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Abstract: Combining drugs, a phenomenon often referred to as polypharmacy, can induce additional
adverse effects. The identification of adverse combinations is a key task in pharmacovigilance. In
this context, in silico approaches based on machine learning are promising as they can learn from
a limited number of combinations to predict for all. In this work, we identify various subtasks in
predicting effects caused by drug–drug interaction. Predicting drug–drug interaction effects for drugs
that already exist is very different from predicting outcomes for newly developed drugs, commonly
called a cold-start problem. We propose suitable validation schemes for the different subtasks that
emerge. These validation schemes are critical to correctly assess the performance. We develop a new
model that obtains AUC-ROC = 0.843 for the hardest cold-start task up to AUC-ROC = 0.957 for
the easiest one on the benchmark dataset of Zitnik et al. Finally, we illustrate how our predictions can
be used to improve post-market surveillance systems or detect drug–drug interaction effects earlier
during drug development.

Keywords: polypharmacy; drug–drug interaction; prediction; cross-validation; machine learning;
cold-start problems

1. Introduction

Interaction with targets such as proteins, DNA, etc. enables a drug to combat dis-
eases. Interaction with off-targets, i.e., interaction that is initially not intended, can lead
to additional effects. These effects can either be positive or adverse, but are considered as
side effects when judged secondary to the main therapeutic effect. Accurate and efficient
predictions for the interactions can accelerate the drug development process and help to
obtain lower attrition rates [1]. Safety issues can pop up during the drug development
process up until the clinical trials, after which a drug can enter the market [2,3]. At this
stage, harmful adverse effects are quite rare, however, they still are an important cause of
morbidity and mortality [4,5]. Estimates range from 100,000 to almost 200,000 fatalities in
the US and Europe, respectively, making them the fourth cause of death before pulmonary
diseases and diabetes [3,6].

Combining drugs can be a useful, effective and sometimes indispensable strategy to
combat certain diseases [7–10]. It is suited to interact with multiple targets at the same time
and may improve the efficacy of a therapy. However, interaction between drugs increases
the risk of additional adverse effects [9,11,12]. Therefore, polypharmacy, often defined as
the administration of five or more medications daily, is typically regarded as undesirable.
Around 2010–2015, polypharmacy was recognized as a highly increasing phenomenon [13],
affecting about 15% of the US population [12]. Mainly older adults frequently have several
chronic health conditions requiring multiple medications; 66.8% of 65 years and older US
citizens take three or more prescription medications [14,15].

Pharmacovigilance systems have been created for post-market surveillance to facilitate
monitoring and support of regulatory action against harmful adverse effects [16]. A promi-
nent example is the FDA Adverse Event Reporting System (FAERS), collecting adverse
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event reports that were submitted to the FDA by healthcare professionals, consumers,
and manufacturers. Various online tools, e.g., https://www.drugs.com/drug_interactions.
html (accessed on 1 May 2021), https://go.drugbank.com/interax/multi_search (accessed
on 1 May 2021), based on such systems enable users to search for interacting combinations
themselves. These systems, however, are unlikely to contain every possible effect for every
possible combination of drugs.

The trend of combining drugs has led to a growing research interest in drug–drug
interaction, both for the search for effective combinations as well as for adverse effects.
However, due to high number of combinations, systematic screening in in vitro experiments
and clinical trials is challenging [9,11,17–21]. Alternatively, machine learning approaches
have been proposed that can learn from a limited number of drug–drug interactions to
predict the effects for all drug–drug combinations. For example, Zitnik et al. [22] were
the first to use data extracted from adverse event reporting systems to predict the specific
adverse effects associated with drug–drug combinations. As Zitnik et al. published the
data used, other researchers have continued tackling the same problem, increasing the pre-
dictive accuracy [23–26]. In addition, various machine learning approaches were recently
presented to identify positive effects of combining existing drugs. This includes, for ex-
ample, predicting synergies between anticancer drugs in particular cell lines, or directly
predicting for which disease a drug–drug combination is effective [27–29].

In this work, we first formulate the drug–drug interaction effect prediction problem
in a general way (Section 2.1). We will focus on adverse effects, also called adverse drug
reactions (ADR), in the context of pharmacovigilance; however, the formulation is valid
for modeling any type of effect, whether positive or adverse. Crucial in our formulation
is distinguishing between various prediction tasks. The different tasks have a different
level of “cold start”. In a cold-start prediction task in general, less information is available
for prediction due to the introduction of a new entity. A typical example is when a new
user creates a Netflix account and one wants to recommend new movies without knowing
which other movies are liked by the user. Cold-start tasks are often more difficult. A similar
reasoning holds when one wants to predict whether a certain effect is linked to combining
two drugs: the task differs on whether other effects caused by this pair are known or not,
or whether effects of one of the two drugs in combination with other drugs are known
or not, etc. Based on such reasoning, we distinguish between four prediction tasks. Two
of these tasks may serve to improve pharmacovigilance systems by detecting drug–drug
interaction effects in combinations with existing drugs. Two other tasks rather take into
account a new drug for which no interaction is a priori known: this could be useful to
foresee drug–drug interaction effects even already during development.

In Section 2.2, we discuss how one can validate models for the different tasks. An im-
portant aspect of our work is using the proper cross-validation scheme that reflects the
desired task. For instance, given the available data, if we want to validate the model on
the task of predicting for a “new drug”, we must make sure that any interaction data we
have on this drug is used for model validation, and never for training the model. This
corresponds to simulating and validating predictions for a new drug without actually
needing clinical tests with new drugs. Additionally, we discuss two ways to evaluate a
performance metric, one that focuses on predicting the right interacting drug–drug pairs
and another one that focuses on predicting the right effects.

