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Abstract: The dual-phase-lag heat transfer models attract a lot of interest of researchers in the last
few decades. These are used in problems arising from non-classical thermal models, which are based
on a non-Fourier type law. We study uniqueness of solutions to some inverse source problems for
fractional partial differential equations of the Dual-Phase-Lag type. The source term is supposed to
be of the form h(t) f (x) with a known function h(t). The unknown space dependent source f (x) is
determined from the final time observation. New uniqueness results are formulated in Theorem 1
(for a general fractional Jeffrey-type model). Here, the variational approach was used. Theorem 2
derives uniqueness results under weaker assumptions on h(t) (monotonically increasing character of
h(t) was removed) in a case of dominant parabolic behavior. The proof technique was based on spectral
analysis. Section 4 shows that an analogy of Theorem 2 for dominant hyperbolic behavior (fractional
Cattaneo–Vernotte equation) is not possible.
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1. Introduction

The classical heat conduction theory is based on Fourier’s law, which yields infinite speed of
thermal disturbances, which is nonphysical. On the other hand, non-classical models allow for a
pertubation of the heat flux by a non-Fourier effect (additional term), cf. [1,2] As a consequence,
a hyperbolic heat conduction model can be developed, and the propagation speed of heat will be finite.
Cattaneo’s equation [1] in fact leads to the hyperbolic model described by the telegraph (or damped
wave) equation. We consider models which allow perturbations for both the heat flux and temperature
gradient, known as dual-phase-lag type equations.

1.1. Modeling

Let Ω ⊂ Rd, d ∈ N be a bounded domain with a Lipschitz continuous boundary ∂Ω. The final
time is denoted by T and we set QT := Ω× (0, T ] and ΣT := ∂Ω× (0, T ]. The classical Fourier law
describes the relation between heat flux and temperature gradient as follows:

q(x, t) = −k(x)∇T(x, t)

where x is a material point, t is the time (in seconds (s)), k is the thermal conductivity (in W/(mK))
q is the heat flux (in W/m2), T stands for the temperature (in K), and ∇ is on behalf of the gradient
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operator. The minus sign “−” on the right side means that the direction of heat transmission goes from
places with higher temperature to the ones with lower temperature.

The concept of Tzou [3] allows for the heat flux and the temperature gradient to occur at different
instants of time in micro-scale heat transfer with relaxation time, see, e.g., [4]. This can be represented
as a non-Fourier type law:

q(x, t + τq) = −k(x)∇T(x, t + τT), τq > 0, τT > 0, (1)

where τq and τT are introduced as the phase-lag parameters (in seconds). Taking the first-order Taylor
series expansion on both sides with reference to time t (neglecting the second- and higher-order terms)
yields (This is a constitutive model of Jeffrey’s-type equation.)

q(x, t) + τq∂tq(x, t) = −k(x) (∇T(x, t) + τT∂t∇T(x, t)) ,

which describes the classical Dual-Phase-Lag (DPL) heat conduction. Considering the fractional
version of this relation, we replace the two first order derivatives with respect to time by the fractional
operators, and the Phase-Lags τq and τT by τα

q and τ
β
T , which are introduced to maintain the dimensions

in order. The time fractional Dual-Phase-Lag model then reads as (see [5])

q(x, t) + τα
q Dα

t q(x, t) = −k(x)
(
∇T(x, t) + τ

β
T Dβ

t ∇T(x, t)
)

. (2)

The fractional derivative of order γ is defined by

(
Dγ

t u
)
(x, t) :=

(
g1−γ ∗ ut(x)

)
(t) =

∫ t

0
g1−γ(t− s)ut(x, s) ds,

where the kernel g1−γ is defined by

g1−γ(t) =
t−γ

Γ(1− γ)
, t > 0, 0 < γ < 1,

where Γ denotes the Gamma function. The convolution term is the Caputo fractional derivative of
order γ ∈ (0, 1), cf. [6]. Note that the Riemann–Liouville kernel g1−γ ∈ L1

loc(0, ∞) satisfies

(−1)jg(j)
1−γ(t) ≥ 0, ∀t ≥ 0, j = 0, 1, 2; g′1−γ 6≡ 0,

and thus it is strongly positive definite by [7] Corollary 2.2. This means that

∫ t

0
(g1−γ ∗ y)(s)y(s) ds ≥ 0 ∀t ≥ 0, y ∈ L2

loc((0, ∞)). (3)

1.2. Derivation of the Source Term

Following the energy conservation law, it holds that

ρc∂tT(x, t) +∇ · q(x, t) = g(x, t), (4)

where ρ > 0 and c > 0 are the density (in kg/m3) and the specific heat of the material (in J/(K kg))
respectively, and g involves the source of heating. Combining Equation (2) with this, we arrive at the
Fractional Dual-Phase-Lag (FDPL) heat equation in the form(

1 + τα
q Dα

t

)
(ρc∂tT(x, t)) +∇ ·

(
−k(x)

(
∇T(x, t) + τ

β
T Dβ

t ∇T(x, t)
))

