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The impact of memory effect 
on space fractional strong 
quantum couplers with tunable 
decay behavior and its numerical 
simulation
Ahmed S. Hendy  1,2, Mahmoud A. Zaky  3*, Ramy M. Hafez  4 & Rob H. De Staelen  5,6

The nontrivial behavior of wave packets in the space fractional coupled nonlinear Schrödinger 
equation has received considerable theoretical attention. The difficulty comes from the fact that the 
Riesz fractional derivative is inherently a prehistorical operator. In contrast, nonlinear Schrödinger 
equation with both time and space nonlocal operators, which is the cornerstone in the modeling of a 
new type of fractional quantum couplers, is still in high demand of attention. This paper is devoted to 
numerically study the propagation of solitons through a new type of quantum couplers which can be 
called time-space fractional quantum couplers. The numerical methodology is based on the finite-
difference/Galerkin Legendre spectral method with an easy to implement numerical algorithm. The 
time-fractional derivative is considered to describe the decay behavior and the nonlocal memory of 
the model. We conduct numerical simulations to observe the performance of the tunable decay and 
the sharpness behavior of the time-space fractional strongly coupled nonlinear Schrödinger model as 
well as the performance of the numerical algorithm. Numerical simulations show that the time and 
space fractional-order operators control the decay behavior or the memory and the sharpness of the 
interface and undergo a seamless transition of the fractional-order parameters.

Recently, optical solitons have arisen in various optical systems, which have many applications1–3. There exist dif-
ferent classifications of optical solitons. Temporal solitons and spatial solitons are the two main classifications. The 
combination of these two classifications forms spatiotemporal solitons. This kind of solitons, which are named 
light bullets, can be formed in the support of nonlinear effect in which a compensation of light beams spatial 
diffraction (broadening) and laser pulses temporal dispersion (spreading) occurs1,3,4. Information technology, 
like the internet and other telecommunication networks, is based on optical fiber technology. This technology 
is used widely in biomedical and biological studies. In the fabrication process of conventional optical fibers, it is 
noticed that some optical properties, apart from the transmission of light, can’t be easily modified and preserved. 
Routing, switching, and buffering of information are some of these optical properties. Because of that, the efforts 
of researchers in recent years are devoted to using dual-core fibers to develop and enhance fiber optic sensing 
techniques5,6. The ability of the new dual-core fibers to perform the same functions more precisely is proved in7 
by applying a minuscule amount of mechanical pressure. In other words, an improvement is reported in opti-
cal fiber-based technology by the mechanism of two cores fiber fabrication which is based on moving the cores 
close enough to each other.

More recently, a nanomechanical optical fiber fabrication and demonstration are reported7. The main feature 
of that optical fiber is its core which has a great role in controlling the nanometer-scale mechanical movements 
side by side to the transmission of light. The methodology of the fabricated fibers which have two movable cores 
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is based on making their cores more close to each other to have the opportunity to act as a directional coupler. 
Armed by that, the light can make a jump between the two cores which are separated only by a few nanometers. 
Some recent applications are based on that new technology. An example of these applications is optical buffering 
which can enhance processing, routing, and switching properties over long distances. Owing to potential applica-
tions in optical communication, propagation of solitons through optical fibers in most optical communication 
systems became a wide area of research. The integrable nonlinear Schrödinger’s equation (NLSE)8,9 is used to 
model these dynamics. A more generalized form10, known as the generalized nonlinear Schrödinger’s equation 
(GNLSE), is given by

where F is a real-valued algebraic function which can be considered as the refractive index of the fibers. Earlier 
work10 extended the GNLSE to the couplers case. Fast switching and signal coupling in optical communication 
links can be allowed by optical nonlinear couplers. For twin-core couplers, wave propagation at relatively high 
field intensities is described by coupled nonlinear equations. In the dimensionless form, they are: 