In Section 2.3, we introduce the data set on pharmacovigilance presented by
Zitnik et al. [22], originating from an adverse event reporting system. It contains
molecules used in medications and various adverse effects caused by combining two
compounds in a treatment, ranging from nausea, headache, or nightmare to acute
kidney failure, lung fibrosis, heart attack, or still birth. We propose a new model called
three-step kernel ridge regression, an extension of two-step kernel ridge regression [30],
that can tackle the different tasks. We train and validate the model on the data, accord-
ing to the results presented in Section 2.2. Further, we show how these results and tasks
are related to the work of Zitnik et al. [22].

https://www.drugs.com/drug_interactions.html
https://www.drugs.com/drug_interactions.html
https://go.drugbank.com/interax/multi_search
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We stress that the model predictions for adverse effects due to drug–drug interactions
are not the ground truth. The more accurate the model, the lower the risk of making a
wrong prediction, however, there is no guarantee that the model would not over-detect
adverse reactions. The model can be seen as a supporting tool, and, for example, could
be used to detect interesting combinations that could be further investigated by experts
or in clinical tests. In Section 2.4, we provide an illustration on how predictions could
be used regarding the different tasks, by selecting the strongest model predictions and
visualizing them.

2. Results
2.1. Formulation of the Prediction Subtasks

Consider a set of drugs D = {di | i = 1, ..., nd} that are on the market and a set of
possible effects E = {ei | i = 1, ..., ne}. We assign a label Yijk = 1 if the interaction between
drug di and drug dj can cause effect ek and a label Yijk = 0 if not. Note that we only
consider effects due to interaction and do not take into account effects caused by one of
the drugs individually. We consider the general problem of predicting the label for any
combination of two drugs and for any effect by modeling a prediction function:

f : (d, d′, e) 7→ r .

The larger the predicted value r ∈ R, the more likely the effect is linked to the
interaction between the two drugs. These values can be used to rank the effects, and,
if necessary, be mapped to probability scores in the unit interval [0, 1] [31]. The function is
learned on the basis of labeled data. We subdivide the problem into different prediction
tasks. The tasks defined next differ both in practical applicability and difficulty:

1. d̂de: unknown drug–drug-effect. Predict the occurrence of an effect for a drug–drug
pair for which other effects are already known. This problem corresponds to regular
tensor completion problems in machine learning.

2. d̂de: unknown drug–drug pair. Predict for a drug–drug pair for which no interaction
effect is known. This is the first cold-start task.

3. d̂de: unknown drug. Predict for a new drug for which no effect is known in any
combination with another drug. This is the second cold-start task.

4. d̂d̂e: two unknown drugs. Predict for two new drugs for which no effect is known in
any combination with another drug. This is the third cold-start task.

The subtasks are illustrated in Figure 1, focusing on adverse effects in the context of
pharmacovigilance. The drug–drug-effect triplets represent drug–drug interaction effects
extracted from post-market surveillance systems. Note that we are not assigning a specific
role to the order of the drugs, i.e., Yijk = Yjik, while a drug obviously cannot interact with
itself, i.e., Yiik = 0.

The first two tasks can serve to improve the post-market surveillance system. It is un-
likely that every possible effect for every possible combination is significantly represented
by reports in the system. If the model predicts a high value for a drug–drug-effect triplet,
while that triplet could not be extracted from the system and a zero-label was initially
assigned, then it is likely that a new drug–drug interaction effect has been detected in silico.
Whereas a task-one model focuses on detecting additional adverse effects for a drug–drug
pair if some other adverse effects are already known, a task-two model needs to predict the
occurrence of all adverse effects for that pair from scratch.

The third task is relevant for both the drug development process and the post-market
surveillance systems. It reflects the situation where a new drug enters the market or
a drug is under development, and one wants to foresee the possible adverse effects in
combination with drugs that are already on the market. Again, combinations with the
highest predictions are most likely to occur and could be further investigated by experts
or tested in clinical trials. The fourth task is added for the sake of completeness but may
be relevant to drug development as well. For example, for a complex disease where one
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needs to act on multiple targets, it may be easier to develop a treatment with two new
drugs rather than searching for one that acts on all targets.

Figure 1. The different tasks in a toy polypharmacy prediction problem. There are three possible
adverse effects and three drugs on the market for which two different pairwise combinations are
labeled to cause two specific adverse effects. Because of symmetry, it is sufficient to only store values
on one side of the diagonal, as the other side is only representing the same combinations with the
drugs interchanged. In the first task, the goal is to predict whether also the third specific adverse
effect would occur for the two combinations that already have some known effects. In the second,
the goal is to predict whether and which effects would occur for the third combination of on market
drugs for which no effect is known. In task three, a new drug is added for which no label can yet be
found, and one wants to predict whether drug–drug interaction effects would occur in combination
with the drugs that are already on the market. In the last task, the goal is to predict whether and
which effects would occur when two new drugs are combined.

The tasks are of increasing difficulty. Each time when the model needs to predict for a
drug–drug-effect triplet, less information is available for the model to learn the interaction.
From the first to the second task, information on other effects for the drug–drug pair
disappears, making it the first cold-start problem. The third and fourth tasks are more
difficult cold-start problems because any information on one of the drugs or both drugs
disappears, respectively (cf. zero-shot problems [32]). The notation for the respective
prediction tasks suggests that even more prediction tasks could be distinguished, such
as ddê, corresponding to the introduction of a new effect. However, at this moment, we
believe that the four ones discussed constitute more relevant real-life problem settings.

2.2. Validation Procedures for the Prediction Subtasks

Cross-validation is the standard approach for the validation of machine learning
models [33]. A usual data set {(xi, yi) | i = 1, 2, ..., n} consists of objects xi ∈ X and corre-
sponding labels yi ∈ Y. This data set is split into a training set and a test set. The training
set can be used to learn the model, while the test set must remain unused during learning
and serves to evaluate the predictions of the model using a performance metric. To account
for statistical fluctuations related to the specific realization of the split, this procedure is
repeated k times such that each object and its label are exactly once part of the test set.
This approach is called k-fold cross-validation; the k folds are easily obtained by dividing
the data set into k equal chunks of size n/k, each time using one chunk as test set. Subse-
quently, one can pool the test predictions of the different test sets for evaluation or evaluate
separately and average. An example of 3-fold cross-validation is shown in Figure 2a.

