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Abstract: In this paper the problem of synchronisation of multiple robotic manipulators
using H∞ robust distributed control systems with respect to the parameter uncertainties and
disturbance inputs acting on the manipulators is addressed. Robust synchronising controllers
only use the information of outputs of the manipulators, and the corresponding parameters of
these output-feedback controllers are designed by computing a series of linear matrix inequalities
instead of solving the complex differential (e.g. Hamilton-Jacobi) (in)equalities. The proposed
controller can guarantee H∞ robust performance with respect to the external disturbance
inputs and parameters uncertainties, asymptotic stability and synchronisation in the networked
manipulators. Using an illustrative example we compare the results extracted in this paper to
other works existing in the literature.
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1. INTRODUCTION

The concept of synchronisation has readily shown its ad-
vantages and usefulness for coordinating the behaviour of
multiple agents (Sun (2016)). Networked multiple robotic
manipulators face however many issues with respect to
the synchronisation as documented in numerous studies,
(Dai, et al. (2016)). Synthesis of the automatic systems
to control these multi-robotic manipulators can rely on
synchronising distributed controllers where the local in-
formation of each manipulator and the information of
its neighbours are used to complete the structure of the
controllers (Dai, et al. (2016)).

Using a master-slave control design methodology, a syn-
chronising and tracking controller was presented in (Bond-
hus, et al. (2004)). Only the position information of the
manipulators was assumed available to design the con-
trol gain. Difficulties however appeared towards scalability
when having more than two manipulators (Bondhus, et
al. (2004)). By means of Lagrangian models of the ma-
nipulators, the synchronisation problem of interconnected
multiple manipulators was investigated in (Chung, et al.
(2009)) where diffusive couplings between the agents were
considered. The nominal parameters of the manipulators
were assumed available in (Bondhus, et al. (2004), Chung,
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et al. (2009)) where the problem of parameter uncertain-
ties affecting synchronisation was however not considered.

Using adaptive and robust control methods, parameter
uncertainties can be accommodated for in the control syn-
thesis of interconnected robotic systems (Liu, et el. (2010)
and Zhang, et al. (2017)). Relying on H∞ robust con-
troller enables to cope with these parameter uncertainties
but also with disturbance inputs (Rigatos, et al. (2017),
Miyasato (2010)). Only limited research has however
been devoted to deploying H∞ robust control methods
for interconnected multiple manipulators. In (Mehrabian
(2013) and Levi, et al. (2007)), the trajectory tracking
problem of multiple manipulators was addressed by having
Euler-Lagrange models of the agents with the solving of
algebraic Riccati equations. The aforementioned works
were based on H∞ control systems which require knowl-
edge on the dynamics of the manipulators represented by
complex non-linear interconnected equations, resulting in
interconnected multi-Euler-Lagrange systems. In order to
tackle the problem of H∞ distributed controller design
in the works that are aforementioned, complex Hamilton-
Jacobi inequalities/equalities need to be solved that are
computationally difficult and sometimes intractable.

In this paper, we primarily develop the dissipative equality
existing in (Williems (2007)) for the case of interconnected
multi-agent systems. Secondly, we synthesise H∞ robust
distributed controllers for multi-robotic manipulators to
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significantly decrease the transient time of manipulators in
the networked system. Finally, differently from the method
proposed in (Mehrabian (2013)), we introduce a con-
trol design procedure using the linear matrix inequalities
(LMIs) to extract the controllers’ parameters. Hence, we
significantly simplify the control design procedure using
LMIs compared to the Hamilton-Jacobi (in)equalities that
have been introduced in (Mehrabian (2013)). Conclu-
sively, the control design method proposed in this paper
leads to a more straightforward strategy than existing
methods such as in (Mehrabian (2013)). In an illustrative
example we demonstrate the potential of our presented
method.

This paper is organised as follows. In Section 2, the prob-
lem definition of synchronisation and trajectory tracking of
a group of interconnected robotic manipulators is stated.
In Section 3, we present the synthesis of H∞ robust dis-
tributed controllers to guarantee the definitions presented
in Section 2. Finally, we illustrate the reliability and ef-
fectiveness of our proposed method using a comparative
example.

