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ABSTRACT: Discovery of variant peptides such as a single amino acid variant
(SAAV) in shotgun proteomics data is essential for personalized proteomics. Both
the resolution of shotgun proteomics methods and the search engines have
improved dramatically, allowing for confident identification of SAAV peptides.
However, it is not yet known if these methods are truly successful in accurately
identifying SAAV peptides without prior genomic information in the search
database. We studied this in unprecedented detail by exploiting publicly available
long-read RNA sequences and shotgun proteomics data from the gold standard
reference cell line NA12878. Searching spectra from this cell line with the state-of-
the-art open modification search engine ionbot against carefully curated search
databases resulted in 96.7% false-positive SAAVs and an 85% lower true positive
rate than searching with peptide search databases that incorporate prior genetic
information. While adding genetic variants to the search database remains
indispensable for correct peptide identification, inclusion of long-read RNA
sequences in the search database contributes only 0.3% new peptide identifications. These findings reveal the differences in SAAV
detection that result from various approaches, providing guidance to researchers studying SAAV peptides and developers of peptide
spectrum identification tools.
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■ INTRODUCTION

Proteomes display significant interindividual variability1,2 and
personal proteomes may delineate disease risk and pave the way
for personalized disease prevention and treatment. Personalized
cancer treatment, for instance, is already instigated based on the
detection of peptides containing single amino acid variants
(SAAVs) that often serve as excellent biomarkers.3−8 Detecting
these SAAV peptides reliably, however, is a formidable
challenge. Previously, scientists looked for protein evidence of
a small number of variants in particular and resorted to targeted
proteomics approaches such as selected reaction monitor-
ing.9−12 Alternatively, BLAST-like query tools such as
Peptimapper and PepQuery13,14 or database tools such as
XMAn v215 and dbSAP16 can be used to investigate single
events.17,18 Proteogenomics, the integration of genome and
transcriptome information, is a more holistic and higher-
throughput form of mass spectrometry (MS)-based detection
of variant peptides.
A main limiting factor of SAAV peptide (called “variant

peptide” in the remainder of the paper) detection with shotgun
proteomics is the tandemMS (MS/MS) technology itself. Since
MS/MS spectra are generally too noisy to call a peptide
sequence de novo, current MS/MS analysis methods rely on a
database of known peptides. This limits the ability to detect

unknown peptides such as variant peptides. The most flexible
way to detect variant peptides is an exhaustive search; allowing
any possible amino acid substitution at any position in the
peptide sequence.19,20 However, this strategy increases the
search space immensely to a point where it is no longer useful in
practice. The larger search space leads to ambiguity in peptide
identification and thus, a high number of false-positive hits.21,22

Therefore, more careful curation of sequences in the search
database pays off.
Databases of peptides containing variants from dbSNP have

been created to facilitate the search for SAAVs,3,16 and simply
adding these variant peptides to the database showed promise
early on.3,23 Not all dbSNP variants, however, are expected to be
found in every sample, and including them all may lead to false
identifications.24 In addition, rare and unique variants may be
overlooked. A proteogenomics approach where only those
variant peptides predicted from genome or transcriptome
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information are added to the peptide search databases can
improve their detection. Proteogenomics pipelines have stream-
lined this process of incorporating personal genome information
into a proteomic search database.25−29 In addition, there is
evidence that including correct sequence variant information,
including often-overlooked sample-specific indels and frame-
shifts, improves variant peptide identification workflows.30 Yet,
false discovery rate (FDR) correction is needed to compensate
for the increase of database size and complexity.21,22 When
searching for evidence of specific peptides such as variant
peptides, an additional subset-specific FDR correction should be
made.31

