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ABSTRACT 
 

Cancers that are deficient in BRCA1 or BRCA2 are thought to be hypersensitive to 

genotoxic agents because they cannot prevent or repair DNA double strand breaks, but 

observations in patients suggest this dogma may no longer agree with experiment. 

Here, we propose that single stranded DNA underlies the hypersensitivity of BRCA 

deficient cancers, and that defects in double strand break repair and prevention do not. 

Specifically, in BRCA deficient cells, ssDNA gaps developed because replication was 

not effectively restrained in response to stress. In addition, we observed gaps could be 

suppressed by either restored fork restraint or by gap filling, both of which conferred 

therapy resistance in tissue culture and BRCA patient tumors. In contrast, restored 

double strand break repair and prevention did not confer therapy resistance when gaps 

were present. Critically, double strand breaks were not detected after therapy when 

apoptosis was inhibited, supporting a framework in which double strand breaks are not 

directly induced by genotoxic agents, but instead are created by cell death nucleases 

and are not fundamental to genotoxic agents. Together, these data indicate that ssDNA 

replication gaps underlie the BRCA cancer phenotype, "BRCAness," and we propose 

are fundamental to the mechanism-of-action of genotoxic chemotherapy. 
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CHAPTER I: INTRODUCTION 
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The ssDNA Theory of BRCAness and Genotoxic Agents 

 

Summary: This article introduces a new theory for the widespread female cancer 

phenotype known as BRCAness, a vulnerability that results in exquisite hypersensitivity 

to agents that damage DNA. We review the history of BRCAness and highlight how the 

new ssDNA theory accurately predicts therapy success while requiring less complexity 

than the established dogma. We also outline results that support the most surprising 

and provocative prediction of the theory: that the previous dogma for BRCAness may 

have been incorrectly based on an artifact generated by the programmed cell death 

machinery. We conclude with the consequences of the new framework for personalized 

medicine of BRCAness, cancer, and serious DNA metabolism-based disease. 

 

Genotoxins are poisons that damage DNA and therefore are ideal drugs to treat 

cancers that display the vulnerability known as BRCAness, in which defects in DNA 

metabolism lead to hypersensitivity to DNA damaging agents. Unfortunately, even in 

this ideal case for personalized medicine, the majority of BRCAness cancers will 

ultimately acquire resistance to genotoxic agents and progress to terminal disease. 

 

Moreover, efforts to resensitize such cancers, or even to predict when drug resistance 

will occur in patients, have required adding substantial complexity to the established 

dogma, raising the exciting possibility that our understanding of genotoxins and 

BRCAness is not simply incomplete, but instead is fundamentally flawed.  
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Now, as described in this dissertation, a new theory proposes that it is single stranded 

DNA created by disrupted DNA replication, and not double strand breaks in the DNA as 

proposed by the dogma, that underlies the mechanism of action of genotoxins and 

represents the core defect of BRCAness (Figure 1). We propose this new ssDNA theory 

has forced a reconsideration of the established framework and could transformatively 

improve the therapies available for desperately ill patients. 

 

The History of the BRCAness Dogma: Genetics 

 

The BRCAness phenotype was first observed in cancer patients with mutated BRCA1 

and BRCA2 as part of an effort to identify cancer susceptibility syndromes. These 

Figure 1.1: Comparison of The ssDNA Theory and The Double Strand Break 
Dogma. In the ssDNA model, the BRCAness proteins (gray) slow and arrest 
DNA replication after DNA damage (yellow lightning bolt). When these 
proteins are defective, replication fails to quickly arrest, leading to ssDNA that 
causes hypersensitivity (BRCAness). Chemoresistance is achieved when the 
ssDNA gaps are filled, or when slowing is restored. In the Double Strand 
Break Dogma, a DNA replication fork collides with damaged DNA (lightning 
bolt and gray bar). When the BRCAness proteins are defective, the DNA 
replication forks are cut (scissors, gray oval) and collapse into a double strand 
break (bottom) that cannot be effectively repaired, leading to hypersensitivity. 
Chemoresistance is achieved when the replication fork is protected from 
cutting to prevent double strand breaks from forming, or when repair of double 
strand breaks is restored. 
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patients were observed to have an inherited and increased risk of developing female 

cancers, which suggested that the BRCA genes suppressed tumors by metabolizing 

DNA to ensure genetic integrity1–4. Indeed, BRCA deficient cells were subsequently 

observed to display striking hypersensitivity to agents that, among various molecular 

targets, were found to damage DNA5–8, many of which had been deployed as 

successful anti-cancer therapies in the clinic (Figure 1.2). Importantly, the 

hypersensitivity of BRCA cells to such agents not only confirmed that the BRCA 

proteins metabolized DNA as previously suspected9,10, but also established, via 

complementary genetic evidence, that such therapies principally targeted DNA as their 

fundamental mechanism of action. Accordingly, these agents would ultimately become 

known as genotoxins - i.e. genetic toxins - and they remain essential chemotherapeutics 

for the majority of cancers even today11. 

 

 

 

 

 

 

 

 

 

Out of the variety of DNA lesions created by genotoxins, the DNA double strand break 

dogma of BRCAness and hypersensitivity emerged from two key results: first, the BRCA 

Figure 1.2: Genotoxic lesions. A, ionizing radiation breaks the DNA backbone directly, generating 
DNA double strand breaks as well as single strand breaks. B) Interstrand and C) intrastrand DNA 
crosslinks are created by agents with two functional groups available to bind DNA, such as 
cisplatin. D) DNA-protein adducts are created by agents such as camptothecin, which covalently 
traps the DNA replication protein topoisomerase I onto DNA, or PARPi, which traps the DNA repair 
protein called PARP. In addition, cisplatin also creates DNA-protein covalent linkages. 
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proteins were found to mediate a pathway called homologous recombination that 

repairs DNA double strand breaks, therefore suggesting that BRCA cells would be 

highly vulnerable to agents that generate such breaks6,12,13. Second, genotoxins were 

found to create extensive double strand breaks via pulsed field gel electrophoresis of 

treated cells6,14–17, a result consistent with double strand breaks as the critical cellular 

lesions to drive the observed hypersensitivity in BRCA cancer. 

 

Together, these results represented the core framework of the dogma: that DNA double 

strand breaks are the fundamental lesion of both BRCAness and genotoxic agents. 

However, although ionizing radiation had a straightforward mechanism of generating 

double strand breaks, the chemistry of genotoxins deployed against BRCAness 

cancers, for example cisplatin and camptothecin, only supported the creation of lesions 

such as adducts and crosslinks - not double strand breaks as a nuclease would create - 

and therefore required adopting a more complex framework18–20. Similarly, it was found 

that inhibiting the DNA repair protein called PARP conferred synthetic lethality in BRCA 

cells and was a targeted, specific therapy for BRCAness21,22, but a mechanism for 

PARPi generating double strand breaks was unclear. Mechanistically, PARP was a 

protein involved in DNA repair that was responsible for signaling via ADP-ribosylation in 

the DNA damage response - how could inhibiting PARP, or creating adducts on DNA, 

create extensive double strand breaks to generate hypersensitivity in BRCA cancers? 

 

The BRCAness Dogma Adds DNA Replication Forks 
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Ultimately, the key precursor to double strand breaks was proposed to be a replication 

fork that collides with a DNA lesion5,21–23; this model was supported by several important 

results. First, the replication fork presents a vulnerable region of DNA that could, in 

principle, collapse at a lesion and create a DNA double strand break16,21,22 (Figure 1, 

gray oval). Second, homologous recombination via the BRCA proteins is largely only 

active when cells are replicating, indicating that the BRCA vulnerability might manifest 

at a fork16,21,22. Finally, sensitivity to genotoxins was only observed when cells were 

actively replicating; indeed, genotoxins were found to be broadly less effective when 

cells were arrested, with toxicity reduced by three to ten fold depending on the specific 

agent used16,21,22.  

 

Importantly, strong experimental support for this framework was found in pulsed field gel 

electrophoresis experiments with camptothecin16. Indeed, camptothecin was observed 

to create double strand breaks at nascent DNA, which suggested the breaks were 

created at the replication fork. Moreover, the observed double strand breaks were 

eliminated upon co-treatment with aphidocholin, an antibiotic inhibitor of DNA 

polymerase; this role for replication further suggested that the camptothecin lesions had 

in fact collapsed a fork into a double strand break. Critically, this broken-fork principle 

was consistent with the chemistry of other genotoxins, all of which created replication 

disrupting lesions, including cisplatin and PARPi, and could explain their hypersensitivity 

in BRCA cells via double strand breaks. Indeed, a similar concept to camptothecin was 

developed for PARPi, which was proposed to create a vulnerable single stranded region 

at the replication fork that would cause forks to collapse into a double strand break21. 
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Taken together, these results added the collapsed replication fork to the double strand 

break dogma of BRCAness as illustrated in Figure 1, and would ultimately lead to the 

important idea that forks could be degraded or stabilized to determine therapy 

success21,22. 

 

Replication Fork Degradation and Stabilization 

 

The collapsed-fork model predicted several phenotypes that were experimentally 

confirmed and therefore largely solidified the dogma. First, the framework suggested 

that the forks of BRCA deficient cells would be more unstable and therefore prone to 

collapsing into double strand breaks at sites of DNA damage to exacerbate the 

hypersensitivity phenotype. This prediction was confirmed by Schlacher et al.24,25, 

where they reported that BRCA forks were degraded by the nuclease MRE11 after 

being exposed to genotoxins, whereas BRCA proficient forks were protected. These 

results revealed that, not only were BRCA cells deficient for repairing DNA double 

strand breaks, but they also appeared more prone to generating them. 

 

Secondly, the framework predicted that, if the replication fork could be protected, double 

strand breaks would be prevented from forming and resistance would be conferred, 

even in the absence of proficient double strand break repair via homologous 

recombination. This phenotype was confirmed by Chaudhuri et al.26, where they 

observed a number of genes that, when depleted, stabilized BRCA replication forks in 

DNA fiber assays and eliminated MRE11 chromatin localization. Moreover, these genes 
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were observed to confer chemoresistance in BRCA cells when depleted but, as 

predicted by the framework, did not restore homologous recombination for double 

strand break repair26,27. 