2. PROBLEM DEFINITION

We consider N robotic manipulators that have the same
number of joints and links, and that are fully actuated
with respect to rotational movement (in the joints). We
furthermore suppose that the manipulators having n joints
that are non-identical regarding their masses and lengths.
It is worth mentioning that the angular positions and
absolute velocities of each manipulator are measurable in
order to synthesise the controller proposed in this paper.
Without considering parameter uncertainties, the dynamic
of each manipulator with nominal parameters can be
formulated by Euler-Lagrange equations as follows

Ai(xi)ẍi +Bi(xi, ẋi)ẋi + Ci(xi) = τi + ωi (1)

i ∈ {1, 2, ..., N},

in which the vector xi ∈ Rn denotes the group of angular
positions of the joints, Ai(xi) ∈ Rn×n, Bi(xi, ẋi) ∈
Rn×n and Ci(xi) denote the inertia matrix, the matrix
of coriolis and centripetal forces, and gravitational forces,
respectively. τi ∈ Rm and ωi ∈ Rw indicate the torques
as control input at the n joints of the manipulator and
the external disturbances acting on the ith manipulator,
respectively.

Before proceeding further we recall a lemma from (Liu, et
el. (2010)) which is used in Section 3 for the synthesis
of the controller parameters. It is mentioned in (Liu,
et el. (2010)) that the Euler-Lagrange system (1) has

skew-symmetry property since it satisfies vT [ 12 Ȧi(xi) −
Bi(xi, ẋi)]v = 0 for any nonzero vector v.

We suppose that the dynamical models of the multiple
manipulators contain parameter uncertainties. Thus, the
identified parameters are available to design controllers
instead of the exact values. The system matrices in (1) are
related to the exact parameter values of the manipulators
whereas we will denote the identified parameters that
contain parameter uncertainties as Âi(xi), B̂i(xi, ẋi) and

Ĉi(xi), respectively.

In this paper, each robotic manipulator is supposed to
be interconnected with its neighbours. Hence, we can
model the networked robotic manipulators as a graph
in such a way that manipulators are assumed as nodes
and the interconnecting communication between them are
considered as edges. Furthermore, each ith manipulator
is controlled to asymptotically track the desired reference
angular position xr

i (t) as function of time. In order to
significantly improve the tracking performance towards the
reference input and reduce the transient time, an auxiliary
synchronisation control signal τsi as torque force is added
to the joints of each manipulator to attain synchronisation
in the networked manipulators. The relevant control input
τi acting on the ith manipulator can now be described as
follows

τi = Âi + B̂iqi + D̂i −Kiei + τsi, (2)

in which qi and q̇i are defined as qi = ẋr
i − βx̄i and q̇i =

ẍr
i −β ˙̄xi, respectively, with angular position tracking error

x̄i(t) = xi(t)−xr
i (t) and positive definite weight matrix β.

The control gain Ki and β need to be chosen in such a way
that the desired reference tracking can be achieved in the
ith manipulator even without the synchronising controller
τsi. The weighted tracking error and the time derivative of
the tracking error can be summarized by

ei = ˙̄xi + βx̄i. (3)

Combining (1), (2) and (3), results in a closed loop model
of the ith manipulator

Aiėi = −(Bi +Ki)ei + Āiq̇i + B̄iqi + C̄i + ωi + τsi, (4)

in which Āi = Âi−Ai, B̄i = B̂i−Bi and C̄i = Ĉi−Ci are
defined as system identification errors. Obviously system
identification errors affect the performance of tracking and
synchronisation. We thus consider the function di = ωi +
Āiq̇i + B̄iqi + C̄i as general disturbance inputs including
identification errors. Hence, regarding the identification
errors the dynamical model of each manipulator can be
rewritten as follows

ėi = −A−1
i (Bi +Ki)ei +A−1

i di +A−1
i τsi. (5)

ei(t) reflects the synchronisation state evolution within
each ith manipulator. This leads us to the following
definition.

Definition 1: The group of interconnected robotic manip-
ulators (1) are synchronised if the following relation holds

lim
t→∞

|| ej(t)− ei(t) ||= 0 ∀i ∈ {1, ..., N}, ∀j ∈ Ni, (6)

where Ni denotes the neighbours interconnected with
the ith manipulator. ej − ei is the synchronisation error
between two manipulators.

Before proceeding further, we briefly provide the definition
of so-called storage functions that will be used further in
stability analysis and controller synthesis in Theorem 1
and Theorem 2.