The objects in our problem setting are triplets (di, dj, ek) and three indices are needed
to denote a specific label Yijk. Mathematically, the triplet labels build up a tensor, a three-
dimensional generalization of a matrix. The three-dimensional structure of the tensor
makes the process of dividing the data into chunks somewhat more complicated, though in-
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teresting. There are several ways to perform cross-validation. We present four ways that
reflect the different prediction tasks. The different cross-validation schemes are visual-
ized in Figure 2b on the full symmetric tensor (i.e., Yijk=Yjik), allowing to visualize the
consequences of symmetry. They are described as follows:

1. d̂de: drug–drug-effect triplets are randomly assigned to the different test sets. Per-
formance for a triplet is thus measured without any restriction on the availability of
other triplets in the training data.

2. d̂de: drug–drug pairs are randomly assigned to the different test sets together with all
the effects. Performance is thus measured with the restriction that for the drug–drug
pair of a test triplet, not a single link with an effect is part of the training data.

3. d̂de: the first drugs are randomly assigned to the different test sets, together with all
combinations with all other drugs and all effects. Performance is thus measured with
the restriction that for the first drug of a test triplet, not a single effect from interaction
with any other drug is part of the training data.

4. d̂d̂e: drugs are assigned to the different test sets, at the same time for the first and
second drug and for all effects. Prediction is thus measured with the restriction that
for both drugs of a test triplet, not a single effect from interaction with any other drug
is part of the training data.

The performance highly depends on the cross-validation scheme. Therefore, it is
important for model validation and tuning to use the proper scheme that reflects the task
under consideration.

Figure 2. Cross-validation. (a) Three-fold cross-validation for a traditional data set. The data set
is shown three times, where each time another chunk is used for evaluating the model and the
remaining part for training. (b) Three-fold cross-validation for the polypharmacy prediction tasks. A
symmetric toy data set of nine by nine drug–drug-pairs and three distinct effects. In d̂de, triplets are
randomly, but symmetrically assigned to one of the folds. In d̂de, drug–drug pairs are randomly but
symmetrically assigned to one of the folds. As this assignment is the same for each effect, only one
slice is shown. In d̂de, drugs are as a whole assigned to one of the folds. Note that the symmetric
counterpart is to be discarded. This assignment is again the same for each effect slice. In d̂d̂e,
drug–drug-pairs are as a whole assigned to one of the folds, but now both drugs need to be test
drugs and any other interaction is to be discarded.
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As the considered prediction tasks are binary classification tasks, i.e., predicting
whether a drug–drug interaction effect occurs (1) or not (0), typical classification per-
formance metrics such as AUC-ROC or AUC-PR can be used for expressing predictive
performance. This is done straightforwardly for regular classification problems: one cal-
culates the performance metric on the list of predicted test labels by comparing them to
the true test labels, and this immediately yields the final performance result, as shown in
Figure 3a.

The three-dimensional nature of our problem, however, opens up various approaches
to evaluate performance. Here, we consider two evaluation schemes with a different
focus and a corresponding relevant interpretation. Before getting started, we simplify the
presentation by collecting the test labels into a matrix with drug–drug pairs as rows and
effects as columns and, as shown in Figure 3b.

Figure 3. Evaluation schemes. (a) Regular, unstructured data where performance is computed directly
by comparing the true test labels to the predicted test labels. (b) Aggregation of computations of
performance in the matrix of test drug–drug pairs versus effects. In evaluation scheme Edd, for each
effect, the performance measures how well the model can discriminate between drug–drug pairs.
The Edd performances for the different effects can be gathered in a histogram and averaged to obtain
a single final performance. In evaluation scheme Ee, for each drug–drug pair, the performance
measures how well the model can discriminate between effects. The Ee performances for the different
drug–drug pairs can be gathered in a histogram and averaged to obtain a single final performance.
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In the first scheme, Edd, the performance metric is calculated for each column sepa-
rately and then averaged. Each column involves one effect and covers the comparison
of the predicted and the true labels on all test drug–drug pairs. A high column perfor-
mance means that the model can well discriminate between interacting and non-interacting
drug–drug pairs for the given effect. In the second scheme, Ee, the performance metric is
calculated for each row separately and then averaged. Each row involves one drug–drug
pair and covers the comparison of the predicted and the true labels on the various effects.
A high row performance now means that the model is well able to specify which effects
are likely to occur given the drug–drug pair. Summarizing, the performance in scheme
Edd rather expresses the capacity of the model to discriminate between interacting and
non-interacting drug–drug pairs on average, while the performance in scheme Ee rather
expresses the capacity to predict the right effects on average.

Consider a hypothetical model that predicts all the effects as occurring for each
drug–drug pair that has at least one effect in the database. On the data published by
Zitnik et al. [22], this model obtains AUC-ROCdd = 0.85 for identifying interacting drug–
drug pairs and a poor AUC-ROCe = 0.5 for assigning the right adverse effects. This
is because when two drugs interact, often a larger set of effects occurs. Predicting that
all effects occur does affect Edd performance only a bit, while Ee performance indicates
the model to be completely useless in predicting the right effects. We propose to take
both evaluation schemes into account as predictions that are good in one scheme are not
guaranteed to be good in the other scheme.

By averaging the individual performances into a single score, information on the
distribution of performance may be lost; some effects may be much harder to predict
for than others, and one would not know it. Therefore, we propose not to neglect the
distribution of performance when judging a model, as shown in Figure 3b.

2.3. Model Training and Validation

We perform our experiments and analysis on the data set published by Zitnik et al. [22],
which contains drug–drug interaction effects extracted from adverse event reporting sys-
tems. This data set contains 645 drugs and 963 adverse effects, with 2% of the possible
triplets being occurring triplets with a one-label caused by 70% of the drug–drug pairs. Any
other triplet is assumed to have a zero-label. We also take side information on the drugs
and effects into account, which is important for cold-start tasks when no label information
is available. For the drugs, we use the single-drug effects published by Zitnik et al. [22].
These indicate on which targets the individual drugs are acting. By combining the target
information of both drugs, the model can better learn when an interaction occurs. For the
effects, we use training labels in order to construct features. More details can be found in
the Materials and Methods section.