 

These key observations represented the final aspects of the dogma and led to the 

complete and elegant double strand break framework shown in Figure 1. Other groups 

identified additional genes that protected forks and conferred chemoresistance in BRCA 

cells when depleted and found these genes accurately predicted BRCA cancer patient 

outcomes using the TCGA, further supporting the framework26–29. 

 

However, a second set of genes was rapidly identified that, despite protecting forks 

when depleted in BRCA cancers, nevertheless did not confer chemoresistance and 

appeared to be inconsistent with the dogma; moreover, these genes also did not 

accurately predict BRCA cancer patient outcomes in the TCGA30–33. Several of these 

proteins, including the fork remodeler SMARCAL1, were thought to stabilize the fork in a 

reversed structure that was protected from degradation by MRE11, yet no resistance 

was conferred. Moreover, even inhibiting MRE11, the protein directly implicated in 

degrading and collapsing forks, was also not reported to confer chemoresistance. 

These observations were handled by adding additional complexity to the dogma to 

ensure it agreed with experiment: for example, multiple types of stabilized forks, of 

which only a subset confer chemoresistance, to explain why protected forks did not 

always predict poor patient outcomes. 
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However, the most impactful question had been overlooked: What if these results 

indicate the double strand break model is wrong? 

 

A Complex Process? Or Fundamentally Flawed? 

 

Indeed, if these complexities instead indicated that the fork premise of the dogma was 

incorrect, then how could double strand breaks be generated from DNA lesions such as 

crosslinks? Consequently, even the foundation of the dogma - the double strand break - 

would have to be questioned. Had any complexity been added to the double strand 

break idea of the dogma to resolve inconsistencies that might indicate a flaw? 

 

A critical examination of the literature revealed this was indeed the case, with the most 

compelling evidence coming from a patient with Fanconi Anemia, a DNA metabolism 

disorder that displays developmental defects, genomic instability, and hypersensitivity to 

genotoxins comparable to that observed for BRCAness. Incredibly, despite a clear 

diagnosis of Fanconi Anemia with confirmed hypersensitivity to genotoxins, the patient’s 

cells nevertheless were found to have intact double strand break repair by homologous 

recombination using the best experimental methods available34 - a truly staggering 

result. Again, although these observations can legitimately be fit to the framework of the 

dogma by adding complexity - for example, a latent and undetectable defect in double 

strand break repair; or a subtle defect in repairing just a subset of DNA lesions - the 

clarity of the conflict between patient and dogma represents an important opportunity 
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and, we propose, demands that other competing frameworks for BRCAness be 

evaluated. 

 

A Competing Framework: The ssDNA Theory of BRCAness and Genotoxic Agents 

 

It is into this context that the ssDNA theory emerged. We had been investigating the 

different fork protection factors in BRCAness, aiming to understand why some of these 

genes conferred chemoresistance whereas others did not. Our approach was to employ 

DNA fiber assays, but with a lower dose and time of genotoxin exposure in order to 

monitor the earliest possible changes to the DNA replication fork, a technique previously 

described to have detected ssDNA in BRCAness cells38. Indeed, we observed ssDNA 

accurately predicted hypersensitivity in all fork protection systems tested; moreover, our 

subsequent experiments revealed ssDNA accurately predicted hypersensitivity across a 

broad range of genetic systems, including known cases and new cases. Critically, 

ssDNA also accurately predicted hypersensitivity, without added complexity, even in the 

edge cases that had required modification of the double strand break dogma to remain 

consistent with experiment (Table 1)39. 

 

This predictive power implicated ssDNA as a fundamental lesion for BRCAness, 

genotoxins, and hypersensitivity, but the overall role was still unclear. Indeed, ssDNA 

could in fact be fit onto the existing double strand break dogma - for example, was 

ssDNA at a fork simply the precursor lesion that would ultimately become the DNA 

double strand break that causes hypersensitivity? On the other hand, if ssDNA were the 
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fundamental lesion, and the double strand break dogma were instead incorrect, how 

could we differentiate between these two frameworks? 

 

 

A Surprising Prediction is Confirmed: Apoptosis Generates all Detectable DSBs 

 

Historically, confidence in competing models has been determined by developing and 

testing surprising, specific predictions that would clearly favor one framework over the 

other40. Here, we decided to test what we determined to be the most surprising 

prediction of a ssDNA worldview - that the double strand breaks were not directly 

caused by the genotoxic agents, but instead were experimental artifacts created by the 

programmed cell death machinery.  

 

Indeed, in constructing the previous dogma, apoptosis had initially been considered as 

the source of the double strand breaks because genotoxins elicit toxicity via 

Table 1.1: Prediction table demonstrates that ssDNA replication gaps 
accurately predict chemoresponse in known, new, and edge cases 
without adding complexity. HR is homologous recombination, FP is fork 
protection, GS is gap suppression. Cells with GS do not generate ssDNA 
behind the replication fork. Blank indicates untested. Edge cases are 
observations that required adding complexity to the dogma to resolve. 
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programmed cell death, but was ultimately dismissed because the understanding of 

apoptosis was incomplete at the time. For example, it is now appreciated that apoptosis 

causes an ordered - not random - degradation of DNA that results in initial fragments of 

100-500kb in size that are subsequently degraded further41,42: importantly, this 

fragmentation pattern appears essentially identical to the fragmentation observed after 

genotoxic therapy, which can appear within an hour depending on treatment dose. In 

addition, a role for apoptosis had also been unfavored because double strand breaks 

were observed after genotoxic treatment in e. coli14,15, which were not thought to have 

an apoptotic pathway until recently43–45. Finally, several covalent inhibitors of apoptosis - 

called pan-caspase inhibitors - have now been developed that can be used to block all 

known features of apoptosis, including apoptotic double strand breaks; we therefore 

employed these agents as controls to isolate the double strand breaks caused directly 

by genotoxins46,47. 

 

Strikingly, we observed with pulsed field capillary electrophoresis that all detectable 

double strand breaks were eliminated by the apoptotic inhibitors - none had been 

directly created by the genotoxins39. Moreover, a critical review of prior literature found 

corroboration of this phenomenon from apoptotic studies with pulsed field gels, further 

increasing our confidence in the result48. As discussed in our paper that reports this 

work39, we considered a number of ways to try to rescue the dogma, but found it 

impossible to reconcile how an undetectable level of double strand breaks from 

genotoxins could reasonably be responsible for BRCAness and hypersensitivity. 

Specifically, apoptotic double strand breaks were already reported to be dispensable for 
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toxicity; their suppression was not reported to confer resistance41,42. Moreover, 

BRCAness cells maintain backup pathways that should be able to repair and prevent 

hypersensitivity even if double strand breaks were created at undetectable levels49. 

Importantly, although these backups are error prone, chromosomal instability also did 

not appear to be a source of hypersensitivity24,39, further undermining confidence in the 

dogma and increasing our confidence in an ssDNA framework. 

 

An ssDNA Future? 

 

We propose this body of work leads to high confidence in the ssDNA theory of 

BRCAness and to an overturn of the double strand break dogma. The apoptotic nature 

of the observed double strand breaks alone appears to place the dogma in a nearly 

untenable position48, and is also undermined by the observation of a hypersensitive 

Fanconi Anemia patient with intact double strand break repair via homologous 

recombination34. Simultaneously, the dogma now faces competition from an ssDNA 

theory that is also based in BRCA protein function, fits the observed results with less 

complexity, and accurately predicts that the observed double strand breaks are 

apoptotic39; these results meet the requirements for a competing theory, and shift 

confidence away from the dogma and toward the ssDNA framework. 

 

An important test of this new framework will be to determine if ssDNA can be used to 

identify and generate superior personalized treatments for BRCAness in the future. 

Indeed, the BRCAness phenotype has been a critical proving ground for personalized 
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medicine, leading to the development of drugs that specifically kill BRCAness cells, for 

example by inhibiting PARP1 as highlighted previously; importantly, PARPi are lethal in 

cells that display BRCAness, but are well tolerated in normal cells, leading to a superior 

therapeutic window compared to the previous generation of genotoxins21–23. As 

expected, we find inhibition of PARP1 induces ssDNA gaps as consistent with the 

predictions of our framework, further supporting ssDNA as the targetable defect for 

BRCAness50. Moreover, the success of PARPi is widespread - suggesting that 

BRCAness is also widespread - and that agents targeting ssDNA could be widely 

applicable as personalized therapy across cancer types. Importantly, PARPi have been 

observed to be effective in the general population of breast and ovarian cancers, as well 

as prostate cancers - even those without specific mutations in the BRCA genes - 

indicating that the BRCAness phenotype and a likely ssDNA vulnerability is common 

across cancer types and is caused by a growing list of mutations in DNA metabolism 

type genes51–54.  

 

In addition to new drug targets and biomarkers for personalized medicine, several 

opportunities are unique to the ssDNA framework and are worth highlighting here. First 

is the potential to develop adjuvant drugs against gap filling and fork restraint, either to 

prevent the emergence of resistance or to resensitize refractory disease. Indeed, gap 

filling in particular appears to be a unique cancer adaptation and may therefore be 

uniquely targeted; several observations implicate the gap filling process known as 

translesion synthesis as a possible mechanism, and inhibitors are now emerging for 

clinical use55. In addition, a generalizable mechanism of repriming replication is also a 
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promising target56.  Moreover, beyond protein biomarkers, it may even be possible to 

diagnose patients with a BRCAness cancer via DNA combing and atomic force 

microscopy57–59, which can observe ssDNA in the genome directly, rather than by 

relying on a complex genetic profile.  

 

More broadly, evidence indicates ssDNA gaps underline the hypersensitivity of other 

DNA metabolism disorders, including Fanconi Anemia as described in our manuscript; 

indeed, both BRCA1 and BRCA2 are reported Fanconi genes60,61. Moreover, recent 

reports also suggest ssDNA gaps are a source of mutations that result even from 

normal cellular metabolism in BRCAness cells62, raising the distinct possibility ssDNA is 

fundamental to genomic instability. In addition, ssDNA could even underlie cell failure in 

DNA metabolism based diseases63 as well as cancer initiation and the BRCA 

haploinsuffiency phenotype64. Critically, it may be possible to treat DNA metabolism 

disorders, and also to prevent cancer initiation, by suppressing ssDNA; homologous 

recombination, in addition to a role in double strand break repair, may also have a key 

role in the resolution of such ssDNA lesions that could possibly be restored in 

BRCAness backgrounds. Accordingly, we propose it will be essential to evaluate the 

therapeutic potential of the ssDNA theory for BRCAness and DNA metabolism disorders 

and to encourage further competition between the frameworks. 
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CHAPTER II: RESULTS 

 

Replication Gaps Underlie BRCA-deficiency and Therapy Response 

This chapter is published as a featured article in Cancer Research. The citation for the 

paper and Research Highlight, as well as the published author contributions, are listed 

below. N. J. Panzarino performed all experiments except for the patient derived 

xenografts reported in Figures 2.4 and 2.5. 