In addition to SAAVs, alternative splicing may also introduce
sample specific peptides. Alternative splicing is commonplace as
90% of genes undergo alternative splicing.32 Since protein
reference databases do not cover all protein isoforms produced
by alternative splicing, sample-specific transcriptome informa-
tion is advantageous. Typically, the information on alternatively
spliced sequences comes from RNA sequencing. A short-read
RNA sequence is however not ideal for properly capturing the
complete splicing patterns and the resulting open reading frames
(ORFs). Traditionally, this is circumvented by including 3- or 6-
frame translations of the sample’s transcriptome. However, this
approach was found to expand the database far too much for
eukaryotic organisms, leaving few remaining hits after FDR
correction.33 Studies utilizing long-read RNA sequences
frequently discover previously unannotated transcript struc-

tures. Thus, full-length transcripts may add essential information
for correct ORF prediction and peptide identification.
An emerging alternative to proteogenomics methods for the

detection of variant peptides is the “open search” method. This
allows unexpected post-translational modifications and amino
acid substitutions in the peptide spectrum match while
maintaining an accurate FDR and a workable computation
time. Using sequence tag-based approaches, the search space is
narrowed with de novo sequence tags, whichmakes room for the
addition of all possible SAAV peptides in the search space.34−38

These methods were historically not as effective as classical
proteogenomics searches in finding variant peptides since there
is difficulty in discerning between post-translationally modified
and SAAV peptides. However, this situation has recently
improved with the inclusion of optimized probabilistic
models.39 One implementation of the tag-based method
improved with suchmodels is ionbot (manuscript in preparation;
compomics.com/ionbot), which is a machine learning search
engine that uses MS2PIP40 and ReSCore41 to significantly
improve the accuracy of peptide match scoring.
The main objective of this study is to compare a previously

established proteogenomics approach based on long-read
sequencing with a recently-developed open search method for
the detection of true variant peptides. In simpler terms, we
compare a genome-informed search space with typical spectrum
identification settings to a genome-uninformed search space
with advanced identification settings. We aim to understand the

Figure 1. Creation of the search databases. (A) Three databases were made to make comparison between use of different sources of sequences. One
with only translations of transcriptome sequences (ONT), one with only the reference proteome (GENCODE), and one with the union of the two.
This comparison is denoted with a blue square. Variants fromNA12878 were incorporated into the combination database fromA and compared to the
combination database without variants. This comparison is denoted with a red square. (B) Number of (predicted) ORFs in the different sources used
to construct the VF search database and their overlap. The sources included the GENCODE v29 reference ORFs and the predicted ORFs from ONT
RNAseq. Two ORF prediction software (ANGEL and SQANTI) were used to determine candidate ORFs, and the intersection was included in the
final search database.
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power of, and potential biases associated with, using an open
searchmethod without prior information about the genome. For
this, we make use of high-confidence nucleotide sequencing and
(ultra)-deep proteomics data from a gold standard cell line
NA12878. Using correct ORFs from the long-read tran-
scriptome and high-confidence phased variants belonging to
this cell line, we gain a unique perspective on exactly what
advantages can be gained by each approach.

■ EXPERIMENTAL SECTION

NA12878 Data Sources

Variant information was obtained from Illumina platinum
genomes (ftp://platgene_ro@ussd-ftp.illumina.com/2017-1.0/
hg38/small_variants/NA12878/). The reference genome used
was GRCh38, which can be downloaded from the precomputed
1000 genomes GRCh38 BWA database at ftp://ftp-trace.-
ncbi .nih.gov/1000genomes/ftp/technical/reference/
GRCh38_reference_genome/ (with decoys). Transcript struc-
tures for NA12878 were sourced from the ONT consortium.42

In the consortium, Workman et al. sequenced 9.9 million reads
corresponding to 33,894 transcripts and 20,289 genes. The
reference transcriptome and proteome are from GENCODE
v29.
Shotgun proteomics data came from the43 study, downloaded

from Peptide Atlas (http://www.peptideatlas.org/PASS/
PASS00230). This data set consists of 417 TMT6plex runs
from 54 samples, with the reference tag (126.77) onNA12878 in
every case.
Creation of the Search Databases

