0, a1 pn = 0, a2 pn = 0. (5.16e)

The specific form of Eq. (5.16) is obtained by making ex-
tensive use of γ matrix identities and the properties of the
projectors, Eqs. (5.6). The effective neutron density matrix in
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Eq. (5.16a) depends on the axial vector sn, Eq. (5.16b), which
may be regarded as the effective polarization vector of the
neutron in the deuteron. It is constructed from the auxiliary 4-
vectors a1 and a2, which are projections of the pn polarization
4-vector spn on the subspaces orthogonal to pn and �. Note
that the two structures in Eq. (5.16b) individually satisfy the
condition pnsn = 0 for any value of the scalar functions G1

and G2.
The tensor-polarized part of the pn spin density matrix is

parameterized as

(ρpn)αβ[tensor] = −(tpn)αβ, (5.17)

where tpn is the polarization 4-tensor of the pn configuration
and satisfies

(tpn)αβ = (tpn)βα, (tpn)αα = 0, (5.18a)

ppn,α (tpn)αβ = (tpn)αβ ppn,β = 0. (5.18b)

The tensor can be constructed in analogy to the polarization 4-
vector of Eq. (5.14). Its LF components in the collinear frame
are [in the notation of Eq. (3.102)]

tpn =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

(p+
d )2

M2
pn

T zz
d −T zz

d

p+
d

Mpn
T z j

d

−T zz
d

M2
pn

(p+
d )2

T zz
d −Mpn

p+
d

T z j
d

p+
d

Mpn
T zi

d −Mpn

p+
d

T zi
d T i j

d

⎤⎥⎥⎥⎥⎥⎥⎥⎦
, (5.19)

where T zz
d , T zi

d , and T i j
d (i, j = x, y) are the components of

the deuteron polarization 3-tensor in the rest frame. The pn
tensor in Eq. (5.19) has the same form as the deuteron tensor,
Eq. (3.103), only with the deuteron mass in the boost parame-
ter replaced by the pn invariant mass. Substituting Eq. (5.17)
in Eq. (5.7b), the effective neutron density matrix induced by
the deuteron tensor polarization is obtained as

�n[tensor] = 1
2 (pnγ + m) (pntpn pn)

× 8
(
G2

1 + �2G2
2 − 4mG1G2

)
. (5.20)

One observes that the neutron density matrix induced by
deuteron tensor polarization has the same form as the un-
polarized density matrix, Eq. (5.12). The deuteron tensor
polarization enters in the neutron density matrix only through
the contraction (pntpn pn). This encodes the constraints from
rotational and relativistic covariance. It implies that the tensor
polarization of the deuteron cannot induce an effective spin
polarization of the neutron. Altogether, Eq. (5.10), with the
parts given by Eqs. (5.12), (5.16), and (5.20), describes the
effective neutron spin density matrix in a polarized deuteron
ensemble with general vector and tensor polarization.

The neutron spin density matrix becomes particularly sim-
ple when expressed in terms of the c.m. frame variables [see
Sec. IV C, Eq. (4.31)]. This representation allows one to iden-
tify the contributions of the S and D waves and relate the
effective neutron polarization to three-dimensional deuteron
structure. The unpolarized part of the neutron density matrix,
Eq. (5.12), becomes

�n[unpol] = 1
2 (pnγ + m)

(
f 2
0 + f 2

2

)
[ f0,2 ≡ f0,2(k)]. (5.21)

In the vector-polarized part, the pn polarization 4-vector
Eq. (5.14) is in the c.m. frame given by (we give both the
LF and ordinary components, cf. Sec. IV C)

spn[c.m.] = [
Sz

d ,−Sz
d , SdT

] = (0, Sd ); (5.22)

i.e., it has the same components as the deuteron polarization
4-vector in the deuteron rest frame. It is straightforward to
compute the neutron polarization vector from the formulas in
Eq. (5.16). The 4-vector products in Eqs. (5.16c) and (5.16e)
can be evaluated directly in the c.m. frame and become

spn pn = spn[c.m.]pn[c.m.] = Sd k, (5.23a)

spn� = spn[c.m.]�[c.m.] = −2Sd k. (5.23b)

Altogether we obtain the vector-polarized part of the neutron
spin density matrix in the c.m. frame as

�n[vector] = 1

2
(pnγ + m)(snγ )γ 5, (5.24a)

sn[c.m.] = (
s0

n, sn
)
, (5.24b)

s0
n = −Sd k

m

(
f0 − f2√

2

)2

, (5.24c)

sn =
[(

Sd + E − m

m

(Sd k)k
|k|2

)
f0

+
(

2Sd − E + 2m

m

(Sd k)k
|k|2

) f2√
2

]
×
(

f0 − f2√
2

)
. (5.24d)

The components of sn in an arbitrary collinear frame can be
obtained from Eq. (5.24) by forming the LF plus and minus
components in the c.m. frame and performing a longitudinal
boost to the desired value of p+

d (cf. Secs. III H and IV C),

s±
n [c.m.] = (

s0
n ± sz

n

)
[c.m.], (5.25a)

s+
n [arb. coll.] = p+

d

Mpn
s+

n [c.m.], (5.25b)

s−
n [arb. coll.] = Mpn

p+
d

s−
n [c.m.], (5.25c)

snT [arb. coll.] = snT [c.m.]. (5.25d)

In the tensor-polarized part, the pn polarization 4-tensor
Eq. (5.17) is in the c.m. frame given by (we give the ordinary
components)

(tpn)α0[c.m.] = (tpn)0β[c.m.] = 0, (5.26a)

(tpn)i j[c.m.] = (Td )i j 
= 0, (5.26b)

where (Td )i j are the components of the three-dimensional
deuteron polarization tensor in the deuteron rest frame. The
contraction in Eq. (5.20) becomes

(pntpn pn) = (kTd k). (5.27)

We obtain the tensor-polarized part of the neutron spin density
matrix in the c.m. frame as

�n[tensor] = − 1

2
(pnγ + m)

3(kTd k)

|k|2
(

2 f0 + f2√
2

)
f2√
2
.

(5.28)
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Together, Eqs. (5.21), (5.24), and (5.28) specify the neutron
spin density matrix in terms of the c.m. frame variables.

The structure of the neutron spin density matrix in terms
of the c.m. frame variables shows several interesting fea-
tures. (a) The unpolarized part, Eq. (5.21), is the sum of
S- and D-wave probabilities of the c.m. wave function, as
expected. (b) The vector-polarized part of the neutron spin
density matrix, Eq. (5.24), involves mixing of the S and D
waves. This is a consequence of the relativistic spin rotations
involved in the transition from canonical spin states to LF
helicity states (Melosh rotations; in our formulation, they are
contained in the explicit form of the LF helicity bispinors). (c)
The tensor-polarized part of the neutron spin density matrix,
Eq. (5.28), is proportional to the D wave. This is natural, as
tensor polarization would be absent for a pure S-wave bound
state in the c.m. frame and cannot be induced by relativistic
spin rotations (|�L| � 1).

The neutron density matrix Eq. (5.10), with the parts
given by Eqs. (5.12), (5.16), and (5.20), or equivalently by
Eqs. (5.21), (5.24), and (5.28), contains the full information on
the effective neutron polarization (longitudinal and transverse
spin, spin-orbit correlations) in a general polarized deuteron
ensemble. We use this density matrix to calculate the neutron
LF helicity distributions in Sec. V C and the tagged DIS struc-
ture functions in Sec. VI

In the following applications, we need the effective neutron
spin density matrix in a pure deuteron spin state polarized
along a given direction. It can be obtained by evaluating the
general expressions for the neutron density matrix derived in
this section, Eqs. (5.21), (5.24), and (5.28), with the specific
values of the rest-frame polarization 3-vector and 3-tensor
corresponding to the pure spin state given in Sec. II B. For
a state with spin projection λd along a rest-frame direction N,
with |N|2 = 1, the neutron density is obtained as

�n[pure](N, λd ) = �n[unpol] + �n[vector](Sd )

+�n[tensor](Td ), (5.29a)

Sd = λd N, (5.29b)

Td = −1

6
(δi j − 3NiN j )

×
{ 1, λd = ±1

(−2), λd = 0

}
, (5.29c)

(kTd k) = −1

6
[|k|2 − 3(Nk)2]

×
{ 1, λd = ±1

(−2), λd = 0

}
, (5.29d)

where the general expressions of the terms in Eq. (5.29a)
are given by Eqs. (5.21), (5.24), and (5.28). The 3-tensor
of Eq. (5.29c) represents the rest-frame components of the
special tensor Eq. (2.24).

C. Neutron light-front momentum distributions

We now want to calculate the LF momentum distributions
of nucleons with given LF helicity in the deuteron. The sim-
plest way is to calculate the expectation value of the plus com-

ponent of the vector and axial vector current in the deuteron
(i.e., the deuteron’s vector and axial charge) in the IA,
and represent it as an integral over the LF momentum of the
nucleons. A formal definition of the LF momentum distribu-
tions can be given using the second-quantized nucleon number
operators or light-ray operators.

The expectation value of the isoscalar vector current in a
deuteron ensemble is of the general form

〈J+
V 〉 = 2p+

d gV d , (5.30)

where gV d = 2 is the vector charge (baryon number) of the
deuteron. In the IA, the current is the sum of the proton
and neutron currents. The deuteron expectation value can be
computed as the sum of the nucleon contributions, using the
general formulas of Sec. V A. The matrix element of the vec-
tor current between neutron states with LF helicity λn = ±1/2
is

〈n, pn, λ
′
n|J+

V |n, pn, λn〉
= ūLF(pn, λ

′
n)γ +uLF(pn, λn)gV (5.31a)

= 2p+
n δ(λn, λ

′
n)gV , (5.31b)

where gV = 1 is the isoscalar vector charge of the nucleon.
The matrix element is diagonal in the LF helicities and inde-
pendent of their value. The vector current thus “counts” the
helicity-independent (or averaged) number of neutrons. Ac-
cording to Eq. (5.7a), the neutron contribution to the deuteron
expectation value is given by

〈J+
V 〉 = gV

∫
dαp

αp
d2 ppT

2 tr[�nγ
+]

(2 − αp)2

= p+
d gV d . (5.32)

We identify the function

Sd (αp, ppT ) ≡ tr[�nγ
+]

(2 − αp)2 p+
d

(5.33)

as the helicity-independent LF momentum distribution of neu-
trons in the deuteron ensemble. In accordance with nuclear
physics terminology, we refer to it as the deuteron LF spectral
function (see explanation below). It is a function of the proton
LF momentum variables and satisfies∫

dαp

αp
d2 ppTSd (αp, ppT ) = gV d

2gV
= 1. (5.34)

The trace in Eq. (5.33) receives contributions from the un-
polarized and tensor-polarized parts of the neutron density
matrix. Substituting the explicit form of the neutron density
matrix in the c.m. frame variable, Eqs. (5.21) and (5.28), and
using

1
2 tr[(pnγ + m)γ +] = 2p+

n = (2 − αp)p+
d (5.35)
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we obtain

Sd = Sd [unpol] + Sd [tensor], (5.36a)

Sd (αp, ppT )[unpol] = f 2
0 + f 2

2

2 − αp
, (5.36b)

Sd (αp, ppT )[tensor] = − 3

2 − αp

(kTd k)

|k|2

×
(

2 f0 + f2√
2

)
f2√
2
. (5.36c)

The LF momentum-dependent prefactor could equivalently be
expressed in terms of the c.m. momentum variable as

1

2 − αp
= E

E − kz
; (5.37)

we leave it in its original form, as in this form it can be com-
bined with similar factors appearing in integrals over the LF
momentum. Using the relation Eq. (4.27), one easily verifies
that the unpolarized part Eq. (5.36b) satisfies the normaliza-
tion condition Eq. (5.34) and that the tensor-polarized part
Eq. (5.36c) averages to zero,∫

dαp

αp
d2 ppTSd (αp, ppT )[unpol]

=
∫

d3k

E

(
f 2
0 + f 2

2

) = 1, (5.38a)∫
dαp

αp
d2 ppTSd (αp, ppT )[tensor]

∝
∫

d�k
(kTd k)

|k|2 = 0. (5.38b)

Equation (5.38b) holds because the polarization tensor in the
c.m. frame is traceless; cf. Eq. (5.26). These relations ensure
the conservation of baryon number in the deuteron LF struc-
ture.

The helicity-independent neutron distributions also satisfy
a LF momentum sum rule. Because the functions

Sd (αp, ppT )

αp
[unpol] and

Sd (αp, ppT )

αp
[tensor] (5.39)

are symmetric under αp → 2 − αp, Eqs. (5.38a) and (5.38b)
imply∫

dαp

αp
d2 ppT (2 − αp)Sd (αp, ppT )[unpol] = 1, (5.40a)∫

dαp

αp
d2 ppT (2 − αp)Sd (αp, ppT )[tensor] = 0. (5.40b)

This relation ensures LF momentum conservation in tagged
DIS on the deuteron (see Sec. VI).

In a similar way, we can obtain the spin-dependent neutron
LF momentum distribution in a vector-polarized deuteron.
The expectation value of the isoscalar axial vector current in
the deuteron ensemble is

〈J+
A 〉 = 2Md s+

d gAd = 2Sz
d p+

d gAd , (5.41)

where we used the explicit form of the polarization vector in
the collinear frame, Eq. (3.97). Here gAd is the axial charge

of the deuteron, which is a property of the deuteron bound
state and cannot be determined from first principles. The axial
current is the sum of proton and neutron currents. The matrix
element of the neutron axial current between nucleon states
with LF helicity λn = ±1/2 is

〈n, pn, λ
′
n|J+

A |n, pn, λn〉
= ūLF(pn, λ

′
n)(−γ +γ 5)uLF(pn, λn) gA (5.42a)

= 2p+
n (2λn) δ(λn, λ

′
n) gA, (5.42b)

where gA is the isoscalar axial coupling of the nucleon. The
matrix element is again diagonal in the LF helicities, but the
diagonal value is now proportional to the LF helicity. The
axial vector current with matrix −γ +γ 5 therefore counts the
difference between the number of neutrons with LF helicities
+1/2 and −1/2. The calculation of the deuteron expectation
value proceeds analogously to Eq. (5.32), and we identify

�Sd (αp, ppT ) ≡ tr[�n(−γ +γ 5)]

(2 − αp)2 p+
d

(5.43)

as the helicity-dependent LF momentum distribution of neu-
trons in the deuteron ensemble. It satisfies∫

dαp

αp
d2 ppT �Sd (αp, ppT ) = Sz

d

(
gAd

2gA

)
, (5.44)

which may be regarded as the nucleon spin sum rule. Only the
vector-polarized part of the neutron density matrix Eq. (5.10)
contributes to the trace in Eq. (5.43),

�Sd ≡ �Sd [vector]. (5.45)

With Eq. (5.24), we obtain

tr[�n(−γ +γ 5)] = 1
2 tr[(pnγ + m)(snγ )γ 5(−γ +γ 5)]

= 2ms+
n . (5.46)

Using the explicit expressions for the neutron polarization
vector in the c.m. frame, Eq. (5.24), we obtain

�Sd (αp, ppT ) = 1

2 − αp

(
f0 − f2√

2

)(
C0 f0 − C2 f2√

2

)
,

(5.47)

where

C0 ≡ C0(k)

≡ m

(2 − αp)E

[
Sz

d − Sd k
m

+ (Sd k)kz

m(E + m)

]
, (5.48a)

C2 ≡ C2(k)

≡ m

(2 − αp)E

[
−2Sz

d − Sd k
m

+ (E + 2m) (Sd k)kz

m|k|2
]
.