1. Panzarino, N. J. et al. Replication Gaps Underlie BRCA Deficiency and Therapy 

Response. Cancer Research. 2021. 

2. Canman, C. Which Holds the Key to BRCAness: Inability to Repair the Break, 

Protect the Fork, or Prevent the Gap? Cancer Research. 2021. 
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Abstract 

 

Defects in DNA repair and the protection of stalled DNA replication forks are thought to 

underlie the chemosensitivity of tumors deficient in the hereditary breast cancer genes 

BRCA1 and BRCA2 (BRCA). Challenging this assumption are recent findings that 

indicate chemotherapies such as cisplatin used to treat BRCA-deficient tumors do not 

initially cause DNA double-strand-breaks (DSB). Here we show that single-stranded 

DNA (ssDNA) replication gaps underlie the hypersensitivity of BRCA-deficient cancer 

and that defects in homologous recombination (HR) or fork protection (FP) do not. In 

BRCA-deficient cells, ssDNA gaps developed because replication was not effectively 

restrained in response to stress. Gap suppression by either restoration of fork restraint 

or gap filling conferred therapy resistance in tissue culture and BRCA patient tumors. In 

contrast, restored FP and HR could be uncoupled from therapy resistance when gaps 

were present. Moreover, DSB were not detected after therapy when apoptosis was 

inhibited, supporting a framework in which DSB are not directly induced by genotoxic 

agents, but rather are induced from cell death nucleases and are not fundamental to the 

mechanism of action of genotoxic agents. Together, these data indicate that ssDNA 

replication gaps underlie the BRCA cancer phenotype, "BRCAness," and we propose 

they are fundamental to the mechanism-of-action of genotoxic chemotherapies.  
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Statement of Significance 

 

This study suggests that ssDNA replication gaps are fundamental to the toxicity of 

genotoxic agents and underlie the BRCA-cancer phenotype "BRCAness," yielding 

promising biomarkers, targets, and opportunities to re-sensitize refractory disease. 

  

Introduction 

 

Mutations in the hereditary breast cancer genes, BRCA1 and BRCA2, first 

demonstrated that cancer is a genetic disease in which susceptibility to cancer could be 

inherited (1). In addition to breast cancer, mutated BRCA1 or BRCA2 cause a 

predisposition to other cancer types, including ovarian, pancreatic, and colorectal 

cancers. Importantly, cancers with mutated BRCA genes are hypersensitive to cisplatin, 

a first-line anti-cancer chemotherapy that has been the standard of care for ovarian 

cancer for over 40 years (2). BRCA-deficient cancers are thought to be hypersensitive 

to cisplatin due to their inability to repair cisplatin-induced DNA double strand breaks 

(DSBs) by homologous recombination (HR) (3). Accordingly, it is proposed that the 

DSBs are created when replication forks collide with the cisplatin-DNA crosslinks, 

causing the fork to collapse into DSBs (4). This broken-fork-model was further 

supported by reports that mutations in the BRCA genes also lead to defective fork 

protection (FP), which is thought to render forks vulnerable to fork collapse and 

subsequent double strand break induction (5-7). Correspondingly, chemoresistance in 

BRCA cancer is proposed to occur when either HR or FP is restored, with the latter 
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largely preventing DSBs and therefore eliminating the requirement for HR. Importantly, 

this hypersensitivity phenotype is known as BRCAness and is thought to arise in a 

range of cancers via mutations in genes that function similar to BRCA1 and BRCA2 in 

DSB repair.  

 

However, recent findings challenge the fundamental premise that DSBs are the critical 

lesion for cisplatin sensitivity. Notably, DNA crosslinks do not appear to initially cause 

replication forks to collapse and can be bypassed (8, 9). Moreover, in the majority of 

genetic models currently reported, restored FP fails to restore cisplatin resistance, 

suggesting the cisplatin lesions do not collapse forks, and therefore calls into question 

how cisplatin crosslinks could be converted into DSBs (4, 10). Most saliently, indicating 

that the fundamental sensitizing lesion may in fact not be a DSB, reports indicate even 

HR proficient cells can nevertheless display hypersensitivity to cisplatin and other 

genotoxic agents (11-13). Moreover, in addition to cisplatin, BRCA-deficient cells and 

patient tumors have recently been found to be hypersensitive to a wide range of 

genotoxic agents that were previously thought to be mechanistically distinct, including 

doxorubicin, Poly(ADP-ribose) polymerase 1 inhibition (PARPi), and other first-line 

agents, even including the platinum analog oxaliplatin, which is not thought to generate 

DSBs (14). Moreover, recent reports indicate that cisplatin toxicity in triple negative 

breast cancer is unrelated to loss of DNA repair factors (15). Taken together, these 

findings indicate an opportunity to revise the current framework for both BRCAness as 

well as the mechanism-of-action of first-line genotoxic chemotherapies.  
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Here, we propose a model for genotoxic chemotherapy in which hypersensitivity derives 

from single stranded DNA (ssDNA) formation, and not from the failure to repair or 

prevent the induction of DSBs due to defects in HR or FP. Specifically, we observed in 

hypersensitive BRCA-deficient cells that ssDNA gaps develop because DNA replication 

is not effectively restrained in response to genotoxic stress. Moreover, we observed 

ssDNA gaps could be suppressed by either restored fork restraint or by gap filling, both 

of which conferred resistance to genotoxic therapy in tissue culture and BRCA patient 

tumors. In contrast, we observed that cells with proficient HR and FP are nevertheless 

hypersensitive to chemotherapy if ssDNA gaps remain. Finally, we find that when 

apoptosis is inhibited, DSBs are no longer detectable after therapy, suggesting that 

DSBs are instead created by the programmed cell death nucleolytic machinery and that 

ssDNA gaps are the critical lesion that determines therapy response. Accordingly, we 

propose that ssDNA replication gaps underlie the BRCA cancer phenotype, 

“BRCAness,” and are fundamental to the mechanism-of-action of genotoxic 

chemotherapies.   

 

Results 

 

To analyze the mechanism underlying the hypersensitivity of BRCA-deficient cancers to 

chemotherapy, we monitored the immediate response of DNA replication forks to 

replication stress with DNA fiber assays. Following the incorporation of nucleotide 

analogs into nascent DNA as the cells replicate in the presence or absence of stress, 

the progression of replication forks was detected by immunofluorescence. Specifically, 
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we measured the lengths of the labeled DNA when the cells were exposed to 0.5mM 

hydroxyurea (HU), a dose that induces replication stress without fully depleting 

nucleotide pools (17). The condition yields high quality DNA fibers and has been used 

as a model to study fork responses to genotoxic therapy such as cisplatin, which yields 

lower quality fibers because cisplatin covalently damages DNA (17, 18). We compared 

the parental PEO1 cancer cell line, which expresses a truncated BRCA2 protein and is 

hypersensitive to cisplatin, to the BRCA2 proficient PEO1 reversion cell line, C4-2, 

which expresses a full-length BRCA2 protein and is resistant to cisplatin (19) (Figure 

2.1A). Both cell lines were incubated with the DNA analog 5-Iodo-2′- deoxyuridine (IdU) 

for thirty minutes as an internal control to label regions of active replication, followed by 

the DNA analog 5-chloro-2′-deoxyuridine (CldU) for two hours in the presence of 0.5mM 

HU in order to monitor the immediate response of DNA replication to genotoxic stress. 

An additional set of cells were exposed to CldU without HU to serve as untreated 

controls.  

 

We observed that the BRCA2-deficient PEO1 cells failed to fully restrain replication in 

response to HU when compared to the BRCA2-proficient C4-2 cells, as indicated by the 

longer CldU tracks observed in PEO1 compared to C4-2 (Figure 2.1B). As expected, 

both untreated controls displayed substantially longer CldU tracks than either of the HU 

treated cells (Figure 2.2A, B), therefore indicating that replication is restrained after 

stress, and that this restraint is less effective in BRCA2 deficient cells. Moreover, we 

observed similar replication-restraint defects in other BRCA-deficient cells that are 

hypersensitive to cisplatin, including the BRCA2 deficient Chinese hamster cell line VC-



 22 

8 (6), BRCA2 depleted C4-2 cells, and BRCA1 deficient breast cancer lines (HCC1937 

and MDA-MB-436) (Figure 2.2C-H). We also observed that the replication restraint 

defects were not exclusive to HU, but also detected following cisplatin (Figure 2.2I). In 

agreement with the DNA fiber assays, analysis of global cellular DNA replication based 

on incorporation of the analog 5-Ethynyl-2 ́-deoxyuridine (EdU) similarly indicated that 

BRCA2 deficient cells failed to properly restrain DNA replication during stress (Figure 

2.1C).  