Definition 2: A real-valued function V : X �−→ R defined
on state space X of a system with behaviour set B and
state B × [0,∞) �−→ X is called a Lyapunov function if
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t �−→ V (t) = V (x(t)) = V (x(y(.)), t)) is a non-increasing
function of time for every y ∈ B. One can say that
Lyapunov functions have an explicit upper bound imposed
on their increments along system trajectories

V (x(y(.), t1))− V (x(y(.)), t0)) ≤ 0, ∀t1 ≥ t0 ≥ 0, y ∈ B.
A useful generalisation of this is given by storage functions.

3. DISTRIBUTED H∞ ROBUST CONTROL FOR
INTERCONNECTED NONLINEAR SYSTEMS

In this section, a distributed H∞ robust controller is
synthesised for the group of interconnected manipulators
described by nonlinear Euler-Lagrange models.

We consider a group of N nonlinear manipulators that
can be expressed, based on (6), by following state space
equations

ėi =Ei(ei, t)ei + Fi(ei, t)ui +Gi(xi, t)di (7)

zi =Hi,1ei +Hi,2

∑
j∈Ni

(ei − ej) + Jiui,

in which Ei, Fi, Gi, Hi and Ji are time varying matrices
consisting of nonlinearities depending on the states of the
ith manipulator. The system matrices are defined as: Ei =
−A−1

i (Bi +Ki) and Fi = Gi = A−1
i . In (7), ei ∈ Rn and

ej ∈ Rn denote the measurable outputs of manipulators
that are used to synthesise the control input ui = τsi ∈ Rn.
zi ∈ Rp indicates the controlled outputs withH1,i andH2,i

representing the constant weight matrices associated to ei
and ei − ej respectively.

The main issue of H∞ controller synthesis is to reduce the
effect of the disturbance input di on the controlled output
zi with respect to the desired disturbance attenuating
constant for each ith manipulator. The synchronisation
between manipulators, see (6), and their stability need to
hold when synthesising the controller.

We now introduce Lemma 1 to describe the stability
of multiple interconnected manipulators that follow the
dynamics in (7). This lemma is used for assuring H∞
robustness and asymptotic stability by defining the storage
function, cfr. Definition 2, of the networked manipulators
as

Vc(ec, t) =

N∑
i=1

Vi(ei, t), (8)

in which Vi(ei, t) indicates the storage function of the
ith manipulator and ec denotes the concatenation of all
synchronisation states being ec = [eT1 , e

T
2 , ..., e

T
N ]T .

Lemma 1: If there exists a stabilising control law ui for
the ith manipulator (7), such that the closed-loop system
is dissipative according to the positive-definite storage
function Vi(ei, t) with Vi(0, t) = 0 and for the disturbance
attenuating gains γi for i ∈ {1, 2, ..., N}(see (9) and (10)),
we have the following inequality for each manipulator

Vi(ei(t), t)− Vi(ei(0), 0) ≤ 1/2

∫ t

0

(γ2
i d

T
i di − zTi zi)dt

′
.

Regarding (8) and the inequality defined above, the fol-
lowing inequality holds for the networked manipulators

Vc(ec(t), t)− Vc(ec(0), 0) ≤ (9)

1/2
N∑
i=1

∫ t

0

(γ2
i d

T
i di − zTi zi)dt

′
.

Furthermore, the following relation assures the attenua-
tion of the vector of disturbance inputs to the vector of
controlled outputs with respect to the supremum of the
attenuating L2 gains

∫ t

0

zTc zcdt
′
≤
∫ t

0

γ2dTc dcdt
′

(10)

∫ t

0

zTi zidt
′
≤
∫ t

0

γ2
i d

T
i didt

′
, ∀i ∈ {1, 2, ..., N}

in which zc = [zT1 , z
T
2 , ..., z

T
N ]T , dc = [dT1 , d

T
2 , ..., d

T
N ]T , and

γ = supi γi for i ∈ {1, 2, ..., N}.
Lemma 1 shows that the disturbance attenuation can be
achieved with respect to the L2 gains that are less or
equal to γ, and furthermore the asymptotic stability can
be obtained for the overall networked manipulators.

We propose the output-feedback synchronising controller
as

ui = τsi = Ksi

∑
j∈Ni

(ej − ei), (11)

with gain Ksi. The structure of controller (11) is syn-
thesised in such a way that it can work in a distributed
manner, interconnecting each manipulator with its neigh-
bours. It is worth mentioning that each manipulator can
compute its synchronising control action by the control law
(11) using the information received from its neighbours,
concretely via (ej − ei) in (11). Despite the fact that the
control law (11) represents a distributed controller, the
desired reference trajectory xr

i (t) is also delivered to each
manipulator to assure that tracking can be achieved even
without synchronising controllers.

