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Abstract: The switched reluctance machine (SRM) design is different from the design of most of
other machines. SRM has many design parameters that have non-linear relationships with the
performance indices (i.e., average torque, efficiency, and so forth). Hence, it is difficult to design
SRM using straight forward equations with iterative methods, which is common for other machines.
Optimization techniques are used to overcome this challenge by searching for the best variables
values within the search area. In this paper, the optimization of SRM design is achieved using
multi-objective Jaya algorithm (MO-Jaya). In the Jaya algorithm, solutions are moved closer to the
best solution and away from the worst solution. Hence, a good intensification of the search process is
achieved. Moreover, the randomly changed parameters achieve good search diversity. In this paper,
it is suggested to also randomly change best and worst solutions. Hence, better diversity is achieved,
as indicated from results. The optimization with the MO-Jaya algorithm was made for 8/6 and
6/4 SRM. Objectives used are the average torque, efficiency, and iron weight. The results of MO-Jaya
are compared with the results of the non-dominated sorting genetic algorithm (NSGA-II) for the
same conditions and constraints. The optimization program is made in Lua programming language
and executed by FEMM4.2 software. The results show the success of the approach to achieve better
objective values, a broad search, and to introduce a variety of optimal solutions.

Keywords: optimal design; switched reluctance machine; MO-Jaya optimization; finite element anal-
ysis

1. Introduction

The switched reluctance machine (SRM) is the type of machines that develop output
torque due to reluctance variation without using permanent magnets or rotor excitation.
The switching of phases is made according to position of rotor in such a way to produce
torque (induce voltage in generation mode). Reluctance variation happens with rotation as
a function of certain geometric parameters. The currents of SRM are mainly in the form
of pulses. The flux inside the machine is not sinusoidal. All of the previously mentioned
facts of SRM give this type of machines its unique features. The SRM has shown attractive
characteristics, such as simple and robust construction, low manufacturing cost, and
high efficiency, over wide range of speeds [1,2]. SRM’s construction simplicity and low
manufacturing cost have motivated both researchers and manufacturer.
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However, the pulsative behaviour of currents results in torque ripples that are con-
sidered a problem of SRM and a challenge. The saliency of poles and non-sinusoidal
wave-forms of flux in SRM result in noisy operation and radial vibrations. In addition, SRM
structure is not simple from geometric perspective due to the wide range of probabilities
for dimensions of a certain design. Moreover, the relationships between SRM’s geometric
parameters and performance indices are indirect and non-linear. Hence, the search for a
good design is difficult despite the search for the best (optimal) design.

Optimization is the search for the best solution (the optimal solution) for a certain
problem [3]. Various types of optimization algorithms exist, including traditional optimiza-
tion techniques that have many limitations and advanced population-based meta-heuristic
algorithms [4–6]. Optimization is needed with a switched reluctance machine (SRM) design
to reach better designs. Sensitivity analysis is the study of the degree of influence of each
parameter on the final objectives of the design. Subsequently, the most influencing parame-
ters are chosen to be optimized to save computation time. Because of the large number of
geometric parameters or design parameters of SRM, sensitivity analysis is usually made to
make the optimization process less complicated, as in [7–9].

It is essential to have a mathematical model of SRM in order to evaluate its perfor-
mance and include this evaluation in the optimization process. The performance of SRM
is mainly evaluated by rated torque, torque per weight, torque per volume, rated speed,
and efficiency. Other quantities can be added to give more detailed evaluation, such as
torque ripples, acoustic noise, mechanical vibrations, and maximumtemperature rise, and
so forth. All of these performance indices are calculated by various methods that differ
from each other according to their accuracy and computational time. These method can
be classified to numerical methods, such as finite elements analysis (FEA) and boundary
element method (BEM), and analytical methods, such as curve-fitting methods, magnetic
equivalent circuits (MECs), and Maxwell’s-equation-based approaches [1]. Numerical
methods provide high accuracy with the cost of its high computational time. Analytical
methods can be simplified to achieve a fast calculation process. However, in most cases,
this results in a reduction of accuracy. FEA is commonly used in SRM modelling to achieve
accurate results, as in [10–14]. Magnetic equivalent circuit (MEC) is faster than FEA, as
shown in in [15–17]. However, it is less frequent because of its reduced accuracy. Fuzzy
logic and regression methods are also used, as shown in [18,19]. However, they are less re-
liable and have complex structures when compared with FEA and MEC. Each performance
index (i.e., rated torque, torque ripples and so forth) of SRM is called "objective function”
when it is used in the optimization process.