 
 
Figure 2.1: BRCA2-deficient cancer cells fail to restrain replication in the presence of stress, generating regions of 
ssDNA gaps that are destroyed after continued exposure. A, Western blot analysis detects truncated BRCA2 protein 
in BRCA2-deficient PEO1 cells and detects full-length BRCA2 protein in BRCA2-proficient C4-2 cells that are derived 
from PEO1 cells (left). Cell survival assay confirms PEO1 cells are hypersensitive to cisplatin compared with C4-2 
cells (right). B, Schematic and quantification of CldU track length (white) shows that PEO1 cells fail to arrest 
replication in the presence of stress. These regions are degraded by S1 nuclease (light gray) and are also destroyed 
after continuous exposure to replication stress (dark gray). Each dot represents one fiber. Experiments were 
performed in biological triplicate with at least 100 fibers per replicate. Statistical analysis according to two-tailed 
Mann–Whitney test; ***, P < 0.001. Mean and 95% confidence intervals are shown. C,Schematic and quantification of 
nuclear imaging identifies a greater percentage of EdU-positive cells in PEO1 as compared with C4-2. *, P < 0.05 as 
determined by t test of biological triplicate experiments. D, Nondenaturing fiber assay identifies exposed ssDNA 
adjacent to newly replicating regions after stress in PEO1, but not C4-2 cells. Regions of active replication were 
detected with EdU Click chemistry. ***, P < 0.01 as determined by t test of biological triplicate experiments. E, Model 
of fiber assay interpretation. NS, not significant. 
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Figure 2.2: BRCA-deficient cancer cells fail to restrain replication in the presence of stress and ssDNA gaps develop. 
A) Schematic, representative images, and quantification of CldU track length shows that PEO1 and C4-2 have similar 
track lengths in untreated conditions. B) Same as A, but with a 2h pulse. C) Western blot confirms BRCA deficiency 
and complementation in BRCA2 deficient VC-8 hamster cells and in the BRCA1 deficient breast cancer cells D) 
(HCC1937) and E) (MDA-MB-436). Schematic (above) and quantification of CldU track length shows BRCA 
complementation restores fork restraint. F) Western blot confirms BRCA2 is depleted in C4-2 by three distinct shRNA 
reagents. G) Cell survival assay confirms C4-2 cells with BRCA2 depleted are hypersensitive to cisplatin compared to 
C4-2-shNSC cells (with PEO1-shNSC as a hypersensitivity control). H) Schematic (above) and quantification of CldU 
track length by dynamic molecular combing shows BRCA2 depletion in BRCA2-proficient C4-2 creates a defect in 
slowing replication in response to HU as observed for BRCA2-deficient PEO1 cells. I) Schematic and quantification of 
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CldU track length by dynamic molecular combing shows BRCA2 deficient PEO1 cells fail to effectively arrest replication 
in response to 1000nM CDDP compared to BRCA2 proficient C4-2 cells. J) Schematic and quantification of CldU track 
length shows BRCA1 deficient HCC1937 (top) and MDA-MB-436 (bottom) are sensitive to S1 nuclease. Each dot 
represents one fiber. Experiments were performed in biological duplicate with at least 100 fibers per replicate. Statistical 
analysis according to two-tailed Mann-Whitney test; p < 0.001 (***). Mean and 95% confidence intervals are shown. K) 
Nondenaturing fiber assay does not detect ssDNA in untreated BRCA2 deficient PEO1 or C4-2 cells as a control. 
 
 
We hypothesized that failure to fully restrain replication during stress in BRCA-deficient 

cells would result in poorly replicated regions that contain ssDNA. To test this 

hypothesis, we performed the DNA fiber assay followed by incubation with S1 nuclease. 

S1 cuts at ssDNA regions and secondary DNA structures, but does not cut dsDNA (20). 

Indeed, labelled nascent DNA tracks were S1 sensitive in BRCA2-deficient PEO1 cells, 

but not in the BRCA2-proficient C4-2 cells (Figure 2.1B). These S1 sensitive nascent 

DNA regions were also degraded after continued exposure to replication stress, 

indicating that nascent DNA in regions behind the fork are degraded under continued 

stress (Figure 2.1B). Similar to BRCA2, BRCA1 deficient cancer cells (HCC1937 and 

MDA-MB-436) also displayed DNA replication tracks that were sensitive to S1 nuclease 

after treatment with HU (Figure 2.2J). In addition, we employed a non-denaturing DNA 

fiber assay that detects ssDNA in regions of active DNA replication and confirmed that 

following HU, ssDNA (detectable by the CldU antibody only in exposed ssDNA regions) 

was present adjacent to newly replicating regions (detected as EdU signal) in the 

BRCA2 deficient PEO1 cells, but not in the BRCA2 proficient C4-2 cells (Figure 2.1D). 

In contrast, ssDNA was not detected in the untreated cells (Figure 2.2K). Thus, BRCA-

deficient cancer cells fail to fully restrain replication in the presence of stress, creating 

ssDNA regions (Figure 2.1E) that are degraded after additional exposure to stress.  

We hypothesized that ssDNA gaps confer chemosensitivity in BRCA cancer, and that 

mechanisms of chemoresistance would suppress these gaps. Indeed, we previously 
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found that depletion of the chromatin remodeling enzyme CHD4 confers cisplatin 

resistance in BRCA2 deficient PEO1 cells (Figure 2.3A) (21). Therefore, we tested if 

CHD4 depletion would reduce ssDNA gaps in PEO1 cells in the S1 fiber assay. When 

CHD4 was depleted, we observed protection from S1 nuclease after HU compared to 

the PEO1 non-silencing control, which was degraded to a length below even the 

arrested forks found in BRCA2 proficient C4-2 cells, therefore indicating ssDNA gaps 

were reduced in the resistant cells after HU treatment (Figure 2.3B, Figure 2.4A-D). 

Moreover, when CHD4 was depleted, we found nascent DNA tracks were not degraded 

after continued exposure to HU (Figure 2.3B). Collectively, these findings indicate that 

CHD4-depletion in BRCA2 deficient cells reduced ssDNA gaps during replication stress.  

 

 
 
Figure 2.3: CHD4 depletion suppresses ssDNA gaps, but does not restore fork restraint. A, Western blot analysis 
confirms CHD4 is depleted by short hairpin RNA (shRNA) compared with nonsilencing control (NSC) in BRCA2-
deficient PEO1 cells (left). Cell survival assay confirms PEO1 cells with depleted CHD4 are resistant to cisplatin 
compared with PEO1 NSC (right). B,Schematic and quantification of CldU track length shows that PEO1 cells with 
depleted CHD4 increase replication in the presence of stress (white). These regions are protected from S1 nuclease 
(light gray) and are also protected after continuous exposure to replication stress (dark gray). Each dot represents 
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one fiber. Experiments were performed in biological triplicate with at least 100 fibers per replicate. Statistical analysis 
according to two-tailed Mann–Whitney test; ***, P < 0.001. Mean and 95% confidence intervals are 
shown. C, Schematic and quantification of nuclear imaging identifies a greater percentage of EdU-positive cells in 
CHD4-depleted PEO1 cells as compared with NSC. **, P < 0.01 as determined by t test of biological triplicate 
experiments. D, Nondenaturing fiber assay identifies ssDNA adjacent to newly replicated regions after stress is 
reduced when CHD4 is depleted in PEO1 cells. Regions of active replication were detected with EdU Click chemistry. 
*, P < 0.05 as determined by t test of biological duplicate experiments. E, Model of fiber assay interpretation. NS, not 
significant. 
 

 

 
 
Figure 2.4: Replication restraint, depletion, and PDX controls. A) Western blot confirms CHD4 is depleted by 
shRNA(A) and shRNA(B) compared to non-silencing control (NSC) in BRCA2 deficient PEO1. B) Schematic and 
representative images of CIdU track length shows that CHD4 depletion increases replication in the presence of 
stress. See Figure 2.3B and 2.7E for track lengths quantification for shRNA(A) and shRNA(B), respectively. C) 
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Schematic and representative images show that CHD4 shRNA and NSC have similar track lengths in unchallenged 
conditions with thirty minute labeling or D) two hour labeling. E) Nondenaturing fiber assay does not detect ssDNA in 
untreated BRCA2 deficient PEO1 with either CHD4 depleted or non-silencing control (NSC). F) Western blot of 
shRNA confirms FEN1 is depleted by shRNA (Hairpins A and B; B selected for experiments) compared to non-
silencing control (NSC) in BRCA2 deficient PEO1. G) DNA sequencing of Wild Type BRCA1, the initial hypersensitive 
patient derived xenograft, and the resulting cisplatin resistant patient derived xenograft. H) Schematic and 
quantification of CIdU track length in MDA-MB-436 xenografts shows that complementation with BRCA1 protects 
from S1 nuclease. I) Schematic and quantification of DNA track length shows replication is efficiently arrested in 
BRCA1 deficient patient derived xenografts that have acquired chemoresistance. Each dot represents one fiber. 
Experiments were performed in biological duplicate with at least 100 fibers per replicate. Statistical analysis according 
to two-tailed Mann-Whitney test; p < 0.001 (***). Mean and 95% confidence intervals are shown. 
 

Notably, however, replication restraint in response to stress was not observed upon 

CHD4 depletion. Instead, the replication tracks during HU appeared to be longer in 

CHD4-depleted PEO1 cells compared to PEO1 control cells (Figure 2.3B, Figure 2.4B, 

C, D). Moreover, in agreement with the fiber assays, analysis of global cellular 

replication by EdU incorporation demonstrated that CHD4-depleted PEO1 cells 

increased replication after HU treatment as compared to PEO1 or C4-2 control cells 

(Figure 2.3C). In addition, we also observed a significant reduction in ssDNA adjacent to 

regions of active replication in the non-denaturing DNA fiber assay (Figure 2.3D, Figure 

2.4E). Thus, ssDNA gap formation was suppressed in chemoresistant BRCA2 deficient 

cells with CHD4-depletion, but fork restraint was not restored (Figure 2.3E). Taken 

together, these data indicate that chemoresistant cells display either restored fork 

restraint, as observed in the BRCA2 reversion cell line C4-2, or continuous replication 

without ssDNA gap formation, as in the CHD4-depleted PEO1 cells (Figure 2.3E).  

 

Our data indicate that suppression of ssDNA replication gaps in BRCA-deficient cancer 

could confer chemoresistance. To address this possibility, we sought to identify 

additional genes similar to CHD4 that confer chemoresistance when depleted in BRCA2 

deficient cells, and subsequently determine if gaps were suppressed. Therefore, we 
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performed quantitative mass spectrometry proteomics to compare the CHD4-

interactome in BRCA2 deficient and BRCA2 proficient cells after cisplatin treatment 

(Figure 2.5A). Indeed, in addition to known CHD4-interactors (22), we also observed 

that CHD4 interacted with two proteins associated with chemoresistance in BRCA2 

deficient cells: EZH2, which confers chemoresistance when inhibited, and FEN1, which 

confers chemoresistance when depleted, but is synthetic lethal when knocked out 

(Figure 2.5B) (21, 23-25). In BRCA2 deficient cells, we also found enrichment of the 

known CHD4-interacting protein ZFHX3 (26) and that ZFHX3 depletion enhanced 

cisplatin resistance in PEO1 cells (Figure 2.5C). Furthermore, analysis of TCGA 

patients revealed that low ZFHX3 mRNA levels predicted poor tumor-free survival in 

ovarian cancer patients with germline BRCA2 deficiency (Figure 2.5D) as previously 

found for CHD4, EZH2, and FEN1 (21, 23, 24). Strikingly, as found for CHD4-depletion, 

we observed that depletion of ZFHX3 or FEN1, or inhibition of EZH2, increased 

replication in BRCA2 deficient cells in the presence of HU, and as shown in the S1 

nuclease assay, ssDNA gaps were suppressed (Figure 2.5E, 2.6F). Together, these 

findings suggest that loss of CHD4, EZH2, FEN1, and ZFHX3 suppress ssDNA gaps 

during stress to confer chemoresistance.  