Combining (7) and (11) leads to the following closed loop
dynamics of each ith manipulator

ėi =Eiei +Qi

∑
j∈Ni

(ei − ej) +Gidi (12)

zi =Hi,1ei + Ti

∑
j∈Ni

(ei − ej)

where Qi = FiKsi and Ti = Hi,2 − JiKsi.

In the following theorem, we analyse the control parame-
ters Ki and Ksi of the ith manipulator to determine the
problem of asymptotic stability and synchronisation.

Theorem 1: Suppose a network of N interconnected
manipulators with state space dynamics described by
(12). There exist Ksi and the positive-definite functions
Vi(ei, t) with Vi(0, t) = 0, for i ∈ {1, 2, ..., N} such that
the following Hamilton-Jacobi inequalities hold with the
constant values for γi > 0 and the given weight matrices
of the controlled outputs zi that are defined as Hi,1 and
Hi,2 and Ji in (7).
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∂Vi

∂t
+

∂Vi

∂ei
Eiei +

1

2γ2
i

∂Vi

∂ei
GiG

T
i

∂V T
i

∂eTi
+ (13)

1

2
eTi H

T
i,1Hi,1ei < 0

1

2
eTi Hi,1

∑
j∈Ni

Ti(ei − ej)−
∑
j∈Ni

∂Vi

∂ei
Qi(ei − ej)+

1

2

∑
j∈Ni

(ei − ej)
TTT

i Hi,1ei +

1

2

∑
j∈Ni

(ei − ej)
TTT

i

∑
j∈Ni

Ti(ei − ej)≤ 0

Then, the control gain Ksi can guarantee H∞ robustness
with respect to the L2 gains, stability of networked ma-
nipulators and synchronisation between them.

Proof: Taking the time derivative of the positive definite
storage function Vi(ei, t) of the ith manipulator (12) re-
sults in

V̇i =
dVi

dt
=

∂Vi

∂t
+

∂Vi

∂ei
Eiei + (14)

∂Vi

∂ei
Gidi +

∂Vi

∂ei
Qi

∑
j∈Ni

(ei − ej).

Using the method of completing the squares to (14) and
regarding the inequalities described in (13), we have the

following inequality with respect to V̇i

V̇i ≤−1

2
(eTi H

T
i,1

∑
j∈Ni

Ti(ei − ej) + (15)

eTi H
T
i,1Hi,1ei +

∑
j∈Ni

(ei − ej)
TTT

i Hi,1ei

∑
j∈Ni

(ei − ej)
TTT

i

∑
j∈Ni

Ti(ei − ej) + γ2
i || di ||2).

Integrating both sides of (15) and considering (8) lead to
the following inequality

Vc(ec(t), t)− Vc(ec(0), 0) ≤ (16)

1/2
N∑
i=1

∫ t

0

(γ2
i d

T
i di − zTi zi)dt

′
.

According to Lemma 1, H∞ robustness from the distur-
bance inputs to the controlled outputs can be obtained
with respect to the attenuating L2 gains, in which the
disturbance inputs consist of external disturbance inputs
and identification errors.

It is worth noting that it is effortful to directly deter-
mine the controller parameters according to the Hamilton-
Jacobi inequalities defined in (13). In the next theorem,
we present a straightforward method to compute the syn-
chronising controller parameters. Instead of solving the
inequalities (13), we propose a series of LMIs to synthesise
the synchronising controller parameters.

Let us consider the parameter uncertainties in the inertia
matrix Ai of the ith manipulator being denoted as δi ∈
[δmin

i , δmax
i ] ⊂ Rm. We furthermore consider the following

positive definite storage functions

Vi(ei, t) =
1

2
eTi Pi(xi, δi)ei, i ∈ {1, 2, ..., N} (17)

with Pi(xi, δi) � 0 determined by a positive-definite sym-
metric matrix Hi ∈ Rn×n that should be invertible and
∆i(xi, δi) representing the polytopic parameters uncer-
tainties: Pi(xi, δi) = Hi∆i(xi, δi). It is worth mentioning
that the matrix ∆i(xi, δi) consists of trigonometric nonlin-
ear expressions which are bounded in the interval [−1 ,+1].