The coupling coefficient between the cores of the fiber is represented by the constant K . The system (2) and 
(3) has been derived and studied before in the context of Kerr law nonlinearity11. The dimensionless forms of the 
optical fields in the respective cores of the optical fibers are given by u and ν . This system of equations is known 
as the generalized vector NLSE. Intensity dependent switches and devices for separating a compressed soliton 
from its broad ‘pedestal’ are examples of applications of (2) and (3). Its integrals of motion can be respectively 
given by energy (E), linear momentum (M) and the Hamiltonian (H) namely:

where we define F(I) =
∫ I
0 F (ζ )dζ , and the intensity I is given by I = |u|2 or I = |ν|2 depending on the core. The 

energy E is commonly known as the wave energy and in the context of fiber optics it is known as the wave power.
The theory which used to discuss quantum phenomena in fractal environments is called fractional quantum 

mechanics. The similarity between the classical diffusion equation and the Schrödinger equation motivated the 
generalization of the nonlinear Schrödinger equation in the light of non-Brownian motion in a path integral 
formulation. This generalization leads to the space-fractional, the time-fractional, and the time-space-fractional 
Schrödinger equations (FSEs). The Riesz space FSE has been introduced by Laskin in quantum physics by 
replacing the Brownian paths in the Feynman path integrals by Lévy flights12,13. Similar to the conventional 
Schrödinger equation, the Riesz space FSE satisfies the Markovian evolution law. Stickler14 discussed the Lévy 
crystal in a condensed matter environment as a possible realization of the space-fractional quantum mechanics by 
introducing a tight binding infinite range chain. Longhi15 discussed an optical realization of the space FSE based 
on transverse light dynamics in a cavity by exploiting the Fourier optics properties. Other physical applications 
of the Riesz space FSE have been discussed by Guo and Xu16 and its solution for a free particle and an infinite 
square potential well have also been introduced. The existence and uniqueness of the solution to the space FSE 
have been investigated by Guo et al.17 using the energy method. Moreover, the existence and uniqueness of the 
solution to systems of the space FSEs have been proved by Hu et al.18 using the Faedo-Galerkin method. Cho 
et al.19 studied the low regularity well-posedness of the space FSE with cubic nonlinearity in periodic and non 
periodic settings. Following Laskin and similar to deriving the time-fractional diffusion equation by consider-
ing non-Markovian evolution20, Naber21 used the Caputo temporal fractional derivative22 as a generalization 
of the integer-order derivative in the conventional Schrödinger equation to study non-Markovian evolution 
in quantum mechanics and constructed the temporal FSE. More recently, Dong and Xu23, and Wang and Xu24 
combined Laskin’s work with Naber’s work to construct space-time FSEs. A detailed derivation and numerical 
simulation of coupled system of nonlinear Schrödinger equations for pulses of polarized electromagnetic waves 
in cylindrical fibers was investigated25. Ghalandari and Solaimani26 investigated the numerical treatment of the 
fractional Young double-slit experiment with incident Gaussian wavepackets using a split step Fourier method. 
Liangwei Zeng and Jianhua Zeng27 proposed a coupled system of space FSEs considering two arrays of quantum 
waveguides. They considered the following system with the wave function u, ν:
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where � represents the Planck constant, the differentiation order parameter α represents the Lévy index, τ is the 
time, and K is the linear coupling parameter. The parameter Dα = 1/m is constant with m denoting the mass of 
the atom. When F (S) = S , then the nonlinear term is of Kerr style and G1,2 > 0 are the Kerr coefficients. These 
coefficients can make a characterization of atoms collisions strengths in Bose–Einstein condensates. A kind of 
normalization can be applied on (7) by defining new variables t = τ/τ0, ψ =

√
h−αu, φ =

√
h−αν, 

k = K/(Dα�
α), g1,2 = G1,2/Dα , and τ0 = �

1−α/(Dα). The fractional Laplacian is defined as 
(

−∇2
)α/2 =

(

− ∂2

∂x2

)α/2
. Accordingly, the system (7) should have the following dimensionless form:

Based on (8), two arrays of quantum waveguides composition represent a new kind of space-fractional 
quantum couplers was considered in27. It is called space-fractional quantum couplers27. This can be understood 
in the sense of two branches polariton condensates in solid state physics28. The wave packets in such nonlinear 
fractional systems are modeled by the coupled system of nonlinear fractional Schrödinger equations with linear 
coupling. The new version of the space-time fractional Schrödinger equation derived by Laskin29 contains two 
scale dimensional parameters. One of them is a time-fractional generalization of the famous Planck’s constant. 
The other one can be explained as a time-fractional generalization of the scale parameter emerging in fractional 
quantum mechanics. Then the dimensionless physical model that can effectively describe the time-fractional 
quantum coupling is based on a set of strongly NLFSEs as follows,

where � = (a, b) ⊂ R and J = (0,T] ⊂ R are the time and the space domains, ∂� is the boundary of � , the 
parameter ε > 0 is the group velocity dispersion, γ denotes the normalized birefringence constant, ψ and φ are 
complex functions defined in �× J , ψ0(x) and φ0(x) are known sufficiently smooth functions. Of particular 
concern for the present work is the linear coupling parameter ξ . It accounts for effects that result from the twisting 
and elliptic deformation of the fiber. The term proportional to k1 explains the self-focusing of a signal for pulses 
in birefringent media whereas k1 + 2k2 represents the cross phase modulation describing the integrability of the 
nonlinear system. The operator ∂