 

Next, we tested if ssDNA gaps could predict chemosensitivity and resistance in BRCA 

patient tumor samples. Specifically, we utilized a triple-negative breast cancer patient-

derived xenograft (PDX), PNX0204, from a patient with a hemizygous germline BRCA1 

mutation (1105insTC); the wild type BRCA1 allele was lost in the tumor, following a 

Loss of Heterozygosity model (Figure 2.4G). PNX0204 tumors were originally 
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hypersensitive to cisplatin treatment. After several rounds of cisplatin treatment and 

serial passage in mice, resistant tumors developed. The sensitive and resistant tumors 

were then tested for S1 sensitivity, with PEO1 (Figure 2.5F) and MDA-MB-436 (Figure 

2.4H) xenografts serving as controls. After HU, we observed that the DNA fibers of 

cisplatin-sensitive PDX cells were degraded by S1 nuclease, but the fibers of cisplatin-

resistant PDX cells were not, indicating ssDNA gaps had been suppressed in the 

resistant patient samples (Figure 2.5F). Notably, in resistant PDX, ssDNA gaps were 

suppressed either by continuous replication (Figure 2.5F), or by restored fork slowing 

(Figure 2.4I), indicating that loss of ssDNA gaps had occurred in BRCA patient tumors 

de novo and accurately predicted acquired cisplatin resistance.  

 

Figure 2.5: Suppression of ssDNA gaps accurately predicts poor therapy response in both cell culture and patient 
xenografts. A, Overview of the SILAC CHD4 immunoprecipitation experiment. B, SILAC immunoprecipitation reveals 
that CHD4 interacts with ZFHX3, FEN1, and EZH2 after cisplatin treatment. Red and blue circles are proteins 
significantly enriched in the CHD4 network of either PEO1 or C4-2 cells. Green (X) represents CHD4. Yellow circles 
are known CHD4 interacting partners from the NurD complex, including MTA1, HDAC1, MTA2, and HDAC2 (22); 
ZFHX4 was also identified and is a known CHD4 interacting partner (26). Black plus signs represent proteins not 
significantly enriched in the CHD4 network of either PEO1 or C4-2. Three biological replicates were performed; see 
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Materials and Methods for statistical analysis. C, Western blot analysis confirms ZFHX3 is depleted by short hairpin 
RNA (shRNA) in PEO1 cells as compared with nonsilencing control (NSC). Cell survival assay confirms PEO1 cells 
with depleted ZFHX3 are resistant to cisplatin compared with PEO1 NSC. D, Reduced ZFHX3 mRNA levels predict 
poor patient response to therapy (progression-free survival) for patients with ovarian cancer with germline BRCA2 
deficiency from TCGA database (P < 0.02). Shaded area represents the 95% confidence interval. E,Schematic and 
quantification of CldU track length shows that depletion of CHD4 [shRNA(B)], ZFHX3, or FEN1, or inhibition of EZH2, 
increases replication in the presence of stress (white) and protects nascent DNA from S1 nuclease 
(gray). F, Schematic and quantification of CldU track length shows S1 fiber sensitivity is suppressed in BRCA1-
deficient PDXs that have acquired chemoresistance. Each dot represents one fiber. Experiments were performed in 
biological triplicate with at least 100 fibers per replicate; the xenograft fiber assay was performed in duplicate. 
Statistical analysis according to two-tailed Mann–Whitney test; ***, P < 0.001. Mean and 95% confidence intervals 
are shown. NS, not significant. 

 

 
Figure 2.6: Depletion of SMARCAL1 or inhibition of MRE11 restores FP, but do not predict patient response and do 
not suppress ssDNA gaps, which are distinct from fork degradation. A) Western blot confirms SMARCAL1 is depleted 

A

SMARCAL1

PEO1

b-Actin

shRNA:  NSC   SMARCAL1

shRNA: NSC      SMARCAL1

sh
NSC

sh
SMARCAL1

0

5

10

15

20

25

C
ld

U
 T

ra
ck

 L
en

g
th

 (
u

m
)

Data 1

10

5

0

15

20

25

PEO1

C
ld

U
Tr

ac
k 

Le
ng

th
 (u

m
) ***

IdU CldU HU

30’  30’    3h     

C4-2 DMSO PEO1 DMSO PEO1 Mirin
0

10

20

30

40

Data 1

C4-2 DMSO

20

10

0

30

40

C4-2        PEO1  PEO1+MRE11i

C
ld

U
Tr

ac
k 

Le
ng

th
 (u

m
)

IdU CldU HU

30’  30’    2h     

***

C

Figure S3

D

0 250 500 750 1000
0

50

100

nM CDDP

Pe
rc

en
t S

ur
viv

al

PEO1-shNSC
PEO1-shSMARCAL1 69

0 500 1000
0

50

100

nM CDDP

%
Su

rv
iva

l

SILAC PEO1-shNSC vs CHD4-2 

PEO1-shNSC SILAC
PEO1-shCHD4-2 SILAC

NSC

shSMARCAL1

PEO1
shRNA:

Pe
rc

en
t S

ur
vi

va
l

nM cisplatin

100

50

0

E

0        250      500     750     1000

100

50

0

Pe
rc

en
t S

ur
vi

va
l

nM CDDP
0 250 500 750 1000

0

50

100

nM CDDP

Pe
rc

en
t S

ur
vi

va
l

PEO1 CDDP +DMSO or +10uM Mirin 18h

PEO1 DMSO
PEO1 Mirin

0 500 1000
0

50

100

nM CDDP

%
Su

rv
iva

l

SILAC PEO1-shNSC vs CHD4-2 

PEO1-shNSC SILAC
PEO1-shCHD4-2 SILAC

DMSO

10uM Mirin

PEO1

WT      Mutant   S3291A

10

5

0

15

20

25 IdU CldU HU

30’ 30’     3h     

WT
Mut

S32
91

A
0

5

10

15

20

25

VC8 Cells

C
ld

U
 T

ra
ck

 L
en

gt
h 

(u
m

)

VC8 Degradation Assay 4mM HU 3h
WT, Deficient, S3291A

***

C
ld

U
Tr

ac
k 

Le
ng

th
 (u

m
)

VC-8

WT      Mutant   S3291A

20

10

0

30

40 IdU HU+CldU

30’       2h      

WT BRCA2

VC8 D
efi

cie
nt 

BRCA2

VC8 +
 BRCA2 S

32
91

A
0

10

20

30

40

BRCA2 Status

C
ld

U
 T

ra
ck

 L
en

gt
h 

(u
m

)

Slowing Assay VC8 for BRCA2 S3291A 
0.5mM HU + CldU 2h

***

C
ld

U
Tr

ac
k 

Le
ng

th
 (u

m
)

VC-8

PEO1 D
MSO

PEO1 M
irin

 10
uM 18

h
0

50

100

PEO1 Toxicity 
10uM Mirin vs DMSO 18h

Pe
rc

en
t S

ur
vi

va
l PEO1 Mirin 10uM 18h

PEO1 DMSO
100

50

0

Pe
rc

en
t S

ur
vi

va
l

DMSO     Mirin

PEO1

*
F I

B H

Figure S3 Continued

G

100

0       1000    2000    3000     4000

Pe
rc

en
t t

um
or

-fr
ee

 S
ur

vi
va

l

0 50 100 150 200
0

50

100

Time

Pe
rce

nt 
su

rvi
va

l

Data 6

ZFHX3 High
ZFHX3 Low

HLTF High

HLTF Low

NS

0

20

40

60

80

Days

100

0       1000    2000    3000     4000

Pe
rc

en
t t

um
or

-fr
ee

 S
ur

vi
va

l

0 50 100 150 200
0

50

100

Time

Pe
rce

nt 
su

rvi
va

l

Data 6

ZFHX3 High
ZFHX3 Low

ZRANB3 High

ZRANB3 Low

NS

0

20

40

60

80

Days

100

0       1000    2000    3000     4000

Pe
rc

en
t t

um
or

-fr
ee

 S
ur

vi
va

l

0 50 100 150 200
0

50

100

Time

Pe
rce

nt 
su

rvi
va

l

Data 6

ZFHX3 High
ZFHX3 Low

RAD52 High

RAD52 Low

NS

0

20

40

60

80

Days

100

0       1000    2000    3000     4000

Pe
rc

en
t t

um
or

-fr
ee

 S
ur

vi
va

l

0 50 100 150 200
0

50

100

Time

Pe
rce

nt 
su

rvi
va

l

Data 6

ZFHX3 High
ZFHX3 Low

RAD51 High

RAD51 Low

NS

0

20

40

60

80

Days

100

0       1000    2000    3000     4000

Pe
rc

en
t t

um
or

-fr
ee

 S
ur

vi
va

l

0

20

40

60

80

Days

100

0       1000    2000    3000     4000

Pe
rc

en
t t

um
or

-fr
ee

 S
ur

vi
va

l

0 50 100 150 200
0

50

100

Time

Pe
rce

nt 
su

rvi
va

l

Data 6

ZFHX3 High
ZFHX3 Low

KMT2B High

KMT2B Low

NS

0

20

40

60

80

Days
0 50 100 150 200

0

50

100

Time

Pe
rce

nt 
su

rvi
va

l

Data 6

ZFHX3 High
ZFHX3 Low

EXO1 High

EXO1 Low

NS



 31 

in BRCA2-deficient PEO1 by shRNA as compared to NSC. B, C) Schematic and quantification of CldU track length 
shows that PEO1 with depleted SMARCAL1 or inhibited MRE11 protects replication forks after exposure to stress. D) 
Cell survival assay confirms that SMARCAL1 depletion in PEO1 cells does not confer cisplatin resistance. E) Cell 
survival assay confirms 10uM MRE11i in PEO1 cells does not confer cisplatin resistance (cisplatin and mirin both 
given for 18h). F) 18h MRE11i in PEO1 cells reduces viability by approximately 15% after ten days. G) Low mRNA 
levels of the FP modulators HLTF (p > 0.30), ZRANB3 (p > 0.20), RAD52 (p > 0.39), RAD51 (p > 0.58), EXO1 (p > 
0.17), and KMT2B (p > 0.72) fail to accurately predict poor response of ovarian cancer patients with germline BRCA2 
deficiency in the TCGA dataset. Shaded area represents the 95% confidence interval. H) Schematic and 
quantification of CldU track length shows that VC-8 complimented with BRCA2 S3291A are deficient for replication 
fork protection. I) Schematic and quantification of CldU track length shows that VC-8 complimented with BRCA2 
S3291A are proficient for replication fork slowing. Each dot represents one fiber. Experiments were performed in 
biological duplicate with at least 100 fibers per replicate. Statistical analysis according to two-tailed Mann-Whitney 
test; p < 0.001 (***). Mean and 95% confidence intervals are shown. 
 