Each possible solution (candidate) of the optimization problem has a corresponding
objective function value. According to this value, the candidate solution is ranked. Solution
Optimization techniques may be classified according to the objective of optimization into
single-objective and multi-objective. In single-objective optimization techniques, only
one objective function is considered and solution candidates are ranked based on their
corresponding objective function value. For example, if it is required to maximize the
objective function, the optimal solution is the one that results in the maximum value of
objective function (and vice versa). In multi-objective optimization techniques, more than
one objective functions are considered and solution candidates are treated in a different way,
as will come later. Multi-objective optimization provides a set of optimal solutions instead
of one in single-objective optimization. Optimization techniques have been used together
with a modelling method to obtain optimal designs. The enumeration optimization method
with FEA is used in [20–22]. A genetic algorithm with FEA is used in [10,13,14]. In [18], a
genetic algorithm is used with fuzzy logic. The non-dominated sorting genetic algorithm
(NSGA-II) method is used in [23] with FEA. Differential evolutions are used in [24,25] with
FEA. Particle swarm optimization (PSO) is used in [26–29] with different SRM modelling
techniques. The increase in computation time in most approaches is due to time-consuming
SRM electromagnetic modelling. Using other methods instead of FEA is even less accurate
or complicated to build.
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In this paper, FEA is chosen for SRM modelling to complement the mathematical
formulas for average torque and core losses calculations. FEA usage is limited to inductance
calculation and to obtain flux density for some points inside SRM core. This simulation has
proved to be achieved in a very short time while using free software FEMM4.2. Accordingly,
the computational time is reduced to an acceptable limit while achieving high accuracy.
The Jaya algorithm is introduced to optimize SRM design due to its inherent characteristics,
as it takes the path directly toward optimal solutions, saving computational time and
achieving better objective functions values [30]. The multi-objective version of Jaya (MO-
Jaya) algorithm is considered with three objective functions, and they are rated average
torque, efficiency, and iron weight. The three objective functions calculation methods are
presented in details. The results of optimization and the performance of the Jaya algorithm
are compared with those of the non-dominated sorting genetic algorithm (NSGA-II) under
the same constraints and for the same objectives [31]. The proposed method represents a
general frame work for SRM multi-objective optimization. Unlimited design parameters
and objective functions can be included. The objective of this study is to investigate the
performance of MO-Jaya algorithm in SRM design optimization.

2. Design of SRM

Before starting the design process of switched reluctance machine, available space
should be well investigated. The available space is represented as constraints of SRM
dimensions values. The most important space constraints are axial length, maximum
outer diameter (maximum frame size), and shaft diameter. The axial length and maximum
frame size are obtained from measurements of the available space. The shaft diameter is
calculated based on the maximum torque and speed. The difference between maximum
outer diameter and Shaft diameter is the space that is available for SRM cores and turns.
SRM cores are the stator and rotor, which are salient in producing reluctance variation. The
number of poles in both stator and rotor is specified at the beginning as will come later.

In conventional design approaches, lamination dimensions, coil diameter, and number
of turns are calculated analytically. Subsequently, the average torque is calculated and
compared with the rated required torque. The average torque is calculated based on
the flux-current (λ − i) curves for aligned and unaligned positions. Finally, the whole
process is repeated with modified dimensions values and the number of turns to match
the output average torque with the required torque . Other performance indices can also
be considered, such as torque ripples, efficiency, and so forth. This section demonstrates
calculation methods of the considered performance indices and characteristics.

2.1. Number of Poles Selection

Stator poles Ps number and rotor poles Pr number is specified mainly according to
general understanding of their influence on SRM performance. A higher pole number
produces higher average torque, lower torque ripples, and provides more reliable operation;
however, it requires more switching devices and reduces the maximum speed. Lower poles
number produces lower average torque and higher torque ripples; however, it requires less
switching devices and provides higher maximum speed. For general purpose SRM design,
6/4 and 8/6 SRM configurations are commonly used. Hence, these two configurations are
considered for optimization in this paper.