In the following theorem, we present a series of LMIs
that can be solved to directly synthesise the synchronising
controller parameters Ksi for each ith manipulator such
that stabilisation, synchronisation and attenuation from
the disturbance inputs to the controlled outputs can be
achieved with respect to the attenuating L2 gains γi and
the given values of the weight matrices Hi,1, Hi,2 and Ji
for the networked manipulators formulated in (12).

Theorem 2: If there exist the positive-definite matrix Hi

and tracking controller parameters Ki independently from
the synchronising controller parameters Ksi for each ith
manipulator, based on the given values of attenuating L2

gains γi and the weight matrices Hi,1, Hi,2 and Ji, the
controller parameters (11) are synthesised by solving the
following linear matrix inequalities



−((HiKi)

T +HiKi) Hi HT
i,1

∗ −γ2
i In On×n

∗ ∗ −In


 ≤ 0 (18)

[
φ LNi×1 ⊗ (Hi,2 − JiKsi)

T

∗ −In

]
≤ 0 (19)

Hi∆
(v)
i (xi, δi) + (Hi∆

(v)
i (xi, δi))

T > 0 (20)

φ = INi ⊗ (HT
i,1Hi,2 + (HT

i,1Hi,2 −HT
i,1JiKsi−

(Hi,1JiKsi)
T −HiKsi − (HiKsi)

T ,

in which On×n ∈ Rn×n, LNi×1 ∈ RNi×1 and INi
∈

RNi×Ni indicate the zero matrix, the vector of ones, and

identity matrix respectively. Furthermore, ∆
(v)
i symbolises

∆i computed at the polytope vertices.

Proof: Combining the positive-definite storage function
(17) and the inequalities (14) leads to the following in-
equalities

eTi [1/2(Ṗi + Ṗi
T
)T + (PiEi + ET

i Pi)
T +HT

i,1Hi,1 (21)

1/γ2
i PiGiG

T
i P

T
i ]ei ≤ 0

∑
j∈Ni

eTi PiQi(ei − ej) +
1

2
(
∑
j∈Ni

(ei − ej)
TTT

i ei + (22)

∑
j∈Ni

(ei − ej)
TTT

i

∑
j∈Ni

Ti(ei − ej) +

eTi H
T
i,1

∑
j∈Ni

Ti(ei − ej)) ≤ 0.
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Substituting the relations Ei = −A−1
i (Bi + Ki), Fi =

Gi = A−1
i and (17) in (21) and considering skew-symmetry

property presented in (Liu, et el. (2010)), the following
inequality emerges

eTi [−(HiKi +KT
i H

T
i )

T + (23)

1

γ2
i

HiH
T
i +HT

i,1Hi,1]ei ≤ 0,

since we consider the case that each ith manipulator is
strongly interconnected with neighbours in network, we
have

2
N∑
i=1

∑
j∈Ni

eTi ei =

N∑
i=1

∑
j∈Ni

eTj ej (24)

Using the relations Qi = FiKsi, Ti = Hi,2 − JiKsi,
Pi(xi, δi) = Hi∆i(xi, δi) and substituting (8) and (24) in
(22), (22) can be rewritten as follows

N∑
i=1

eij [
1

2
INi

⊗ (HT
i,1Hi,2 +HT

i,2Hi,1 − (25)

HT
i,1JiKsi − (HT

i,1JiK
T
si −HiKsiK

T
siH

T
i ) +

LNi×Ni
⊗ (Hi,2 − JiKsi)

T (Hi,2 − JiKsi)]eij ≤ 0,

where eij = {(ei − ej) | ∀j ∈ Ni}. Using the Schur
complement for the inequalities (23) and (25), we extract
the inequalities (20) and (21) presented in Theorem 2.
Furthermore, as we know Pi(xi, δi) � 0 implies the in-
equality Pi(xi, δi) + PT

i (xi, δi) � 0. Using the relation
Pi(xi, δi) = Hi∆i(xi, δi), then we have the inequality
ψi = Hi∆(xi, δi) + ∆i(xi, δi)H

T
i � 0. This inequality

is nonlinear that obviously can not be solved directly,
since the matrix ∆i(xi, δi) consists of parameters uncer-
tainties and trigonometric nonlinear expressions. Parame-
ters uncertainties are supposed to be bounded in certain
polytopes and the trigonometric nonlinearities vary in the
interval [−1 ,+1]. Hence, the nonlinear matrix inequality
ψi � 0 is bounded and can be evaluated only at the vertices
of the corresponding bounds of parameters uncertainties
and trigonometric nonlinearities. Thus, solving the non-
linear inequality ψi � 0 leads to solving a finite number of
LMIs (22) presented in Theorem 2.