(5.48b)

These factors can also be written in the form

C0(k) = Sz
d − (E + kz )|kT |2

(E + m)(m2 + |kT |2)
Sz

d

− (E + kz )(E − kz + m)

(E + m)(m2 + |kT |2)
(SdT kT ), (5.49a)
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C2(k) = Sz
d − (E + 2m)(E + kz )|kT |2

(m2 + |kT |2)|k|2 Sz
d

+ (E + kz )[−|k|2 + (E + 2m)kz]

(m2 + |kT |2)|k|2 (SdT kT ),
(5.49b)

where we have used that

(E + kz )(E − kz ) = E2 − (kz )2

= m2 + |kT |2, (5.50a)

2 − αp = 1 − kz

E
, (5.50b)

1

2 − αp
= E

E − kz
= E (E + kz )

m2 + |kT |2 . (5.50c)

The factors C0 and C2 describe the effect of the nucleons’
orbital motion on the neutron LF helicity. In the three-
dimensional representation of the deuteron LF wave function,
they arise from the Melosh rotations connecting the canonical
nucleon spinors with the LF helicity spinors (see Appendix
B). In the four-dimensional representation employed here,
this information is encoded in the specific form of the ef-
fective neutron polarization vector sn, Eq. (5.16b). Note that
the factors are equal to Sz

d at zero transverse momentum; cf.
Eqs. (5.49a) and (5.49b),

C0(k),C2(k) = Sz
d at kT = ppT = 0, kz arbitrary, (5.51)

as is expected of the Melosh rotation.
In the c.m. representation, Eq. (5.47), one can easily evalu-

ate the normalization integral of the polarized nucleon distri-
bution, Eq. (5.44). Using the relation Eq. (4.27), one obtains(

gAd

2gA

)
Sz

d

=
∫

dαp

αp
d2 ppT �Sd (αp, ppT )

=
∫

d3k

E

(
f0 − f2√

2

)(
C0 f0 − C2 f2√

2

)
= 4π

∫
dkk2

E

(
f0 − f2√

2

)(
C̄0 f0 − C̄2 f2√

2

)
, (5.52)

where C̄0, C̄2 are the angular averages of the factors C0,C2,

C̄0(k) ≡
∫

d�k

4π
C0(k)

= m Sz
d

E + m

(m

k
log

E + k

m
+ 1

)
, (5.53a)

C̄2(k) ≡
∫

d�k

4π
C2(k)

= m Sz
d

k2

[
(E + 2m)

m

k
log

E + k

m
− 2E − m

]
. (5.53b)

Notice that structures proportional to SdT kT average to zero,
so that the averages are proportional to Sz

d , as it should be.

The expansion in k/m of the averages is

C̄0(k) = Sz
d

[
1 − 1

3

k2

m2
+ O

(
k4

m4

)]
, (5.54a)

C̄2(k) = Sz
d

[
−1 + 4

15

k2

m2
+ O

(
k4

m4

)]
. (5.54b)

If we neglect terms O(k2/m2), the integral Eq. (5.52) becomes

gAd

2gA
= 4π

∫
dkk2

E

(
f0 − f2√

2

)(
f0 + f2√

2

)
= 4π

∫
dkk2

E

(
f 2
0 − f 2

2

2

)
= 4π

∫
dkk2

E

(
f 2
0 + f 2

2 − 3 f 2
2

2

)
= 1 − 3

2
ω2, (5.55)

where we have canceled the factor Sz
d on both sides. Here

ω2 ≡ 4π

∫
dk k2

E (k)
f 2
2 (k) (5.56)

is the D-state probability of the deuteron wave function in
the c.m. frame. Equation (5.55) has the same form as the
nonrelativistic result for the deuteron axial charge including
the D-state correction.

Some explanations are in order regarding the definition of
the LF spectral function and the correspondence with nuclear
physics terminology. (a) The deuteron spectral function Sd

describes the LF momentum distribution of neutrons in the
deuteron as a function of the proton LF momentum and is nor-
malized as Eq. (5.34); this definition is appropriate for tagged
DIS experiments where the proton momentum is measured
and will be used in the following. The conventional neutron
LF momentum density is defined as a function of the neutron
LF momentum and related to the spectral function as

Nd (αn, pnT ) = αn

αp
Sd (αp, ppT ) (5.57)

[αp = 2 − αn, ppT = −pnT ],

such that its normalization is∫
dαn

αn

∫
d2 pnTNd (αn, pnT ) = 1. (5.58)

(b) The spectral function represents the nuclear structure in-
formation entering in the IA. In the general case of a nucleus
with A > 2, it describes the probability density for removing
a nucleon with a given momentum, while leaving the A − 1
remnant system with a given excitation energy (the momen-
tum of the A − 1 system is fixed by the removed nucleon
momentum) [98]. The nucleon momentum density is then
obtained by integrating over the excitation energy of the A − 1
system. In the particular case of the deuteron with A = 2,
the remnant system is the single spectator nucleon, whose
energy is fixed by the momentum, so that the spectral func-
tion depends on the momentum variable only and coincides
with the momentum density up to a factor accounting for the
normalization; cf. Eq. (5.58).
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FIG. 8. The deuteron spectral function Sd in the unpolarized
deuteron, Eq. (5.59a). It describes the helicity-independent LF mo-
mentum distribution of neutrons in the unpolarized deuteron as a
function of the proton LF momentum. The plot shows the depen-
dence on αp for several values of |ppT |.

D. Distribution in unpolarized deuteron

The expressions Eqs. (5.36) and (5.47) describe the LF
momentum distributions of neutrons in a deuteron ensemble
with arbitrary polarization (vector, tensor). It is instructive to
consider the distributions in some special cases. In an unpolar-
ized ensemble (S = 0, T = 0), only the helicity-independent
neutron distribution Eqs. (5.36b) is present,

Sd (αp, ppT ) = f 2
0 + f 2

2

2 − αp
, (5.59a)

�Sd (αp, ppT ) = 0. (5.59b)

One notes that (a) in the helicity-independent distribution, the
S and D waves of the c.m.-frame wave function do not mix;
and (b) the helicity-dependent distribution is zero for arbitrary
neutron LF momentum; i.e., no LF helicity polarization is
induced by the orbital motion.

Figure 8 shows the helicity-independent neutron distribu-
tion in the unpolarized deuteron as a function of αp for several
values of |ppT |. One observes the following: (a) The distribu-
tion is maximal at αp = 1 and |ppT | = 0 and drops steeply
when increasing |αp − 1| or |ppT |, as implied by the nucleon
momentum distribution in the c.m. frame. (b) An asymmetry
between the distributions at αp > 1 and <1 is caused by the
flux factor 1/(2 − αp) in Eq. (5.59a). Figure 9 shows the ratio
of the neutron distribution resulting from the D wave only to
that resulting from S and D waves (i.e., the total distribution),

Sd (αp, ppT ) [D wave]

Sd (αp, ppT ) [S + D waves]
. (5.60)

This ratio can be regarded as the probability for sampling
the D-wave component of the c.m. motion when observing a
proton (or neutron) with given LF momentum. One observes
the following: (a) The D-wave probability vanishes at αp = 1
and |ppT | = 0, corresponding to c.m. momentum |k| = 0. (b)
The D-wave probability becomes unity at LF momenta corre-
sponding to |k| ≈ 400 MeV, where the S-wave function in the
c.m. frame goes through zero [97]. (c) The D-wave probability
decreases again at large c.m. momenta.

E. Distribution in deuteron helicity states

In a pure deuteron state with LF helicity +1, the helicity-
independent neutron distribution is

Sd (αp, ppT )[pure +1]

= Sd (αp, ppT )[unpol] + Sd (αp, ppT )[tensor]. (5.61)

FIG. 9. The D-wave fraction in the deuteron spectral function, Sd [D wave]/Sd [S + D waves], in the unpolarized deuteron, Eq. (5.60). The
two-dimensional plot shows the ratio as a function of αp and |ppT |.
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Here the tensor-polarized part is given by Eq. (5.36c), eval-
uated with the special tensor Eq. (5.29c), and with the
contraction given by Eq. (5.29d), for polarization along the
z direction, N = ez,

Sd (αp, ppT )[tensor] = − 1

2 − αp
CT

(
2 f0 + f2√

2

)
f2√
2
,

(5.62a)

CT ≡ CT (k) = 3
(kT k)

|k|2 = 1

2

[
−1 + 3(kz )2

|k|2
]

= 1 − 3|kT |2
2|k|2 . (5.62b)

Combining this with the unpolarized part given by
Eq. (5.36b), we obtain

Sd (αp, ppT )[pure +1]

= 1

2 − αp

[
f 2
0 + f 2

2 − CT

(
2 f0 + f2√

2

)
f2√
2

]
. (5.63)

The helicity-dependent neutron distribution is

�Sd (αp, ppT )[pure +1]

= 1

2 − αp

(
f0 − f2√

2

)(
C0 f0 − C2 f2√

2

)
, (5.64)

where C0,C2 are the factors of Eqs. (5.48a) and (5.48b) with
Sz

d = 1 and SdT = 0,

C0 ≡ C0(k)

≡ m

(2 − αp)E

[
1 − kz

m
+ (kz )2

m(E + m)

]
, (5.65a)

C2 ≡ C2(k)

≡ m

(2 − αp)E

[
−2 − kz

m
+ (E + 2m) (kz )2

m|k|2
]
, (5.65b)

which can also be written in the form

C0(k) = 1 − (E + kz )|kT |2
(E + m)(m2 + |kT |2)

, (5.66a)

C2(k) = 1 − (E + 2m)(E + kz )|kT |2
(m2 + |kT |2)|k|2 . (5.66b)

One may also consider the distributions of neutrons with LF
helicity +1/2 and −1/2 in the deuteron state with LF helicity
+1,

Sd±[pure +1] ≡ 1
2 (Sd ± �Sd )[pure +1], (5.67a)

{Sd , �Sd}[pure +1] = (Sd+ ± Sd−)[pure +1]. (5.67b)

The functions Sd± are positive for arbitrary LF momenta

Sd± � 0, |�Sd | � Sd . (5.68)

The positivity can be proved using the explicit expressions
given above and will be demonstrated by the numerical results
below. The functions Sd± have a probabilistic interpretation
as the distributions of neutrons with helicities “along” or
“against” the deuteron helicity.

The effective polarization of the neutron in the deuteron
depends on the proton LF momentum. An interesting effect

is observed at zero transverse momentum, ppT = kT = 0,
and arbitrary longitudinal momentum αp 
= 1, kz 
= 0. In this
kinematic limit, the factors C0 and C2 in �Sd are unity,
Eqs. (5.66a) and (5.66b), and the factor CT in Sd is also unity,
Eq. (5.62b). The distributions Eq. (5.63) thus become

Sd (αp, ppT = 0)[pure +1]

= �Sd (αp, ppT = 0)[pure +1]

= Sd+(αp, ppT = 0)[pure +1]

= 1

2 − αp

(
f0 − f2√

2

)2

, (5.69a)

Sd−(αp, ppT = 0)[pure +1] = 0, (5.69b)

and the neutron is completely polarized along the direction
of the deuteron LF helicity. This happens because config-
urations with neutron LF helicity opposite to the deuteron
involve LF orbital angular momentum Lz 
= 0, which requires
nonzero transverse momentum. It is remarkable that the four-
dimensional representation of the deuteron LF wave function
reproduces this effect without explicit reference to orbital
angular momentum states. Notice that the distribution at ppT
includes contributions from the S and D wave of the c.m. wave
function.

Figure 10 shows the ratio
Sd+

Sd+ + Sd−
= 1

2

(
1 + �Sd

Sd

)
, 0 � (ratio) � 1, (5.70)

in a pure deuteron spin state with LF helicity +1. It describes
the probability that a neutron observed at a given LF momen-
tum has LF helicity +1/2 (along the deuteron spin direction);
the probability that it has LF helicity −1/2 (opposite to the
deuteron spin direction) is given by 1 minus the ratio. The
dependence on the LF momentum shows several interesting
features: (a) The ratio is close to unity in the region 0.8 <

αp < 1.2 and |ppT | < 200 MeV, which corresponds to c.m.
momenta |k| � 200 MeV, where the S wave dominates in the
c.m. wave function. (b) The ratio is equal to unity at |ppT | = 0
for arbitrary αp, as implied by Eq. (5.69). Exceptions are the
points αp = 0.7 and 1.3, which correspond to values of k at
which the combination of radial wave functions ( f0 − f2/

√
2)

in Eq. (5.69) vanishes (singular points). (c) The ratio becomes
small at αp ≈ 1 and |ppT | � 400 MeV. In this region, the D
wave dominates in the c.m. wave function, and the effects of
relativistic spin rotations are large.

In sum, one sees that the neutron polarization in the polar-
ized deuteron can effectively be controlled by selecting certain
regions of the LF momentum. This feature can be exploited
in tagged DIS experiments (see below) and represents an
important advantage of spectator tagging.