2.2. Poles Arcs Calculation

When considering βs,βr are stator pole arc and rotor pole arc, respectively. To achieve
self-starting SRM design, minimum stator pole arc may be expressed—as in [32]—by:

min[βs] =
4π

PsPr
, rad (1)
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The following condition prevents overlap between phases:

βs + βr ≤
2π

Pr
(2)

If this condition not being followed, then the SRM machine inductance will start to
increase before reaching the minimum inductance value. This results in higher unaligned
inductance value and the developed torque becomes lower.

2.3. Main Dimensions

Referring to Figure 1 and Table 1, the maximum value of outer diameter (Do) and
maximum value of axial length (L) are obtained from space constraints. Shaft diameter
(Dsh) is obtained from the shaft’s standard sizes that are based on output torque value.
The values of outer diameter (Do) and axial length (L) can be changed during design within
their maximum values. However, keeping them at their maximum values results in the
maximum output torque of SRM design. The shaft diameter (Dsh) is kept constant during
design process. The air gap length (g) is assumed to have the commonly used value of 0.5
mm that can be obtained often in practical implementation. The rest of the dimensions are
modified to reach the requirements of design.

2.4. Variables Dimensions Limits

The limits of variables are determined by the application and the available space.
In this paper, outer diameter (Do), axial length (L), shaft diameter (Dsh), and air gap length
(g) are kept constant by making their maximum and minimum limits at the same value.
The remaining limits are set by the previous experience. Table 2 shows the maximum and
minimum limits values of all the variables.

g
Dsh

2

bry hr

hs

bsy

D
2

βr βs

Do/2

Figure 1. The lamination dimensions considered in the optimization process.
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Table 1. SRM dimensions.

Dimension Unit

outer diameter, Do mm
shaft diameter, Dsh mm

axial length, L mm
bore diameter, D mm
air gap length, g mm

stator pole length, hs mm
rotor pole length, hr mm

stator back iron length, bs mm
rotor back iron length, br mm

stator pole arc, βs degree
rotor pole arc, βr degree
stator poles, Ps NA
rotor poles, Pr NA

Table 2. Limits of variables.

Variable Min Max Unit

Do 130 130 mm
L 100 100 mm
D 44 95 mm
bsy 5 20 mm
bry 5 20 mm
hs 7 52 mm
hr 5 23 mm

Dsh 24 24 mm
g 0.5 0.5 mm
βs 0.85× 720/(PsPr) 0.6× 360/Ps degree
βr 0.85× 720/(PsPr) 0.6× 360/Ps degree

2.5. Winding Design

Winding design is achieved, as in [31,33]. The number of turns per phase is calculated
based on SRM dimensions, such that the flux density value at the knee point of iron’s
B-H curve is maintained. In this paper, the value of maximum flux density for the used
lamination steel is 1.65 T.

The conductor cross-sectional area is calculated from a specified maximum ampere
and current density. Subsequently, the number of horizontal layers, vertical layers, and coil
dimensions can be calculated. Finally, clearance between adjacent coils is calculated at the
point where the two coils are the closest to each other [31].

2.6. Average Torque Calculation

The SRM average torque is calculated based on assuming that flux linkage (λ) vs.
current (i) characteristics are available and the phase current is kept constant at its peak
value between unaligned and aligned positions [32]. The average torque is calculated from
the total work done of all strokes for one revolution, as follows:

Tav =
WPsPr

4π
, N.m (3)

W = Waligned −Wunaligned (4)

where Waligned and Wunaligned are the areas under λ− i curves at the aligned position and
unaligned position, respectively. W is the area of energy loop between two λ− i curves
and calculated as in [32].
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2.7. Efficiency Calculation

It is essential to know the losses of switched reluctance motor in order to calculate
efficiency [34]. SRM losses calculation , especially the assessment of core losses, is a
very difficult task mainly due to tha fact that flux wave-forms are non-sinusoidal and
different from each other based on the sector that they are located in SRM’s magnetic
circuit. Moreover, core losses are dependent on the type of control and operating speed (ω).
In a low speed region, it is acceptable to neglect the mechanical losses. Hence, losses may
be calculated as:

Losses(ω) = Core Losses + Copper Losses (5)

Once the losses are known, the efficiency may be calculated by :

η =
ωTav

ωTav + Losses(ω)
(6)

In this paper, efficiency is calculated at the rated speed of 1000 rpm for all SRM
designs candidates.