These findings present the idea that ssDNA gaps underlie chemosensitivity, and that 

loss of FP or HR do not. If so, when gaps are present, it should be possible to uncouple 

FP and HR from therapy response. To test this prediction, we first restored FP by 

inhibition of MRE11 or depletion of SMARCAL1 in BRCA2-deficient PEO1 cells (6, 27, 

28). Nevertheless, even though FP was restored, cisplatin resistance was not conferred 

and, as predicted by our model, ssDNA gaps remained as demonstrated by S1 

nuclease degradation (Figure 2.7A,B and 2.5A-F). Moreover, neither SMARCAL1, nor 

MRE11 or other reported FP factors, were predictive of BRCA2 cancer patient response 

based on mRNA levels in the TCGA database (Figure 2.7C and 2.6G), suggesting that 

ssDNA gaps, but not FP, determines therapy response. 

 

Additionally, we tested if ssDNA gaps were distinct from fork degradation. Specifically, 

we analyzed gaps in VC-8 cells that express either wild-type BRCA2 or a BRCA2 

mutant version (S3291A) that is deficient for FP yet resistant to chemotherapy (6). We 

did not detect ssDNA gaps in the S3291A cells, thereby confirming that fork degradation 

can occur without the accumulation of ssDNA gaps (Figure 2.6H,I) and that BRCA 

function in ssDNA gap suppression is distinct from FP.  
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Figure 2.7: ssDNA replication gaps, and not FP or HR, determine patient response to chemotherapy. A and B, 
Schematic and quantification of CldU track length in PEO1 cells shows that depleted SMARCAL1 or inhibited MRE11 
does not increase replication in the presence of stress (A) and does not protect from S1 nuclease, unlike CHD4 
depletion (B). C, Neither SMARCAL1 nor MRE11 mRNA levels predict response of patients with ovarian cancer with 
germline BRCA2 deficiency in TCGA dataset (P > 0.8 and P > 0.5, respectively). In contrast, CHD4 mRNA levels do 
predict response in these patients (P = 0.03). Shaded area represents the 95% confidence interval. D, Western blot 
analysis confirms RADX is depleted by two short hairpin RNA (shRNA) reagents in T131P cells compared with 
nonsilencing control (NSC; top). Cell survival assay confirms RAD51 T131P cells remain hypersensitive to cisplatin 
even when RADX is depleted (bottom). E, Schematic and quantification of CldU track length (white) shows that 
fibroblasts from a Fanconi anemia–like patient with a mutant allele of RAD51 (T131P; HR-proficient cells and cisplatin 
hypersensitive) fail to arrest replication in the presence of stress even when RADX is depleted, and these regions are 
degraded by S1 nuclease (light gray). WT Fanconi anemia cells were corrected by CRISPR to delete the dominant-
negative T131P RAD51 allele. Each dot represents one fiber. Experiments were performed in biological triplicate with 
at least 100 fibers per replicate. Statistical analysis according to two-tailed Mann–Whitney test; ***, P < 0.001. Mean 
and 95% confidence intervals are shown. NS, not significant. 
 

We also considered the possibility that our ssDNA gap model could explain a 

discrepancy in the literature in which cells from a patient with Fanconi Anemia (FA) 

were sensitive to cisplatin and other genotoxic agents as expected, but were 

surprisingly found to be proficient in HR (12). Indeed, we found wide-spread ssDNA gap 

induction in the S1 assay in these FA patient cells; specifically, we observed S1 
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sensitivity in the FA patient fibroblasts that maintain a RAD51 mutant (T131P) allele as 

compared to isogenic RAD51 wild type fibroblasts (CRISPR corrected after isolation 

from the patient) (Figure 2.8A). Importantly, the T131P cells are deficient for FP, but FP 

can be restored by depletion of the RAD51 negative regulator RADX in T131P (29). 

However, despite both proficient HR and FP, even the T131P cells with depleted RADX 

remained cisplatin hypersensitive, and we observed ssDNA gaps remained by S1 

assay; importantly, these gaps were eliminated in the wild type (CRISPR corrected) 

fibroblast control (Figure 2.7D,E, 2.8B). Together, these results suggest that the ssDNA 

gap model has superior predictive power compared to either the FP or HR models of 

therapy response and suggests that ssDNA replication gaps are fundamental to the 

mechanism-of-action of first-line genotoxic chemotherapies.  

 

Figure 2.8: Fanconi Anemia Patient Fibroblasts with a RAD51 T131P Mutant Allele (HR Proficient, FP Deficient) 
Generate ssDNA Gaps, and FP is restored by RADX depletion. A) Schematic and quantification of CldU track length 
shows (white panel) that RAD51 T131P cells fail to arrest replication in the presence of stress compared to the 
CRISPR corrected control that deletes the dominant T131P allele. These regions are degraded by S1 nuclease (light 
grey panel). B) Schematic and quantification of CldU track length shows that RAD51 T131P cells are FP deficient, 
and depletion of RADX confers FP. Each dot represents one fiber. Experiments were performed in biological triplicate 
with at least 100 fibers per replicate. Statistical analysis according to two-tailed Mann-Whitney test; p < 0.001 (***). 
Mean and 95% confidence intervals are shown. 
 
 
We next tested a surprising prediction of the ssDNA gap model, namely that DSBs are 

not fundamental to the mechanism-of-action of genotoxic chemotherapies, but rather a 
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byproduct of the programmed cell death nucleolytic machinery (Figure 2.9A). To 

address this possibility, we first confirmed that genotoxic therapy induces programmed 

cell death via apoptosis. We treated BRCA2 deficient PEO1 with an approximate IC50 

dose of cisplatin (0.5uM), and we measured apoptosis with Annexin V and cell death 

with propidium iodide (PI) in a flow cytometry time course experiment. We observed 

early apoptosis beginning 24h after treatment, with a minority of cells staining Annexin V 

positive and PI negative (Figure 2.9B and Figure 2.10A). By 120h after cisplatin 

treatment, we observed approximately fifty percent of cells were in late apoptosis with 

Annexin V and PI co-staining, as expected for the IC50 dose (Figure 2.10A). As 

controls, we confirmed that the BRCA2 proficient C4-2 cells displayed reduced PI and 

Annexin V signal at all time points following cisplatin as expected (Figure 2.10B). 

Moreover, in response to high dose camptothecin, a topoisomerase inhibitor that is 

reported to induce DSBs (30), we confirmed that PEO1 cells were hypersensitive as 

compared to C4- 2 cells, and underwent apoptosis that was suppressed by the pan-

caspase inhibitor Z-VAD-FMK (Figure 2.9B, 2.10C-F) (31). In addition, as a control, we 

confirmed that treatment with Z-VAD-FMK did not alter cell cycle progression (Figure 

2.10G). Taken together, these results indicate that BRCA2 deficient cells undergo 

programmed cell death via apoptosis after genotoxic treatment.  

 

Finally, we tested if we could detect DSBs following cisplatin or camptothecin. Following 

approximately the IC90 dose of camptothecin or cisplatin, we isolated intact genomic 

DNA (gDNA) in agarose plugs, which were subsequently analyzed by pulsed field 

capillary electrophoresis (Figure 2.9C). As expected, we observed extensive DNA 
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fragmentation by DSBs in PEO1 cells following 48h treatment with 1uM camptothecin, 

and to a lesser extent with 24h 2.5uM cisplatin, as indicated by the reduced DNA 

capillary retention time after treatment that corresponds to sub-megabase sized DNA 

standards (Figure 2.9D). In contrast, when apoptosis was inhibited with Z-VAD-FMK, we 

were unable to detect DSBs after either agent, with the capillary retention time 

corresponding to megabase sized gDNA and indistinguishable from the retention time 

observed in the untreated controls (Figure 2.9D). Moreover, we found that a second 

pan-caspase inhibitor, Emricasan, similarly eliminated apoptosis by flow cytometry as 

well as all detectable DSBs after genotoxin treatment (Figure 2.10H). Taken together, 

these results support a framework where genotoxic agents create ssDNA gaps, which 

induce programmed cell death signaling via cleaved caspases to activate the DNA 

nucleolytic machinery, which ultimately creates DSBs.  