We introduce a new model, called three-step kernel ridge regression, that can tackle
all prediction tasks in a unified way. This model is a natural generalization of two-step
kernel ridge regression [30,34,35] for pairwise interactions. The model can take any side
information on the drugs and the effects into account. The difference between the prediction
tasks is accounted for by three regularization parameters. These are the hyper-parameters
of the model and can be tuned for optimal performance on a specific task. Further, this
model is extremely efficient and provides algebraic shortcuts for fast cross-validation
and tuning of the regularization parameters. These shortcuts are a generalization of the
shortcuts for the two-step model [36]. More details can be found in the Materials and
Methods section and in Appendix A.

We perform 10-fold cross-validation with the three-step model for each of the predic-
tion tasks for both evaluation schemes and both the AUC-ROC and AUC-PR performance
metrics. The predictive performances are shown by distribution in Figure 4 and by average
value in Table 1, as was introduced in Figure 3. The AUC scores provide a quick view
on how well a model is performing. However, note that a perfect AUC score of 1 can
only be obtained with a proper predictive model if also the data is correctly labeled. We
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expect a certain percentage of false negative labels, i.e., occurring adverse effects due to
drug–drug interaction that could not be extracted from the surveillance system. Especially
for prediction tasks one and two, we need a suboptimal AUC to be able to detect them.

Table 1. Final test performances with pooling aggregation. These represent the averages of the
distributions shown in Figure 4. They are obtained as illustrated in Figure 3 for both evaluation
schemes. The test predictions of the ten folds were pooled together into one final evaluation such
that each of the distributions is unambiguously determined. No-skill performance for AUC-ROC and
AUC-PR is 0.5 and 0.02, respectively. Details on the computation and the no-skill value of AUC-PR
can be found in Appendix D. Both metrics have perfect-skill performance at 1.

AUC-ROC AUC-PR
(No-Skill = 0.5) (No-Skill = 0.02)

Edd Ee Edd Ee

d̂de 0.957 0.888 0.557 0.257
d̂de 0.919 0.865 0.286 0.179
d̂de 0.910 0.859 0.221 0.176
d̂d̂e 0.843 0.834 0.112 0.144

The expected order in difficulty (i.e., d̂de followed by d̂de, d̂de, and d̂d̂e) is reflected
in a descending performance in both evaluation schemes and for both performance metrics.
The drop in performance may seem harder for Edd than for Ee. This effect can be explained
by the fact that as new drugs or new drug combinations enter through the different tasks,
the model has more difficulties with distinguishing between the drug pairs rather than
between the effects (which remain the same). The performance distribution for identifying
interacting drug–drug pairs (evaluation scheme Edd) in the upper row of Figure 4 shows
that correctly detecting adverse pairs may be easier for one effect than for another. Still,
performance is almost always substantially better than a random baseline, even for the
most difficult cold-start prediction task d̂d̂e. Equally, the performance distribution for
assigning the right effects (evaluation scheme Ee) indicates that the ability to predict the
right effects for an interacting drug–drug pair depends on which pair it is.

The values of the regularization parameters of the three-step model were tuned
separately for optimal Ee and Edd performance on training data, for both AUC-ROC and
AUC-PR. Information on the tuned values, their link with the task, and corresponding
optimal performance can be found in Appendix B.

Our model for prediction task d̂de and evaluation scheme Edd can be compared to
the current state-of-the-art, as it is the only setting that has been tackled before. The best per-
forming state-of-the-art model obtained AUC-ROC = 0.965 and AUC-PR = 0.938 [22,23,26].
We see that our AUC-ROC of 0.957 in that setting is quite competitive. The comparison of
AUC-PR values is a bit more complicated. In our work, the full data set with intrinsic class
imbalance of 0.02 was used for evaluation, resulting in a no-skill value of 0.02, whereas in
previous work, the data was sampled in a balanced way such that the no-skill value was
put to 0.5 (although it was suggested to use the intrinsic value of 0.02) [26].

In order to compare, we recalculated our result to that very setting, obtaining
AUC-PR = 0.957, which again is a comparable result. More details about the compu-
tation of AUC-PR can be found in Appendix D. We conclude that the three-step model is
competitive with the current state-of-the-art for this specific setting, taking into account
that we used full 10-fold cross-validation with stable results, whereas in published research
only a single train-test split is used and performance may be more subject to statistical
variations. Important to mention here is that this 10-fold cross-validation was only made
feasible due to the availability of an algebraic solution and shortcuts for the three-step
model [36].
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Figure 4. Normalized performance distributions for the different prediction tasks, obtained as
illustrated in Figure 3 for both evaluation schemes. The test predictions of the ten folds were pooled
together into one final evaluation such that each distribution is unambiguously determined. No-skill
performance for AUC-ROC and AUC-PR is 0.5 and 0.02, respectively. Details on the computation
and the no-skill value of AUC-PR can be found in Appendix D. Both metrics have perfect-skill
performance at 1.

2.4. Detecting New Adverse Drug-Drug Interaction Effects

We illustrate how adverse drug–drug interaction effects can be detected using the
test predictions of the above validated models. Figure 5a displays a random subsample
of the task d̂de test predictions of the model optimized for Edd versus those of the one
optimized for Ee. We observe that the predictions are strongly correlated. This correlation
is not always obvious, as good predictions in one scheme may be useless in the other.
Individual Edd and Ee prediction histograms for each of the prediction tasks can be found
in Appendix C.