The integrals of the deuteron spectral functions over the
proton transverse momentum ppT describe the distributions
of neutrons with respect to the longitudinal LF momentum
fraction αp only,

Sd (αp) ≡
∫

d2 ppTSd (αp, ppT ), (5.71a)

�Sd (αp) ≡
∫

d2 ppT �Sd (αp, ppT ), (5.71b)
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FIG. 10. The deuteron spectral function ratio Sd+/(Sd+ + Sd−), Eq. (5.70), in the pure deuteron spin state with LF helicity +1. It describes
the probability that a neutron observed at the given LF momentum has LF helicity +1/2; i.e., is polarized along the deuteron spin direction.
The two-dimensional plot shows the ratio as a function of αp and |ppT |.

which are normalized such that∫ 2

0

dαp

αp
{Sd (αp), �Sd (αp)} =

{
1,

gAd

2gA

}
. (5.72)

These functions are the analogs of the parton distributions in
the parton model of hadron structure and appear in the de-
scription of ppT -integrated tagged DIS measurements on the
deuteron. Figures 11 and 12 show the integrated LF momen-
tum densities obtained with our deuteron LF wave function.
One observes the following: (a) The integrated distributions

FIG. 11. The deuteron spectral functions Sd and �Sd , integrated
over the proton transverse momentum, in the pure deuteron spin
state with LF helicity +1. These functions describe the helicity-
independent and helicity-dependent LF momentum distributions of
neutrons in the deuteron with LF helicity +1.

are concentrated in the region αp ≈ (0.9, 1.1), corresponding
to nucleon c.m. momenta k � 100 MeV. (b) The neutrons are
overwhelmingly polarized along the direction of the deuteron
LF helicity. The integrated distribution Sd− is at the level of a
few percent of Sd+. The magnitude of the distribution is con-
sistent with their normalization integrals: In the nonrelativistic

FIG. 12. The deuteron spectral functions Sd+ and �Sd−, inte-
grated over the proton transverse momentum, in the pure deuteron
spin state with LF helicity +1 (cf. Fig. 11). These functions describe
the LF momentum distributions of neutrons with LF helicity +1/2
and −1/2 in the deuteron with LF helicity +1. The plot shows Sd−
multiplied by 10.
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FIG. 13. The deuteron tensor in tagged DIS in the IA. Only the
spin quantum numbers of the deuteron and nucleon states are shown.

limit, using Eq. (5.55), we find[∫
dαp

αp
Sd−(αp)

]/[∫
dαp

αp
Sd+(αp)

]
≈ 3

4
ω2. (5.73)

VI. TAGGED DIS IN IMPULSE APPROXIMATION

A. Impulse approximation

We now calculate the cross section of polarized tagged DIS
on the deuteron, using the LF methods developed in Secs. IV
and V. We restrict ourselves to the IA, where it is assumed
that (i) the current operator couples only to a single nucleon
and (ii) the DIS final state produced from the active nucleon
evolves independently from spectator. The IA result contains
the nucleon pole and dominates the tagged DIS cross section
at small proton momenta. The justification of the IA and steps
of calculation are described in Ref. [77]. Here we focus on the
aspects specific to electron and deuteron polarization.

In tagged DIS on the deuteron in a general ensemble of
spin states, described by the density matrix ρd (λd , λ

′
d ), the

deuteron tensor is given by

W μν

d (pd , q, pp) = 〈
W μν

d

〉
=
∑
λ′

d ,λd

ρd (λd , λ
′
d )W μν

d (pd , q, pp|λ′
d , λd ),

(6.1)

where the tensor on the right-hand side is the nondiagonal
deuteron tensor between LF helicity states with λd and λ′

d ;
cf. Eqs. (3.9a) and (3.9b). In the IA in a collinear frame, the
latter is obtained as (see Fig. 13) [77]

W μν

d (pd , q, pp|λ′
d , λd )

=
∑

λp,λ′
n,λn

[2(2π )3]
2

(2 − αp)2

× �∗
d (αp, ppT ; λp, λ

′
n|λ′

d )�d (αp, ppT ; λp, λn|λd )

× W μν
n (pn, q̃; λ′

n, λn). (6.2)

The αp-dependent factor and the quadratic expression in
�∗

d and �d represent a particular momentum density of the
deuteron LF wave function. The tensor

W μν
n (pn, q̃; λ′

n, λn) (6.3)

is the tensor for inclusive DIS on the neutron. It is evaluated
at the on-shell neutron 4-momentum with LF components
Eq. (5.3), and at the effective 4-momentum transfer

q̃ ≡ q + pd − pn − pp, (6.4a)

pn + q̃ = q + pd − pp, (6.4b)

which accounts for the effects of LF energy nonconservation
in the intermediate state [77]. The neutron spin states are
described by their LF helicities λ′

n and λn, and the tensor is
generally nondiagonal in these variables.

The summation over the nucleon LF helicities in Eq. (6.2)
and deuteron spin in Eq. (6.1) can be performed using the
neutron spin density matrix formalism described in Sec. V A.
The neutron tensor is represented as a bilinear form in LF
bispinors,

W μν
n (pn, q̃; λ′

n, λn) = ūLF(pn, λ
′
n)�μν

n (pn, q̃)uLF(pn, λn),

(6.5)

where �μν
n is a matrix in bispinor indices, whose specific form

is given below. The deuteron tensor of the ensemble, Eq. (6.1),
can then be expressed as a bispinor trace,

W μν

d (pd , q, pp) = [2(2π )3]
2

(2 − αp)2

× tr
[
�n(pd , pp; sn)�μν

n (pn, q̃)
]
, (6.6)

where �n is the effective neutron spin density matrix
Eq. (5.7b). [In contrast to Eq. (5.7a), there is no integration
over the proton LF momentum variables αp and αp, as those
are fixed to the tagged proton values.] Equation (6.5) repre-
sents the IA result for a general deuteron ensemble.

To determine the tagged DIS structure functions, one eval-
uates the tensor equation Eq. (6.6) with the specific form
of the neutron tensor (unpolarized, polarized) and the neu-
tron spin density matrix (unpolarized, vector, tensor) and
derives equations for the structure functions by taking suitable
components of the tensor equation. To separate the various
structure functions, one needs to use both + and T LF com-
ponents of the deuteron and nucleon tensors. It is known
that in LF quantization of interacting spin-1/2 systems the
+ and T components of the current operator have differ-
ent status: The + current components are formed from the
independent canonical degrees of freedom and are free of
interactions (“good components”); the T components involve
dependent degrees of freedom and thus depend on the interac-
tions (“bad components”). The use of bad components in the
IA therefore generally must be regarded as an approximation.
However, studies have shown that the interaction effects in the
T components of the current are suppressed in the DIS limit
Q2 � m2, x fixed, i.e., that they do not affect the result for
the leading structure functions in the DIS limit (leading-twist
approximation) [46,99]. In the following calculations, we con-
sider only the leading structure functions in the DIS limit
(unpolarized, polarized), for which the use of T components
is justified. This is supported by the fact that the IA structure
functions in the DIS limit satisfy the sum rules for baryon
number, LF momentum, and spin (see below).
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We note that the calculations could in principle be extended
to power-suppressed structures in the DIS limit, such as the
spin structure functions F[LST ]d or g2d (see Sec. III G). In this
case, the interaction effects in the T components of the current
could no longer be neglected, and new considerations would
be needed—the so-called angular conditions on the current
matrix elements. The application of these techniques to DIS
is discussed in Refs. [46,99]; applications to elastic and tran-
sition form factors and the model-independent calculation of
power-suppressed contributions are described in Ref. [100].

B. Unpolarized electron scattering

Unpolarized electron scattering involves the symmetric
parts of the deuteron and neutron tensors. The symmetric part
of the neutron tensor is diagonal in the neutron LF helicities
and independent of the value of the helicity,9

W μν
n (pn, q̃; λ′

n, λn)[symm]

= δ(λ′
n, λn)W μν

n (pn, q̃)[symm]. (6.7)

In the bilinear form, Eq. (6.5), the tensor is therefore repre-
sented by the unit matrix in bispinor indices

�μν
n = 1

2m
W μν

n [symm]. (6.8)

The unpolarized symmetric deuteron tensor is then obtained
from Eq. (6.6) as

W μν

d [unpol] = [2(2π )3]
2Sd [unpol]

2 − αp
W μν

n [symm]. (6.9)

The relation between the tensors is, up to a factor, given by the
helicity-independent neutron distribution in the unpolarized
deuteron, Eq. (5.36b).

The decomposition of the symmetric neutron tensor is of
the same form as that of the unpolarized deuteron tensor,
Eq. (3.15),

W μν
n [symm] = 1

2

(
eμ

L eν
L − eμ

q eν
q − gμν

)
F[UU,T ]n

+ 1
2 eμ

L eν
L F[UU,L]n, (6.10)

where now the basis vectors eL and eq are constructed with
the 4-momenta pn and q̃, and the structure functions depend
on invariants formed with the latter. Substituting this form
in Eq. (6.9) and taking suitable components of the tensor
equation (μν = ++ and T T ), one obtains expressions for the
tagged deuteron structure functions [77]

F[UU,T ]d (x, Q2; αp, ppT )

= [2(2π )3]
2Sd (αp, ppT )[unpol]

2 − αp
F[UU,T ]n (̃x, Q2)

(6.11a)

9We neglect the transverse spin dependence of the unpolarized
nucleon tensor due to two-photon exchange effects [94,95]; cf.
Sec. III C.

F[UU,L]d (x, Q2; αp, ppT )

= [2(2π )3]
2Sd (αp, ppT )[unpol]

2 − αp
F[UU,L]n (̃x, Q2),

(6.11b)

x̃ ≡ x

2 − αp
. (6.11c)

x̃ is the effective scaling variable for scattering on the neutron,
which takes into account its longitudinal LF momentum in
the deuteron. The expressions Eqs. (6.11a)–(6.11c) are valid
in the DIS limit Q2 � m2, neglecting kinematic corrections
O(m2/Q2). The corresponding expressions for the tagged
deuteron structure functions F1d and F2d , Eq. (3.21), are

F1d (x, Q2; αp, ppT )

= [2(2π )3]
2Sd (αp, ppT )[unpol]

2 − αp
F1n (̃x, Q2), (6.12a)

F2d (x, Q2; αp, ppT )

= [2(2π )3]Sd (αp, ppT )[unpol]F2n (̃x, Q2). (6.12b)

The tagged deuteron F2d and the neutron F2n are related di-
rectly by the neutron momentum distribution in the deuteron.

The neutron momentum distribution satisfies the LF mo-
mentum sum rule Eq. (5.40a). It implies that the integrated
tagged structure function [see Eq. (3.115); note the kinematic
limit αp < 2 − x]

F int
2d (x, Q2) ≡ [2(2π )3]−1

∫ 2−x

0

dαp

αp

∫
d2 ppT

× F2d (x, Q2; αp, ppT ) (6.13)

satisfies the sum rule∫ 2

0
dxF int

2d (x, Q2) =
∫ 1

0
dx̃F2n (̃x, Q2). (6.14)

It shows that spectator tagging only fixes the neutron LF
momentum in the deuteron but does not change the integral
of the distribution.

The tensor-polarized part of the symmetric deuteron tensor
is obtained from Eq. (6.6) as

W μν

d [tensor] = [2(2π )3]
2Sd [tensor]

2 − αp

× W μν
n [symm], (6.15)

where the tensor-polarized neutron distribution is given in
Eq. (5.36c), and the symmetric neutron tensor is the same as
above. Equation (6.15) holds for an ensemble with general
tensor polarization. The calculation of the tensor-polarized
structure functions proceeds in the same way as for the un-
polarized deuteron. Here we quote only the expressions for
the tensor structure functions F[UTLL,T ]d and F[UTLL,L]d , which
appear in the calculation of spin asymmetries in the scaling
limit (see Sec. III G and below). They can be obtained with
the special polarization tensor associated with pure states,
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Eq. (5.29c), choosing the polarization along the z direction,
N = ez. We obtain

TLLF[UTLL,T ]d (x, Q2; αp, ppT )

= [2(2π )3]
2Sd (αp, ppT )[tensor]

2 − αp
F[UU,T ]n (̃x, Q2), (6.16a)

TLLF[UTLL,L]d (x, Q2; αp, ppT )

= [2(2π )3]
2Sd (αp, ppT )[tensor]

2 − αp
F[UU,L]n (̃x, Q2), (6.16b)

where Sd (αp, ppT )[tensor] is the neutron distribution given in
Eq. (5.62a).

C. Polarized electron scattering

Polarized electron scattering involves the antisymmetric
parts of the deuteron and neutron tensors. The antisymmetric
part of the neutron tensor depends on the neutron LF helicities.
This dependence can be expressed in the form

W μν
n (pn, q̃; λ′

n, λn)[antisymm]

= Aμν
ρ (pn, q̃)sρ

n,gen(pn, λ
′
n, λn), (6.17a)

sρ
n,gen(pn, λ

′
n, λn)

≡ 1

2m
ūLF(pn, λ

′
n) (−γ ργ 5) uLF(pn, λn). (6.17b)

The axial 4-vector sn,gen is defined as a function of the LF
helicities, λn and λ′

n, and represents the general polarization
4-vector of the free neutron. The tensor Aμν

ρ is given by [cf.
Eq. (3.30)]

Aμν
ρ = i

2
εμνστ eq,σ

{
eL∗τ eL∗ρ γ F[LSL]n

+(eL∗τ eL∗ρ + gτρ )F[LST ]n
}
,

where the basis vectors eL∗ and eq are constructed with the
4-momenta pn and q̃, and the structure functions depend on in-
variants formed with the latter. In the bilinear form, Eq. (6.5),
the antisymmetric neutron tensor is therefore represented by
the matrix

�μν
n = 1

2m
Aμν

ρ (−γ ργ 5). (6.18)

The trace in Eq. (6.6) now involves the vector-polarized part
of the neutron density matrix, Eq. (5.16),

tr
[
�n�

μν
n

] = 1

2m
Aμν

ρ tr
[

1
2 (pnγ + m)(snγ )γ 5(−γ ργ 5)

]
= Aμν

ρsρ
n , (6.19a)

where sn is now the effective neutron polarization vector in
the deuteron, Eq. (5.16b). Altogether, the vector-polarized
deuteron tensor is obtained from Eq. (6.6) as

W μν

d (pd , q, pp)[vector] = [2(2π )3]
2

(2 − αp)2
Aμν

ρsρ
n .

(6.20)

In the last expressions,

Aμν
ρsρ

n ≡ W μν
n (pn, q̃, sn)[antisymm] (6.21)

is the antisymmetric neutron tensor, evaluated with the effec-
tive polarization 4-vector sn, Eq. (5.16b). All the information
pertaining to the deuteron wave function (radial functions,
polarization, etc.) is contained in sn. The entire effect of av-
eraging with the effective neutron density matrix has been to
replace the general neutron polarization 4-vector of the free
neutron in Eq. (6.17a) with the specific polarization 4-vector
of the neutron in the deuteron of Eq. (5.16b). This simple
result is achieved thanks to the covariant representation of the
deuteron spin structure; cf. Secs. IV and V.

We can now derive the expression for the tagged deuteron
spin structure functions. As before, we consider the DIS limit,
in which the structure function F[LSL]d is leading and F[LST ]d

is suppressed, and neglect terms O(m/Q). The derivation
proceeds as follows: (a) Take the tensor equation Eq. (6.20)
in a general collinear frame with p+

d 
= Md . (b) Take the
deuteron longitudinally polarized, corresponding to a rest-
frame polarization vector Sd = (0T , Sz

d ); cf. Eq. (5.15). (c)
Take the nonzero transverse component of the tensor equation,
μν = 12. In this way we obtain, after a brief calculation,

F[LSL]d (x, Q2; αp, ppT )

= [2(2π )3]
4ms+

n

(2 − αp)3 p+
d Sz

F[LSL]n (̃x, Q2). (6.22)

x̃ is defined in Eq. (6.11c). The ratio on the right-hand side is,
up to a factor, equal to the helicity-dependent LF momentum
distribution of neutrons in the deuteron state with LF helicity
+1, Eq. (5.64), and we can write

F[LSL]d (x, Q2; αp, ppT )

= [2(2π )3]
2�Sd (αp, ppT )[pure +1]

2 − αp
F[LSL]n (̃x, Q2). (6.23)

The corresponding expression for the tagged spin structure
function g1d is

g1d (x, Q2; αp, ppT )

= [2(2π )3]
2�Sd (αp, ppT )[pure +1]

2 − αp
g1n (̃x, Q2). (6.24)

The formula applies in the DIS limit, where γ → 0 and the
contribution of the g2 structure function is suppressed; the
formulas including power corrections can be derived easily.