β

∂tβ
(0 < β < 1) is the Caputo fractional derivative, and (−�)α/2 is the fractional 

order Laplacian operator of order 1 < α ≤ 2 defined in Riesz form ∂α

∂|x|α (1 < α < 2) . We refer to seminal works30 
for more details on fractional order differential operators. We here numerically solve model (9) and provide an 
easy to implement algorithm in the next section.

In this paper, we numerically investigate the nontrivial behavior of wave packets in the time-space fractional 
model (9) in one space dimension. In this model, we choose the form of the fractional Laplacian to be the Riesz 
fractional operator. The time-fractional derivative is considered to describe the decay behavior and the non-local 
memory of the model. The numerical methodology is based on the finite difference/Galerkin–Legendre spectral 
method with an easy to implement numerical algorithm. We conduct numerical simulations to demonstrate 
the performance of the tunable decay and the sharpness behavior of the time-space fractional strongly coupled 
nonlinear Schrödinger model as well as the the performance of the numerical algorithm. Numerical simula-
tions show that the time and space fractional order operators control the decay behavior or the memory and the 
sharpness of the interface and undergo a seamless transition of the fractional order parameters. Of particular 
interest for this work also is the linear coupling parameter ξ . We test the effect of this parameter on the collision 
of solitary waves.

The spectral scheme
Here, the discretization of problem (9) is done by using the high order L2-1σ approximation difference formula 
for the Caputo time fractional operator next to the spectral Legendre–Galerkin scheme for the Riesz spatial-
fractional operator. The time and space fractional Schrödinger equalion and its coupled system are fully analyzed 
numerically in31,32. The proposed numerical approaches there are designed by the use of L1 difference scheme 
for temporal approximations and Galerkin spectral scheme for spatial fractional order operators. Alternatively, 
Fourier spectral method can be used effectively for Riesz space fractional partial differential equations. For 
example, a fast and accurate method for numerical solutions of space fractional reaction-diffusion equations is 
proposed in33 based on an exponential integrator scheme in time and the Fourier spectral method in space. By the 
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Fourier spectral techniques and advance the resulting equation in time with both Strang splitting and exponential 
time-differencing methods, the dynamics of the time-dependent Riesz space fractional nonlinear Schrödinger 
equation in the presence of the harmonic potential have been considered in34. A detailed implementation of the 
constructed high accuracy algorithm for (9) will be given below.

Formalism.  We partition the temporal domain J by ts = sτ , s = 0, 1, . . . ,M where τ = T/M . Denote 
ts+σ = (s + σ)τ = σ ts+1 + (1− σ)ts , for s = 0, 1, . . . ,M − 1 . Let �s+σ = �s+σ (·) = �(·, ts+σ ).

Definition 1  Let 0 < β < 1 and σ = 1− β
2 . Define

and

Lemma 2.1  (Alikhanov difference formula35) The high order Alikhanov L2-1σ difference formula under the assump-
tion �(t) ∈ C3[0, tj+1] , 0 ≤ j ≤ M − 1 , formulated as

where δt�r = �r+1 −�r , can be rewritten as

where d(0,β ,σ)1 = −d
(0,β ,σ)
0 = σ 1−β ∀ j = 0 , and ∀ j ≥ 1,

Definition 2  Let j ∈ Z[0,M−1] , the Alikhanov L2-1σ difference formula at the node tj+σ is defined as

The next identity holds directly by Taylor’s theorem.

Lemma 2.2  The following identity holds:

Starting from the L2-1σ formula (16) for the discretization of the time Caputo fractional derivative, we obtain 
that

Making use of Lemma 2.1 and Lemma 2.2, this scheme is of second order accuracy in time. Let us introduce 
the following parameters
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The semi-scheme (18) has the following equivalent form:

And so, the full discrete Alikhanov L2-1σ Galerkin spectral scheme for (18) is to get ψ j+1
N , φ

j+1
N ∈ V0

N , 
j ≥ 0, ∀ν ∈ V0

N such that

where PN is the projection operator.