=
(

1 + τα
q Dα

t

)
g(x, t). (5)
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Let us have a closer look at the form of the source term, which depends on the situation
under consideration. If we consider e.g., the temperature distribution inside living tissues subject to
laser/electromagnetic radiation, then g has more components g = gb + gM + gs, cf. [8,9]. The term gb
represents a heat source due to blood circulation and it may be expressed as

gb = WbCb(Ta − T),

where the constant Ta stands for the arterial blood temperature, the blood perfusion coefficient Wb
represents the heat removal produced by the blood flow; and Cb is the specific heat of blood. The heat
generated per unit volume of tissue due to the absorption of electromagnetic radiation is represented by
the term gs. It depends only on the location of the antenna and its transmitting power P, which might
be time-dependent and can be expressed as

gs = ρSPeη(p−r),

where S, η are constants, r is the position of the probe, and p is the depth of the material point.
The source arising from metabolism has the form

gM = gm

(
1 +

T − T0

10

)
,

where gm is the reference metabolism and T0 is the initial temperature. We see opposite sign before
T at gb and gM. Considering the physical values for blood (following [8]), we have Wb = 8 kg m−3

s−1, Cb = 3344 J kg−1 K−1, T0 = Ta = 37 ◦C, gm = 1091 W m−3 = 1091 Jm−3 s−1, and we reveal that
WbCb > gm

10 . Collecting, we may write for some known a ≥ 0,(
1 + τα

q Dα
t

)
g(x, t) = F(x) + f (x)h(t)− a

(
1 + τα

q Dα
t

)
T(x, t). (6)

Here, the external (antenna) source is considered in a separated form (space and time).
By combining this relation with (5), we arrive at the final fractional form of Dual-Phase-Lag heat
equation for (x, t) ∈ QT ,(

1 + τα
q Dα

t

)
(ρc∂tT(x, t)) + a

(
1 + τα

q Dα
t

)
T(x, t) +∇ ·

(
−k(x)

(
∇T(x, t) + τ

β
T Dβ

t ∇T(x, t)
))

= F(x) + f (x)h(t)
(7)

subject to the initial data

T(x, 0) = T0(x), ∂tT(x, 0) = V0(x), x ∈ Ω. (8)

For ease of explanation, we consider Dirichlet boundary conditions (BCs)

T(x, t) = TΓ(x, t), (x, t) ∈ ΣT . (9)

Neumann and Robin/Newton type BCs can be handled in a similar way.

1.3. Existing Results of the Phase-Lag Type Models

Several papers are devoted to theoretical and numerical studies of phase-lag models considering
the classical (not fractional) derivatives (i.e., α = 1 = β in (7)). Methods of solution regarding phase-lag
models in one dimension have been discussed by Tzou [10]. More dimensions have been considered
in [11]. Actually, the phase-lag models represent a special case of integrodifferential equations which
have been intensively studied in the eighties of the 20th century. In fact, the relation (7) with classical
derivatives reads as
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ρc∂tT(x, t) + τqρc∂2
ttT(x, t) + a

(
T(x, t) + τq∂tT(x, t)

)
+∇ · (−k(x) (∇T(x, t) + τT∇∂tT(x, t)))

= F(x) + f (x)h(t).
(10)

This can be easily transformed into an integrodifferential equation

τqρc∂tu(x, t) +
(
ρc + aτq

)
u(x, t) +∇ · (−k(x)τT∇u(x, t))

= F̃(x, t) +∇ ·
(

k(x)
(
∇
∫ t

0
u(x, s) ds

))
−a

∫ t

0
u(x, s) ds,

(11)

where we put T(x, t) = T0(x) +
∫ t

0 u(x, s) ds. Please note that
∫ t

0 u(x, s) ds represents a linear Volterra
operator, cf. [12]. The equation (11) is a special case of an abstract parabolic semilinear equation
with Volterra operators which has been studied in [13,14] (including full discretization). More general
systems covering thermoelasticity problems with memory have been analyzed (well-posedness and
regularity) in [15,16].

For the moment, we are not aware of references concerning the well-posedness and regularity of
the multi-dimensional fractional Dual-Phase-Lag model (7); however, the suitable proof-technique is
available in papers concerning fractional diffusion. The 1D solvability was treated in [5], where analytical
solutions expressed by H-functions are obtained by using the Laplace and Fourier transforms method.

An inverse source problem (ISP) of determining a missing solely time-dependent function in
a nonlinear parabolic integrodifferential setting has been studied in [17]. This covers the inverse
source problem for determination of unknown h(t) if the source is in a separated form f (x)h(t) as in
the classical relation (10). Time-reversed models of inverse problems modeled by non-Fourier heat
conduction law have been investigated by [18,19], in the non fractional case.

Higher-order approximations to the DPL model were studied in [20]. Solutions to the problems
considered in this paper manifest unphysical behavior with negative values of temperature for τq > τT .
A similar problem in the framework of the first-order approximation (for τq > τT) to the DPL model
was studied in [21]. Exponential stability (based on relation between τT en τq) of solutions with
higher-order approximation to the DPL equation was studied in [22].