According to Lemma 1 and Theorem 1, we can conclude
that the networked robotic manipulators (14) has the
H∞ robustness from the disturbance inputs di to the
controlled outputs zi with respect to the attenuating L2

gains γi in such a way that the asymptotic stability and
synchronisation can be achieved. It concludes the proof of
Theorem 2. �

4. ILLUSTRATIVE EXAMPLE

Using an illustrative example we demonstrate in this
section the effectiveness of our proposed synchronising
distributed control strategy. We consider N = 3 robotic
manipulators consisting of n = 2 joints with three rigid
links that are supposed to track the desired reference
trajectories xr

i (t). The merit of our proposed control
synthesis is shown by comparing our results with other
results existing in the literature (Mehrabian (2013)).

We assume in this example that each manipulator is
strongly interconnected with all manipulators, meaning
that each manipulator receives information from its two
neighbours. The Euler-Lagrange dynamic equation of ith
manipulator according to (1) is

Ai(xi) =

[
(1, 1) (1, 2)
(2, 1) Ii,2 +mi,2l

2
c2

]
(26)

Bi(xi, ẋi) =

[
(̂1, 1) (̂1, 2)

mi,2l1lc2 sin(xi,2)ẋi,1 0

]

Ci(xi) =

[
(̂1)

mi,2lc2g cos(xi,1 + xi,2)

]

with

(1, 1) = Ii,1+Ii,2+mi,1l
2
c1+mi,2(l

2
1+ l2c2+2l1lc2 cos(xi,2))

(1, 2) = Ii,2 +mi,2(l
2
c2 + l1lc2 cos(xi,2))

(2, 1) = Ii,2 +mi,2(l
2
c2 + l1lc2cos(xi,2))

(̂1, 1) = −mi,2l1lc2 sin(xi,2)ẋi,2, Ii,1 =
1

12
mi,1l

2
1

(̂1, 2) = −mi,2l1lc2 sin(xi,2)(ẋi,1 + ẋi,2)), Ii,2 =
1

12
mi,2l

2
2

(̂1) = (mi,1lc1+mi,2l1)g cos(xi,1)+mi,2lc2g cos(xi,1)+xi,2,

in which xi = [xT
i,1, x

T
i,2]

T and τi = [τT1,i, τ
T
i,2]

T respectively
indicate the angular positions of the ith manipulator
and the control inputs applied to the joints of the ith
manipulator, i ∈ {1, 2, 3}. mi,1 and mi,2 denote the masses
of links and l1 = l2 indicate the length of the links. g = 9.8
m/s2 and lc,1 and lc,2 = 0.3 m are the centres of masses
that are supposed to be equal for all three manipulators.
Here, we aim to synchronise the joints of all three robotic
manipulators to track the desired reference inputs xr(t) =
[40 sin(2πt) 20 sin(2πt)]. We assume the initial conditions
of angular positions as x1(0) = [80◦ 10◦], x2(0) = [100◦ 8◦]
and x3(0) = [105◦ 8◦]. As discussed before the parameters
of manipulators models are uncertain and we suppose that
the parameters uncertainties variations are bounded by
values given in Table 1.

Table 1. Nominal values of parameters, identi-
fied parameters and parameters uncertainties

m1,1 = m1,2 = m̂1,1 = m̂1,2 = Bound of masses:
11 11.5 [10 12]

m2,1 = m2,2 = m̂2,1 = m̂2,2 = Bound of masses:
8 8.5 [7 9]

m3,1 = m3,2 = m̂3,1 = m̂3,2 = Bound of masses:
7.5 8 [7 8.5]

l1 = l2 = l̂1 = l̂2 = Bound of lengths:
0.45 0.48 [0.4 0.5]

Using our presented approach, the synchronising controller
parameters Ksi can be synthesised by solving the LMIs
presented in Theorem 2. It is worth noting that in this
example the matrix Ai(xi) contains trigonometric nonlin-
ear terms which are bounded in interval [−1 ,+1]. Hence,
Ai(xi) and (22) are bounded and can be evaluated at
the polytope vertices. Given the attenuating L2 gains as
γ1 = γ2 = γ3 = 0.75, the tracking controllers Ki = 6I2×2

and the weight matrices H1,i = H2,i = Ji = 3I2×2,
and β = 40I2×2 for i ∈ {1, 2, 3}, using YALMIP tools
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Substituting the relations Ei = −A−1
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i and (17) in (21) and considering skew-symmetry

property presented in (Liu, et el. (2010)), the following
inequality emerges

eTi [−(HiKi +KT
i H

T
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T + (23)