In total, four search databases were created (Table S1). (1)
Database based on ONT transcriptome sequences only
(referred to as “ONT”), (2) database based on GENCODE
coding transcriptome only (referred to as “Ref”), (3) a database,
i.e., the union of (1) and (2) and contains no NA12878 specific
variants (referred to as variant-free or VF), and (4) the same
sequences as the database (3) but contains NA12878 specific
variants (referred to as variant-containing or VC). A simple
depiction can be found in Figure 1A and Table S1, while the
detailed full workflow can be found in Figure S1. Each database
had MaxQuant44 contaminant sequences appended before
search.
The Ref search database was made by filtering GENCODE

v29-predicted ORFs for those that were complete (no 5′ or 3′
missingness). The ONT database was created using transcript
structures provided by the NA12878 consortium (https://
github.com/nanopore-wgs-consortium/NA12878/blob/
master/RNA.md). The coordinates in the junction file (PSL
format) provided were converted to BED with BEDOPS45 and
used to fetch the corresponding stretch of the sequence from the
GRCh38 genome with bedtools46 getfasta. The exons were
assembled using in-house scripts to form the full transcripts, and
those that were nonidentical to transcript sequences in
GENCODE (“novel”) were then submitted to two ORF
prediction software; ANGEL v2.4 (“dumb” ORF prediction
on default settings) and SQANTI2 v2.7 (https://github.com/
Magdoll/SQANTI2). The translations of transcripts predicted
by both prediction programs were added to the search database.
ORFs from GENCODE were used for transcript sequences in
ONT identical to transcript sequences in GENCODE.
The VF database was simply the union of the Ref and ONT

databases. The VC database was created by first creating full-
length coding sequences (CDS) with variants included by

replacing reference nucleotides according to the VCF file per
CDS fragment for every CDS fragment. If only homozygous
variant(s) were present in a CDS fragment, only one variant
CDS fragment was generated. If a CDS contained at least one
heterozygous variant, two variant CDS sequences were
generated corresponding to the different alleles. Fragments
were then assembled to full CDS. If a full CDS contained at least
one CDS fragment with a heterozygous variant, two full CDS
were generated corresponding to each allele. For those full CDS
that contained at least one variant, the variant version(s) of the
sequences replaced the nonvariant versions in the VF database
to create the VC database.

Spectral Search and Post Processing

Each run fromWu et al. 201343 was first converted to the mascot
generic format using msconvert47 with MS2 peak picking
enabled. Each data set was then searched against the four search
databases described in the previous section, using ionbot version
0.5. Fixed and variable modifications were set according to the
protocol in Wu et al.43 Open modification settings were enabled
for all four runs, while open variant settings (for SAAV
detection) were enabled for all runs except for on the VC
database. Searches allowed for up to two missed cleavages.
When parsing the search results, only spectra with an observed
TMT6plex reporter ion 126.77 (corresponds to cell line
NA12878) were retained.
Since subsetting PSMs into groups such as variant peptides

requires separate FDR correction,31 both VC and VF underwent
a separate FDR correction for the variant peptide subset.
Successful FDR correction requires the modeling of potential
false-positive peptide identifications using appropriate decoy
peptides. In the case of variant peptides, this means a sufficient
number of decoy variant peptide identifications must be present
to accurately model the population of false-positive peptides.
Reversed sequences thus underwent the same processing steps
as the true sequences in order to create the appropriate decoys.
The distributions were checked for successful modeling (Figure
S2).
A variant peptide list was created to compare with ionbot

identifications from searches of the VC and VF. The list was
created with an in-house Python script that performs an in-silico
trypsin digest (allowing for up to two missed cleavages) with the
pyteomics v 4.248 package and checks per protein for peptides
that differ by only one amino acid between the VF and VC
database. I and Lwere treated as identical, and a potential variant
peptide was disqualified if it appears in any other reference
protein sequence.
ionbot identifications presumed to be variant peptides (and

variant peptide decoys) underwent subset-specific FDR
correction for both combination databases, but the exact subset
of variant peptides differed between the two searches due to
different assumptions. The assumption in the VF database is that
variants in the genome are unknown, so all predicted variant
peptides (and predicted variant decoy peptides) were pooled for
FDR correction. In the VC database, only known variant
peptides (and corresponding decoy peptides) are pooled for
FDR correction. We expect the different approaches to the
subset FDR to be comparable, as ionbot does not include
duplicate peptides in the search database. This means that the
databases being compared are of similar size at the peptide level,
which is the level at which the FDR correction is performed. q
value calculation and cutoff (q < 0.01) were performed with an
in-house python script (distribution can be seen in Figure S2).
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Retention time predictions were calculated with DeepLC.49 All
scripts referred to in this paper can be found in the GitHub
repository (https://github.com/cmbi/NA12878-saav-
detection).