Algorithmic implementation.  Via the hypergeometric function, Jacobi polynomials can be represented36, 
for α, β > −1 and x ∈ (−1, 1):

where the notation (·)i represents the symbol of Pochhammer. Armed by (20), we get the equivalent three-term 
recurrence relation
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The weight function that ensures the orthogonality of Jacobi polynomials is given by 
ωα,β(x) = (1+ x)β(1− x)α , namely,

where δij is the Kronecker Delta symbol, and

Lemma 2.3  (see for example37) For α > 0 , one has

We introduce the following rescale functions:

and we write ∧(x) as x̂ . The basis functions selected for the spatial discretization are given by38,39:

(25)
∫ 1

−1
J
α,β
i (x)J

α,β
j (x)ωα,β(x)dx = γ

α,β
i δij ,

(26)γ
α,β
i = 2(α+β+1)Ŵ(1+ i + β)Ŵ(1+ i + α)

i!(α + 2i + β + 1)Ŵ(α + β + i + 1)
.

(27)
−1D

α
x̂ Lq(x̂) =

Ŵ(q+ 1)

Ŵ(q− α + 1)
(1+ x̂)−αJα,−α

q (x̂), x̂ ∈ [−1, 1],

x̂D
α
1 Lq(x̂) =

Ŵ(q+ 1)

Ŵ(q− α + 1)
(1− x̂)−αJ−α,α

q (x̂), x̂ ∈ [−1, 1].

∧ : [a, b] → [−1, 1] : x �→ 2x−(a+b)
b−a

∧−1 : [−1, 1] → [a, b] : t �→ (b−a)t+a+b
2

Figure 1.   Plots of model (36) for β = 0.99 and α = 1.99.
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The approximation space V0
N can be considered as follows:

The approximate solutions ψ j+1
N  and φj+1

N  are shown as

where ψ̂ j+1
i  and φ̂j+1

i  are the unknown expansion coefficients to be determined. Choosing v = ϕk , 0 ≤ k ≤ N − 2 , 
the representation matrix of the Alikhanov L2-1σ spectral Legendre–Galerkin numerical scheme has the fol-
lowing representation:

where

(28)ϕn(x) = Ln(x̂)− Ln+2(x̂) =
2n+ 3

2(n+ 1)
(1− x̂2)J1,1n (x̂), x ∈ [a, b].
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N = span{ϕn(x), n = 0, 1, . . . ,N − 2}.
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[
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(β ,σ ,γ )
j

(
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)

]

�j+1 = R
j
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j H
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2 ,

Figure 2.   Plots of model (36) for β = 0.99 and α = 1.6.
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Lemma 2.4  [see36,38] The elements of the stiffness matrix S in (31) are given by
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Figure 3.   Plots of model (36) for β = 0.95 and α = 1.99.
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where

and 
{

x
− α

2 ,−
α
2

r ,̟
− α

2 ,−
α
2

r

}N

r=0
 are the Gauss-Jacobi points and their weights corresponding to the weight function 

ω− α
2 ,−

α
2 . The mass matrix M is symmetric and its nonzero elements are given as

Also, as Hj+1,r
p = H

j+1
p (ψ

j+1,r
N ,φ
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N ), p = 1, 2 , r ≥ 0, the linear system (31) can be solved by Algorithm 1.
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Figure 4.   Plots of model (36) for β = 0.6 and α = 1.99.
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Results and discussions
In this section, we conduct numerical simulations to investigate the modeling capability of the space-time frac-
tional Schrödinger equation (36). Computationally, we consider N = 150 and M = 1500.

Example 1  We consider the following weakly coupled system:

Figure 5.   Plots of model (36) for β = 0.6 and α = 1.6.
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with the initial conditions

where p1 = p2 = 1 , D = 5 and H0 = 3.

In the integer order case, i.e. for α = 2 and β = 1 , the wave propagates from the left to the right spatial 
domain with a fixed angle. The model is the Manakov system. The collision is elastic and the system is completely 
integrable, the two waves cross each other, and their velocity and shape are unchanged. It is well known that the 
standard integer-order Schrödinger equation generates very diffusive numerical solutions. This can be observed 
here when α is close to 2 and β is close to 1.

The numerical results in Figs. 1, 2, 3, 4 and 5 display the effect of the Lévy index 1 < α ≤ 2 and the temporal 
fractality 0 < β ≤ 1 on the shapes and stability of the soliton solutions. These results represent the performance 
of the space-time fractional Schrödinger equation (35). We find that when α  = 2 and β  = 1 , the collision is not 
elastic. The non-integer orders significantly affect the shape of the solitons. One can see in Figs. 1 and 2 that, as 
the value of the space fractional-order α is decreased, the shape of the solitons changes more quickly.