The helicity-dependent neutron distribution in the deuteron
satisfies the spin sum rule Eq. (5.44). It implies that the inte-
grated tagged spin structure function

gint
1d (x, Q2) ≡ [2(2π )3]−1

∫ 2−x

0

dαp

αp

∫
d2 ppT

× g1d (x, Q2; αp, ppT ) (6.25)

satisfies the sum rule∫ 2

0
dxgint

1d (x, Q2) = gAd

gA

∫ 1

0
dx̃g1n (̃x, Q2) (6.26a)

= 2
(

1 − 3

2
ω2

) ∫ 1

0
dx̃g1n (̃x, Q2). (6.26b)
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Equation (6.26a) is obtained by changing the order of inte-
grations over x and αp and substituting x by x̃, Eq. (6.11c).
The last expression applies when the axial charge is evaluated
in the nonrelativistic limit, Eq. (5.55). We see that our result
for the integrated tagged spin structure function reproduces
the nonrelativistic formula for the D-state correction to the
deuteron spin structure function.

D. Spin asymmetries

Using the results for the tagged spin structure functions in
the IA, we now calculate the spin asymmetries in tagged DIS.
In the DIS limit γ → 0, only the parallel spin asymmetries A‖
are present. The scaling variable y and the virtual photon po-
larization parameter ε, and therefore the depolarization factors
D‖[SL], are the same for DIS on the deuteron and the (bound)
neutron up to power corrections,

ε[deuteron] = ε[neutron] + O(m2/Q2), (6.27a)

D‖[SL][deuteron] = D‖[SL][neutron] + O(m2/Q2); (6.27b)

we do not distinguish between the deuteron and neutron in the
notation of these quantities. Following Sec. III G, we consider
both the three-state and the two-state asymmetries, Eqs. (3.73)
and (3.75). Substituting the expressions for the tagged struc-
ture functions in the IA, the deuteron three-state asymmetry
Eq. (3.73) becomes

A‖(3)d (x, Q2; αp, ppT )

= D‖[SL]F[LSL]d (x, Q2; αp, ppT )[
F[UU,T ]d + εF[UU,L]d

]
(x, Q2; αp, ppT )

(6.28a)

= �Sd (αp, ppT )[pure +1]D‖[SL]F[LSL]n (̃x, Q2)

Sd (αp, ppT )[unpol]
[
F[UU,T ]n + εF[UU,L]n

]
(̃x, Q2)

(6.28b)

= D‖(3)d (αp, ppT )A‖n(y, x̃, Q2), (6.28c)

D‖(3)d (αp, ppT ) ≡ �Sd (αp, ppT )[pure +1]

Sd (αp, ppT )[unpol]
, (6.28d)

A‖n(y, x̃, Q2) ≡ D‖[SL]F[LSL]n (̃x, Q2)[
F[UU,T ]n + εF[UU,L]n

]
(̃x, Q2)

. (6.28e)

The tagged deuteron asymmetry can be factorized into the
neutron spin asymmetry and a function describing deuteron
structure. A‖n is the ratio of the polarized and unpolarized
neutron structure functions and the depolarization factor; it
represents the parallel spin asymmetry for scattering on the
neutron and depends on the nucleon subprocess variables,
x̃ and Q2, as well as on y. D‖(3)d is the ratio of helicity-
dependent and helicity-independent neutron distributions in
the deuteron and depends on the proton momentum variables
αp and ppT . We refer to this function as the deuteron depolar-
ization factor. Note that the unpolarized neutron distribution in
Eq. (6.28d) represents the average of the three pure deuteron
states with LF helicities ±1 and 0, so that

D‖(3)d = �Sd [pure +1]
1
3 (Sd [pure +1] + Sd [pure −1] + Sd [pure 0])

.

(6.29)

Its explicit form as a function of the c.m. momentum variable is

D‖(3)d =

(
f0 − f2√

2

)(
C0 f0 − C2 f2√

2

)
f 2
0 + f 2

2

[ f0,2 ≡ f0,2(k); C0,2 ≡ C0,2(k)]. (6.30)

The two-state asymmetry Eq. (3.75) in the DIS limit is given by

A‖(2)d (x, Q2; αp, ppT ) = D‖[SL]F[LSL](x, Q2; αp, ppT )[
F[UU,T ]d + εF[UU,L]d + D‖[TLL]

(
F[UTLL,T ]d + εF[UTLL,L]d

)]
(x, Q2; αp, ppT )

. (6.31)

Now, in addition to the unpolarized structure functions, the
tensor-polarized structure functions F[UTLL,T ]d and F[UTLL,L]d

appear in the denominator. In the IA, they are given by
Eqs. (6.16a) and (6.16b) in terms of the neutron distribution
in the tensor-polarized deuteron and the unpolarized neutron
structure functions. In Eq. (6.31), D‖[TLL] is the depolarization
factor given by Eq. (3.65a). In the DIS limit, it becomes

D‖[TLL] = 1
3 + O(m2/Q2). (6.32)

Substituting the expressions for the tagged structure functions
in the IA, the asymmetry can be factorized in a similar way as
Eq. (6.28c),

A‖(2)d (x, Q2; αp, ppT )

= D‖(2)d (αp, ppT )A‖n (̃x, Q2), (6.33a)

D‖(2)d (αp, ppT )

≡ �Sd (αp, ppT )[pure +1]

Sd (αp, ppT )[unpol] + Sd (αp, ppT )[tensor]
. (6.33b)

The deuteron depolarization factor now includes the tensor-
polarized neutron distribution in the denominator. Note that
the sum of unpolarized and tensor neutron distributions in
Eq. (6.33b) represents the sum of the two pure deuteron states
with LF helicities ±1, so that

D‖(2)d = �Sd [pure +1]
1
2 (Sd [pure +1] + Sd [pure −1])

. (6.34)

This function is related to the effective neutron polarization in
the pure +1 state, Eq. (5.70), and is bounded as

−1 � D‖(2)d � 1. (6.35)

065204-34



POLARIZED ELECTRON-DEUTERON DEEP-INELASTIC … PHYSICAL REVIEW C 102, 065204 (2020)

Its explicit form as a function of the c.m. momentum variable
is

D‖(2)d =

(
f0 − f2√

2

)(
C0 f0 − C2 f2√

2

)
f 2
0 + f 2

2 − CT

(
2 f0 + f2√

2

)
f2√
2

(6.36)

[ f0,2 ≡ f0,2(k), C0,2,T ≡ C0,2,T (k)].

The deuteron depolarization factors D‖(3)d and D‖(2)d de-
scribe the effective neutron polarization “selected” by the
tagged proton momentum and summarize the deuteron struc-
ture effects in spin asymmetry measurements in tagged DIS.
Figure 14 shows D‖(3)d and D‖(2)d at αp = 1 as functions of
|ppT |. One observes the following: (a) Both D‖(3)d and D‖(2)d

are unity at αp = 1 and |ppT | = 0, where |k| = 0 and only
the S wave is present. (b) D‖(3)d and D‖(2)d remain close to
unity for |ppT | � 150 MeV, where the S wave dominates.
The D-wave contributions raise D‖(3)d above unity but lower
D‖(2)d , in accordance with the bound Eq. (6.35), showing the
effect of the tensor polarized structure in D‖(2)d . (c) Both
D‖(3)d and D‖(2)d decrease significantly at |ppT | � 150 MeV,
pass through zero at |ppT | ≈ 300 MeV, where the combina-

tion ( f0 − f2/
√

2) vanishes, and become negative at larger
momenta, where the D-wave dominates.

Important differences between the three-state and two-state
depolarization factors appear in the behavior at small proton
momenta. Because the factors C0,C2, and CT become unity at
kT = 0,

D‖(2)d = 1 at |ppT | = 0, αp arbitrary. (6.37)

In contrast, D‖(3)d 
= 1 for |p|pT = 0 and αp arbitrary; the
value at |ppT | = 0 is unity only if αp = 1. Figure 15 shows
D‖(2)d and D‖(3)d as functions of |ppT | for several values of

FIG. 14. The deuteron depolarization factors D‖(3)d (three-state
asymmetry) and D‖(2)d (two-state asymmetry) in polarized tagged
DIS. The graph shows the depolarization factors at αp = 1 as func-
tions of |ppT |.

FIG. 15. The deuteron depolarization factors D‖(3)d (three-state
asymmetry, upper graph) and D‖(2)d (two-state asymmetry, lower
graph), as functions of |ppT |, for several values of αp. Note the
different scales on the vertical axis in the upper and lower plots.

αp. One observes that at small proton momenta the values
of D‖(2)d are much closer to unity than those of D‖(3)d . This
difference can also be seen in the expressions Eqs. (6.30) and
(6.36), when one substitutes the factors C0,C2, and CT by their
approximate forms for small c.m. momenta k � m,

C0 = 1 + O(k/m), (6.38a)

C2 = 1 − 3|kT |2
|k|2 + O(k/m), (6.38b)

CT = 1 − 3|kT |2
2|k|2 + O(k/m). (6.38c)

In this approximation,(
f0 − f2√

2

)(
C0 f0 − C2 f2√

2

)
= f 2

0 −
(

2 − 3|kT |2
|k|2

)
f0 f2√

2
+
(

1 − 3|kT |2
|k|2

)
f 2
2

2
, (6.39a)

f 2
0 + f 2

2 − CT

(
2 f0 + f2√

2

)
f2√
2

= f 2
0 −

(
2 − 3|kT |2

|k|2
)

f0 f2√
2

+
(

1 + 3|kT |2
2|k|2

)
f 2
2

2
. (6.39b)

One sees that in D‖(2)d the numerator and denominator co-
incide in terms linear in the D wave and differ only in
terms quadratic in the D wave; in D‖(3)d the numerator and
denominator differ already in terms linear in the D wave.
Consequently,

D‖(2)d = 1 + terms f 2
2 / f 2

0

D‖(3)d = 1 + terms f2/ f0

}
(|k| � m). (6.40)
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D-wave corrections affect D‖(2)d only at quadratic order at low
momenta, but D‖(3)d already at linear order.

The deviation of D‖(2)d from unity can be computed using a
simple approximate formula. At c.m. momenta k � 0.1 GeV,
the ratio of D- and S-wave functions is approximately given
by

f2(k)

f0(k)
≈ k2

λ2
, (6.41)

where λ2 ≈ 0.087 GeV2 for the AV18 wave functions [97].
Expanding the ratio of Eqs. (6.39a) and (6.39b) to first order
in f 2

2 / f 2
0 , we then obtain

D‖(2)d ≈ 1 − 9|kT |2
4|k|2

[
f2(k)

f0(k)

]2

≈ 1 − 9 |kT |2 |k|2
4(λ2)2

. (6.42)

The expression of the c.m. momentum variable in terms of the
original LF variables αp and ppT is given in Eq. (4.25).

VII. NEUTRON SPIN STRUCTURE EXTRACTION

A. Analytic properties of light-front wave function

We are now ready to study the extraction of neutron struc-
ture functions from tagged deuteron DIS measurements. In
general, for arbitrary nonzero values of the proton momentum,
the tagged cross section is modified by initial-state nuclear
binding effects beyond those included in the pn LF wave func-
tion (non-nucleonic degrees of freedom, modified nucleon
structure) and by final-state interactions beyond the IA (scat-
tering of slow hadrons in the DIS final state from the spectator
nucleon). These effects can be eliminated by pole extrapola-
tion in the proton momentum [57,77]. The method uses the
analytic properties of the deuteron wave function to select pn
configurations in the deuteron with infinite transverse sepa-
ration, in which both nuclear binding effects and final-state
interactions are suppressed. It permits model-independent ex-
traction of free neutron structure. Here we review its use in
the unpolarized case and then apply it to the polarized case.

To discuss the analytic properties in the proton transverse
momentum, we regard the deuteron wave function as a func-
tion of the invariant mass of the pn pair, Eq. (4.9b),

M2
pn = 4(|ppT |2 + m2)

αp(2 − αp)
, (7.1)

which takes values M2
pn � 4m2 for physical proton momenta.

In this variable, the wave function has a pole singularity of the
form (we suppress the spin structure for the moment)

�d (αp, ppT ) = Residue

M2
pn − M2

d

+ (less singular), (7.2)

which follows from the general properties of the LF bound-
state equation. It lies outside the physical region of proton
momenta because M2

pn � 4m2 > M2
d . The pole in the invari-

ant mass implies a pole in the transverse momentum of the

FIG. 16. The kinematic variables αp and p2
pT ≡ |ppT |2 in neutron

structure measurements with pole extrapolation. The physical region
p2

pT > 0 is shown by the shaded area. The pole position at p2
pT =

−a2
T is shown by the dashed line. The tagged structure functions are

measured at fixed αp as functions of p2
pT in the physical region as

indicated by the solid line. The measurements are then extrapolated
to the pole as indicated by the dotted line.

form

�d (αp, ppT ) = Residue

|ppT |2 + a2
T

+ (less singular), (7.3)

a2
T = a2

T (αp) ≡ m2 − αp(2 − αp)
M2

d

4
. (7.4)

It lies in the unphysical region |ppT |2 < 0 (see Fig. 16). The
pole position a2

T depends on αp. The minimum value of a2
T

occurs at αp = 1 and is

a2
T [min] = m2 − M2

d

4
= mεd + O(ε2

d

) = a2, (7.5)

where εd ≡ 2m − Md is the deuteron binding energy and
a2 ≡ mεd is the inverse squared Bethe-Peierls radius of the
deuteron.

The singularity in the transverse momentum Eq. (7.3) has
a simple physical interpretation. It is related to the asymptotic
behavior of the transverse coordinate-space wave function at
large transverse separations of the pn pair. When the trans-
verse momentum-space wave function is represented as a
Fourier transform of the transverse-coordinate wave function,
the singularity arises from the contribution of large transverse
separations rT → ∞ to the Fourier integral. In this sense,
the singularity describes the presence of pn configurations
with large (infinite) transverse separation in the deuteron wave
function at unphysical momenta. (The interpretation of the
pole in the invariant formulation in terms of Feynman dia-
grams is discussed below.)

In the representation of the deuteron LF wave function in
terms of the c.m. momentum, the invariant mass of the pn
configuration is

M2
pn = 4(|k|2 + m2). (7.6)
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FIG. 17. Coordinate-space interpretation of the pole extrapola-
tion. Left: Physical transverse momenta p2

pT > 0 correspond to pn
configurations of finite transverse separations of the order of the
order of the deuteron size. Right: The pole at p2

pT = −a2
T corresponds

to pn configurations with infinite transverse separation. The extrapo-
lation p2

pT → −a2
T effectively selects such large-size configurations.