■ RESULTS

Search Database Makeup

The main goal of this study is to evaluate the added value of
transcriptomics data for SAAV identification in proteomics data.
In this evaluation, SAAV identification with and without
transcriptomics prior knowledge is compared for a state-of-
the-art open search engine. To this end, we searched the
NA12878 deep shotgun proteomics data set with four distinct
search databases corresponding to two comparisons, as outlined
in Figure 1A. The first comparison was between databases based
on the Oxford Nanopore (ONT) long-read transcriptome, the
GENCODE reference proteome (referred to as Ref), or the
combination of the two (referred to as combi, Figure 1B). In this
comparison, all searches were run with open modification
settings that allow for one mutation in the peptide match. The
second comparison was between a regular and an open variant
search using databases that did and did not include NA12878
genome sequencing-derived variants, respectively. This compar-
ison was performed for the combi databases only. The analysis
with the VF combi database will be referred to as the VFmethod
and the analysis with the variant-containing combi database will
be referred to as the VC method. In this comparison, open
modification search was enabled for both methods, but open
variant search was only enabled in the VF method to allow for
the detection of SAAVs. Open variant search is disabled in the
VC method because the variants were already incorporated in
the VC search database.
Adding the Long-Read Transcriptome for the Cell Line
Does Not Contribute to Additional Peptide Identifications
in Practice

Reliable peptide identification normally requires a comprehen-
sive search database. We first investigated whether novel
transcripts from long-read transcriptome sequencing would
contribute to peptide identifications in the NA12878 shotgun
proteomics data. The ONT database contained 35,248 full-
length transcript sequences, 64% of which were novel. Although
the combi database containing these novel predicted ORFs was
42% larger than the Ref database (Figure 1B), the number of
unique peptides from these sequences made up a mere 2.3% of
the search database (Figure 2, top panel). The addition of ONT-
derivedORFs to the Ref ORFs thus translated to an only modest
increase in the number of unique peptides in the search database
(Figure 2, lower panel). A likely explanation for this is the fact
that many of the novel ONT transcripts demonstrate high
similarity to existing reference sequences. The sequences usually
only differed in the length of the 3′ or 5′ UTR or in the use of
alternative exon junctions rather than completely novel exons.
The exact frequencies of these events are difficult to estimate,
but when looking at the set of novel ORFs from the ONT
transcriptome, 73% of them can be attributed to known
GENCODE coding genes. Conversely, the GENCODE genes
that had novel isoforms in the ONT set corresponded to 27% of
all GENCODE coding genes. In terms of observed peptide
identifications, 67% of the ORFs in ONT set had at least one
peptide match (when including PSMs that also matched to
peptides present in GENCODE). However, the number of
unique peptide matches to the novel ONT transcripts was much

smaller: only 0.3% of unique peptides identified to the combi
databases mapped exclusively to novel ONT transcripts. This
indicates that the transcriptome database does not contribute
significantly to the proteomic search results and suggests that
alternative splicing and mRNA processing events do not
contribute much to the diversity of the MS-detectable fraction
of the proteome.
Aside from the contributions from the ONT-only sequences,

it is also interesting to investigate protein identifications that
were not found in the ONT transcriptome. While these should
theoretically not be present, roughly 20% of identified peptides
are exclusively matched with the ENCODE transcripts (Figure
2). As expected, this percentage is smaller than the 42% of
peptides in the search database that are exclusive to GENCODE
transcripts but still a significant fraction. This suggests that it is
best to still use a reference transcript database, even if there is full
transcriptome sequencing data available.
Variant-Containing Method Allows Detection of Many
More Genome-Supported Variant Peptides

We subsequently studied the effect of the inclusion of sample-
specific variants in the search database. In the VF method, the
data is analyzed with an open variant search, thus letting the
search engine predict single amino acid substitutions. This is in
contrast to the VC method, where no variants are predicted and
only genetically supported variants are present in the search
database. We detected 461 variant peptides by the VC method
and 62 by the VF method, with 59 overlapping between the two
methods (Figure 3A). The greater majority of variant peptides
that were detected by the VF method only (n = 1805) were not
supported by the genome and are likely false positives (Figure
3B). In addition, one-third of the variant peptide matches that
appeared to be supported by the genome actually contained an
incorrect amino acid substitution. Thus, the inclusion of variant
peptides derived from personal genomes in search databases is
far superior to the use of a variant free database combined with
an open variant search. Some examples of identified variant
peptides can be found in Figure S3.