2.8. Copper Losses

Copper losses value depends on phase current, which is determined by the control
technique. When considering that Nph is number of phases, Rj is phase dc resistance, and
Ij is phase current, the total copper loss instantaneous value may be calculated by the
equation:

Pcu(t) =
j=Nph

∑
j=1

I2
j (t)Rj (7)

The average copper losses can be calculated by equation:

Pcu =
1
T

∫ T

0
Pcu(t)dt, (8)

where T is the period of time for Ps/2 strokes. For sake of simplification, we assume no
overlap between phases. Because the current of phase is not pure dc. The peak value of it
(Ip) is considered for copper losses calculation as a pessimistic prediction. Copper loss is
then calculated straight forwardly by the equation:

Pcu = I2
pRph (9)

2.9. Eddy Currents Losses

Referring to [35], the eddy current losses in SRM can be calculated by the equation:

Pe =
e2

4kcirρ f eδ

1
T

∫
(

∂B
∂t

)2dt , w/kg (10)

where e: sheet thickness in meter, kcir: constant (1 < kcir < 3) introduced to account for
the fact that paths in the interior of the lamination will have smaller emfs than those that
are near the surface; ρ f e: the electrical resistivity of the ferromagnetic material (in Ωm); δ:
density of the ferromagnetic material (in kg/m3).

From Equation (10), the waveform of flux density (B) for all SRM sectors must be
known. Once they are available, Pe is calculated by numerical integration and differen-
tiation. There are a lot of methods to obtain these wave-forms and many of them are
time consuming. In [34], a mathematical method using matrices is introduced in order to
obtain the wave-forms of all the SRM sectors in a systematic manner. The calculation of B
wave-forms for all sectors is achieved by the modulation of triangular pulses. The stator
poles wave-forms only consist of unipolar triangular pulses, while those of the rotor poles
contain both positive and negative pulses. The stator and rotor yoke wave-forms have a
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more complicated relationship with the triangular pulses. This method is demonstrated in
details in [34] and then used here for 8/6 and 6/4 SRMs.

2.10. Hysteresis Losses

Referring to [31], the hysteresis losses can be calculated for various sectors of SRM.
The flux density wave-forms depend on the phase current waveform and the speed of the
motor. The flux density wave-forms calculated in this paper rated the speed of 1000 rpm
and control is by a single pulse voltag. Note that the phase current has the peak of six
ampere for all SRMs design candidates.

3. Jaya Optimization Method

The population-based meta-heuristic optimization algorithms can be classified to
two groups, and they are the evolutionary algorithms (EA) and swarm intelligence (SI)
based algorithms. All of these algorithms have the same basic structure that is explained
by Figure 2. Firstly, the initialization of solutions in the beginning is made mainly by
random choice of variables. Then, the objective function values are obtained and evaluated.
After that, selection of the best solutions is made to use these solutions in the production of
new solutions. Finally, the termination condition of the process is checked if true, and then
end or else continue.

Optimization techniques differ from each other by the different methods that are used
to accomplish these steps. However, all of population-based meta-heuristic optimization
algorithms have a common limitation, which is the different parameters that are required
for proper working.

Start

Initialization of solutions

Evaluation of objec-
tive function values

Selection of
best solutions

Terminate

Producing
new solutions

Optimal solution

End

No

Yes

Figure 2. Flowchart of general optimization algorithm.

Referring to [30], the Jaya algorithm was introduced in 2016 by Ravipudi Venkata
Rao. "Jaya” is a Sanskrit word that means victory or triumph. The algorithm is simple to
implement and it does not require tuning of any parameters. In Jaya algorithm, the initial
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solutions are randomly generated within the search space. After that, the solutions are
updated using Equation (11).

A(i + 1, j, k) = A(i, j, k) + r(i, j, 1)
(

A(i, j, b)

− |A(i, j, k)|
)
− r(i, j, 2)

(
A(i, j, w)

− |A(i, j, k)|
)

(11)

where b and w represent the index of the best and worst solutions in the population. i, j, k
are the index of iteration, variable, and candidate solution, respectively. A(i, j, k) is the
jth variable in ith iteration of kth solution candidate. r(i, j, 1) and r(i, j, 2) are random
generated ratios in the range of [0, 1] to ensure good diversification.