The pole Eq. (7.2) appears through the pole of the S-wave
radial function

f0(k) =
√

m �

|k|2 + a2
+ (less singular), (7.7)

which is obtained from the three-dimensional bound state
equation and represents a general feature of the weakly bound
system. The residue � can be inferred from the nonrelativistic
approximation (see Sec. IV D).10 This again shows the close
correspondence between the LF and the nonrelativistic de-
scription of the two-body bound state.

In the large-separation pn configurations described by the
singularity Eq. (7.3), nuclear binding effects are absent, as
such configurations are outside of the range of the nucleon-
nucleon interactions. If tagged DIS could be performed in
such configurations, the IA cross section could therefore be
computed exactly in terms of the free neutron structure func-
tion. Likewise, final-state interactions would be suppressed,
since they require the active nucleon and the spectator to
be aligned along the reaction axis. In this way, one could
effectively realize DIS on the free neutron and use it to extract
free neutron structure from tagged DIS. Obviously this is not
possible in measurements at physical proton momenta, as the
singularity representing the large-separation pn configurations
lies in the unphysical region. However, the singularity can
be reached by analytic continuation in |ppT |2 to unphysical
negative values,

|ppT |2 → −a2
T . (7.8)

10In the nonrelativistic approximation of Eq. (4.34), the residue of
the relativistic wave function would involve the c.m. energy eval-
uated at the pole, E (k2 = −a2) = √

m2 − a2. We neglect the small
effect of the binding energy on the residue and set E (k2 = −a2) ≈ m.
We note that corrections to this approximation should not be inferred
from Eq. (4.34), since the factor

√
E is motivated by the normaliza-

tion condition involving large c.m. momenta.

Because the values of a2
T for α ≈ 1 are small, Eqs. (7.4)

and (7.5), the singularity is very close to the physical region
and can be reached by extrapolation in |ppT |2. This opens a
practical way of accessing noninteracting large-size pn con-
figurations in tagged DIS on the deuteron and extracting the
free neutron structure functions (see Fig. 17).11

B. Pole extrapolation of unpolarized cross section

In unpolarized tagged DIS, the free neutron structure
functions are extracted as follows. The unpolarized deuteron
spectral function Eq. (5.59a) has a pole in |ppT |2
2Sd (αp, ppT )[unpol]

2 − αp
∼ R

(|ppT |2 + a2
T )2

+ (
less singular for |ppT |2 → −a2

T

)
,

(7.9)

with residue

R ≡ R(αp) = 2α2
pm�2, (7.10)

where � is the residue of the three-dimensional wave func-
tion in Eq. (7.7). The unpolarized tagged structure functions
therefore have a pole

F[UU,T ]d (x, Q2; αp, ppT )

∼ [2(2π )3]
R(|pT |2 + a2

T

)2 F[UU,T ]n (̃x, Q2) + (less singular),

(7.11)

and similarly for F[UU,L]d . The arguments presented above
imply that this pole is a general feature of the tagged structure
function; the pole is contained completely in the IA cross
section; the residue is given by the free neutron structure
function. To extract the free neutron structure functions, one
follows these steps (see Fig. 16): (i) Measure the unpolarized
tagged DIS cross section for fixed αp as a function of |ppT |2
in the physical region |ppT |2 > 0. The ranges of these vari-
ables are chosen such that they correspond to nucleon c.m.
momenta of the order of the typical nucleon momenta in the
deuteron, |k| � 100 MeV (ideally, much smaller than that),
which implies

0.9 � αp � 1.1, 0 < |ppT | � 0.1 GeV. (7.12)

11It is important to understand that the tagged DIS cross section
is not “diagonal” in the transverse coordinate representation; i.e.,
it cannot be viewed as taking place at a fixed impact parameter in
a transversely localized deuteron state. The cross section and the
deuteron spectral function are given by the product of the deuteron
LF wave functions in the transverse momentum representation,
Eq. (6.2), which becomes a convolution integral in the transverse
coordinate representation. The production of the spectator nucleon
thus happens at different transverse positions in the amplitude and
the complex-conjugate amplitude, and the observed transverse mo-
mentum ppT is Fourier conjugate to the vector difference between
the positions. The pole extrapolation of the cross section forces both
deuteron wave functions in the convolution integral to be in large-size
configurations. Our arguments are to be understood in this sense.
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FIG. 18. Pole extrapolation of the unpolarized tagged deuteron
structure function. The plot shows the unpolarized deuteron spectral
functions with the pole factor extracted, Eq. (7.15), at fixed values
of αp, as functions of p2

pT in the physical region p2
pT > 0. Dashed

line: S-wave contribution only. Solid line: S + D waves (total). Dot-
ted line: Extrapolation to p2

pT = −a2
T . The pole positions −a2

T are
indicated by the vertical arrows above the plot.

(ii) Tabulate the measured tagged deuteron structure functions
in |ppT |2, and multiply by(|ppT |2 + a2

T

)2

R
(7.13)

to remove the pole factor. (iii) Extrapolate to |ppT |2 → −a2
T :

F[UU,T ]n (̃x, Q2) = lim
|ppT |2→−a2

T

[(|ppT |2 + a2
T

)2

R

×F[UU,T ]d (x, Q2; αp, ppT )
]
. (7.14)

In the region of |ppT | sufficiently close to zero, where there are
no other singularities besides the nucleon pole, the extrapola-
tion can be performed through a polynomial fit and is model
independent. Notice that the neutron structure function on the
left-hand side of Eq. (7.14) depends only on the effective
scaling variable x̃ = x/(2 − αp), not on x and αp individually.
This makes it possible to extract the structure function at the
same value of x̃ using measurements at different x and αp, thus
testing the extraction procedure.

Figure 18 shows the |ppT |2 dependence of the IA spectral
function with the pole factor removed,

2Sd

2 − αp

(|ppT |2 + a2
T

)2

R
, lim

|ppT |2→−a2
T

[...] = 1, (7.15)

which represents the normalized |ppT |2 dependence of the
expression in brackets in Eq. (7.14) in the IA. One observes
the following: (a) The expected variation of the expression
Eq. (7.15) over the range used for extrapolation, Eq. (7.12),

is <50%. (b) The D-wave contribution is small throughout
this range and vanishes at |ppT | = 0. (c) The extrapolation
distance increases as αp moves away from 1, because the
pole position −a2

T moves away from the physical region; see
Fig. 16 and Eq. (7.4). Note that further modifications of the
|ppT | dependence of Eq. (7.15) arise from FSI; however, they
vanish at the pole |ppT |2 → −a2

T and do not affect the result
of the extrapolation [57,77].

We have presented here the pole extrapolation in the con-
text of LF quantization, where it emerges from the analytic
properties of the deuteron LF wave function. An alternative
view is obtained in the context of the invariant formulation
of electron-deuteron scattering using Feynman diagrams with
4-momentum conservation and off-shell nucleons. There one
regards the tagged DIS cross section as a function of the
invariant 4-momentum transfer between the deuteron and the
proton,

t ′ ≡ (pd − pp)2 − m2, (7.16)

which is a function of αp and |ppT |. The kinematic variable
t ′ can be interpreted as the “off-shellness” of the active neu-
tron in the Feynman diagram sense. The e + d → e′ + X + p
cross section has a pole at t ′ = 0, corresponding to “neutron
exchange” between the deuteron breakup and the DIS process.
The residue at the pole is given by the product of the d →
p + n vertex function squared and the free on-shell neutron
structure function; this can be derived formally from general
principles of S-matrix theory (residue factorization). The pole
extrapolation of the cross section is therefore referred to as
“on-shell extrapolation.” The connection with the LF formu-
lation is established by noting that

t ′ = −2 − αp

2

(
M2

pn − M2
d

)
= − 2

αp

(|ppT |2 + a2
T

)
. (7.17)

The off-shellness in the Feynman formulation is proportional
to the invariant mass difference in the LF formulation. The
approach to the on-shell point in the Feynman formulation
corresponds to the selection of large-distance configurations
and the vanishing of binding in the LF formulation. Further
aspects of the Feynman formulation of the pole extrapolation
(absence of FSI at the pole, magnitude of FSI effects at t ′ 
= 0)
are discussed in Refs. [57,77].

C. Pole extrapolation of spin asymmetries

The neutron spin structure functions could be extracted
from the polarized tagged deuteron structure functions in the
same manner as Eq. (7.14), by performing the pole extrapola-
tion at the level of the structure functions. However, it is more
convenient to perform the extrapolation at the level of the
spin asymmetries. Advantages of this approach are as follows:
(a) the nucleon pole factors in the structure functions cancel
between the numerator and denominator of the asymmetry,
so that one does not have to remove them externally; (b) the
asymmetries overall depend only weakly on |ppT |2; and (c)
certain systematic experimental uncertainties cancel between
the numerator and denominator.
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FIG. 19. Pole extrapolation of the deuteron depolarization factor
D‖(2)d . Solid line: D‖(2)d at αp = 1 as a function of p2

pT in the phys-
ical region p2

pT > 0, evaluated using Eq. (6.36). Dashed line: Same
function for αp = 1.06. Dotted line: D‖(2)d in the unphysical region
p2

pT < 0, evaluated using Eq. (7.19). The functions for the two values
of αp are practically the same and show up as a the single dotted line
in the plot. The positions of the pole at p2

pT = −a2
T for the two values

of αp are indicated by the two vertical arrows.

For the neutron spin structure extraction, we use the two-
state asymmetry, in which the deuteron structure effects at
small proton momenta cancel to a higher degree than in the
three-state asymmetry (see Sec. VI D). In the IA, which con-
tains the pole terms in the cross sections and becomes exact at
the pole, the asymmetry is given by Eq. (6.33a),

A‖(2)d (x, Q2; αp, ppT ) = D‖(2)d (αp, ppT )A‖n (̃x, Q2). (7.18)

The |ppT | dependence of the deuteron depolarization factor
D‖(2)d near the pole can be determined from the explicit
expression in terms of the c.m. momentum, Eq. (6.36), by
expanding in |ppT |/m, counting the binding energy as εd/m ∼
|ppT |/m, and retaining only the S-wave radial wave function,

D‖(2)d (αp, |ppT |2)

= 1 + (αp − 1)2

2(2 − αp)

+ 1

2(2 − αp)

[
1 − (αp − 1)2

4

][
εd

m
− |ppT |2 + a2

T

αp(2 − αp)m2

]

+ terms

{(|ppT |2 + a2
T

)2

m4
,

(mεd )2

m4
,

mεd
(|ppT |2 + a2

T

)
m4

}
.

(7.19)

The approximate expression is valid in the physical and un-
physical regions and can be used in the extrapolation.

Figure 19 shows D‖(2)d at fixed αp as a function of |ppT |2,
including the physical region |ppT |2 > 0, where it is evalu-
ated using Eq. (6.36), and the unphysical region |ppT |2 < 0,

where it is approximated by Eq. (7.19). One observes the
following: (a) The deviations of D‖(2)d from unity are �5%
for 0 < |ppT |2 < 0.01 GeV2, the range typically used for pole
extrapolation. (b) The approximate expression in the unphys-
ical region matches well with the exact result in the physical
region at the boundary |ppT |2 = 0. (c) The values of D‖(2)d at
the pole are very close to unity, |D‖(2)d (|ppT |2 = −a2

T ) − 1| �
0.01 for |αp − 1| < 0.1.

To extract the neutron spin asymmetry, one should measure
the deuteron two-state asymmetry A‖(2)d (x, Q2; αp, ppT ) at
fixed αp over a range of |ppT | down to |ppT | = 0, tabulate the
result in |ppT |2, and extrapolate to |ppT |2 → −a2

T . Because of
the very weak expected |ppT |2 dependence, the extrapolation
should be performed by fitting it with a constant (zeroth-order
polynomial); deviations from the constant would be difficult
to reproduce through a higher order polynomial because of
their complex |ppT |2 dependence (instabilities) and are likely
beyond the accuracy of any measurement. The neutron asym-
metry is then obtained as

A‖n (̃x, Q2) =
lim|ppT |2→−a2

T
A‖(2)d (x, Q2; αp, ppT )

D‖(2)d
(
αp, |ppT |2 = −a2

T

) , (7.20)

where the denominator is given by Eq. (7.19) at the pole

D‖(2)d
(
αp, |ppT |2 = −a2

T

)
= 1 + 1

2(2 − αp)

{
(αp − 1)2 +

[
1 − (αp − 1)2

4

]
εd

m

}
≈ 1 + 1

2(2 − αp)

[
(αp − 1)2 + εd

m

]
. (7.21)

A similar extrapolation procedure could be formulated for the
three-state asymmetry A‖(3)d , Eq. (6.28c).

VIII. SUMMARY AND PERSPECTIVE

We have presented a theoretical framework for polarized
electron-deuteron DIS with spectator nucleon tagging, suit-
able for measurements with a future EIC. It includes the
general form of the observables (cross sections, spin asymme-
tries), the description of nuclear structure in the high-energy
process (LF quantization, deuteron LF wave function, spin ef-
fects, nucleon momentum distributions, IA), and the prospects
for neutron structure extraction (proton momentum depen-
dence, pole extrapolation). We now summarize the main
theoretical and practical conclusions of our work and suggest
directions for further study.

The main theoretical conclusions, related to the description
of polarized deuteron structure in LF quantization, are the
following:

(a) Advantages of four-dimensional formulation of LF spin
structure. The four-dimensional formulation of the deuteron
LF spin structure offers several advantages compared to the
three-dimensional one. It avoids the use of explicit Melosh
rotations, permits efficient evaluation of the spin sums as
bispinor traces, and deals with expressions whose form is
familiar from covariant field theory (neutron density matrix,
polarization 4-vector). Rotational invariance is ensured by
the constraints resulting from the covariant dependence of
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the neutron polarization 4-vector on the deuteron polarization
4-vector.

(b) Simplicity of c.m. momentum variable. The use of the
c.m. momentum variable in the two-body LF wave function
further simplifies the calculation and interpretation of the
results. It produces expressions that have a form similar to
the nonrelativistic wave function and densities and exhibit
three-dimensional rotational symmetry (angular momentum
content, S and D waves). The fact that the pn c.m. frame is
related to the deuteron rest frame by a collinear boost permits
an extremely simple representation of the spin structure, in
which the deuteron polarization three-vector and three-tensor
in the rest frame directly determine the three-dimensional
vector and tensor polarization of the pn configuration in the
c.m. frame.

(c) Coordinate-space picture of LF wave function pole. The
pole in the deuteron LF wave function describes the behavior
of the two-body system at asymptotically large transverse
distances and fixed LF momenta. This interpretation explains
both the absence of nuclear binding at the pole and the ab-
sence of FSI in scattering processes after extrapolation to the
unphysical pole kinematics. It appears naturally in LF quan-
tization and is alternative to the interpretation as a mass-shell
singularity (nucleon pole) in the Feynman formulation.