1.4. Organization of the Paper

We aim to analyze uniqueness results based on different assumptions on the known time-
dependent term h of the source term. The paper is organized as follows: In Section 2, we show
uniqueness of the inverse source problem of determining f (x) from the final time observation,
cf. Theorem 1, by using the variational technique, supposing h(t) > 0, h′(t) ≥ 0. To our best
knowledge, this is the very first result of this type and the highlight for the fractional DPL equation.
Next, we modify the model-based on a relation between the phase-lag parameters—in Sections 3 and 4.
In the case that τT > τq, the character of the governing equation is more parabolic and the assumptions
in Theorem 1 can be relaxed, see Theorem 2, the proof of which relies on the spectral method, where we
just assume 0 6≡ h ≥ 0. Section 4 shows that, if τq > τT , the assumptions of Theorem 1 cannot be
relaxed, see Remark 3. Notice that the case τT = τq is less interesting, since a change in time scale
reduces the model to the classical version.

2. Uniqueness for Isp by Determination of F(x) from the Final Time Observation

The goal of this section is to study the uniqueness of solution (T(x, t), f (x)) to the ISP (7)–(9)
along with a given final time observation T(x, T ). Due to the linearity of the problem, we have to
show if
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(
1 + τα

q Dα
t

)
(ρc∂tT(x, t)) + a

(
1 + τα

q Dα
t

)
T(x, t)

+∇ ·
(
−k(x)

(
∇T(x, t) + τ

β
T Dβ

t ∇T(x, t)
))

= f (x)h(t) in QT
T(x, t) = 0 in ΣT
T(x, 0) = 0 in Ω

∂tT(x, 0) = 0 in Ω
T(x, T ) = 0 in Ω

(12)

then T(x, t) = 0 = f (x).
The following lemma states a simple consequence of (3). This will be used in the proof of

Theorem 1.

Lemma 1. Let 0 < α < 1 and ∂tv ∈ L2
loc((0, ∞), L2(Ω)), v(0) = 0. Then, for any ξ ≥ 0, we have

∫ ξ

0
((Dα

t v) (s), v(s)) ds ≥ 0.

Proof. It holds that gα ∗ g1−α = 1. An easy calculation yields

∫ ξ

0
((Dα

t v) (s), v(s)) ds =
∫ ξ

0

(
(g1−α ∗ ∂tv) (s),

∫ s

0
∂tv(y) dy

)
ds

=
∫ ξ

0
((g1−α ∗ ∂tv) (s), (1 ∗ ∂tv) (s)) ds

=
∫ ξ

0
((g1−α ∗ ∂tv) (s), ((gα ∗ g1−α) ∗ ∂tv) (s)) ds

=
∫ ξ

0
((g1−α ∗ ∂tv) (s), (gα ∗ (g1−α ∗ ∂tv)) (s)) ds

(3)
≥ 0.

The following theorem deals with the uniqueness of a solution to the ISP for the FDPL equation.

Theorem 1 (Uniqueness ISP). Assume 0 < α, β < 1, a ≥ 0,
k(x) =

(
ki,j(x)

)
i,j=1,...,d , x ∈ Ω, k = kT,

ki,j ∈ L∞ (Ω) , i, j = 1, . . . , d,

ξT · kξ =
d

∑
i,j=1

ki,j(x)ξiξ j ≥ k |ξ|2 , k > 0, ∀ξ ∈ Rd
(13)

and ρ, c > 0 and a, τα
q , τ

β
T ≥ 0. Moreover, suppose that h ∈ C([0, T ]), h′ ∈ C((0, T ]) and

h(t) > 0, h′(t) ≥ 0.

Presume that (T(x, t), f (x)) obeys (12) along with T ∈ C
(
[0, T ], H1

0(Ω)
)

, ∂tT ∈ L2
(
(0, T ), L2(Ω)

)
and f ∈ L2(Ω). Then, T(x, t) = 0 = f (x).

Proof. The variational formulation of the governing fractional partial differential equation (FPDE)
reads as

ρc (∂tT, ϕ) + ρcτα
q (Dα

t ∂tT, ϕ) + a
((

1 + τα
q Dα

t

)
T, ϕ

)
+ (k∇T,∇ϕ) + τ

β
T

(
kDβ

t ∇T,∇ϕ
)
= h(t) ( f , ϕ)

for any ϕ ∈ H1
0(Ω).



Mathematics 2020, 8, 1291 6 of 16

Let us denote H(t) = 1
h(t) . Then, we have H′(t) = − h′(t)

h2(t) ≤ 0. Now, we divide the variational
form by h(t), set ϕ = ∂tT and integrate over [0, T ] to get

ρc
∫ T

0
H(s) ‖∂tT(s)‖2 ds + ρcτα

q

∫ T
0

H(s) ((Dα
t ∂tT) (s), ∂tT(s)) ds

+
∫ T

0
H(s) (aT(s), ∂tT(s)) ds + τα

q

∫ T
0

H(s) (a (Dα
t T) (s), ∂tT(s)) ds

+
∫ T

0
H(s) (k∇T(s),∇∂tT(s)) ds + τ

β
T

∫ T
0

H(s)
(

kDβ
t ∇T(s),∇∂tT(s)

)
ds = 0,

since ∫ T
0

( f , ∂tT(s)) ds =
(

f ,
∫ T

0
∂tT(s) ds

)
= ( f , T(T )− T(0)) = 0.