3.1. Single Objective Jaya Algorithm

In single objective optimization, the required is to maximize or minimize a single func-
tion. Thereby, for two solution candidates a better solution is whether greater or smaller in
value. For objective function f (x1, x2, x3, · · · , xm), which has m variables and n population
size, the solutions are represented by a data structure i.e., matrix as in Equation (12). Each
solution may be represented by a column of different variables. The objective function
( f (X)) can be represented by a matrix (F) that has one row and n columns in the case
of single objective optimization, as in Equation (13). For multi objective optimization
problem with number of q objective functions, matrix F is of q rows and n column as in
Equation (14).

X =


x1

1 x2
1 x3

1 · · · xn
1

x1
2 x2

2 x3
2 · · · xn

2
...

...
...

...
...

x1
m x2

m x3
m · · · xn

m

 (12)

F =
[

f 1
1 f 2

1 f 3
1 · · · f n

1
]

(13)

F =


f 1
1 f 2

1 f 3
1 · · · f n

1
f 1
2 f 2

2 f 3
2 · · · f n

2
...

...
...

...
...

f 1
q f 2

q f 3
q · · · f n

q

 (14)

Solution matrix (X) is updated using Equation (11) based on the best and worst solutions
obtained by comparing all of the solution candidates with each other.

3.2. Multi Objective Jaya Algorithm

Solutions in multi objective Jaya algorithm are updated using the same Equation (11),
and the results of objective functions are represented in Equation (14). However, non-
dominated sorting approach and crowding distance computation mechanisms are to be
used in order to handle the conflicting objectives of optimization problem. It is essential
Jaya algorithm to obtain the best and worst solutions in order to produce new solutions
using Equation (11).

In multi objective optimization problem, obtaining the best and worst solutions is
not straightforward as in single objective optimization. After non-dominated sorting is
achieved and crowding distances are computed for solutions of the same rank (front),
the best solution would surely be in the first rank and the worst solution would be in the
last one. However, the solutions of the same rank cannot be compared with each other



Mathematics 2021, 9, 1107 9 of 19

and, hence, the crowding distance is used to decide the best and worst solutions among
their ranks. The crowding distance is an indicator of the degree of diversity of solutions in
same front; hence, solutions with higher crowding distance are preferred, which enables
covering a wider search area. In [30], the solution with highest crowding distance among
first rank solutions is considered to be the best and the solution with the lowest crowding
distance among last rank solutions is considered to be the worst.

In this paper, the other method is used to decide the best and worst solutions. The best
solution is chosen randomly from the first rank, this choice is changed four times until all
population solutions are updated. In the same manner, the worst solution is chosen ran-
domly from the last rank. This method achieves a wide variety of solutions by distributing
the priority of search among different search directions. Finally, the designer has the option
to choose the best design that serves the application among best ranks of solutions.

Dominance

It is required to check each solution with the rest on the dominance basis. Assum-
ing that X1, X2 are two solutions, m is the number of objective functions, if X1 ≺ X2
(X1 dominates X2) is true, the Pareto dominance conditions must all be true, and they are:

1. f j(X1) 7 f j(X2)∀j = {1, ..., m}
2. f j(X1) C f j(X2)∃j = {1, ..., m}

Dominance is investigated for all of the solutions. The solution that is not dominated
by any of the remaining solutions is a non-dominated solution and it is removed from
the solutions matrix. This is repeated for all solutions and the resulted non-dominated
solutions are considered rank 1. The same process is repeated for the remaining ranks.

Crowding Distance

Crowding distance is computed in the same manner, as mentioned in [30] (page 15).
Crowding distance is computed for each solution using Equation (15).

CDj = CDj +
f j+1
m − f j−1

m

f max
m − f min

m
(15)

where j is a solution in the sorted list, fm is the objective function value of mth objective,
and f max

m and f min
m are the population-maximum and population-minimum values of mth

objective functions.

4. Multi-Objective Jaya Algorithm for SRM Design Optimization

In the optimization of SRM , the dimensions in Table 1 represent one solution. All of
the solutions are stored in the matrix (X), as follows:

X =


D1

o D2
o D3

o · · · Dn
o

L1 L2 L3 · · · Ln

...
...

...
...

...
β1

s β2
s β3

s · · · βn
s

 (16)

where m is the number of variables and n is the size of population in one generation.