 

 
 
 
Figure 2.9: DNA DSBs are not detected when apoptosis is inhibited. A, Overview of model. Therapy induces ssDNA 
gaps that trigger programmed cell death, and the nucleolytic machinery creates DNA DSBs. B, Flow cytometry with 
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PI and Annexin V shows that apoptosis is eliminated by 50 μmol/L Z-VAD-FMK in BRCA2-deficient PEO1 cells 
treated with 1 μmol/L camptothecin (CPT) for 48 hours (left). Flow cytometry detects apoptosis in BRCA2-deficient 
PEO1 cells treated with 0.5 μmol/L cisplatin (CDDP) for 24 hours (see Supplementary Fig. S5A for matched 
untreated control) or 2.5 μmol/L cisplatin for 72 hours (see Supplementary Fig. S5F for matched untreated control; 
right). C, Overview of isolation procedure that maintains high molecular weight (megabase scale) gDNA for PFCE. D, 
PFCE of PEO1 gDNA reveals 50 μmol/L Z-VAD-FMK eliminates all detectable DNA DSBs for both 1 μmol/L 
camptothecin 48-hour treatment and 2.5 μmol/L cisplatin 24-hour treatment. E, Model of BRCAness and 
chemoresponse. During stress, BRCA-deficient cells fail to effectively restrain replication, leading to ssDNA gaps that 
determine chemosensitivity: BRCAness. These cells acquire chemoresistance by eliminating the ssDNA gaps, either 
by gap filling or by restoring fork slowing. 
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Figure 2.10: Apoptosis and Z-VAD-FMK Controls. A) Flow cytometry time course with propidium iodide and annexin 
V shows that apoptosis is detected at 24h in BRCA2 deficient PEO1 cells treated with 500nM cisplatin, and B) 
apoptosis is reduced in BRCA2 proficient C4-2. C) Cell survival assay confirms BRCA2 deficient PEO1 cells are 
hypersensitive to camptothecin compared to BRCA2 proficient C4-2 cells. D) Flow cytometry with propidium iodide 
and annexin V shows that 1uM CPT for 72h induces apoptosis in PEO1, E) that 50uM Z-VAD-FMK for 48h does not 
induce apoptosis or cell death in PEO1, F) that 2.5uM cisplatin for 72h induces apoptosis in BRCA2 proficient C4-2 
cells; PEO1 untreated control at left matched to Figure 2.9B. G) Flow cytometry with propidium iodide and annexin V 
shows that the apoptotic inhibitor Z-VAD-FMK does not alter cell cycle progression when administered either alone 
(top) or with genotoxic agents (bottom). H) PFCE of PEO1 genomic DNA reveals 50uM Emricasan eliminates all 
detectable DNA DSBs for 1uM CPT 48h (left), and also eliminates all detectable apoptosis as measured by flow 
cytometry with propidium iodide and annexin V (right). 
 
 
 

Discussion 
 

Although ssDNA gaps are a common indicator of genotoxicity and result from loss of the 

BRCA- RAD51 pathway, they have been overlooked as the determinant of toxicity in 

favor of defects in HR and FP (6, 12, 28, 30, 32-38). However, there are several genetic 

systems in which the DSB model does not appear to accurately predict therapy 

response, and therefore presents an opportunity to revise the underlying framework. 

Indeed, in light of our findings in different genetic backgrounds, including both BRCA1 

and BRCA2 deficient cancers (Figure 2.11), we propose that replication gaps underlie 

the mechanism-of-action of genotoxic chemotherapies, and it is the failure to suppress 

gaps, and not defects in HR or FP, that underlies the hypersensitivity of BRCA-deficient 

cancer to treatment. In support of this concept, when gaps persist, we demonstrate that 
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HR or FP proficient cells can nevertheless be hypersensitive to genotoxins. Moreover, 

when gaps are suppressed by loss of CHD4, FEN1, EZH2, or ZFHX3, BRCA2 mutant 

cells are resistant to genotoxins without restoring HR (21, 23, 24). Similarly, without HR, 

FP is proposed to mediate cisplatin resistance (18), however we find restored FP in 

BRCA2 deficient cells achieved by MRE11 inhibition or SMARCAL1 depletion does not 

enhance cisplatin resistance. We also find that other fork protection factors fail to 

accurately predict therapy response in the TCGA.  

 

Figure 2.11: Prediction Table of BRCAness and Chemoresponse. Prediction table demonstrates that the ssDNA gap 
model accurately predicts chemoresponse. HR is homologous recombination, FP is fork protection, GS is gap 
suppression, CDDP is cisplatin. 

 
In addition, the emerging evidence indicates that gaps are distinct lesions arising from 

replication defects, are suppressed by the BRCA-RAD51 pathway, and are located 

behind the fork at sites distinct from stalled or broken replication forks (28, 37, 39-42). 

When replication fails to be fully restrained due to loss of the BRCA-RAD51 pathway, 

we predict that replication gaps derive from replication dysfunction rather than 

overactive nuclease activity (28, 43). While nucleases could extend nicks or gaps, we 

found S1 nuclease digestion was unaffected by MRE11 inhibition or depletion of the fork 

remodeler SMARCAL1, which generates the replication fork structure degraded by 

MRE11 in BRCA2 deficient cells (27, 28, 44). Thus, gaps likely form in newly replicated 
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DNA prior to remodeling or degradation of replication forks. We find that gaps are 

suppressed by at least two mechanisms: gap filling when replication proceeds during 

exposure to genotoxins, or by restored fork restraint as achieved by BRCA reversion 

mutation that provides a more robust gap suppression and in turn greater 

chemoresistance (Figure 2.9E).  

 

Importantly, our findings do not exclude the possibility that ssDNA gaps are in fact 

converted, albeit at undetectable levels, into DSBs that drive hypersensitivity. However, 

it is unclear how low levels of DSBs would lead to hypersensitivity, especially 

considering that BRCA-deficient cells employ backup DSB repair mechanisms, such as 

end joining pathways. Although the resulting genomic instability introduced by end 

joining pathways could conceivably trigger hypersensitivity in BRCA cancer, this model 

does not appear to fit the observed data. Specifically, the FP deficient VC-8 cells with 

the BRCA2 S3291A mutant display substantial genomic instability, yet simultaneously 

display cisplatin resistance that is indistinguishable from the WT BRCA2 control (6) 

(Figure 2.6H, I). Similarly, if ssDNA gaps are ultimately converted into DSBs, then cells 

proficient for HR would be expected to successfully repair these DSBs and therefore be 

resistant; however, the Fanconi Anemia RAD51 T131P cells are HR proficient, yet are 

nevertheless hypersensitive to chemotherapy (12) even when FP is restored (Figure 

2.7D, E, 2.8). Indeed, these hypersensitive T131P cells also conflict more generally with 

models where DSBs are proposed to be the sensitizing lesion, even if the DSBs are 

assumed to be generated at levels that are undetectable by PFCE/PFGE; why would 

DSBs cause hypersensitivity in cells that efficiently repair DSBs with HR? In addition, 
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hypersensitivity with proficient HR has also been observed in other genetic systems 

(45), suggesting this is not an aberrant observation, and further reduces confidence in 

DSB models of BRCAness.  

 

Instead, as we report here and as previously shown (46, 47) genotoxin-induced DSBs 

appear to be created by the programmed cell death process rather than by the 

genotoxins themselves. Indeed, the observed DSBs from cisplatin and other genotoxic 

agents result in initial DNA fragments approximately 500-100kb in size (48), which 

match the early DNA fragments generated by the ordered nucleolytic degradation 

process carried out by the programmed cell death machinery (49). Accordingly, we also 

considered that programmed cell death could be the source of the DSBs that cause 

hypersensitivity; however, we found this model also did not appear to agree with 

experiment for reasons identical to those described above. In particular, cell death 

induced DSBs would not be expected to confer hypersensitivity in the HR proficient 

T131P cells because the DSBs would be effectively resolved by HR repair.  

Similarly, we also considered that BRCA deficient cells could instead be uniquely 

“primed” for programmed cell death, leading to increased cell death nuclease activity 

that creates higher levels of DSBs to overwhelm even intact HR machinery. However, 

this model is inconsistent with reports that disruption of programmed cell death 

nucleases eliminates observable DSBs, but does not eliminate programmed cell death 

or hypersensitivity (50). This observation also indicates that ssDNA gaps likely can 

induce cell death by a variety of different mechanisms within the programmed cell death 

repertoire. Therefore, we propose DSBs are generated either as an unrelated byproduct 
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or as a minority lesion that does not substantially contribute to hypersensitivity, whereas 

ssDNA gap induced cell killing is the basis for the toxicity of genotoxic agents and 

BRCAness.  

 

Lastly, we also propose that it will be critical to design experiments to further test both 

models. Specifically, it will be important to determine if there are latent and 

unappreciated DSB repair defects in HR proficient cells that are hypersensitive to 

genotoxins. Likewise, it will be important to determine if persistent ssDNA gaps that 

occur during active replication under genotoxins can be identified in resistant cells, or if 

such gaps are found to be absent in hypersensitive cells. Furthermore, it will be 

important to assess if the cellular introduction of ssDNA or DSB substrates differentially 

induce programmed cell death as previously described (51, 52); exploring this concept 

further by gene editing techniques will overcome the limitations of cell transfection and 

help elucidate the link between ssDNA gaps, DSBs, and genomic instability. It will also 

be critical to identify gap filling mechanisms that can be targeted to restore 

hypersensitivity; one possible target is translesion synthesis (TLS). Indeed, CHD4 

depletion elevates TLS that suppresses replication gaps (21, 39, 53). Not surprisingly, 

TLS confers chemotherapy resistance, is a cancer adaptation, and is actively being 

targeted for cancer therapy (53, 54). Moreover, we find that replication gaps due to 

BRCA deficiency is the basis for synthetic lethality to PARP inhibitors (55). 

Understanding how gap suppression functions align with other BRCA roles in genome 

preservation, cell viability, and tumor suppression will also be critical future questions.  
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In summary, this study supports a new model that predicts cancer cells with the 

BRCAness phenotype will be effectively treated by therapies that exacerbate replication 

gaps. Similarly, preventing gap suppression pathways will improve the effectiveness of 

therapy as well potentially re- sensitize chemoresistant disease to therapy. Based on 

our findings, we also propose that ssDNA gaps could serve as biomarkers for 

BRCAness, and that gap induction is fundamental to the mechanism-of-action of 

chemotherapies that dysregulate replication.  

 

Materials and Methods 

 

Cell Culture  

PEO1, C4-2, VC-8, and MDA-MB-436 cell lines were cultured in DMEM + 10% FBS + 

1% P/S. HCC1937 Deficient and HCC1937 + WT BRCA1 were cultured in RPMI1640 + 

L-Glutamine + 10% FBS + 1% P/S. The Fanconi Anemia RAD51 T131P cells were 

cultured in DMEM + 15% FBS + Glutamax supplemented with non-essential amino 

acids. All cells were confirmed mycoplasma free with the MycoALERT kit according to 

the manufacturer’s instructions (Lonza), with the most recent test in September 2020. 

PEO1 and C4-2 cells were obtained from the Toshi Taniguchi Lab in September of 

2014; VC-8 cells were obtained from the Maria Jasin Lab in September of 2014; 

HCC1937 cells were obtained from the Lee Zhou Lab in October of 2017; and the 

RAD51 T131P cells were obtained from the Agata Smogorzewska Lab in January of 

2019. The MDA-MB-436 were obtained from ATCC and validated by STR profiling. 

Cells were validated by western blot and/or Cell Titer Glo toxicity assays as described in 
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the manuscript. Cells were briefly expanded to frozen stocks and used in experiments 

within ten passages.  