We can write using integration by parts in time

a
∫ T

0
H(s) (T(s), ∂tT(s)) ds =

a
2

∫ T
0

H(s)∂s ‖T(s)‖2 ds

=
a
2

H(s) ‖T(s)‖2
∣∣∣s=T
s=0
− a

2

∫ T
0

H′(s) ‖T(s)‖2 ds

≥ 0,

and ∫ T
0

H(s) ((Dα
t ∂tT) (s), ∂tT(s)) ds = H(t)

∫ t

0
((Dα

t ∂tT) (s), ∂tT(s)) ds
∣∣∣∣t=T
t=0

−
∫ T

0
H′(s)

∫ s

0
((Dα

t ∂tT) (ξ), ∂tT(ξ)) dξ ds

= H(T )
∫ T

0
((Dα

t ∂tT) (s), ∂tT(s)) ds

−
∫ T

0
H′(s)

∫ s

0
((Dα

t ∂tT) (ξ), ∂tT(ξ)) dξ ds
Lemma 1
≥ 0.

Furthermore,

a
∫ T

0
H(s) ((Dα

t T) (s), ∂tT(s)) ds = a H(t)
∫ t

0
((Dα

t T) (s), ∂tT(s)) ds
∣∣∣∣t=T
t=0

−a
∫ T

0
H′(s)

∫ s

0
((Dα

t T) (ξ), ∂tT(ξ)) dξ ds
Lemma 1
≥ 0,

2
∫ T

0
H(s) (k∇T(s),∇∂tT(s)) ds =

∫ T
0

H(s)∂t (k∇T(s),∇T(s)) ds

= H(t) (k∇T(t),∇T(t))|t=Tt=0 −
∫ T

0
H′(s) (k∇T(s),∇T(s)) ds,

≥ 0

and

∫ T
0

H(s)
(

kDβ
t ∇T(s),∇∂tT(s)

)
ds = H(t)

∫ t

0

(
kDβ

t ∇T(s),∇∂tT(s)
)

ds
∣∣∣∣t=T
t=0

−
∫ T

0
H′(s)

∫ s

0

(
kDβ

t ∇T(ξ),∇∂tT(ξ)
)

dξ ds
Lemma 1
≥ 0.

Summarizing all estimates above, we arrive at
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∫ T
0

H(s) ‖∂tT(s)‖2 ds ≤ 0,

which implies T(x, t) = 0 and consequently f (x) = 0 from the governing FPDE.

Remark 1. We show that the result of Theorem 1 is no longer true if the function h changes sign. Consider the
following simplified form of (12):(

1 + τα
q Dα

t

)
(∂tT(x, t))−

(
1 + τ

β
T Dβ

t

)
∆T(x, t) = f (x)h(t) in QT

T(x, t) = 0 in ΣT
T(x, 0) = 0 in Ω,

T(x, T ) = 0 in Ω,

(14)

where Ω = (0, π) and T = 1. The ISP for missing f (x) has the trivial solution (T(x, t), f (x)) = (0, 0).
We now determine a non-trivial solution, based on a modification of [23] Example 3.1. Take a function g(x) such
that −∆g = λg with g(0) = g(π) = 0 and let v ∈ C2(0, 1) with v(0) = v(1). Set

h(t) = τα
q (g1−α ∗ v′′)(t) + λτ

β
T (g1−β ∗ v′)(t) + v′(t) + λv(t).

Then, we have the non-trivial solution T(x, t) = v(t)g(x), f (x) = g(x) for example with f (x) = sin(x),
λ = 1 and v(t) = tα+β+1(1− tb) where b > 0. We find

h(t) =
τα

q

Γ(1− α)

(
−(α + β + b + 1)(α + β + b)tβ+bB(α + β + b, 1− α)

+(α + β)(α + β + 1)tβB(α + β, 1− α)
)

+
λτ

β
T

Γ(1− β)

(
−(α + β + b + 1)tα+1+bB(α + β + b + 1, 1− β)

+(α + β + 1)tα+1B(α + β + 1, 1− β)
)

+(α + β + 1)tα+β − (α + β + b + 1)tα+β+b + λtα+β+1(1− tb),

where B is the Beta function. The free parameters to tune are α, β, τq, τT , b and can be chosen in such a way that
h(t) changes its sign, see Figure 1.

Figure 1. Graph of function h from Remark 1 for the values b = 0.1, α = 0.1, β = 0.5, λ = 1, τα
q =

0.3, τ
β
T = 0.6.

Remark 2. In Theorem 2 and Remark 3, we will use the real discrete spectrum of the self-adjoint positive
differential operator Av = ∇ · (−k∇v) acting on e.g., H1

0(Ω), similar to the above (where k was the identity
matrix). Performing the spectral analysis, this operator A has a real discrete spectrum 0 < λn → ∞,
with corresponding eigenfunctions en ∈ H1

0(Ω), which create an orthonormal base in L2(Ω) and Aen = λnen.
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3. Modified Model for τT > τq

Let us modify the concept of Tzou [3] in the following way. We allow that the heat flux and the
temperature gradient occur at different instants of time in micro-scale heat transfer. We interpret it
as follows:

q(x, t) = −k(x)∇T(x, t + τ), (15)

where the parameter τ represents the difference between τ := τT − τq > 0 and the time t takes the
meaning of t + τq in (1).