From Figs. 3, 4, 5 and 6, we note that the distinct selections of the fractional-order parameters β yield simu-
lation results with different decay time or decay properties in the time direction. We observe that as the value 
of the time fractional-order β is decreased, the interface grows sharper and sharper at the beginning of time 
where-after the solution propagates straight. Here, we notice a new phenomenon that as β is decreased, the decay 

(36)











i ∂
βψ

∂tβ
− (−�)α/2ψ +

�

|ψ |2 + |φ|2
�

ψ = 0,

i ∂
βφ

∂tβ
− (−�)α/2φ +

�

|φ|2 + |ψ |2
�

φ = 0,

(37)
ψ(x, 0) = p1sech

(

p1x + D
)

eiH0x ,

φ(x, 0) = p2sech
(

p2x − D
)

e−iH0x ,

Figure 6.   Plots of model (36) for β = 0.3 and α = 1.3.
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behavior is gradually reduced too. The situation tends to the conventional case when β approaches 1. These fea-
tures can be employed in physics to tunable sharpness of the space-time fractional Schrödinger equation (36) 
with the different choices of the space fractional order α and the time fractional order β , without changing the 
nonlinearity and dispersion effects.

Example 2  We consider the following strongly coupled system:

subject to the initial conditions

where D = 25 and H0 = 1.

It is well known that the linear coupling parameter γ dramatically affects the collision of solitary waves40,41. 
In Figs. 7 and 8 we study the effect of the linear coupling parameter γ , the spatial fractional diffraction order 
1 < α ≤ 2 and the temporal fractality 0 < β ≤ 1 on the collision of solitary waves. We find when α tends to 2 and 
β tends to 1 that as the linear coupling parameter γ is increased, the jump behavior gets stronger. Moreover, for 

(38)
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Figure 7.   Numerical simulations for Example 2 with γ = 0.05 and different values of the space and time 
fractional orders.
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any 1 < α ≤ 2 and when β tends to 1, the collision is always elastic. The collision will occur earlier with increas-
ing α and become closer to the classical integer-order case. For the space fractional Schrödinger equation with 
β = 1 , the two soliton waves collide and keep their shapes when moving away after the collision. This can be 
observed here when β tends to 1. For smaller values of β , this feature is absent, the waves do not even cross, and 
the evolution of the solution is pretty sharp during the first time steps. We note also that the distinct selections of 
the fractional-order parameters β yield simulation results with decay properties in the time direction, see Figs. 7 
and 8 (second row). At the same time, some waves are created with oscillations corresponding to fluctuations 
and indicating the presence of decoherence phenomena that depends on β.

Conclusion
In this paper, we numerically investigated the nontrivial behavior of wave packets in a new type of time-space 
fractional quantum coupler. The model involving a coupled system of time and space fractional nonlinear 
Schrödinger equations with linear or nonlinear coupling, can be used to uncover a wealth of information about 
an extended variety of phenomena, such as modeling the Bose-Einstein condensates, the interaction between 
pulses in nonlinear optics, or signals in nonlinear acoustic media. The time-fractional derivative was considered 
to describe the nonlocal memory or decay behavior of the model. The numerical simulation for modelling such 
kind of quantum couplers was carried using an easy to implement algorithm based on a novel consistent scheme. 
It is a combination of Galerkin spectral method of Legendre type, to approximate the spatial operators, and a 
high order finite difference method, to approximate the temporal derivatives. The effect of fractality parameters 
α and β on the behaviour of the solution is discussed. The numerical simulations of the time-space fractional 
nonlinear Schrödinger equations in this paper show that the problem displays time decay behavior that has not 
been observed before in the time-fractional partial differential equations modeling. Hence, the time and space 
fractional order operators can be used to control the decay behavior or the memory and the sharpness of the 
interface and undergo a seamless transition of the fractional order parameters. Of particular interest for this 
work also is the linear coupling parameter ξ . We test the effect of this parameter on the collision of solitary waves. 

Figure 8.   Numerical simulations for Example 2 with γ = 0.2 and different values of the space and time 
fractional orders.
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These features can be employed in physics to tunable sharpness of the space-time fractional Schrödinger equa-
tion with the different choices of the space fractional order α and the time fractional order β , without changing 
the nonlinearity and dispersion effects.
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