1
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HiH
T
i +HT
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since we consider the case that each ith manipulator is
strongly interconnected with neighbours in network, we
have

2
N∑
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∑
j∈Ni
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∑
j∈Ni

eTj ej (24)
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complement for the inequalities (23) and (25), we extract
the inequalities (20) and (21) presented in Theorem 2.
Furthermore, as we know Pi(xi, δi) � 0 implies the in-
equality Pi(xi, δi) + PT

i (xi, δi) � 0. Using the relation
Pi(xi, δi) = Hi∆i(xi, δi), then we have the inequality
ψi = Hi∆(xi, δi) + ∆i(xi, δi)H

T
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is nonlinear that obviously can not be solved directly,
since the matrix ∆i(xi, δi) consists of parameters uncer-
tainties and trigonometric nonlinear expressions. Parame-
ters uncertainties are supposed to be bounded in certain
polytopes and the trigonometric nonlinearities vary in the
interval [−1 ,+1]. Hence, the nonlinear matrix inequality
ψi � 0 is bounded and can be evaluated only at the vertices
of the corresponding bounds of parameters uncertainties
and trigonometric nonlinearities. Thus, solving the non-
linear inequality ψi � 0 leads to solving a finite number of
LMIs (22) presented in Theorem 2.

According to Lemma 1 and Theorem 1, we can conclude
that the networked robotic manipulators (14) has the
H∞ robustness from the disturbance inputs di to the
controlled outputs zi with respect to the attenuating L2

gains γi in such a way that the asymptotic stability and
synchronisation can be achieved. It concludes the proof of
Theorem 2. �

4. ILLUSTRATIVE EXAMPLE

Using an illustrative example we demonstrate in this
section the effectiveness of our proposed synchronising
distributed control strategy. We consider N = 3 robotic
manipulators consisting of n = 2 joints with three rigid
links that are supposed to track the desired reference
trajectories xr

i (t). The merit of our proposed control
synthesis is shown by comparing our results with other
results existing in the literature (Mehrabian (2013)).

We assume in this example that each manipulator is
strongly interconnected with all manipulators, meaning
that each manipulator receives information from its two
neighbours. The Euler-Lagrange dynamic equation of ith
manipulator according to (1) is

Ai(xi) =

[
(1, 1) (1, 2)
(2, 1) Ii,2 +mi,2l

2
c2

]
(26)

Bi(xi, ẋi) =

[
(̂1, 1) (̂1, 2)

mi,2l1lc2 sin(xi,2)ẋi,1 0

]

Ci(xi) =

[
(̂1)

mi,2lc2g cos(xi,1 + xi,2)

]

with

(1, 1) = Ii,1+Ii,2+mi,1l
2
c1+mi,2(l

2
1+ l2c2+2l1lc2 cos(xi,2))

(1, 2) = Ii,2 +mi,2(l
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c2 + l1lc2 cos(xi,2))

(2, 1) = Ii,2 +mi,2(l
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1

12
mi,1l

2
1

(̂1, 2) = −mi,2l1lc2 sin(xi,2)(ẋi,1 + ẋi,2)), Ii,2 =
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(̂1) = (mi,1lc1+mi,2l1)g cos(xi,1)+mi,2lc2g cos(xi,1)+xi,2,

in which xi = [xT
i,1, x

T
i,2]

T and τi = [τT1,i, τ
T
i,2]

T respectively
indicate the angular positions of the ith manipulator
and the control inputs applied to the joints of the ith
manipulator, i ∈ {1, 2, 3}. mi,1 and mi,2 denote the masses
of links and l1 = l2 indicate the length of the links. g = 9.8
m/s2 and lc,1 and lc,2 = 0.3 m are the centres of masses
that are supposed to be equal for all three manipulators.
Here, we aim to synchronise the joints of all three robotic
manipulators to track the desired reference inputs xr(t) =
[40 sin(2πt) 20 sin(2πt)]. We assume the initial conditions
of angular positions as x1(0) = [80◦ 10◦], x2(0) = [100◦ 8◦]
and x3(0) = [105◦ 8◦]. As discussed before the parameters
of manipulators models are uncertain and we suppose that
the parameters uncertainties variations are bounded by
values given in Table 1.