Phase lags represent the time parameters required by the material to start up the heat flux and
temperature gradient, after a thermal excitation was imposed. Materials, in which the temperature
gradient phase lag dominates, show a strong attenuation of the neat heat flux. Thus, the behavior is
dominated by parabolic terms of the heat transport equation.

Taking the first-order Taylor series expansion on the right-hand side with reference to time t
(neglecting the second- and higher-order terms) yields

q(x, t) = −k(x) (∇T(x, t) + τ∂t∇T(x, t)) .

Considering the fractional version of this relation, we replace the first order derivative with
respect to time by the fractional operator, which leads us to the relation (compare to (31))

q(x, t) = −k(x)
(
∇T(x, t) + τβDβ

t ∇T(x, t)
)

. (16)

Combining this with the conservation law (4), we arrive at a modified (5)

ρc∂tT(x, t) +∇ ·
(
−k(x)

(
∇T(x, t) + τβDβ

t ∇T(x, t)
))

= g(x, t). (17)

The advantage of this formulation is the validity of the maximum principle. In fact, the relation (17)
is a special case of the so called multi-term time-fractional diffusion equation, see [24]. Following [24]
Theorem 3, we see that, if the source g(x, t) ≥ 0, then the temperature T(x, t) attains its minimum on
the parabolic part of the boundary i.e., in Ω× {0} or on the boundary ∂Ω× [0, T].

Let us assume that the source term g in (17) takes the following form g(x, t) = F(x) + f (x)h(t)−
aT(x, t)—which corresponds to (6) for τα

q = 0. We consider the following ISP, which relates to (7) with
τα

q = 0 : Find T(x, t) and f (x) obeying

ρc∂tT(x, t) + aT(x, t)+∇ ·
(
−k(x)

(
∇T(x, t) + τβDβ

t ∇T(x, t)
))

= F(x)+ f (x)h(t) in QT
T(x, t) = TΓ(x, t) in ΣT
T(x, 0) = T0(x) in Ω

T(x, T ) = Ψ(x) in Ω.

(18)

The following lemma will play an important role in the proof of uniqueness for a solution to the
ISP (18).

Lemma 2 (Maximum principle). Let 0 < β < 1 and T > 0. Consider functions v, r, z ∈ C([0, T ]),
α ∈ C1((0, T ]) and α′ is Lebesgue integrable on (0, T ). Assume that the function α obeys

z(t)α′(t) +
(

Dβα
)
(t) + r(t)α(t) = v(t) for t ∈ [0, T ] (19)

along with
α(0) = α(T ) = 0, 0 ≤ r(t), z(t), for t ∈ [0, T ].

Then:
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(i) If v(t) ≤ 0 for t ∈ [0, T ], then α(t) ≤ 0 for t ∈ [0, T ].
(ii) If v(t) ≥ 0 for t ∈ [0, T ], then α(t) ≥ 0 for t ∈ [0, T ].

Proof. (i) We want to show that α(t) ≤ 0 in [0, T ]. We present the proof by contradiction. Suppose
that there exists an interior point t0 ∈ (0, T ) such that α(t0) > 0. First, we define a temporary function
w as follows:

w(t) := α(t) +
α(t0)

2
T − t
T .

It holds that

w(T ) = 0, w(0) =
α(t0)

2
> 0, w(t0) = α(t0) +

α(t0)

2
T − t0

T >
α(t0)

2
.

We see that w(t) cannot attain its maximum at the border of the time interval, i.e., at t = 0 or at
t = T , due to the fact that w(t0) > max{w(0), w(T )}. Let t1 be a maximum point of w(t) on [0, T ].
We see that

w(t1) ≥ w(t0) >
α(t0)

2
> 0. (20)

Clearly,

0 = w′(t1) = α′(t1)−
α(t0)

2T < α′(t1).

In virtue of [25] Theorem 1, we get that
(

Dβw
)
(t1) ≥ 0. Now, we apply the fractional operator

Dβ to w(t) to obtain

(
Dβα

)
(t) =

(
Dβw

)
(t) +

α(t0)

2T

(
Dβt

)
(t) =

(
Dβw

)
(t) +

α(t0)

2T
t1−β

Γ(2− β)
.

Therefore, we get

(
Dβα

)
(t1) =

(
Dβw

)
(t1) +

α(t0)

2T
t1−β
1

Γ(2− β)
> 0.

Now, we are in a position to check the validity of the time-fractional differential Equation (19) at
the time point t1. We may write

z(t1)α
′(t1) +

(
Dβα

)
(t1) + r(t1)α(t1)− v(t1) = z(t1)α

′(t1) +
(

Dβα
)
(t1)

+r(t1)
[
w(t1)− α(t0)

2
T −t1
T

]
− v(t1)

(20)
> z(t1)α

′(t1) +
(

Dβα
)
(t1)

+r(t1)
α(t0)

2

[
1− T −t1

T

]
− v(t1)

= z(t1)α
′(t1) +

(
Dβα

)
(t1) + r(t1)

α(t0)

2
t1

T − v(t1)

> 0,

so the fractional equation is not fulfilled at the time t1, which is a contradiction. Therefore, our
assumption about the existence of t0 ∈ (0, T ) such that α(t0) > 0 was wrong and we have proved that
α(t) ≤ 0 for all t ∈ [0, T ].