For the triplets that were originally assigned a zero label, indeed, the highest density
in predicted values is at zero in Figure 5a. A smaller number of predictions are pushed
towards larger values. By setting a threshold, a subset of the larger predicted values can
be selected as newly detected occurring triplets. We set this threshold at three times the
standard deviation of the distribution centered near zero and do that for the four models
that were tuned for both evaluation schemes and both AUC-ROC and AUC-PR. We obtain
a set of newly detected triplets that contains 1.42% of all possible triplets. These are divided
over 41,614 distinct drug–drug pairs, of which 99.9% of the pairs had already one or more
other known effects in the data. This is what a task-one model is trained to do: predict
additional effects when some others are already known. The other 0.1%, i.e., eleven pairs,
are completely new interacting drug–drug combinations with adverse effects, which can
be regarded as highly likely given that even a task-one model detected them, instead of a
task-two model. More examples can be found in the supplementary material.
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Figure 5. The test predictions. A random subsample of the test predictions of the Ee-optimized
model versus the ones of the Edd-optimized model are displayed. These are gathered from the ten
test folds. (a) d̂de predictions in separate distributions for original zero-labels and one-labels, with a
3σ-threshold on the zero-label distribution. (b) Idem as in (a) for d̂de. (c) d̂de predictions as one
distribution, since a label is never expected. (d) Idem as in (c) for d̂d̂e.

A similar analysis can be done for task d̂de, with predictions and thresholds shown
in Figure 5b. We obtain a set of newly detected triplets that contains 1.48% of all possible
triplets. These are divided over 74,693 distinct drug–drug pairs. Roughly 70% of these
pairs cover 81% of drug–drug pairs that had at least one known other effect in the labeled
data, without using it during training. The other 30% of these drug–drug pairs are newly
predicted interacting combinations with adverse effects. More examples can be found in
the supplementary material. One example of the new pairs that also could be confirmed
afterwards by an external source (i.e., https://www.drugs.com/drug_interactions.html,
accessed on 1 May 2021) is the interaction between compound CID000004999 (Quazepam)
and compound CID000003559 (Haloperidol), leading to the effects “arterial pressure NOS
decreased” and “hallucination” according to our model.

The analysis of the predictions in tasks d̂de and d̂d̂e is somewhat different as it involves
one or two drugs that are simulated as new drugs. We thus pretend that no interaction
is known at all, and predictions are plotted as a single distribution in Figure 5c,d. We
again set a threshold of three times the standard deviation. We obtain a set of triplets with

https://www.drugs.com/drug_interactions.html
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predicted values above the threshold, which can be considered as most likely and could be
investigated or tested in clinical trials. To evaluate the relevance of the set of most likely
predicted triplets, we look back to the known interactions in the labeled data that we just
neglected. For task d̂de, 73% of the pairs in the predicted set effectively are interacting pairs
with multiple adverse effects. This means that investigating the highest predictions by the
model when a new drug is developed, would reveal an interacting combination in almost
three out of four cases. For task d̂d̂e, 67% of the above-threshold predicted interacting pairs
can be confirmed the data.

3. Discussion

Effect-specific prediction of adverse drug–drug interactions is highly relevant for
pharmacovigilance. To this end, we fed a machine learning model with data mined from
a post-market surveillance system. We distinguished between four prediction tasks of
which two tasks aim to improve the surveillance system by detecting unknown additional
adverse effects from drug–drug interactions, and two tasks that predict adverse interaction
effects earlier on in the drug development process by considering one or two drugs that
are new and thus not contained in the surveillance system.

We showed that each of the tasks has its own level of difficulty. The first one is a
regular tensor completion problem, the other ones being cold-start tasks. We argued for fair
model validation, each task requires its own cross-validation scheme, and we presented two
different evaluation schemes, one focusing on predicting the right interacting drug–drug
pairs, and another one focusing on predicting the right effects.

We introduced a model that can tackle all prediction tasks in a unified way. To solve
these problems, we used side information on drugs in the form of single-drug effects as they
indicate on which target a single drug is acting. However, more detailed side information
could be included in the future to improve the prediction performance. Examples are
explicit target proteins, the chemical structure of the drug, and so on.

Our models were trained and validated on the data published by Zitnik et al. [22],
originating from adverse event reporting systems and containing 645 drugs and a variety of
963 effects. In the regular tensor completion task, performance is competitive with the state-
of-the-art. More importantly, our approach can handle the new and more difficult cold-start
tasks as well. As an illustration, we used the predictions of the validated models for our
first two tasks and selected, by means of a 3σ-threshold, a list of additional adverse effects
for known interacting drug–drug pairs and a list of new adverse drug–drug combinations.
For the two latter tasks, we also made a selection based on predictions exceeding a 3σ-
threshold, and observed that on average 73% of the selected adverse combinations for a
new drug can indeed be confirmed to have at least one adverse effect, while in the case of
two new drugs, this proportion was 67%.

The discussion on prediction tasks, model validation and the proposed model for
predicting links between two drugs and an effect may be valid for a broader set of
problems that can be considered as triplet link prediction. Obviously, it is also valid
for modeling the positive effects and instead search for adequate treatments with drug
combinations [21,27–29]. As drug effects depend on the patient, one could also predict
patient-specific drug–drug interaction [37] with a drug–drug-patient triplet link, or predict
patient-specific effects [38] with a patient-drug-effect triplet. More examples are tri-genic in-
teractions [39] or context-dependent binary links such as tissue-dependent protein-protein
interaction or tissue-dependent protein-function association [40].

4. Materials and Methods
4.1. Three-Step Kernel Ridge Regression

We propose the three-step kernel ridge regression model that can solve all of the
identified prediction tasks. Recall that a kernel function takes as input two objects and
returns a similarity score, taking higher values if the objects are more similar. Assume
arbitrary kernel functions kd and ke that take as input two drugs or two effects, respectively.
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With D = {di | i = 1, ..., nd} the drugs and E = {ei | i = 1, ..., ne} the effects that are present
in the reporting system, the prediction for any new combination (d, d′, e) is given by

f (d, d′, e) =
nd

∑
a=1

nd

∑
b=1

ne

∑
c=1

Aabckd(d, da)kd(d′, db)ke(e, ec) . (1)

Here, Aabc represents the tensor of model parameters that needs to be learned and
must satisfy, for any i, j, k,

Yijk =
nd

∑
a=1

nd

∑
b=1

ne

∑
c=1

Aabc(kd(di, da) + λ1δia)(kd(dj, db) + λ2δjb)(ke(ek, ec) + λ3δkc) . (2)

This equation expresses that the label tensor must equal the predictions for a slightly
adapted prediction function. The adaptation involves adding a small value λ1, λ2 or λ3 to
the similarity between two identical objects. These parameters are the regularization pa-
rameters of the model. The regularization prevents the model from overfitting, and instead
allows it to improve predictions for triplets that are not present in the label tensor [30].