The main practical conclusions, related to the results for
tagged DIS observables and the prospects for neutron struc-
ture extraction, are the following:

(d) Control of D-wave through tagged proton momen-
tum. The D-wave contribution to the polarized cross section
is controlled by the proton momentum and is absent at
zero transverse momentum, |ppT | = 0, for any longitudinal
momentum αp. This remarkable feature is due to the LF
description of the deuteron’s spin structure, which permits
relativistic spin rotations of the three-dimensional D wave
only at nonzero transverse momentum. It offers a practical
way to eliminate the D-wave depolarization and reduce the
quantum system to a completely polarized configuration.

(e) Neutron spin structure extraction from two-state spin
asymmetry. The neutron spin structure function g1n can be
extracted efficiently from the tagged deuteron spin asymmetry
between the two longitudinal spin states with projection ±1
only. The fact that the spin state with projection 0 is not
needed represents an important simplification, as the system-
atic uncertainties in the preparation of the ±1 states are likely
correlated and cancel in the asymmetry. While the two-state
asymmetry appears theoretically more complex because it
involves tensor polarization in the denominator, it is in fact
a simpler observable than the three-state asymmetry.

(f) Simple pole extrapolation. The two-state spin asymme-
try depends only weakly on the proton transverse momentum;
the variation is �5% for |ppT | < 100 MeV. The pole ex-
trapolation can therefore safely be performed by fitting
with a constant, with very small theoretical corrections.
Altogether, our results provide a practical procedure for ex-
tracting neutron spin structure from future polarized tagged
measurements with minimal theoretical and experimental
uncertainties.

The methods developed in this work can be applied to
other types of tagged DIS measurements on the deuteron. This

includes the following: (a) Measurements of tensor-polarized
tagged cross sections or spin asymmetries, with the aim to
extract the leading-twist tensor-polarized structure functions
F[UTLL,T ]d and F[UTLL,L]d . The IA formulas for these observ-
ables can easily be obtained by combining the expressions
given in Secs. III and VI. (b) Measurements of the vector-
polarized transverse spin asymmetries, with the aim to extract
the power-suppressed tagged spin structure functions F[LST ]d

or g2d . The IA formulas for these observables can be derived
from the general expressions given in Secs. III and VI. The
calculation of these power-suppressed structure requires an
assessment of the interaction effects in the T components
of the LF current operator (see comments in Sec. VI A). (c)
Measurements of the azimuthal angle (φp) dependence of
the polarized tagged cross section. Such measurements can
offer new ways to probe the φp-integrated structure func-
tions considered in the present study. They can also access
the numerous φp-dependent responses sensitive to spin-orbit
effects in the deuteron breakup, including time-reversal-odd
(T -odd) structures that are zero in the IA and require FSI.
The general form of the polarized tagged DIS cross section
including the azimuthal angle dependence, and the LF calcu-
lation of the corresponding tagged structure functions, will be
described in a forthcoming article [82]. (d) Measurements of
exclusive processes in tagged high-energy scattering on the
deuteron, such as deeply-virtual Compton scattering (DVCS)
or hard exclusive meson production, with the aim of extract-
ing the generalized parton distributions of the neutron; see
Refs. [101–103] for a review. (e) Studies of spin effects in
deuteron breakup in diffractive high-energy scattering with
tagged nucleons [104].

The methods and results described here can also be applied
to study the nuclear modifications of partonic spin structure
(polarized EMC effect, antishadowing, shadowing) and its
dynamical origin. Spectator tagging effectively controls the
size of the pn configuration during the DIS processes and
can therefore provide insight into the dynamical origin of the
nuclear modifications (dependence on the distance between
the interacting nucleons, connection with short-range NN cor-
relations). Such studies require tagged measurements at larger
proton momenta |ppT | ≈ 300–600 MeV, where FSI effects
are generally of the same order as the IA cross sections. FSI
effects in unpolarized tagged DIS at x � 0.1 were studied
in Ref. [77]; the results could be extended to polarized DIS
with appropriate dynamical input (spin-dependent nucleon
fragmentation). Investigations of the EMC effect with spec-
tator tagging might be possible in kinematic regions where
the FSI effects are approximately independent of the proton
momentum, so that they cancel in ratio observables (backward
region, spectator momentum opposite to the q vector in the
deuteron rest frame). How such studies could be extended to
polarization observables and the spin-dependent EMC effect
is an interesting question for further study.

The techniques used in the present study could in principle
be extended to describe high-energy scattering on more com-
plex light nuclei (A > 2) with detection of the nuclear breakup
state, e.g., DIS on A = 3 nuclei with quasi-two-body breakup,
e + 3He(3H) → e′ + X + d . Such measurements could be
used to extract proton and neutron structure with tagging
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(testing the universality) and to investigate the isospin depen-
dence of nuclear modifications. The theoretical description of
breakup processes with A > 2 nuclei is much more challeng-
ing than spectator nucleon tagging with the deuteron because
(a) the initial state is much more complex (three-body system,
NN pairs with isospin 0 and 1); (b) the nuclear remnant in the
final state is a multinucleon system with internal degrees of
freedom on the nuclear scale (bound states, scattering states);
and (c) the amplitude for the nuclear breakup in the high-
energy process generally involves multiple trajectories with
different possibilities of FSI. The matching of the high-energy
scattering process and low-energy nuclear structure in these
reactions is therefore much more complex and requires a
genuine interdisciplinary effort.
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APPENDIX A: LIGHT-FRONT HELICITY SPINORS

In this Appendix, we present the explicit expressions of
the bispinors describing nucleon LF helicity states, which are
used in the covariant formulation of the deuteron LF wave
function (cf. Sec. IV). We describe the bispinors for both
canonical and LF helicity states, and the Melosh rotation re-
lating them. We derive the expressions for the positive-energy
(u) spinors; the negative-energy (v) spinors are then obtained
by applying the charge conjugation transformation. This en-
sures that they are defined consistently for both types of spin
states.

A spin-1/2 particle with mass m and 4-momentum p is
described by a bispinor wave function u(p, λ) satisfying

(pγ − m)u = 0, (A1a)

ū(p, λ′) u(p, λ) = 2m δ(λ′, λ), (A1b)∑
λ

u(p, λ) ū(p, λ) = pγ + m. (A1c)

Here λ = ±1/2 denotes a generic spin quantum number
characterizing the states. For canonical spin states, obtained
by ordinary boosts of the bispinor at rest to the desired 3-
momentum p, the bispinor is of the form (in the standard
representation of the γ matrices)

ucan(p, λ) =
(√

E + m
√

E − mpσ/|p|

)
χ (λ), (A2)

where σ = (σ 1, σ 2, σ 3) are the Pauli matrices and χ (λ) is the
two-component spinor describing the spin wave function of
the particle at rest,

χ†(λ′)χ (λ) = δ(λ′, λ). (A3)

For LF helicity states, obtained by a LF boosts of the bispinor
at rest to the desired LF momentum p+ and pT , the bispinor is
of the form

uLF(p, λ) = 1√
2p+ [p+γ − + (m − pT γT )γ +]

(
χ (λ)

0

)
(A4a)

= 1√
2p+

(
p+ + m + pT σT σ 3

σ 3(p+ − m − pT σT σ 3)

)
χ (λ), (A4b)

where again χ (λ) describes the spin wave function of the par-
ticle at rest. The bispinors Eqs. (A2) and (A4) are related by a
rotation (Melosh rotation). This rotation can be implemented
as a transformation acting on the rest-frame 2-spinor,

uLF(p, λ) =
(√

E + m
√

E − mpσ/|p|

)
U (p) χ (λ) (A5a)

= ucan(p, λ)[χ (λ) → U (p)χ (λ)], (A5b)

where U is a unitary matrix in 2-spinor indices,

U (p) ≡ p+ + m + pT σT σ 3√
2p+√

E + m
, U†U = 1. (A6)

In this interpretation, the LF bispinor is equal to the canonical
bispinor with the same momentum, in which the rest-frame
2-spinor has been rotated by the matrix U . Alternatively, the
relation between the bispinors Eqs. (A2) and (A4) can be
expressed as a transformation acting on the spin quantum
numbers. Using the completeness of the two-spinor basis, one
can write

Ui j (p)χ j (λ) =
∑
λ′

χ i(λ′)χ k∗(λ′)Uk j (p)χ j (λ)

≡
∑
λ′

χ i(λ′)U (p, λ′, λ), (A7a)

U (p, λ′, λ) ≡ χ k∗(λ′)Uk j (p)χ j (λ)

= χ†(λ′)U (p)χ (λ), (A7b)

uLF(p, λ) =
∑
λ′

ucan(p, λ′)U (p, λ′, λ). (A7c)

The function U (p, λ′, λ) represents the “matrix element” of
the “operator” U between the spin states with quantum num-
bers λ′ and λ (note that the order of the arguments λ′ and
λ is important in this and the following expressions). In this
interpretation, the LF bispinor is equal to a certain combina-
tion of the canonical spinors corresponding to the same set of
rest-frame spin quantum numbers.

The unitary matrix Eq. (A6) is a function of the momentum
of the state (expressed either in terms of its ordinary or the LF
vector components) and satisfies

U†(p+, pT ) = U (p+, pT → −pT ), (A8a)

U (p+, pT = 0) = 1. (A8b)
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For zero transverse momentum, the LF spinors coincide with
the canonical ones, because in both cases only longitudinal
boosts (along the z axis) are involved in the preparation of the
states (see Fig. 4).

The conjugate bispinors are defined as

ū ≡ u†γ 0 (A9)

for both canonical and LF spin states; their explicit expres-
sions can be obtained by taking the Hermitean conjugate of
Eqs. (A2) and (A4) and multiplying with γ 0 in the standard
representation. The relation between the canonical and LF
conjugate spinors is

ūLF(p, λ) = ūcan(p, λ)[χ†(λ) → χ†(λ)U†(p)] (A10a)

=
∑
λ′

ūcan(p, λ′)U ∗(p, λ′, λ). (A10b)

Antiparticle states are described by the bispinor wave func-
tion v(p, λ) satisfying [cf. Eq. (A1)]

(pγ + m)v = 0, (A11a)

v̄(p, λ′) v(p, λ) = −2m δ(λ′, λ), (A11b)∑
λ

v(p, λ) v̄(p, λ) = pγ − m. (A11c)

It is convenient to define the specific form of these spinors
such that they correspond to the result of a charge conjugation
transformation (with a unique phase factor) applied to the
particle spinors. The transformation is of the form

v(p, λ) = CūT (p, λ) = C(γ 0)T u∗(p, λ), (A12)

where the bispinor matrix C satisfies the conditions

C(γ μ)T = −γ μC, CT = −C, C†C = 1. (A13)

These conditions specify the form of the matrix C up to a
phase factor. We choose the phase factor such that (in the
standard representation of the γ matrices)

C ≡ iγ 2γ 0 =
( −iσ 2

−iσ 2

)
, C† = −C. (A14)

With this choice, the v-spinors for canonical spin states are
obtained as

vcan(p, λ) =
(√

E − mpσ/|p|
√

E + m

)
(−iσ 2)χ∗(λ), (A15)

where we have used the identity

σ 2σ∗σ 2 = −σ. (A16)

The two-component spinor χ∗(λ) describes the spin wave
function of the antiparticle in the rest frame. The v spinors
for the LF spin states are obtained as

vLF(p, λ) = 1√
2p+

(
σ 3(p+ − m − pT σT σ 3)

p+ + m + pT σT σ 3

)
(−iσ 2)χ∗(λ).

(A17)

The relation between the canonical and LF v spinors is then

vLF(p, λ) = vcan(p, λ)[χ∗(λ) → U∗(p)χ∗(λ)] (A18a)

=
∑
λ′

vcan(p, λ′)U ∗(p, λ′, λ). (A18b)

Notice that the unitary matrix Eq. (A6) satisfies

σ 2U∗σ 2 = U , (A19)

which follows from Eq. (A16) and relates the formulas for the
u and v spinors in Eqs. (A5b) and (A18a). Equation (A18b)
follows directly from the definition Eq. (A12).

We have presented the formulas for canonical and LF
bispinors for a general spin wave function of the particle at
rest, described by the 2-spinors χ (λ). This has helped us
distinguish the two implementations of the Melosh rotation, as
acting on the bispinor wave function or the spin quantum num-
bers, Eqs. (A5) and (A7), especially when complex-conjugate
spinors are involved. The set of spinors χ (λ = ± 1

2 ) can be
quantized along any fixed direction. In the LF helicity states
in the proper sense (cf. Sec. IV A) the spinors are quantized
along the z axis, i.e., chosen as eigenspinors of σ 3,

χ
(
λ = 1

2

) =
(1

0

)
, χ

(
λ = − 1

2

) =
(0

1

)
. (A20)

With this choice of spinors, the function U (p, λ′, λ) in
Eq. (A7b) formally coincides with the element of the matrix
U (p), Eq. (A6), indexed by λ′ and λ, with ( 1

2 ,− 1
2 ) identified

with the matrix indices (1, 2),

U (p, λ′, λ) = Uλ′λ(p). (A21)

When using this compact notation one needs to be careful
regarding the order of the matrix indices. In the calculations
in Appendix B, we use the form with the general 2-spinors,
which is more transparent.

For reference, we note that the u spinors of Eq. (A4), with
the 2-spinors chosen as in Eq. (A20) coincide with the u
spinors of Refs. [79,105] (Lepage-Brodsky convention). The
v spinors of Eq. (A17) differ from those of Refs. [79,105] by
a minus sign. Note that the phase of our v spinors is deter-
mined by our convention for the charge conjugation matrix,
Eq. (A14).

APPENDIX B: DEUTERON LIGHT-FRONT
WAVE FUNCTION

In this Appendix, we present the deuteron LF wave func-
tion in the three-dimensional representation in the c.m. frame
and demonstrate its equivalence to the four-dimensional rep-
resentation of Sec. IV B. In particular, we derive the relation
between the radial wave functions in the 3-dimensional rep-
resentation and the invariant functions in the 4-dimensional
representation, Eq. (4.31).