(ii) This part follows directly from just proved (i) by replacing v by −v and α by −α.

The following theorem shows that the uniqueness to the ISP (18) can be established without
monotonicity assumption on h(t).
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Theorem 2 (Uniqueness). Assume 0 < β < 1, τ > 0, (13), 0 ≤ a and h ∈ C((0, T]) and 0 6≡ h ≥
0. Then, there exists at most one couple (T(x, t), f (x)) solving the ISP (18) such that f ∈ L2(Ω), T ∈
C
(
[0, T ], L2(Ω)

)
, T ∈ L2

(
(0, T ), H1

0(Ω)
)

, and

|h(t)|+ ‖Tt(t)‖ ≤ C
(

1 + t−δ
)

for any t ∈ (0, T ]

for some 0 < δ < 1.

See a typical regularity of solution in [26]. The paper [27] shows that the solution of Dβ
t u = uxx

subject to homogeneous initial data and BCs behaves like ut(t) ≈ tβ−1 as t→ 0+.

Proof. Due to the linearity of the problem, we have to prove that, if

ρc∂tT(x, t) + aT(x, t)+∇ ·
(
−k(x)

(
∇T(x, t) + τβDβ

t ∇T(x, t)
))

= f (x)h(t) in QT
T(x, t) = 0 in ΣT
T(x, 0) = 0 in Ω

T(x, T ) = 0 in Ω,

(21)

then T(x, t) = 0 = f (x).
We aim to use the separation of variables technique, using Remark 2. We may express both

f and T in the basis (en)n associated with Av := ∇ · (−k∇v) as follows f = ∑∞
n=0 ( f , en) en and

T(t) = ∑∞
n=0 αn(t)en with αn(0) = 0 for all n. Moreover, the fact that T(x, T ) = 0 implies that

αn(T ) = 0 for all n. Without loss of generality, we may assume that ( f , en) ≥ 0 for all n because, if not,
then we just replace those en for which ( f , en) < 0, by −en. Substituting the coordinate expressions
for f and T in the governing FPDE, multiplying by ej, integrating over Ω and involving the Green’s
theorem we easily arrive at

ρcα′j(t) + (a + λj)αj(t) + τβλj

(
Dβαj

)
(t) = h(t)

(
f , ej
)

for all j,

or in a more suitable form

ρc
τβλj

α′j(t) +
a + λj

τβλj
αj(t) +

(
Dβαj

)
(t) =

h(t)
τβλj

(
f , ej
)

for all j (22)

Lemma 2 now implies
αn(t) ≥ 0 for all n. (23)

Consider for a while the following auxiliary time-fractional equation with a constant λ > 0(
Dβv

)
(t) + λv(t) = σ(t), v(0) = 0. (24)

Then, the solution is given in terms of the Mittag–Leffler function (see eg. [28] (13))

v(t) =
∫ t

0
(t− s)β−1Eβ,β

(
−λ(t− s)β

)
σ(s) ds,

where the Mittag–Leffler function is defined for µ > 0, γ > 0, z ∈ R as

Eµ,γ(z) =
∞

∑
k=0

zk

Γ(µk + γ)
.

Thus, the solution to (22) obeys
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αj(t) =

(
f , ej
)

τβλj

∫ t

0
(t− s)β−1Eβ,β

(
−

a + λj

τβλj
(t− s)β

)
h(s) ds

− ρc
τβλj

∫ t

0
(t− s)β−1Eβ,β

(
−

a + λj

τβλj
(t− s)β

)
α′j(s) ds

(25)

Let us recall some monotonic properties of Mittag–Leffler function, which will be used later in the
proof. According to [29] Lemma 3.2, the function

t 7→ Eβ,1(−t) > 0

is completely monotonic and, for η > 0, we have

d
dt

Eβ,1(−ηtβ) = −ηtβ−1Eβ,β(−ηtβ) < 0,
d2

dt2 Eβ,1(−ηtβ) = −η
d
dt

(
tβ−1Eβ,β(−ηtβ)

)
> 0. (26)

A more general result for Eµ,γ can be found in [30,31]. Here, it was proved that the generalized
Mittag–Leffler function Eµ,γ(−t), t > 0 is completely monotonic for µ > 0, γ > 0 if and only if
0 < µ ≤ 1 and µ ≤ γ. Thus, the function Eβ,β(−ηtβ) is decreasing in t and

0 ≤ Eβ,β(−ηtβ) < Eβ,β(0) =
1

Γ(β)
.