This model can solve the various cold-start problems in a unified way by assigning
appropriate values to the regularization parameters. Each of them corresponds to the
regularization strength for one of the three objects of the triplet. As an example, one could
already foresee that in prediction task with a new drug in the first position, a higher λ1
than λ2 is to be used.

Another advantage of this model is efficiency. There exists an algebraic solution for
the model parameters consisting of performing three tensor contractions such that finding
the solution is guaranteed in a limited time. Besides, due to the linear structure, one can
derive shortcuts for the cross-validation procedures [36]. Instead of training and evaluating
a model for every fold explicitly, cross-validation can be done within the time complexity
of a single training. The algebraic solution and shortcuts are discussed more in-depth in
the Appendix A.

4.2. Data Set

The drug–drug interaction data set is downloaded from http://snap.stanford.edu/
decagon/ [41] (accessed on 12 June 2020) and filtered as described in the work of Zit-
nik et al. [22]. The interaction data originates from the TWOSIDES project [11], where
drug–drug interaction effect triplets were mined from adverse event reporting systems,
while correcting for confounding factors. The TWOSIDES data set contained 1318 effect
types across 63,473 drug combinations, where the effect is stronger than the expected
effect of the drugs individually. This data was filtered by Zitnik [22] focusing on the most
commonly occurring types of effects in at least 500 drug combinations. The resulting data
set contains 645 drugs, which are molecules indexed by a PubChem CID number, and 963
adverse effects ranging from nausea, headache, or nightmare to acute kidney failure, lung
fibrosis, heart attack, or still birth. 2% of the possible drug–drug-effect triplets represent
an occurring effect, caused by 70% of all possible drug–drug pairs. Any other triplet is
assumed to have a zero label.

Additionally, we also downloaded mono-drug effects in order to use them as side fea-
tures for individual drugs (http://snap.stanford.edu/decagon/ [41], accessed on 12 June
2020). This data set was constructed from the SIDER database and OFFSIDES database [11].
By construction, the mono-drug effects in this set do not overlap with the drug–drug
interaction effects, and thus can safely be used as side information without including
label information.

4.3. Kernel Construction

We propose easy and straightforward strategies to compute the similarity kernel for
the drugs, kd : D× D → R, and the one for the interaction effects, ke : E× E→ R. For the
similarity between two drugs, we use the mono-drug effects published by Zitnik et al. We

http://snap.stanford.edu/decagon/
http://snap.stanford.edu/decagon/
http://snap.stanford.edu/decagon/
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define the kernel function as kd(di, dj) = exp
(
−||di − dj||2/γ

)
, with di a vector of length γ

that holds value 1 if a mono-drug effect occurs and 0 otherwise. For the similarity between
effects, we do not use an external data source, but we use the training labels instead.
The kernel function for the effects is given by the Tanimoto similarity ke(ei, ej) =

ei ·ej
||ei ||·||ej ||

,

with ei a vector that holds value 1 if it is caused by a certain train drug–drug pair and
0 otherwise. In all of the prediction tasks, there is a clear boundary between test and train
drug–drug pairs, except for setting d̂de, where every triplet is randomly assigned to a test
fold. This little problem can be solved with a simple trick. Half of the d̂de folds use half of
the drug–drug pairs, and the same for the other half, however, in theory this may worsen
the performance a little bit. This strategy of using labels of the training data to construct
kernels is not new and quite effective: the features are already engineered in such a way
that they are likely to contain information on the (training) labels [42].

4.4. Experimental Setup and Tuning of Regularization Parameters

The 10-fold cross-validation is exactly performed as presented in Figure 2b, with a
small modification for prediction task d̂de to be able to construct kernels for effects, as ex-
plained above. Within each training fold, the regularization parameters of the three-step
model are tuned separately for each prediction task, for both evaluation schemes and for
both performance metrics, by performing nested cross-validation for various values of
the regularization parameters and selecting the best performing ones. This additional
cross-validation is efficiently done using the leave-out cross-validation shortcuts of the
model (see Appendix A). The training set is for every object very similar to the complete
set since only one object is left out, making leave-one-out cross-validation very suitable
for regularization parameter tuning. In tasks d̂de, d̂de and d̂d̂e, the role of both drugs is
the same and we assumed λ1 = λ2. We varied λ1 from 10−6 to 10−1 and λ3 from 10−4 to
101 in d̂de and d̂de; and λ1 from 10−4 to 101 and λ3 from 10−4 to 101 in d̂d̂e. In setting d̂de,
the role of both drugs is different and we varied λ1 from 10−3 to 10−1, λ2 from 10−6 to 10−1,
and λ3 from 10−1 to 101. As expected, the optimal values depend on the setting, e.g., in
setting d̂de a higher λ1 = 0.1 and lower λ2 = 0.00001 is found. Further, the evaluation
scheme may have a slight influence on the optimal value, e.g., in Ee, where one wants
to discriminate between effects, a smaller value of λ3 for regularization for the effects is
better. More detailed results and discussion on the optimal values for the regularization
parameters can be found in Appendix B.

The predictions for the different test folds are pooled together for evaluation. This
ensures that for each of the prediction tasks, only one Edd evaluation per effect and only
one Ee evaluation per drug–drug pair is computed leading to unambiguous distributions.
If performance could be computed for each test fold separately, then we would end up with
ten distributions for which aggregation for the various cross-validation schemes would
complicate interpretation.

5. Conclusions

We formulated the problem of data-driven prediction of drug–drug interaction effects
as triplet link prediction between two drugs and an effect caused by their interaction.
Distinguishing between four different subtasks with a different level of “cold start”, de-
pending on which other drug–drug interaction effects are known for the drugs is crucial.
We introduced a model called the three-step kernel ridge regression which can efficiently
solve the different tasks in a unified way. We also discussed validation procedures that are
crucial to correctly assess the performance for various tasks.