Table 1. Nominal values of parameters, identi-
fied parameters and parameters uncertainties

m1,1 = m1,2 = m̂1,1 = m̂1,2 = Bound of masses:
11 11.5 [10 12]

m2,1 = m2,2 = m̂2,1 = m̂2,2 = Bound of masses:
8 8.5 [7 9]

m3,1 = m3,2 = m̂3,1 = m̂3,2 = Bound of masses:
7.5 8 [7 8.5]

l1 = l2 = l̂1 = l̂2 = Bound of lengths:
0.45 0.48 [0.4 0.5]

Using our presented approach, the synchronising controller
parameters Ksi can be synthesised by solving the LMIs
presented in Theorem 2. It is worth noting that in this
example the matrix Ai(xi) contains trigonometric nonlin-
ear terms which are bounded in interval [−1 ,+1]. Hence,
Ai(xi) and (22) are bounded and can be evaluated at
the polytope vertices. Given the attenuating L2 gains as
γ1 = γ2 = γ3 = 0.75, the tracking controllers Ki = 6I2×2

and the weight matrices H1,i = H2,i = Ji = 3I2×2,
and β = 40I2×2 for i ∈ {1, 2, 3}, using YALMIP tools
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Fig. 1. Synchronisation error between three robotic ma-
nipulators, using only tracking controllers and combi-
nation of tracking and synchronising controllers.

to solve the LMIs presented in Theorem 2, the results
for the positive-definite matrix Hi and the synchronising
controllers parameters Ksi are

Ksi =

[
5.5 −0.001

0.0025 6

]
, Hi =

[
4.314 −0.0441

−0.0441 4.523

]
.

Using the synchronising controller Ksi, it can be observed
from Fig. 1 that our synchronising controller leads to
tracking of the desired reference trajectories with signifi-
cantly less transient time compared to the case of only us-
ing the tracking controller with gain Ki. Furthermore, it is
apparent from Fig. 1 that our proposed synchronising H∞
robust distributed controller improves the performance of
a networked system to attenuate the effects of disturbance
inputs.

To quantitatively benchmark our method compared to
approaches based on Hamilton-Jacobi inequalities (e.g.
Mehrabian (2013)), we consider the mean square of
synchronisation errors (MSEi,j) for each ith manipulator,

MSEi,j =
1
4

∫ 4

0
|| ei(t)− ej(t) ||2 dt.

Results are also detailed in Table 2 for this illustrative
example. Up to 40% improvement can be achieved when
using the proposed synchronising controller. It is worth
mentioning that the controller gains used in (Mehrabian
(2013)) are chosen by trial and error according to the
Lyapunov function analysis. Opposed to other methods as
in (Mehrabian (2013)), we have proposed with Theorem
2 a way to directly synthesise the controller parameters.

5. CONCLUSION

This paper addresses the synchronisation of multiple
robotic manipulators by H∞ robust distributed con-
trollers. The manipulators are torque controlled in their
multiple joints and are subject to disturbances. Further-
more the system models describing the dynamics of the

Table 2. Comparing our results with (Mehra-
bian (2013))

MSE1,2 MSE1,3 MSE2,3

proposed 21.2 26.51 8.32

Hamilton-Jacobi 35.3 44.12 16.23
based on

(Mehrabian (2013))

multi-robotic manipulators contain parameter uncertain-
ties. The manipulators need to synchronise and track de-
sired reference trajectories where the effect of external dis-
turbance inputs and identification errors are mitigated. We
propose H∞ controller synthesis method that instead of
solving complex non-linear Hamilton-Jacobi inequalities, a
set of LMIs are directly solved. This work is based on the
proper definition for synchronised robotic manipulators
and uses storage functions for analysing the asymptotic
stability and synchronisation. The stability aspects and
the control synthesis are each formalised in theorems.
Using an illustrative example we demonstrate the effec-
tiveness of our proposed synchronising distributed control
strategy where the LMIs are solved using YALMIP. When
comparing the evolution and mean square of synchroni-
sation errors it is clear that including the synchronising
controller reduces tracking errors and that time transients
are reduced. Finally, the proposed approach enables to
directly synthesise the controller parameters.
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