4.1. Objective Functions

The objectives of SRM optimization depend on the application and its conditions.
For general purpose SRM, average torque Tav and efficiency η are needed to be maximized
and iron weight Wi is to be minimized. In some applications, other objectives (i.e., torque
ripples, acoustic noise, vibrations · · · , and so forth) are considered.
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F =

 T1
av T2

av T3
av · · · Tn

av
η1 η2 η3 · · · ηn

W1
i W2

i W3
i · · · Wn

i

 (17)

4.2. Constraints

Because the SRM dimensions are significant, there must be certain constraints on them
to prevent any non-logical vector of variables. The dimensions in variables matrix (X) must
be modified to satisfy the following constraints:

Dsh + 2bry + 2hr + 2g = D (18)

D + 2bsy + 2hs = Do (19)

βr > βs (20)

D
2
(1− βrPr

2π
) ≥ hr (21)

It is also a part of the constraints to specify certain limits to each variable(dimension).
If a certain dimension needed to be fixed, this can simply achieved by setting both the
minimum and maximum limits to the desired value.

Code Algorithm

The code is made using Lua programming language. The code is executed by
FEMM4.2 software. The choice of Lua programming language to be used is due to its
simplicity, and that it is adopted by FEMM4.2, which provides the FEA analysis in good
accuracy. Figure 3 shows the code’s algorithm. The code starts with inserting SRM optimiza-
tion data. These data include the population size, problem variables, variables limits, and
objective functions, to specify which objective function to maximize and which to minimize,
maximum iterations limit and numbers of rotor and stator poles (Pr and Ps). Subsequently,
solutions initialization are achieved for all solutions in the population by a random choice
of variables within the search space that is stored in matrix X as in Equation (16). After that,
the solutions are modified to satisfy constraints in Equations (18)–(21) by changing the val-
ues of variables that resulted from random choice. This change is to give the variable that is
out of its limits one of the acceptable limits value. For example, if a variable is greater than
maximum, then it is changed to the maximum value and vice versa. Subsequently, FEA
Analysis is accomplished using FEMM4.2 software to calculate average torque, maximum
stator and rotor poles flux densities and volume of iron. Next, remaining objective functions
(η and Wi) are calculated using the results of FEA analysis. After that, non-dominated sort-
ing is achieved and crowdingdistance is calculated for all fronts. Based on non-dominated
sorting and crowding distance, the best and worst solutions are specified. Susequently, the
termination condition is checked if the number of iterations exceeds the maximum limit or
not. Finally, output of optimization is provided, which is the non-dominated front of all
solutions. Note that the output also provides all solutions that have been produced for all
iteration, which is beneficial to provide more solutions for designer to choose.
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Start

Optimization
problem data

Solutions ini-
tialization

Modify solutions

FEA Analysis

Calculate objec-
tive functions

Non-dominated
sorting and

crowding distance

Specify best and
worst solutions

Terminate?

Optimal
solutions

New solutions us-
ing Equation (11)

end

No

Yes

Figure 3. Flowchart of MO-Jaya algorithm.

5. Results and Discussions

The evaluation of optimization algorithm performance may be mainly achieved by
two factors that are computational time and candidates. The less computational time,
the better is the performance for the same results of candidates. On the other hand,
the better candidates, the better performance for the same computational time. In this
paper, better candidates production are of significant interest than computational time.
SRM design candidates with higher average toque and efficiency and lower iron weight are
considered to be better candidates. Hence, it is expected that for a successful optimization
process, most of the search (crowded area) ought to be in the areas that maximize both
average toque and efficiency and minimize iron weight. For example, assuming that it us
desired to maximize both of objective functions f1 and f2, the results of the optimization
process that are the solution candidates should be at the upper right quarter, as shown in
Figure 4. The same goes for other quarters in cases of minimizing both f1 and f2, maximize
f1 and minimize f2, and maximize f2 and minimize f1. Additionally, it is expected that
the optimization program will find more solutions in the correct quarter (direction) with
increased iterations until the search area is fully covered.
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0 f1

f2

Maximize both

Minimize both
Maximize f1
Minimize f2

Maximize f2
Minimize f1

Figure 4. Search directions in multi objective optimization.

The objectives of optimization in this paper are to maximize average torque (Tav)
and efficiency (η) and minimize iron weight (Wi). The results of optimization process are
considered in pairs, as shown in Figures 5 and 6. In Figure 5c, efficiency is increased and
iron weight is decreased while iterations are increasing. The search direction is correct
according to Figure 4. The search direction is also correct with respect to iron weight and
average torque, as shown in Figure 5b. In Figure 5a, the search direction is not clearly
obvious, as in Figure 5b,c, which is due to the non-linear relationships of dimensions and
objective functions (efficiency and average torque). The program changes the direction to
cover all the search area to provide a various groups of solutions.