Although the discussion is also valid for modeling positive drug–drug interaction effects,
we focused on adverse interaction effects by using data extracted from adverse event reporting
systems in the context of pharmacovigilance. Our model obtained AUC-ROC = 0.957 for
the easiest task, which is comparable to the state-of-the-art, but more importantly, could also
solve the other cold-start tasks with AUC-ROC = 0.843 for the hardest task that involves two
newly developed drugs that are not yet present in pharmacovigilance systems.
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We conclude that machine learning models, if combined with appropriate model
validation for the desired task, could provide a highly relevant tool for predicting drug–
drug interactions in pharmacovigilance as well as in the search for effective treatments.
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Appendix A. Three-Step Kernel Ridge Regression: Algebraic Expressions for Model
Parameters and Cross-Validation Shortcuts

We present three-step kernel ridge regression as a generalization of common kernel
ridge regression. We first summarize the algebraic expressions for the common one and
show how cross-validation shortcuts can be computed.

Appendix A.1. Kernel Ridge Regression and Shortcuts

For a common one-dimensional regression training data set {(xi, yi) | i = 1, 2, ..., n}
with objects xi ∈ X and corresponding labels yi ∈ R, and a kernel function k(·, ·) that
expresses similarity between objects x and x′, the functional form for kernel ridge regression
is written as

f (x) =
n

∑
j=1

αjk(x, xj) . (A1)

Here, αj are the model parameters that need to be learned. By restricting predictions
to the training set, using fi as a shorthand notation for f (xi), and defining the kernel matrix
K by function evaluations, i.e., Kij = k(xi, xj), we can write

fi =
n

∑
j=1

αjKij . (A2)

Inserting this formula in the kernel ridge regression loss function with introduction of
a ridge hyper-parameter λ yields the algebraic solution

αi =
n

∑
j=1

Bijyj (A3)

with
B = (K + λI)−1 ,

such that the predicted values for the training labels can be computed as

fi =
n

∑
j=1

Hijyj (A4)
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with the hat matrix H defined as

H = K(K + λI)−1 .

The hat matrix represents the linear mapping from the labels yi to the predictions fi.
This matrix enables us to efficiently calculate the leave-out value f out

i that does not use label
yi [43]. The idea is to create a new set of labels where yi is replaced by f out

i . Training on this
new set of labels makes sure that yi is not included and this circular reasoning makes sure
that f out

i is in equilibrium with the model: it is both the observed and the predicted value:

f out
i =

(
n

∑
j=1

Hijyj

)
− Hiiyi + Hii f out

i .

Here, the first term is the expression as before, whereas the second and third terms
cancel the contribution of yi and replace it by a contribution of f out

i , respectively. This
equation can be rewritten as

f out
i =

n

∑
j=1

Oijyj (A5)

where we see that to leave out element yj, all we need to do is replacing H by O:

Oij =
Hij − Hii

1− Hii
,

i.e., subtract the diagonal elements and rescale. This will make sure that the prediction
of f out

i is not influenced by the observation of yi. We can thus compute the leave-out
estimations for all the training data, and thus do a complete leave-out cross-validation with
the same time complexity as computing the model parameters once.

Appendix A.2. Three-Step Kernel Ridge Regression and Shortcuts

For the three-step version of kernel ridge regression, one needs a parameter ten-
sor with three indices. It allows to do an independent ridge regression for each of the
objects of the triplet, conditioned on the combination of the other two. Restricting the
predictions to drugs and interaction effects from the training data, we define the tensor
Fijk = f (di, dj, sk) that predicts the values of the label tensor Yijk. By defining the kernel
matrices Kd as Kd

ia = kd(ui, ua) and Ke as Ke
kc = ks(wk, wc) as function evaluations for

the similarity between the training drugs and the interaction effects, we can write the
prediction function as

Fijk =
nd

∑
a=1

nd

∑
b=1

ne

∑
c=1

AabcKd
iaKd

jbKe
kc . (A6)

This is the triple version of (A2), for which we compute the solution

Aijk =
nd

∑
a=1

nd

∑
b=1

ne

∑
c=1

YabcG(1)
ia G(2)

jb G(3)
kc (A7)

with
G(1) = (Kd + λ1I)−1

G(2) = (Kd + λ2I)−1

G(3) = (Ke + λ3I)−1

as generalization of Equation (A3), giving rise to following expression for the predicted values

Fijk =
nd

∑
a=1

nd

∑
b=1

ne

∑
c=1

H(1)
ia H(2)

jb H(3)
kc Yabc (A8)
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with
H(1) = Kd(Kd + λ1I)−1

H(2) = Kd(Kd + λ2I)−1

H(3) = Ke(Ke + λ3I)−1

as generalization of Equation (A4). Again, this represents a linear mapping form the
observed labels to the predicted ones, allowing us to transform the mapping to leave
certain observed labels out, according to the cross-validation setting.

The cross-validation shortcuts for the different settings are given by

Fd̂de
ijk =

nd

∑
a=1

nd

∑
b=1

ne

∑
c=1

O(1)
ia H(2)

jb H(3)
kc Yabc (A9)

Fd̂d̂e
ijk =

nd

∑
a=1

nd

∑
b=1

ne

∑
c=1

O(1)
ia O(2)

jb H(3)
kc Yabc (A10)

Fd̂de
ijk =

nd

∑
a=1

nd

∑
b=1

ne

∑
c=1

O(12)
ia;jb HkcYabc (A11)

Fd̂de
ijk =

nd

∑
a=1

nd

∑
b=1

ne

∑
c=1

O(123)
ia;jb;kcYabc , (A12)

with

O(1)
ij =

H(1)
ij − H(1)

ii

1− H(1)
ii

O(2)
ij =

H(2)
ij − H(2)

ii

1− H(2)
ii

O(12)
ia;jb =

H(1)
ia H(2)

jb − H(1)
ii H(2)

jj

1− H(1)
ii H(2)

jj

O(123)
ia;jb;kc =

H(1)
ia H(2)

jb H(3)
kc − H(1)

ii H(2)
jj H(3)

kk

1− H(1)
ii H(2)

jj H(3)
kk

.