In the c.m. frame of the pn configuration, the proton and
neutron 3-momenta (ordinary vector components) are equal
and opposite, Eq. (4.24),

pp[c.m.] = (E , k), pn[c.m.] = (E ,−k), (B1)

065204-42



POLARIZED ELECTRON-DEUTERON DEEP-INELASTIC … PHYSICAL REVIEW C 102, 065204 (2020)

and the configuration is specified by the 3-momentum k.
In this frame, the LF wave function can be constructed
as a three-dimensional wave function in the variable k.
One first constructs a three-dimensional relativistic wave

function in canonical spin states, which couples the or-
bital motion in k with the canonical spin degrees of
freedom, and then applies the Melosh rotation to convert
from canonical to LF helicity states. The result is [81]

�d (αp, ppT ; λp, λn|λd ) =
∑
λ′

p,λ′
n

�̃d (k, λ′
n, λ

′
p|λd )U ∗(k, λ′

p, λp)U ∗(−k, λ′
n, λn), (B2a)

�̃d (k, λ′
n, λ

′
p|λd ) = 1√

2
εi

d (λd )

[
δi j f0(k) + 1√

2

(
3kik j

k2
− δi j

)
f2(k)

]
χ†(λ′

n)[σ j (iσ 2)] χ∗(λ′
p), (B2b)

U (k, λ′
p, λp) ≡ U (pp, λ

′
p, λp)[c.m.] = χ†(λ′

p)

[
E + k3 + m + kT σT σ 3√

2(E + k3)(E + m)

]
χ (λp), (B2c)

U (−k, λ′
n, λn) ≡ U (pn, λ

′
n, λn)[c.m.] = χ†(λ′

n)

[
E − k3 + m − kT σT σ 3√

2(E − k3)(E + m)

]
χ (λn). (B2d)

�̃d in Eq. (B2b) is the three-dimensional relativistic wave function in the c.m. momentum k and the canonical spin variables λ′
p

and λ′
n. The 3-vector εd is the polarization 3-vector of the pn configuration in the c.m. frame [which is identical to the deuteron

polarization 3-vector in the deuteron rest frame, cf. Eq. (4.28)], and the 2-spinors χ describe the spin wave function of the proton
and neutron at rest. �̃d includes the S and D waves of the orbital motion. It has the same form as the nonrelativistic deuteron
wave function; the only difference is in the normalization of the radial wave functions [77,81],

4π

∫
dk k2

E (k)

[
f 2
0 (k) + f 2

2 (k)
] = 1. (B3)

The functions U in Eqs. (B2c) and (B2d) are the Melosh rotations, Eq. (A7b), associated with the proton and neutron 4-momenta
in the c.m. frame, Eq. (B1) (we regard them here as functions of the 3-vector k). They connect the canonical spin variables λ′

p

and λ′
n with the LF helicities λp and λn. The functions U enter in Eq. (B2a) as their complex conjugates, because the proton and

neutron states are described by complex-conjugate spinors (the wave function corresponds to the 〈pn|d〉 matrix element).
The three-dimensional representation of the LF wave function, Eq. (B2), is equivalent to the four-dimensional representation

of Eqs. (4.6) and (4.15),

�d (αp, ppT ; λp, λn|λd ) = ūLF(pn, λn) [γαG1 + (pp − pn)αG2] vLF(pp, λp)εα
pn(ppn, λd )

[
G1,2 ≡ G1,2

(
M2

pn

)]
. (B4)

This can be demonstrated using the invariance properties of the four-dimensional expressions. The bilinear forms in Eq. (B4) are
Lorentz invariants and can therefore be evaluated with the 4-vectors and bispinors in any collinear frame. Specifically, we may
evaluate them with the 4-vectors and bispinors in the c.m. frame,

ūLF(pn, λn)γαvLF(pp, λp)εα
pn(ppn, λd )[any coll. frame] = ūLF(pn, λn)γαvLF(pp, λp)εα

pn(ppn, λd )[c.m.], (B5a)

ūLF(pn, λn)vLF(pp, λp)(pp − pn)αεα
pn(ppn, λd )[any coll.] = ūLF(pn, λn)vLF(pp, λp)(pp − pn)αεα

pn(ppn, λd )[c.m.]. (B5b)

The LF bispinors in the c.m. frame can be expressed in terms of the canonical bispinors in the c.m. frame and the Melosh
rotations corresponding to the c.m. momentum [cf. Eqs. (A10b) and (A18b)],

ūLF(pn, λn)[c.m.] =
∑
λ′

n

ūcan(pn, λ
′
n)U ∗(pn, λ

′
n, λn)[c.m.]

=
∑
λ′

n

ūcan(pn, λ
′
n)[c.m.]U ∗(−k, λ′

n, λn), (B6a)

vLF(pp, λp)[c.m.] =
∑
λ′

p

vcan(pp, λ
′
p)U ∗(pp, λ

′
n, λn)[c.m.]

=
∑
λ′

p

vcan(pp, λ
′
p)[c.m.]U ∗(k, λ′

n, λn), (B6b)

where the k-dependent functions in the last expressions are the ones given in Eqs. (B2d) and (B2c). Substituting the specific
expressions of Eqs. (B5) and (B6) in Eq. (B4), and comparing with Eq. (B2), one sees that the four-dimensional wave function
coincides with the three-dimensional one, provided that the three-dimensional canonical wave function �̃d in Eq. (B2a) can be
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identified as

�̃d (k, λ′
n, λ

′
p|λd )

!= ūcan(pn, λ
′
n) [γαG1 + (pp − pn)αG2] vcan(pp, λ

′
p)εα

pn(ppn, λd )[c.m.], (B7)

which is the same four-dimensional bilinear form as in Eq. (B4) but evaluated with the canonical bispinors in the c.m. frame.
To show that the identification Eq. (B7) is possible, we need to express the bilinear form in terms of the two-component spinors
and match it with the explicit form of Eq. (B2b). The canonical bispinors in the c.m. frame are given by the general expressions
Eqs. (A2) and (A15), evaluated with the c.m. 4-momenta of Eq. (B1). The components of the pn spin 4-vector in the c.m. frame
are given by Eq. (4.28),

εα
pn(ppn, λd )[c.m.] = (0, εd ). (B8)

Reducing the bilinear forms in Eq. (B7) to two-component form, we get

ucan(pn, λ
′
n)vcan(pp, λ

′
p)[c.m.] = χ†(λ′

n)[−2k · σ] (iσ 2) χ∗(λ′
p), (B9a)

ucan(pn, λ
′
n)γ ivcan(pp, λ

′
p)[c.m.] = χ†(λ′

n)

[
−2Eσ i + 2(E − m)

kik · σ

k2

]
(iσ 2) χ∗(λ′

p), (B9b)

ucan(pn, λ
′
n)γ 0vcan(pp, λ

′
p)[c.m.] = 0. (B9c)

Altogether, Eq. (B7) becomes

�̃d (k, λ′
n, λ

′
p|λd )

!= εi
d (λd ) χ†(λ′

n)

{[
2Eσ i − 2(E − m)

kik · σ

k2

]
G1 + 4kik · σG2

}
(iσ 2) χ∗(λ′

p) (B10)

The expression on the right-hand side has the same structure as Eq. (B2b). Matching the coefficients of the S- and D-wave
tensor structures, we obtain the relation of Eq. (4.31),

G1 = 1

4E
(
√

2 f0 − f2), (B11a)

G2 = 1

8Ek2
[
√

2(E − m) f0 + (2E + m) f2]
[
G1,2 ≡ G1,2

(
M2

pn

)
, f0,2 ≡ f0,2(k)

]
, (B11b)

where the arguments are related by [cf. Eq. (4.25)]

M2
pn = 4E2 = 4(|k|2 + m2). (B12)

This completes the proof of equivalence of the three-dimensional and four-dimensional representations of the deuteron LF wave
function and determines the four-dimensional invariant functions in terms of the three-dimensional radial wave functions.
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[16] C. Ayala, G. Cvetič, A. V. Kotikov, and B. G. Shaikhatdenov,
Eur. Phys. J. C 78, 1002 (2018).

[17] A. Deur, S. J. Brodsky, and G. F. de Teramond, Prog. Part.
Nucl. Phys. 90, 1 (2016).

[18] J. D. Bjorken, Phys. Rev. D 1, 1376 (1970).
[19] V. M. Braun and A. Kolesnichenko, Nucl. Phys. B 283, 723

(1987).
[20] I. I. Balitsky, V. M. Braun, and A. V. Kolesnichenko,

Phys. Lett. B 242, 245 (1990); 318, 648(E)
(1993).

[21] E. Stein, P. Gornicki, L. Mankiewicz, and A. Schafer, Phys.
Lett. B 353, 107 (1995).

[22] J. Balla, M. V. Polyakov, and C. Weiss, Nucl. Phys. B 510, 327
(1998).

065204-44

https://doi.org/10.1016/0370-1573(95)00011-5
https://doi.org/10.1016/S0370-1573(97)00003-3
https://doi.org/10.1088/0034-4885/73/1/016201
https://doi.org/10.1016/j.ppnp.2009.02.001
https://doi.org/10.1103/RevModPhys.85.655
https://doi.org/10.1103/PhysRevD.80.034030
https://doi.org/10.1103/PhysRevD.82.114018
https://doi.org/10.1016/j.nuclphysb.2010.08.005
https://doi.org/10.1016/j.nuclphysb.2014.08.008
https://doi.org/10.1103/PhysRevD.93.074005
https://doi.org/10.1016/S0550-3213(97)00201-0
https://doi.org/10.1103/PhysRevD.81.016010
https://doi.org/10.1103/PhysRevLett.104.132004
https://doi.org/10.1103/PhysRevD.90.012009
https://doi.org/10.1103/PhysRevD.94.014006
https://doi.org/10.1103/PhysRevD.100.056007
https://doi.org/10.1140/epjc/s10052-018-6490-9
https://doi.org/10.1016/j.ppnp.2016.04.003
https://doi.org/10.1103/PhysRevD.1.1376
https://doi.org/10.1016/0550-3213(87)90295-1
https://doi.org/10.1016/0370-2693(90)91465-N
https://doi.org/10.1016/0370-2693(93)90468-W
https://doi.org/10.1016/0370-2693(95)00544-U
https://doi.org/10.1016/S0550-3213(98)81017-1


POLARIZED ELECTRON-DEUTERON DEEP-INELASTIC … PHYSICAL REVIEW C 102, 065204 (2020)

[23] Z.-E. Meziani, W. Melnitchouk, J.-P. Chen, S. Choi, T. Averett,
G. Gates, C. W. de Jager, A. Deur, H. Gao, F. Garibaldi et al.,
Phys. Lett. B 613, 148 (2005).

[24] A. V. Sidorov and C. Weiss, Phys. Rev. D 73, 074016 (2006).
[25] M. Anselmino, M. Boglione, U. D’Alesio, S. Melis, F. Murgia,

and A. Prokudin, Phys. Rev. D 81, 034007 (2010).
[26] M. Anselmino, M. Boglione, U. D’Alesio, S. Melis, F. Murgia,

and A. Prokudin, Phys. Rev. D 89, 114026 (2014).
[27] P. L. Anthony, R. G. Arnold, H. R. Band, H. Borel, P. E.

Bosted, V. Breton, G. D. Cates, T. E. Chupp, F. S. Dietrich,
J. Dunne et al., Phys. Rev. D 54, 6620 (1996).

[28] K. Abe, T. Akagi, P. L. Anthony, R. Antonov, R. G. Arnold, T.
Averett, H. R. Band, J. M. Bauer, H. Borel, P. E. Bosted et al.,
Phys. Rev. D 58, 112003 (1998).

[29] K. Abe, T. Akagi, B. D. Anderson, P. L. Anthony, R. G.
Arnold, T. Averett, H. R. Band, C. M. Berisso, P. Bogorad,
H. Borel et al., Phys. Rev. Lett. 79, 26 (1997).

[30] K. Abe, T. Akagi, B. D. Anderson, P. L. Anthony, R. G.
Arnold, T. Averett, H. R. Band, C. M. Berisso, P. Bogorad,
H. Borel et al., Phys. Lett. B 404, 377 (1997).

[31] P. L. Anthony, R. G. Arnold, T. Averett, H. R. Band, M. C.
Berisso, H. Borel, P. E. Bosted, S. L. Bültmann, M. Buenerd,
T. E. Chupp et al., Phys. Lett. B 458, 529 (1999).

[32] P. L. Anthony, R. G. Arnold, T. Averett, H. R. Band, M. C.
Berisso, H. Borel, P. E. Bosted, S. L. Bültmann, M. Buenerd,
T. E. Chupp et al., Phys. Lett. B 463, 339 (1999).

[33] P. L. Anthony, R. G. Arnold, T. Averett, H. R. Band, M. C.
Berisso, H. Borel, P. E. Bosted, S. L. Bültmann, M. Buenerd,
T. E. Chupp et al., Phys. Lett. B 493, 19 (2000).

[34] P. L. Anthony, R. G. Arnold, T. Averett, H. R. Band,
N. Benmouna, W. Boeglin, H. Borel, P. E. Bosted, S. L.
Bültmann, G. R. Court et al., Phys. Lett. B 553, 18 (2003).

[35] K. Ackerstaff, A. Airapetian, I. Akushevich, N. Akopov, M.
Amarian, E. C. Aschenauer, R. Avakian, H. Avakian, A.
Avetissian, B. Bains et al., Phys. Lett. B 404, 383 (1997).

[36] A. Airapetian, N. Akopov, Z. Akopov, A. Andrus, E. C.
Aschenauer, W. Augustyniak, R. Avakian, A. Avetissian, E.
Avetissian, S. Belostotski et al., Phys. Rev. D 75, 012007
(2007).

[37] B. Adeva, T. Akdogan, E. Arik, A. Arvidson, B. Badelek, G.
Bardin, G. Baum, P. Berglund, L. Betev, I. G. Bird et al., Phys.
Rev. D 58, 112001 (1998).

[38] V. Yu. Alexakhin, Yu. Alexandrov, G. D. Alexeev, M. Alexeev,
A. Amoroso, B. Badelek, F. Balestra, J. Ball, J. Barth, G. Baum
et al., Phys. Lett. B 647, 8 (2007).

[39] M. Alekseev, V. Yu. Alexakhin, Yu. Alexandrov, G. D.
Alexeev, A. Amoroso, A. Austregesilo, B. Badelek, F.
Balestra, J. Ball, J. Barth et al., Phys. Lett. B 680, 217 (2009).

[40] C. Adolph, M. Aghasyan, R. Akhunzyanov, M. G. Alexeev,
G. D. Alexeev, A. Amoroso, V. Andrieux, N. V. Anfimov, V.
Anosov, K. Augsten et al. (COMPASS Collaboration), Phys.
Lett. B 769, 34 (2017).

[41] X. Zheng, K. Aniol, D. S. Armstrong, T. D. Averett, W.
Bertozzi, S. Binet, E. Burtin, E. Busato, C. Butuceanu, J.
Calarco et al., Phys. Rev. C 70, 065207 (2004).

[42] M. Posik, D. Flay, D. S. Parno, K. Allada, W. Armstrong, T.
Averett, F. Benmokhtar, W. Bertozzi, A. Camsonne, M. Canan
et al., Phys. Rev. Lett. 113, 022002 (2014).

[43] Y. Prok, P. Bosted, N. Kvaltine, K. P. Adhikari, D. Adikaram,
M. Aghasyan, M. J. Amaryan, M. D. Anderson, S. Anefalos

Pereira, H. Avakian et al., Phys. Rev. C 90, 025212
(2014).