Figure 2. Detectable peptides per method. Theoretical (upper pie
charts) and observed (lower pie charts) proportions of peptides when
searching against VC (right) or VF (left) search databases. This shows
percentages of matched peptides attributed only to GENCODE
proteins, only ONT proteins, and those that match to proteins in both
databases.
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Detectible Variant Peptides Have Attributes That Differ
from Expected Variant Peptides

Out of the 34,968 peptides in the genome-supported variant
peptide list, only 462 were detected by either or both the VC and
VF methods (Figure 4A). They are not a random sample of all
possible variant peptides. Namely, some variant peptides are
easier to detect than others depending on their abundance and/
or properties, and this differs even between methods. For
instance, the VFmethod tends to find longer variant peptides (in
a range of 16−27 aa) and misses the shorter variant peptides
(Figure 4B). This highlights the larger amount of ambiguity in
variant peptide identification proportional to the lower number
of peaks in the spectra. The VCmethod does not suffer from this
ambiguity and allows for detection of a wider range of variant
peptide lengths than VF, especially shorter variant peptides (p =
0.0017 K2 samp). While there is a bias in variant peptide length,
we did not find clear evidence that the position of the variant
within the peptide affects detection of the variant peptide in
either of the methods. In addition, the amino acid substitution
itself affects detectability since the corresponding mass shift in
the MS/MS spectrum needs to be separated from noise or
similar mass shifts corresponding to other modifications in order
to be identified. There are some predefined limitations to SAAV
detection with the VF method that lead to certain amino acid
substitutions getting detected less than expected (Figure 4C).
Amino acids on which there are fixed modifications cannot have
variants in the open variant search, meaning that substitutions at
K and C are not detected. Substitutions affecting the trypsin
digest, such as those involving R, can also not be detected.
Erroneous Variant Peptide Identifications Are Difficult to
Discern from True Variant Peptide Identifications

The misidentifications from the open VF approach can be
separated into false negatives and false positives. False-negative

identification is where the VC method identifies variant
peptides, but those same spectra are identified by the VF
method as nonvariant peptides. False-positive misidentification
is where the VFmethod identified variant peptides that were not
supported by the genome.
There were 402 unique false-negative peptides observed

(Figure 5A). These false-negative peptides were classified as
variant peptides by the VCmethod but not by VF, although they
were contained in the VF search space. Identifying causes of false
negatives requires investigation of how the VC peptides were
identified with the VF method. There was no particular length
peptide that was misidentified more than others in general,
despite the difference in detectible peptide length (Figure S4).
The peptide identifications were similar between the VF and VC
methods. In general, the length correlated highly between the
identifications of the two methods (R2 = 0.9071, p = 0). When
comparing individual peptide identifications per method for
mismatches and length difference, the largest source of error was
a 1 aa length difference. Nonvariant peptides with a 1 aa length
difference from the variant peptide were being identified instead
of the correct variant peptide in >30% of the false negatives
(Figure S4). Another possible source of false-negative errors that
was investigated is SAAVs being mistaken for unexpected post-
translational modifications. In the false-negative set, this did not
appear to be an issue. The false-negative VF identifications had
approximately the same rate of unexpected PTMs (Figure S4).
To further understand how false negatives could occur, we

compared the peptide matching scores of the false-negative
spectra for the VF and VC search methods (Figure 5B). Higher
scores indicate higher confidence in assignment of spectra. VC
scores for false-negative peptides were generally higher than the
VF scores (mean score ratio VC/VF = 1.31). However, a large
fraction of the false negatives received comparable scores in the