Now, we aim to use integration by parts in time in the last integral of (25). To avoid singularities
in the improper integral, we use the following more sophisticated way. It holds that

C
(

1 + s−δ
)
≥ ‖Tt(s)‖ = sup

ϕ∈L2(Ω),‖ϕ‖=1
|(Tt(s), ϕ)|

= sup
ϕ∈L2(Ω),‖ϕ‖=1

∣∣∣∣∣
(

∞

∑
i=0

α′i(s)ei, ϕ

)∣∣∣∣∣ ≥
∣∣∣∣∣
(

∞

∑
i=0

α′i(s)ei, ej

)∣∣∣∣∣
=
∣∣∣α′j(s)∣∣∣

and ∣∣∣∣∣
∫ t

0
(t + ε− s)β−1Eβ,β

(
−

a + λj

τβλj
(t + ε− s)β

)
α′j(s) ds

∣∣∣∣∣
≤
∫ t

0
(t + ε− s)β−1Eβ,β

(
−

a + λj

τβλj
(t + ε− s)β

) ∣∣∣α′j(s)∣∣∣ ds

≤
∫ t

0
(t− s)β−1Eβ,β

(
−

a + λj

τβλj
(t− s)β

) ∣∣∣α′j(s)∣∣∣ ds

≤ C
∫ t

0
(t− s)β−1

(
1 + s−δ

)
ds

≤ C
(

tβ + tβ−δ
)

.

Clearly, for 0 < s < t, we have pointwise convergence

lim
ε↘0

(t + ε− s)β−1Eβ,β

(
−

a + λj

τβλj
(t + ε− s)β

)
= (t− s)β−1Eβ,β

(
−

a + λj

τβλj
(t− s)β

)
.

Thus, we may invoke the Lebesgue dominated convergence theorem to say
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−
∫ t

0
(t− s)β−1Eβ,β

(
−

a + λj

τβλj
(t− s)β

)
α′j(s) ds

= − lim
ε↘0

∫ t

0
(t + ε− s)β−1Eβ,β

(
−(t + ε− s)β

)
α′j(s) ds

= lim
ε↘0

 (t + ε− s)β−1Eβ,β

(
−

a + λj

τβλj
(t + ε− s)β

)
αj(s)

∣∣∣∣∣
s=0

s=t

+
∫ t

0

d
ds

[
(t + ε− s)β−1Eβ,β

(
−

a + λj

τβλj
(t + ε− s)β

)]
αj(s) ds

}
.

(27)

Combining relations (25) and (27), we get

αj(t) =

(
f , ej
)

τβλj

∫ t

0
(t− s)β−1Eβ,β

(
−

a + λj

τβλj
(t− s)β

)
h(s) ds

+
ρc

τβλj
lim
ε↘0

 (t + ε− s)β−1Eβ,β

(
−

a + λj

τβλj
(t + ε− s)β

)
αj(s)

∣∣∣∣∣
s=0

s=t

+
∫ t

0

d
ds

[
(t + ε− s)β−1Eβ,β

(
−

a + λj

τβλj
(t + ε− s)β

)]
αj(s) ds

}

and, especially for the final time t = T , we have

0 = αj(T ) =

(
f , ej
)

τβλj

∫ T
0

(T − s)β−1Eβ,β

(
−

a + λj

τβλj
(T − s)β

)
h(s) ds

+
ρc

τβλj
lim
ε↘0

∫ T
0

d
ds

[
(T + ε− s)β−1Eβ,β

(
−

a + λj

τβλj
(T + ε− s)β

)]
αj(s) ds.

(28)

Using (26), we may write for 0 < s < T

(T − s)β−1Eβ,β

(
−

a + λj

τβλj
(T − s)β

)
> 0

and
d
ds

[
(T + ε− s)β−1Eβ,β

(
−

a + λj

τβλj
(T + ε− s)β

)]

=
d

d(T + ε− s)

[
(T + ε− s)β−1Eβ,β

(
−

a + λj

τβλj
(T + ε− s)β

)]
d(T + ε− s)

ds
> 0.

Thus, relation (28) together with (23) and the fact that 0 ≤ h 6≡ 0 implies that

αj(s) = 0 = h(s)
(

f , ej
)

in [0, T ].

This holds true, for any j, so we deduce that T = 0 = f , which concludes the proof.

4. Modified Model for τq > τT

Materials, in which the heat flux phase lag is dominant, show a slight attenuation of the heat flux,
implying that a hyperbolic Cattaneo–Vernotte heat propagation is present. For a further discussion of
the relationship between thermal conductivity and phase lags, Tzou’s book [10] is recommended.

In this section, we assume that τ := τq − τT > 0 and we develop a modified fractional model.
We proceed similarly as in Section 3. We allow again that the heat flux and the temperature gradient
appear at different times. We interpret it as follows:
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q(x, t + τ) = −k(x)∇T(x, t), (29)

where the parameter τ represents the difference τq − τT > 0. This is in fact the single phase-lag
constitutive relation. Here, the time t takes the meaning of t + τT in (1). Taking the first-order Taylor
series expansion on the left-hand side with reference to time t (neglecting the second- and higher-order
terms) implies

q(x, t) + τ∂tq(x, t) = −k(x)∇T(x, t). (30)

(For the transient heat conduction process, Fourier’s law leads to an unphysical infinite heat propagation
speed (due to its parabolic character), which contradicts the theory of relativity. To overcome this shortcoming
of Fourier’s law, Cattaneo [1] and Vernotte [2] developed a new heat conduction framework termed as CV
(Cattaneo–Vernotte) model, see (30). This model switches the classical heat equation from a parabolic type to a
hyperbolic one. The additional term in the CV model includes a derivative of the heat flux with respect to time,
making the heat propagation speed finite.)