[44] J. P. Chen, A. Deur, S. Kuhn, and Z. E. Meziani, J. Phys.: Conf.
Ser. 299, 012005 (2011).

[45] S. Malace, D. Gaskell, D. W. Higinbotham, and I. Cloet, Int.
J. Mod. Phys. E 23, 1430013 (2014).

[46] L. L. Frankfurt and M. I. Strikman, Phys. Rep. 160, 235
(1988).

[47] M. Arneodo, Phys. Rep. 240, 301 (1994).
[48] C. Ciofidegli Atti, S. Scopetta, E. Pace, and G. Salme, Phys.

Rev. C 48, R968 (1993).
[49] W. Melnitchouk, G. Piller, and A. W. Thomas, Phys. Lett. B

346, 165 (1995).
[50] S. A. Kulagin, W. Melnitchouk, G. Piller, and W. Weise, Phys.

Rev. C 52, 932 (1995).
[51] G. Piller, W. Melnitchouk, and A. W. Thomas, Phys. Rev. C

54, 894 (1996).
[52] L. Frankfurt, V. Guzey, and M. Strikman, Phys. Lett. B 381,

379 (1996).
[53] F. R. P. Bissey, V. A. Guzey, M. Strikman, and A. W. Thomas,

Phys. Rev. C 65, 064317 (2002).
[54] J. J. Ethier and W. Melnitchouk, Phys. Rev. C 88, 054001

(2013).
[55] J. L. Friar, B. F. Gibson, G. L. Payne, A. M. Bernstein, and

T. E. Chupp, Phys. Rev. C 42, 2310 (1990).
[56] L. L. Frankfurt and M. I. Strikman, Phys. Rep. 76, 215 (1981).
[57] M. Sargsian and M. Strikman, Phys. Lett. B 639, 223 (2006).
[58] N. Baillie, S. Tkachenko, J. Zhang, P. Bosted, S. Bültmann,

M. E. Christy, H. Fenker, K. A. Griffioen, C. E. Keppel, S.
E. Kuhn et al. (CLAS Collaboration), Phys. Rev. Lett. 108,
142001 (2012); 108, 199902(E) (2012).

[59] S. Tkachenko, N. Baillie, S. E. Kuhn, J. Zhang, J. Arrington,
P. Bosted, S. Bültmann, M. E. Christy, D. Dutta, R. Ent et al.
(CLAS Collaboration), Phys. Rev. C 89, 045206 (2014); 90,
059901 (2014).

[60] S. Bültmann, M. E. Christy, H. Fenker, K. A. Griffioen, C. E.
Keppel, S. E. Kuhn, W. Melnitchouk, and V. Tvaskis, Jefferson
Lab 12 GeV Experiment E12-06-113, https://www.jlab.org/
exp_prog/12GEV_EXP/E1206113.html.

[61] W. Armstrong, J. Arrington, I. Cloet, K. Hafidi, M. Hattawy,
D. Potteveld, P. Reimer, S. Riordan, Z. Yi, J. Ball et al.,
arXiv:1708.00891.

[62] A. V. Klimenko, S. E. Kuhn, C. Butuceanu, K. S. Egiyan, K.
A. Griffioen, G. Adams, P. Ambrozewicz, M. Anghinolfi, G.
Asryan, H. Avakian et al. (CLAS Collaboration), Phys. Rev. C
73, 035212 (2006).

[63] O. Hen, L. Weinstein, E. Piasetzky, and H. Hakobyan, Jeffer-
son Lab 12 GeV Experimental Proposal E12-11-003A, https:
//www.jlab.org/exp_prog/proposals/15/E12-11-003A.pdf.

[64] O. Hen, L. Weinstein, S. Gilad, and S. Wood,
arXiv:1409.1717.

[65] D. Boer, M. Diehl, R. Milner, R. Venugopalan, W. Vogelsang,
A. Accardi, E. Aschenauer, M. Burkardt, R. Ent, V. Guzey
et al., arXiv:1108.1713.

[66] A. Accardi, J. L. Albacete, M. Anselmino, N. Armesto, E. C.
Aschenauer, A. Bacchetta, D. Boer, W. K. Brooks, T. Burton,
N. B. Chang et al., Eur. Phys. J. A 52, 268 (2016).

[67] E. C. Aschenauer, M. D. Baker, A. Bazilevsky, K. Boyle, S.
Belomestnykh, I. Ben-Zvi, S. Brooks, C. Brutus, T. Burton, S.
Fazio et al., arXiv:1409.1633.

065204-45

https://doi.org/10.1016/j.physletb.2005.03.046
https://doi.org/10.1103/PhysRevD.73.074016
https://doi.org/10.1103/PhysRevD.81.034007
https://doi.org/10.1103/PhysRevD.89.114026
https://doi.org/10.1103/PhysRevD.54.6620
https://doi.org/10.1103/PhysRevD.58.112003
https://doi.org/10.1103/PhysRevLett.79.26
https://doi.org/10.1016/S0370-2693(97)00613-8
https://doi.org/10.1016/S0370-2693(99)00590-0
https://doi.org/10.1016/S0370-2693(99)00940-5
https://doi.org/10.1016/S0370-2693(00)01014-5
https://doi.org/10.1016/S0370-2693(02)03015-0
https://doi.org/10.1016/S0370-2693(97)00611-4
https://doi.org/10.1103/PhysRevD.75.012007
https://doi.org/10.1103/PhysRevD.58.112001
https://doi.org/10.1016/j.physletb.2006.12.076
https://doi.org/10.1016/j.physletb.2009.08.065
https://doi.org/10.1016/j.physletb.2017.03.018
https://doi.org/10.1103/PhysRevC.70.065207
https://doi.org/10.1103/PhysRevLett.113.022002
https://doi.org/10.1103/PhysRevC.90.025212
https://doi.org/10.1088/1742-6596/299/1/012005
https://doi.org/10.1142/S0218301314300136
https://doi.org/10.1016/0370-1573(88)90179-2
https://doi.org/10.1016/0370-1573(94)90048-5
https://doi.org/10.1103/PhysRevC.48.R968
https://doi.org/10.1016/0370-2693(94)01690-E
https://doi.org/10.1103/PhysRevC.52.932
https://doi.org/10.1103/PhysRevC.54.894
https://doi.org/10.1016/0370-2693(96)00625-9
https://doi.org/10.1103/PhysRevC.65.064317
https://doi.org/10.1103/PhysRevC.88.054001
https://doi.org/10.1103/PhysRevC.42.2310
https://doi.org/10.1016/0370-1573(81)90129-0
https://doi.org/10.1016/j.physletb.2006.05.091
https://doi.org/10.1103/PhysRevLett.108.142001
https://doi.org/10.1103/PhysRevLett.108.199902
https://doi.org/10.1103/PhysRevC.89.045206
https://doi.org/10.1103/PhysRevC.90.059901
https://www.jlab.org/exp_prog/12GEV_EXP/E1206113.html
http://arxiv.org/abs/arXiv:1708.00891
https://doi.org/10.1103/PhysRevC.73.035212
https://www.jlab.org/exp_prog/proposals/15/E12-11-003A.pdf
http://arxiv.org/abs/arXiv:1409.1717
http://arxiv.org/abs/arXiv:1108.1713
https://doi.org/10.1140/epja/i2016-16268-9
http://arxiv.org/abs/arXiv:1409.1633


W. COSYN AND C. WEISS PHYSICAL REVIEW C 102, 065204 (2020)

[68] J. Beebe-Wang et al. (Eds.), An Electron-Ion Collider Study
(Brookhaven National Laboratory, 2019), public version
for scientists available at https://wiki.bnl.gov/eic/upload/EIC.
Design.Study.pdf.

[69] A. Jentsch, DVCS and e+D spectator tagging in the FF re-
gion, presentation at Second EIC Yellow Report Workshop
at Pavia University, 20–22 May 2020, https://indico.bnl.gov/
event/8231/contributions/37699/.

[70] D. Higinbotham, Magic beam energies for polarized deuteron,
presentation at Second EIC Yellow Report Workshop at
Pavia University, 20–22 May 2020, https://indico.bnl.gov/
event/8231/contributions/37701/.

[71] S. Abeyratne, A. Accardi, S. Ahmed, D. Barber, J. Bisognano,
A. Bogacz, A. Castilla, P. Chevtsov, S. Corneliussen, W.
Deconinck et al., arXiv:1209.0757.

[72] C. Weiss et al., Physics potential of polarized light ions with
EIC@JLab, Jefferson Lab 2014/2015 Laboratory-Directed
Research and Development Project, https://www.jlab.org/
theory/tag/.

[73] V. Guzey, D. Higinbotham, C. Hyde, P. Nadel-Turonski, K.
Park, M. Sargsian, M. Strikman, and C. Weiss, PoS 203, 234
(2014).

[74] W. Cosyn, V. Guzey, D. W. Higinbotham, C. Hyde, S. Kuhn,
P. Nadel-Turonski, K. Park, M. Sargsian, M. Strikman, and C.
Weiss, J. Phys.: Conf. Ser. 543, 012007 (2014).

[75] L. L. Frankfurt and M. I. Strikman, Nucl. Phys. A 405, 557
(1983).

[76] W. Cosyn and C. Weiss, Phys. Lett. B 799, 135035 (2019).
[77] M. Strikman and C. Weiss, Phys. Rev. C 97, 035209 (2018).
[78] F. Coester, Prog. Part. Nucl. Phys. 29, 1 (1992).
[79] S. J. Brodsky, H.-C. Pauli, and S. S. Pinsky, Phys. Rep. 301,

299 (1998).
[80] T. Heinzl, arXiv:hep-th/9812190.
[81] L. A. Kondratyuk and M. I. Strikman, Nucl. Phys. A 426, 575

(1984).
[82] W. Cosyn and C. Weiss (unpublished).
[83] S. J. Brodsky and B. Chertok, Phys. Rev. Lett. 37, 269 (1976).
[84] S. J. Brodsky, C.-R. Ji, and G. P. Lepage, Phys. Rev. Lett. 51,

83 (1983).

[85] C.-R. Ji and S. J. Brodsky, Phys. Rev. D 34, 1460 (1986).
[86] C. Ji, J. Phys.: Conf. Ser. 543, 012004 (2014).
[87] B. L. Bakker and C.-R. Ji, Prog. Part. Nucl. Phys. 74, 1 (2014).
[88] S. J. Brodsky and C.-R. Ji, Phys. Rev. D 33, 2653 (1986).
[89] S. J. Brodsky, J. R. Hiller, C.-R. Ji, and G. A. Miller, Phys.

Rev. C 64, 055204 (2001).
[90] V. B. Berestetskii, E. M. Lifshitz, and L. P. Pitayevskii, Course

of Theoretical Physics (Pergamon Press, Oxford, UK, 1973),
Vol. 4.

[91] P. Hoodbhoy, R. Jaffe, and A. Manohar, Nucl. Phys. B 312,
571 (1989).

[92] E. Leader, Spin in Particle Physics, Cambridge Monographs
on Particle Physics, Nuclear Physics, and Cosmology (Cam-
bridge University Press, Cambridge, UK, 2005).

[93] A. Bacchetta, M. Diehl, K. Goeke, A. Metz, P. J. Mulders, and
M. Schlegel, J. High Energy Phys. 02 (2007) 093.

[94] N. Christ and T. D. Lee, Phys. Rev. 143, 1310 (1966).
[95] A. Afanasev, M. Strikman, and C. Weiss, Phys. Rev. D 77,

014028 (2008).
[96] L. Frankfurt and M. Strikman, Modern Topics in Electron

Scattering, edited by B. Frois and I. Sick (World Scientific,
Singapore, 1992), pp. 645–694.

[97] R. B. Wiringa, V. G. J. Stoks, and R. Schiavilla, Phys. Rev. C
51, 38 (1995).

[98] O. Benhar, N. Farina, H. Nakamura, M. Sakuda, and R. Seki,
Phys. Rev. D 72, 053005 (2005).

[99] F. M. Lev, E. Pace, and G. Salme, Nucl. Phys. A 641, 229
(1998).

[100] C. E. Carlson and C.-R. Ji, Phys. Rev. D 67, 116002 (2003).
[101] K. Goeke, M. V. Polyakov, and M. Vanderhaeghen, Prog. Part.

Nucl. Phys. 47, 401 (2001).
[102] A. V. Belitsky, D. Mueller, and A. Kirchner, Nucl. Phys. B

629, 323 (2002).
[103] M. Diehl, Phys. Rep. 388, 41 (2003).
[104] Z. Tu, A. Jentsch, M. Baker, L. Zheng, J.-H. Lee, R.

Venugopalan, O. Hen, D. Higinbotham, E.-C. Aschenauer, and
T. Ullrich, Phys. Lett. B 811, 135877 (2020).

[105] G. P. Lepage and S. J. Brodsky, Phys. Rev. D 22, 2157
(1980).

065204-46

https://wiki.bnl.gov/eic/upload/EIC.Design.Study.pdf
https://indico.bnl.gov/event/8231/contributions/37699/
https://indico.bnl.gov/event/8231/contributions/37701/
http://arxiv.org/abs/arXiv:1209.0757
https://www.jlab.org/theory/tag/
https://doi.org/10.22323/1.203.0234
https://doi.org/10.1088/1742-6596/543/1/012007
https://doi.org/10.1016/0375-9474(83)90518-3
https://doi.org/10.1016/j.physletb.2019.135035
https://doi.org/10.1103/PhysRevC.97.035209
https://doi.org/10.1016/0146-6410(92)90002-J
https://doi.org/10.1016/S0370-1573(97)00089-6
http://arxiv.org/abs/arXiv:hep-th/9812190
https://doi.org/10.1016/0375-9474(84)90165-9
https://doi.org/10.1103/PhysRevLett.37.269
https://doi.org/10.1103/PhysRevLett.51.83
https://doi.org/10.1103/PhysRevD.34.1460
https://doi.org/10.1088/1742-6596/543/1/012004
https://doi.org/10.1016/j.ppnp.2013.10.001
https://doi.org/10.1103/PhysRevD.33.2653
https://doi.org/10.1103/PhysRevC.64.055204
https://doi.org/10.1016/0550-3213(89)90572-5
https://doi.org/10.1088/1126-6708/2007/02/093
https://doi.org/10.1103/PhysRev.143.1310
https://doi.org/10.1103/PhysRevD.77.014028
https://doi.org/10.1103/PhysRevC.51.38
https://doi.org/10.1103/PhysRevD.72.053005
https://doi.org/10.1016/S0375-9474(98)00469-2
https://doi.org/10.1103/PhysRevD.67.116002
https://doi.org/10.1016/S0146-6410(01)00158-2
https://doi.org/10.1016/S0550-3213(02)00144-X
https://doi.org/10.1016/j.physrep.2003.08.002
https://doi.org/10.1016/j.physletb.2020.135877
https://doi.org/10.1103/PhysRevD.22.2157