Figure 3.Detection of variant peptides using (combination) VF and VC databases. (A) Variant PSMs (left) and unique peptides (right) attributed to
genome-supported variant peptides. (B) PSM and peptide counts found by each method.
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VC and VF search methods. This could indicate a ranking
problem: the variant peptide received a score equal to another
peptide, to which the peptide spectrum was ultimately assigned.
Delta retention time can often be a useful independent validator
when the score disagrees between the different search methods.
Despite high retention time discrepancies in this particular data
set, observed retention time aligns relatively well with predicted
retention time for those spectra that received higher scores in the
VC.
The genome-supported variants are a tiny fraction of the high-

confidence variant peptide predictions from the VF database,
indicating a high false-positive rate (Figure 6A). We investigated
whether there are distinguishing features between genome-
supported and genome-unsupported variants. Reassuringly,
scores of true positives were slightly higher than false positives
[Figure 6B, p = 1.34 × 10−26, analysis of variance (ANOVA)].

A closer inspection of genome-unsupported variants reveals
potential sources of confusion for variant prediction algorithms,
leading to false-positive identifications. There was a high level of
concordance of peptides matched to these spectra in general.
Two-thirds of spectra that corresponded to genome-unsup-
ported variant peptide identifications by the VF had the same
base peptide identifications in both the VF and VC searches.
Mass shifts predicted to be SAAV in VF were commonly
predicted to be “unexpected” PTMs by the VC method (Figure
6C). A common PTMmistaken as a SAAV in VF was threonine
oxidation, but many PTMs contributed to this mix-up. There
was no clear trend to the identification errors, underlining the
difficulty of correctly classifying minor mass shifts correspond-
ing to PTMs and SAAVs.
Evaluation of the Variant Peptides’ SNPs of Origin

The detection of variant peptides is ultimately a means to
understand which single-nucleotide variants (SNVs) are ex-
pressed at the protein level. By incorporating SNVs into
predicted ORFs, we ended up with a theoretical set of 34,968
variant peptides originating from 9298 SNVs from all
chromosomes, of which 5989 are heterozygous variants.
In the case of a heterozygous variant, both variant peptides

and their reference counterparts can be identified in some ratio.
A ratio different from 0.5 may be indicative of preferred
expression of one of the alleles at the protein level, otherwise
known as ASPE (allele-specific protein expression). The
presence and magnitude of ASPE is potentially key information
that can be used to understand biological mechanisms.
However, technical biases of the search methodology may
invalidate potential findings by distorting these ratios. For the
VF method, the reference peptide was identified more
frequently than the variant peptide (p = 0.013, one-way
ANOVA). The opposite was true for the VC method.

Figure 4. Properties of detected variants compared to those expected.
(A)Groups of variant peptides being compared. All circles, including all
overlaps, are being compared to each other. (B) Length distribution
differences between detected variant peptides by the different variant
detection methods. (C) Normalized (divided by max) frequency of
variation per original (reference) amino acid.

Figure 5. False-negative variant misidentifications. (A) Investigation of
causes of mis-identification of peptides in the VF set. (B) Scores of
those misidentified peptides in VF vs VC set. Each point corresponds to
one false-negative variant peptide. Percolator PSM score is used. Color
corresponds to delta retention time.
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Homozygous variants can be used as a type of control to
understand the bias in search methods since we know that only
one of the two alleles can be expressed. In case of homozygous
variants, the variant peptide is expected to be present in all
caseswith no reference counterpart. This was observed for the
VC but not for the VF method (Figure 7A). Thus, without prior
information about zygosity, the VF method tends to be
conservative in identifying SAAV peptides, resulting in a higher
likelihood of the reference peptide than its variant counterpart.