These shortcuts can be explained as follows:

• d̂de. As H1 performs the regression for the first drug, we can simply replace H1 by its
leave-out variant O1. This makes sure that predictions for a certain first drug do not
use the labels for that drug.

• d̂d̂e. A similar reasoning applies, but now H1 and H2 are replaced by O1 and
O2, respectively.

• d̂de. The same strategy is followed, however, the situation is somewhat more difficult:
the operation of subtracting the diagonal elements of the hat matrix and rescaling
must now be applied on the combined tensor product of the matrices, instead of
aplying it separately. Therefore, HiaHjb Hkc is replaced by a combined Oia;jb;kc.

• d̂de. The same strategy is followed, however, the situation is somewhat more difficult:
the operation of subtracting the diagonal elements of the hat matrix and rescaling must
now be applied on the combined tensor product of the two drug matrices, instead of
applying it separately. Therefore, Hia Hjb is replaced by a combined Oia;jb.
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Appendix B. Results on Hyper-Parametertuning

The performance results on the training data using the shortcuts for hyper-parameter
tuning are averaged across ten folds and shown in Figures A1–A5.

In general, the optimal regularization parameters have the smallest values in d̂de, see
Figure A1. Note that, for AUC-ROCdd, very small regularization values are selected for
the drugs, while very large ones are selected for the effects, corresponding to a model that
is very specific for the drugs, but predicts nearly the same values for the different effects.
This is not the case in the AUC-ROCe scheme, where there is an optimal ratio between both
hyper-parameters visible in the optimal diagonal. Note that for this task, it is rather the
ratio between the hyper-parameters that is important.

In prediction task d̂de, see Figure A2, the regularization parameter for the drugs is
rather fixed, as the model needs to correctly generalize to unseen drug–drug pairs. Further,
there is an optimal value for regularization parameter λ3 for the side effects, which is
smaller in the Ee evaluation scheme than in the Edd evaluation scheme: in the Ee scheme,
the model needs to be more specific for the effects.

In prediction task d̂de, see Figure A3, the role of both drugs is different because the
first drug is seen as a new drug and λ1 and λ2 are varied separately. Figure A3 shows
that indeed λ1 needs to have a larger value than λ2 to generalize to new drugs. Figure A4
shows the dependence of performance on λ1 and λ3 for the effects.

Finally, in prediction task d̂d̂e, see Figure A5, bot the optimal values for the drug and
effect regularization parameters have again a relatively high value. This model needs the
most regularization of all models.

Figure A1. Tuning regularization parameters for task d̂de. The average performance on ten training
folds using shortcuts for leave-out validation is shown for different combinations of regularization
parameters. The optimal combination and values are shown. White corresponds to the highest per-
formance and black to the lowest performance. Each panel has a different color scale as performance
varies over different scales.
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Figure A2. Tuning regularization parameters for task d̂de. The average performance on ten training
folds using shortcuts for leave-out validation is shown for different combinations of regularization
parameters. The optimal combination and values are shown. White corresponds to the highest
performance and black to the lowest. Each panel has a different color scale as performance varies
over different scales.

Figure A3. Tuning regularization parameters for task d̂de at optimal λ3. The average performance
on ten training folds using shortcuts for leave-out validation is shown for different combinations of
regularization parameters. The optimal combination and values are shown. White corresponds to
the highest performance and black to the lowest performance. Each panel has a different color scale
as performance varies over different scales.
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Figure A4. Tuning regularization parameters for task d̂de at optimal λ2. The average performance
on ten training folds using shortcuts for leave-out validation is shown for different combinations of
regularization parameters. The optimal combination and values are shown. White corresponds to the
highest performance and black to the lowest. Each panel has a different color scale as performance
varies over different scales.

Figure A5. Tuning regularization parameters for task d̂d̂e. The average of performance on ten
training folds using shortcuts for leave-out validation is shown for different combinations of regu-
larization parameters. The optimal combination and values are shown. White corresponds to the
highest performance and black to the lowest performance. Each panel has a different color scale as
performance varies over different scales.
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Appendix C. Individual Prediction Histograms

See Figures A6–A9.

Figure A6. Individual prediction histograms of the model for task d̂de. The predictions for the ten
test folds are pooled and plotted separately for the originally zero-labeled and one-labeled triplets.
For zero-labeled triplets, a prediction peak near zero is found and a 3σ-threshold is shown. Each of
the panels shows the results of a model optimized for AUC-ROC or AUC-PR and evaluation scheme
Edd or Ee.

Figure A7. Analogous to Figure A6, for prediction task d̂de.
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Figure A8. Analogous to Figure A6, for prediction task d̂de.

Figure A9. Analogous to Figure A6, for prediction task d̂d̂e.

Appendix D. Notes on Computation of Auc-Pr in Evaluation Schemes Ee and EDd

The AUC-PR score is a metric often used in case of class imbalance and focuses more
on correctly predicting the minority class. Further, the value of this metric is sensitive to
the ratio between the minority and majority class: while the perfect-skill score remains
always at one, the no-skill score equals that ratio [44]. This complicates comparing different
AUC-PR scores if the ratio is different. Two ways exist to account for this effect. One
is sampling the label data according to the desired ratio and then evaluating the metric.
Another one is by computing precision and recall on the full set of labels and performing an
algebraic transformation that allows to compute the AUC-PR score with the desired virtual
ratio. When calculating AUC-PR in Edd or Ee, the ratio of positive and negative labels may
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fluctuate depending on the effect or the drug–drug pair, see Figure 3. To obtain a consistent
no-skill, we rescale every AUC-PR score to a virtual ratio that is the average ratio of the
entire data set, i.e., 0.02. Previous research in this area put this no-skill virtually at 0.5
by sampling data in a balanced way, however possibly indicating optimistic results [26].
To compare with such results, we use the algebraic transformation [44] to rescale our results
to the no-skill value of 0.5.
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