In Figure 7, objective functions of SRM are shown with respect to the number of
iterations. It can be seen that the objectives are conflicting with each other. The optimization
program is made, such that the iterations are continued while the algorithm is not biased for
any of the objectives by changing the best and worst solutions in the way mentioned earlier
in Section 3.2. Hence, better solutions are found in all of search directions (objectives).
Figure 8 shows how objective functions interact with each other and confirms the wide
search area.

Every point represents a solution and some solutions are invalid due to dimensions
constraints, as they cause a negative clearance between windings. The penalty for these
solutions is to eliminate them by making their corresponding objective functions the worst
of their values. Hence, the invalid solutions take zero average torque and efficiency and
iron weight of the whole volume (2πDLρi), where ρi is the density of iron.

It can be seen that search direction is changing while iterations increases as the ups and
downs in objective functions values indicate. In other words, the program is exploring new
areas with more iterations. This is because of two reasons, the first reason is the random
chosen ratios r(i, j, 1) and r(i, j, 2) in Equation (11). The second reason is the random
choice of the best and worst solutions from the highest and lowest ranks (fronts). This
is beneficial, as the algorithm does not repeat it self and provide more various solutions.
However, a drawback is that optimal solutions (non-dominated front) are distributed over
iterations. In other words, the best candidates do not exist in the last iteration exclusively.
The designer then has to take this into consideration while choosing a design to implement.

For further evaluation, the optimization results by multi-objective Jaya algorithm
(MO-Jaya) are compared with optimization results by non-dominated sorting genetic algo-
rithm (NSGA-II) in [31]. Two optimization processes have the same constraints, objective
functions, calculation methods, and common parameters (population size and maximum
iterations). The results that are shown in Figures 5–7 in this paper are compared with
results that are shown in Figures 4, 5k and 7 in [31]. The comparison can be summarized in
the following point:
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1. It can be seen that MO-Jaya provides much better coverage of search area. The results
in [31] are more concentrated in small area. The reason for this is the constant
parameters of cross over and mutation in NSGA-II method, unlike MO-Jaya, where
the parameters are randomly changed. This is obvious by comparing Figures 5 and 6
in this paper with Figures 4 and 5 in [31].

2. Figure 7 in this paper shows that the optimal solutions may be lost with increased
iterations, unlike in [31], as shown in Figure 5. This is a consequence of changing
direction of search, as demonstrated earlier. This has no effect on the total design
candidates that Jaya algorithm provide and the designer can choose various design
candidates from any iteration’s population.

(a) Efficiency and torque. (b) Iron weight and efficiency.

(c) Iron weight and torque.

Figure 5. Objective functions results for 8/6 SRM.
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(a) Efficiency and torque. (b) Iron weight and efficiency.

(c) Iron weight and torque.

Figure 6. Objective functions results for 6/4 SRM.

(a) 8/6 SRM. (b) 6/4 SRM.

Figure 7. Objectives with iterations for 8/6 and 6/4 SRM using MO-Jaya.
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(a) 8/6 SRM (b) 6/4 SRM

Figure 8. 3D representation of objective functions values through optimization process.

Four optimal solutions are chosen for both 8/6 and 6/4 configurations. Table 3 sum-
marizes the selected designs and their corresponding objective functions. Most of designs
do not belong to the last iteration, as they provide better characteristics. For 8/6 SRM
configuration, design A1 achieves the highest average torque, A2 achieves highest effi-
ciency at rated speed, A3 has the lowest iron weight, and A4 is a compromise design which
gives a higher priority for average torque and efficiency. For the 6/4 SRM configuration,
design B1 achieves both the highest average torque and efficiency at rated speed, B3 has
the lowest iron weight, and B2 and B4 are the compromise designs. Figures 5 and 6 show
the location of the selected designs among the remaining designs. It is worth mentioning
that the resulted optimal designs by Mo-Jaya optimization method are close to these that
result from NSGA-II for the same constraints. However, the Mo-Jaya method achieved
better diversification than NSGA-II.