It is evident that some variant peptides were observed much
more often than their reference counterparts or vice versa. The
VC heterozygous variant peptide identifications should not
suffer from the technical reference bias and allow for detection of
allele-specific expression at the protein level. The VC-detected
heterozygous variants were divided in two groups; one group
with more counts for the reference peptide (reference-biased,N
= 78) and one group with more counts for the alternative
peptide (alternative-biased, N = 123). The two groups

Figure 6. False-positive misidentifications. (A) False-positive misidentifications are genome-unsupported (US) variants predicted by the VF method.
The Venn diagram highlights the subset of variants that are being investigated in this figure. These 2998 variants were predicted by ionbot to be variant
peptides but were not found with the variant containing set. All but seven were variants unsupported by genome information. (B) Relative score
distributions between genome supported vs unsupported variants in the VF set. (C) Unexpected modifications by the VC set corresponding to all
“false-positive” predicted variant PSMs in the VF set.
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demonstrated a clear and significant difference in the population
allele frequency (p = 6.45 × 10−8. Figure 7B). Those with lower
allele frequencies displayed a stronger reference bias. This could
be explained by the fact that rare variants in coding regions have
a higher likelihood of causing undesirable effects on the resulting
protein. Any deleterious effects resulting from the variant on

protein stability would be visible as depletion of the alternative
allele.
One significant subgroup of heterozygous variants was

particularly biased toward the alternative allele. A total of 44
out of 183 variant peptides supported by more than two PSMs
did not have any detected reference counterparts. One-third of
these variants had a substitution involving arginine or lysine
(tryptic cleavage sites). One gene, HLA-DBQ1, had two
alternative alleles instead of one reference and one alternative.
In general, the score distribution for these highly biased group
was lower than the score distribution for all VC-detected variant
peptides. The allele frequencies of this group were not different
from those of the overall alternative-biased group (p = 0.5,
ANOVA). There was also no correlation between the RNA
expression of these genes to the variant peptide expression (R2 =
0.01). Also, a comparison the list of genes displaying ASE on the
RNA level from42 to the heterozygous genes with variant
peptides detected at the protein level yielded negligible overlap
(two genes).
A total of 33 genes were detected through two or more unique

variant peptides. For variant peptides within a gene, the
reference-peptide-to-variant-peptide ratio should be consistent,
unless there are different protein isoforms as a consequence of
alternative splicing. This was the case for the majority of genes
with multiple variant peptides belonging to the same gene
(Figure 7C). Five of these genes were represented by multiple
variant peptides with inconsistent ratios. HLA-C, IFI16, and
MKI67 had peptidesmatching to nonidentical (sets of) isoforms
within the gene. PCM1 had peptides matched to 24 isoforms,
that is, four times the average number of isoforms matched by a
variant peptide in the VC search. Thus, inconsistent variant-to-
reference-peptide ratios within a gene can generally by
attributed to differing abundances of protein isoforms.

■ DISCUSSION
Here, we have carried out an investigation of the effects of
proteogenomic additions to a proteomics search database. To
this end, we compared a typical proteomics approach to a purely
proteomics method utilizing state-of-the-art open search. We
observed that the addition of transcriptomic sequences to the
search database did not have significant effects on the overall
peptide identification rate. There was a roughly equal number
PSMs from the three databases, despite the long-read tran-
scriptome search database being 40% smaller than that of the
union of it and the reference. At the same time, the matches to
reference-only sequences in the combination database imply
that >20% of peptide identifications are missed. This suggests a
large portion of false identifications when using a database
comprised only ONT sequences.
The fact that around a quarter of peptide identifications

cannot be attributed to the transcriptomics data is rather
surprising. There are a couple possible explanations. Using
transcriptomics data from different cells than the proteomics
data (different labs and different year) will unavoidably cause
some discrepancies.50 This could also be attributed to protein
stability in the cell as proteins are detectable for some time after
RNA has already been degraded.51 Also notable is the fact that
including the transcriptome sequences did not seem to add
significantly to the peptide detections; the proportion of novel
peptides found was lower than the proportion of novel
transcripts found. As this cell line/organism is so well studied,
it is likely that the vast majority of present proteins have already
been characterized. For other cell types and organisms with