Then, following the derivation of the fractional model from the introduction, the time fractional
model now reads as

q(x, t) + ταDα
t q(x, t) = −k(x)∇T(x, t). (31)

Combining this relation with the conservation law (4), we arrive at a modified (5)

(1 + ταDα
t ) (ρc∂tT(x, t)) +∇ · (−k(x)∇T(x, t)) = (1 + ταDα

t ) g(x, t)
(6)
= F(x) + f (x)h(t)− a(1 + ταDα

t ) T(x, t),
(32)

which represents a fractional form of the Cattaneo–Vernotte type equation. This corresponds to (7)
with τ

β
T = 0.

Remark 3. Theorem 2 shows the uniqueness of the ISP (18) for h ∈ C([0, T]) and 0 6≡ h ≥ 0. Here, we will
show that such result cannot be proved for (32).

To fix the ideas, we consider the following simplified form of (32)

∂tT(x, t) + Dα
t ∂tT(x, t)− ∆T(x, t) = h(t) f (x) in QT

subject to homogeneous initial conditions

T(x, 0) = 0, Tt(x, 0) = 0 for x ∈ Ω

and homogeneous boundary conditions

T(x, t) = 0 for (x, t) ∈ ΣT .

Consider the vanishing final time measurement T(x, T ) = 0. Clearly, the ISP for determination of
missing f (x) has a trivial solution (T(x, t), f (x)) = (0, 0). Now, we construct a non-trivial solution in the
following way.

Put f = e, where e is an eigenfunction of Au = −∆u acting on H1
0(Ω) with eigenvalue λ, see Remark 2.

Set T(x, t) = v(t)e(x). Clearly, we get

v′(t) + (Dαv′)(t) + λv(t) = h(t)

along with
v(0) = 0 = v′(0), v(T ) = 0.

Let v(t) = 1− cos(t), v′(t) = sin(t), and T = 2π. We see that v(t) is non-negative in the time interval,
moreover v(0) = 0 = v′(0) and v(2π) = 0. Following [32] Proposition 14, we have
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(
Dαv′

)
(t) = (Dα sin) (t) = t1−αE2,2−α(−t2).

For ease of explanation, we choose α = 1
2 , see also Figure 2. It holds that

(D
1
2 v′)(t) = t

1
2 E2, 3

2
(−t2)

=
√

2

[
cos(t)C

(√
2t
π

)
+ sin(t)S

(√
2t
π

)]
,

where the symbols C and S denote the Fresnel integrals [33] page 300

C(x) =
∫ x

0
cos

(
πt2

2

)
dt, S(x) =

∫ x

0
sin
(

πt2

2

)
dt.

Thus, we have

h(t) = sin(t) + λ(1− cos(t)) +
√

2

[
cos(t)C

(√
2t
π

)
+ sin(t)S

(√
2t
π

)]

and

h′(t) = cos(t) + λ sin(t) +
√

2

(
cos(t)S

(√
2t
π

)
− sin(t)C

(√
2t
π

))
+

1√
πt

.

It holds (for any choice of λ)

h(0) = 0, h′(0) = lim
t→0+

h′(t) = lim
t→0+

(
1 +

1√
πt

)
= ∞, h(2π) =

√
2C(2) > 0.

Figure 2. Graph of the Caputo fractional derivative (D1/2 sin)(t).

The only left free parameter to tune is λ. Please note that h(t) consists of two parts. The first one is
independent of λ – cf. Figure 3 (left). The second part is λ(1− cos(t)) ≥ 0. Choosing sufficiently large λ > 0,
we can force h(t) to be non-negative, see Figure 3.

Wrapping up, the ISP for determination of missing f (x) from the final time observation admits in addition
to the trivial solution (T(x, t), f (x)) = (0, 0) also a non-trivial one

(T(x, t), f (x)) = ((1− cos(t))e(x), e(x)) ,

where −∆e = λe with sufficiently large eigenvalue λ > 0. Moreover, we see that 0 6≡ h(t) ≥ 0 and the
derivative h′(t) changes its sign. Therefore, we conclude that positivity of h(t) is not sufficient to prove the
uniqueness to the ISP (32).

Please note that, if h′(t) ≥ 0, then we would have uniqueness by Theorem 1.
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Figure 3. Graph of h(t) for λ = 0 (left), λ = 1 (middle) and λ = 10 (right).

5. Conclusions

We studied some fractional versions of the Dual-Phase-Lag equation arising in heat conduction
processes. The source term was supposed to be in a separated form h(t) f (x). We considered an inverse
source problem of recovery a solely space dependent source term f (x) from the final time observation.
We showed uniqueness of a solution to this ISP for a general fractional Jeffrey-type model assuming
h(t) > 0, h′(t) ≥ 0, see Theorem 1. Assuming τT > τq, the assumptions in Theorem 1 can be relaxed
to 0 6≡ h ≥ 0, see Theorem 2. Remark 3 shows that, if τq > τT , which corresponds to a fractional
Cattaneo–Vernotte model, the positivity of h(t) cannot guarantee the uniqueness of a solution to
the ISP.
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