Table 4 shows the details of selected designs. It can be noticed that the parameters and
dimensions of SRM are changed with iterations to produce better designs in such a way
that matches with the SRM design experience. This indicates that the calculation methods
of objective functions mainly succeeded to represent SRM. For example, when rotor pole
length (hr) is increased and rotor yoke thickness (bry) is reduced, the impact on SRM is
to produce average torque. This result matches with design experience, as the difference
between anligned and unaligned inductances is increased and, hence, energy conversion
increases Equation (4).

Torque per phase is shown in Figure 9 for 8/6 and 6/4 SRM configurations before and
after optimization. The peak torque is increased in optimal designs (A1 and B1) over initial
designs. It can be also noticed that torque ripples also increase. This is because torque
ripples minimization is not considered as an objective for optimization. However, so far,
the program succeeded in achieving what is requested and specified in the objectives. More
work is taking place to include torque ripple minimization in optimization objectives in
the future.

Further study on selected SRM design candidates are made to evaluate efficiency
over a wide range of speeds Figure 10. It can be noticed that 6/4 SRM (B group) achieves
higher efficiency values. This is due to lower iron losses that are caused by flux variation in
magnetic circuit of SRM. Figure 11 shows the iron losses.
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Table 3. Chosen optimal candidates.

Candidate Configuration Average Torque (N.m) Efficiency (%) Iron Weight (kg)

A1 8/6 4.8 86.43 4.86
A2 - 3.79 87.1 5.48
A3 - 1.55 71.85 3.51
A4 - 4.68 85.9 5.86
B1 6/4 4.24 87.9 5.12
B2 - 3.49 88.6 5.6
B3 - 2.38 80.5 4.31
B4 - 4.1 87.8 5.144

Table 4. Parameters and objective functions values of the selected optimal designs.

Value A1 A2 A3 A4 B1 B2 B3 B4 Unit

Tav 4.8 3.79 1.55 4.68 4.24 3.49 2.38 4.1 N.m
η 86.43 87.1 71.85 85.9 87.9 88.6 80.5 87.8 %

Iron weight 4.86 5.48 3.51 5.86 5.12 5.6 4.31 5.144 kg
Tph 242 210 204 220 270 238 256 264 Turns
La 72.9 65.55 29.54 72.3 112.7 100.6 77.2 109.6 mH
Lu 11.8 15.2 10.6 12.97 13.06 17.8 18.1 12.92 mH

Rph 1.6 1.4 1.4 1.46 1.43 1.26 1.35 1.39 Ω
Do 130 130 130 130 130 130 130 130 mm
L 100 100 100 100 100 100 100 100 mm
D 75.9 68.62 44.99 80.06 78.26 62.1 47.22 76.67 mm
bsy 6.01 6.42 6 6 7.2 7.31 7.2 7.2 mm
bry 5 6.17 5 9.3 5 5 5 5 mm
hs 21.045 24.27 36.508 18.97 18.67 26.64 34.18 19.5 mm
hr 20.46 12.78 5 17.99 21.63 13.44 6.1 20.83 mm

Dsh 24 24 24 24 24 24 24 24 mm
g 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 mm
βs 16.46 20.24 12.75 19.04 25.5 32.12 25.5 25.5 degree
βr 19.38 32.4 18.8 28.54 25.6 42.37 25.63 26.9 degree

(a) 8/6 SRM (A1). (b) 6/4 SRM (B1).

Figure 9. Torque per phase of initial and optimal SRM designs.
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Figure 10. Efficiency over wide range of speeds.

Figure 11. Core losses of selected optimal designs over wide range of speeds.

6. Conclusions

In this paper, the Jaya algorithm is introduced to solve SRM optimization problem.
The proposed approach considers the multi-objectives optimization of SRM design problem.
Results show the success of Jaya algorithm to achieve good diversification and good inten-
sification.The contribution in this paper can be summarized by the comparison between
MO-Jaya and NSGA-II methods for the same design requirements and constracompared-
ints. MO-Jaya showed much better performance and a wider search area with results of
NSGA-II. The reasons for this is the random choice of parameters, best and worst solu-
tions in Jaya algorithm that achieve considerably more search diversity. The introduced
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approach represents a framework that can adopt any application requirements and cal-
culation methods. Further work is required to develop the calculation methods and the
design parameters to include other important requirements of SRM, such as torque ripple
minimization, thermal modelling, and so forth. Finally, the decision is left to the designer
to pick the most convenient design from a wide variety of optimal of solutions.
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