Figure 7. Underlying SNPs detected at the protein level. (A) Variant
peptide abundance vs reference counterpart split by zygosity and search
database, square root-transformed. (B) Separating heterozygous
variants in the variant-containing database by whether more variant
peptide was found (variant-biased) or more of the reference
counterpart was found (reference-biased) revealed differences in allele
frequency distributions. (C) Ratio variability of genes with two or more
variant peptides. Ratio is defined by the variant counterpart abundance
divided by variant peptide abundance. Y axis shows max − min per
gene.
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more novel transcripts, adding (full length) transcriptomes may
lead to more peptide identifications.
Two different search methods were used to identify

nonreference peptides derived from SNVs: a proteogenomics
approach, in which all variants known from the genome
sequence were added to the search database, and an “open
variant search”, where only reference peptides were included in
the search database and one amino acid differences were allowed
by the search engine. The proteogenomics approach was clearly
superior as it detected 7 times more variant peptides, whereas
the open variant search suffered from many false-positive
identifications that were not supported by the genome sequence
and from large numbers of false negatives. Nevertheless, the
proteogenomics search method also detected only a minor
fraction of the variant peptides predicted to be present in the
genome. It has been estimated before that maximum ∼70% of
variants in protein coding regions are theoretically detectible in
an ideal shotgun proteomics experiment considering peptide
lengths 7−40 aa.52 The number of variants found with a
proteogenomics method in practice is much lower, depending
onmethod details. Some studies either use a statistically dubious
“multitier”method53,54 or skip FDR subsetting altogether55 and
report the number of variants detected to be in the region of
10%. We detect only 1% of the theoretically present variant
peptides, despite the ∼4M spectra present in this data set,
making it one of the deepest proteomics datasets currently
available. This is partly due to the careful control of FDRs in our
study. Also, other conservative efforts to detect variant peptides
using FDR subsetting or targeted proteomics validation detect
<1% of all theoretically present variant peptides.23,54,56

While open search lags behind the proteogenomics approach
for the moment, it has promise. Algorithms are being
continuously improved to better differentiate signal from
noise, which will reduce the false positives and false negatives
in variant peptide detection.57 There are several upcoming
methodologies to further refine the open search to increase
accuracy, either adding to existing peptide identification tools or
standalone with promising results such as Open-pfind,58

TagGraph,39 MSFragger,59 and Crystal-C.60 There are consid-
erable challenges still to face in their detection, particularly in
noise/signal differentiation. This is especially complicated as
variants often co-occur with other PTMs such as phosphor-
ylation.30,54 Current detection methods including ionbot cannot
handle the complexity of two modifications on one site.
However, deep neural networks show great promise with
difficult peptide identifications.61 Using methods of machine
learning along with orthogonal information such as peptide
retention time should result in significant improvements in open
search.62 This in combination with rapidly improving data-
independent acquisition removes detection limitations of low-
abundance or otherwise difficult to detect peptides,63 which is
currently a considerable hurdle in SAAV peptide detection.55

Including open search is clearly useful and bound to get more
accurate. This study used ionbot as the sole predictor of
unexpected modifications/SAAVs, and comparison between
identification tools was difficult as no other identification
software tested reported the precise reporter ions per matched
spectra (to be able to separate TMT tags corresponding to
different cell lines). A study to compare methods given these
updates is certainly warranted and ensemble methods may
eventually be used to even more accurately predict these
unexpected modifications/SAAVs.

One important implication of correctly detecting SAAVs is
the ability to observe allele-specific expression at the protein
level. A targeted proteomics approach has recently been
described to study ASPE with high confidence.64 It found no
correlation between RNA and protein level ASE for the few
variants studied, highlighting the utility of having higher
throughput methods to study this phenomenon. One simple
way to measure ASPE when using a proteogenomics approach is
by comparing the spectral counts for the SAAV and its reference
counterpart, since a reference counterpart usually has equal
detectability by MS/MS.52 Here, we found low correlation
between the abundance of the variant and reference counter-
parts, regardless of VF or VC method. This is potentially
indicative for a high level of ASPE. In contrast,54 it demonstrated
a high correlation between variant and reference peptides. This
may be attributed to the low stringency associated with using the
multitier search strategy for SAAV detection. We found no
correlation between ASE and ASPE in this study, which is
consistent with the findings of Shi et al.64

■ CONCLUSIONS
Our study provides guidance for the detection of variant
peptides that shape the personal proteome. While personal
genomes currently seem indispensable for the characterization
of personal proteomes, new computational and analytical tools
and new file formats to accommodate personal proteome
information will allow us to get the fullest picture possible of the
individual proteome, even without personal genome informa-
tion.
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