 

DNA Fiber Assays  

DNA fiber assays were performed as previously described. Briefly, cells were plated at 

106 cells per 10cm dish and allowed to adhere for 36h. Subsequently, DNA was labeled 

for 30 minutes with 50uM IdU and washed with PBS, and treated with 50uM CldU and 

replication stress depending on the assay. For fork restraint assays, cells were exposed 

to 50uM CldU with 0.5mM HU for 2h. For fork restraint with continued stress, cells were 

exposed to 50uM CldU with 0.5mM HU for 2h, followed by 4mM HU for 2-3h. For fork 

degradation assays, cells were labeled with 50uM CldU alone, followed by 4mM HU for 

3-5h. After labeling, cells were collected with trypsin, washed with PBS, and 

resuspended in PBS at 250,000 cells/ml. 2ul of cell solution was placed on a positively 

charged slide, followed by lysis for 8 minutes with 12.5ul of spreading buffer (0.5% SDS, 

200mM Tris-HCl, pH 7.4, 50mM EDTA). Slides were tilted to a 45 degree angle to allow 

fibers to spread, allowed to dry for 20 minutes, fixed in 3:1 Methanol:Acetic Acid for 3 

minutes, rehydrated in PBS for 5 minutes, denatured with 2.5mM HCl for 30 minutes, 

blocked with PBS + 0.1% TritonX-100 + 3% BSA for 1h, and treated with primary (2.5h, 

1:100) and secondary antibodies (1h, 1:200) in PBS + 0.1% TritonX-100 + 3% BSA. 

Slides were washed with PBS and mounted with ProLong Gold antifade. Track lengths 

were measured in Fiji (16). The antibody used to detect IdU was anti-BrdU (Becton 

Dickinson 347580, detects both BrdU and IdU); the antibody used to detect CldU was 

anti-BrdU (Abcam ab6326, detects both BrdU and CldU). The secondary antibodies 
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used were Alexa 488 anti-mouse (detects the primary IdU antibody) and Alexa 594 anti-

rat (detects the primary CldU antibody).  

 

Non-Denaturing ssDNA Fiber Assay 

The nondenaturing fiber assay to detect ssDNA was performed using the DNA Fiber 

Assay protocol above with the following modifications: first, all acid steps were removed 

(both acetic acid from the fixation step, and the HCl denaturing step), and EDTA was 

removed from the lysis buffer (EDTA impairs Click Chemistry). In addition, IdU was 

replaced with EdU and detected by ClickIT EdU Alexa 488 Imaging Kit (Thermo 

Scientific) to label analog in non-denatured DNA per the manufacturer’s instructions. 

After Click Chemistry, ssDNA was detected by incubating DNA with the primary anti- 

BrdU antibody (Abcam ab6326, detects both BrdU and CldU) and the secondary 

antibody Alexa 594 anti-rat as described above. Images were analyzed in Fiju. We 

classified ssDNA-positive forks based on their line graph; specifically, if ssDNA signal 

was found adjacent to the EdU labeled regions, the fork was classified as ssDNA 

positive. In contrast, if there were no regions of ssDNA signal adjacent to the EdU, the 

fork was classified as ssDNA negative.  

 

S1 Nuclease Fiber Assay  

As described previously, cells were exposed to 50uM IdU to label replication forks, 

followed by 50uM CldU with 0.5mM HU for 2h. Subsequently, cells were permeabilized 

with CSK buffer (100 mM NaCl, 10 mM MOPS, 3 mM MgCl2 pH 7.2, 300 mM sucrose, 

0.5% Triton X-100) at room temperature for 8 minutes, followed by S1 nuclease 
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(20U/ml) in S1 buffer (30 mM Sodium Acetate pH 4.6, 10 mM Zinc Acetate, 5% 

Glycerol, 50 mM NaCl) for 30 minutes at 37C. Finally, cells were collected by scraping, 

pelleted, resuspended in 100-500ul PBS; 2ul of cell suspension was spotted on a 

positively charged slide and lysed and processed as described in the DNA fiber assay 

section above.  

 

PDX Methods  

PNX0204 was derived at Fox Chase Cancer Center under IRB and IACUC approved 

protocols. PDX tumors were grown in NOD.Cg-Prkdcscid Il2rgtm1Wjl/SzJ (NSG) mice. 

Cisplatin resistant PDX tumors were obtained from mice after tumors progressed on 

serial treatments of 6 mg/kg cisplatin. The tumors were harvested at approximately 500 

mm3 and dissociated in 0.2% collagenase, 0.33 mg/ml dispase solution for 3h at 37°C. 

The dissociated cells were maintained at 37°C in RPMI1640 + 10% FBS and used for 

DNA fiber assays within 24h of tumor extraction. DNA fiber and S1 nuclease fiber 

assays were performed as described above. 

 

Supplementary Materials and Methods 

 

Drugs 

All drugs were prepared according to the manufacturer’s instructions. Cisplatin (Sigma) 

was prepared as a 1mM solution in saline and added to complete media. HU was 

prepared fresh from powder in complete media prior to experiments. The MRE11 

inhibitor Mirin (Sigma) was prepared as a 50mM solution in DMSO and used at 50uM in 
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complete media for DNA fiber analysis and was added during the indicated step per the 

figure diagrams (1). For toxicity assays, mirin was added at 10uM (to adjust to the 96 

well format) with cisplatin or saline for 18h. EZH2 was inhibited with 5uM GSK126 

(Selleck) solubilized in DMSO and was added in complete medium during the CldU + 

HU step in fiber analysis (2). 5-chloro-2′-deoxyuridine (CldU), 5-Iodo-2′-deoxyuridine 

(IdU), and 5-Ethnyl-2’-deoxyuridine (EdU) were obtained from Sigma and solutions were 

prepared per the manufacturer’s instructions in water and DMSO and DMSO, 

respectively, and added in complete medium for fiber experiments. The pan-caspase 

inhibitors Z-VAD-FMK (Selleck) and Emricasan (Selleck) were prepared in DMSO, and 

cells were pretreated with 50uM Z-VAD-FMK or Emricasan for 2h in complete media 

prior to treatment with genotoxins and subsequently maintained at a 50uM 

concentration throughout the experiment. Camptothecin (Sigma) was solubilized in 

DMSO and added to complete media for toxicity experiments. 

 

shRNA 

HEK293T cells were used to package lentiviral particles with the pLKO.1 shRNA system 

as previously described (3). Briefly, HEK293 cells were transfected with 1:1:2 μg of 

packaging plasmids versus shRNA hairpins on the pLKO.1 vector using Effectene 

transfection reagent (Qiagen) 48 h prior to harvesting supernatants. Supernatants were 

filtered and added to recipient cell lines with 1 μg/mL polybrene. Cells infected with 

shRNA vectors were selected with puromycin. For shRNA-mediated silencing, the 

following hairpins from The RNAi Consortium were obtained from GE Dharmacon:  

CHD4-61 (B), TRCN0000021361: 5'-GCTGACACAGTTATTATCTAT-3' 
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CHD4-62 (A), TRCN0000021362: 5’-GCTGACACAGTTATTATCTAT-3’ 

ZFHX3-58, TRCN0000013558: 5′-GCCAGGAAGAATTATGAGAAT-3′ 

FEN1-32 (B), TRCN0000049732: 5’-GATGCCTCTATGAGCATTTAT-3’ 

SMARCAL1-69, TRCN0000083569: 5’-GCGGAACTCATTGCAGTGTTT-3’ 

RADX-85 (A), TRCN0000128185: 5’-CTGAAAGTATTCCACGGAAAT-3’ 

RADX-208 (B), TRCN0000147208: 5’-CCAAAGCTAAATCACCGATTT-3’ 

 

CellTiter-Glo 2.0 Toxicity Assays 

Cells were plated at 500 cells per well in the center wells of a 96 well plate in 200ul 

volume and allowed to adhere for 36h. Subsequently, drugs were added in a 100ul 

volume and the cells were incubated for 10 days; mirin assays were incubated for 18h 

and subsequently changed to fresh media for the remainder of the assay. CellTiter-Glo 

2.0 (Promega) was used to quantify cell number by ATP. To prevent evaporation, all 

blank wells in the 96 well plate were filled with media, and each plate was placed in a 

humid chamber with PBS containing antibiotic and antimycotic (Thermo Scientific). 

 

Dynamic Molecular Combing of Cisplatin-DNA Fibers 

We employed Dynamic Molecular Combing as previously described (4) to improve the 

quality of DNA fibers from cells treated with cisplatin. Briefly, 106 cells were plated into 

10cm dishes and allowed to adhere for 36h. Cells were then treated with IdU for 30 

minutes, washed with PBS, and treated with CldU + 1000nM cisplatin for 2h; untreated 

controls were treated with CldU without cisplatin for 2h. Subsequently, cells were 

trypsinized, resuspended in PBS, and prepared as agarose plugs with 100,000 cells per 
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plug. Plugs were allowed to solidify at 4�C for 30 minutes, and were subsequently 

digested in ESP buffer (EDTA, Sarcosyl, and Protinase K) for 48h at 50�C. Plugs were 

subsequently washed to remove debris, melted at 68�C for 20-30 minutes, and then 

digested in combing reservoirs with beta-agarase overnight at 42�C. The next day, 

gDNA solutions were combed in 0.5M MES (pH 5.7) onto silanized coverslips using the 

coverslip combing apparatus from Genomic Vision. gDNA was baked onto coverslips at 

60�C overnight, and analogs were detected as described in the DNA Fiber Analysis 

section above (starting after, but not including, the Methanol/Acetic Acid fixation step). 

Silanized coverslips were prepared as previously described (4); briefly, coverslips were 

cleaned extensively with sonication, dried, and surfaces were activated by Argon 

plasma cleaning using a Harrick Plasma cleaner. Subsequently, coverslips were 

exposed to air to prepare surface hydroxyl groups, dried at 60°C to remove excess 

water vapor, and silanized with Octenyltrichlorosilane by chemical vapor deposition 

overnight using a vacuum desiccator. Coverslips were subsequently washed and 

sonicated with chloroform to remove excess silane. All silanization steps were 

performed in an inert and dry environment (nitrogen glove bag) to prevent spontaneous 

silane polymerization. 

 

EdU Global Cellular Replication Assay 

100,000 cells were plated onto poly-l-lysine coated coverslips and allowed to adhere for 

36h. Cells were subsequently treated with EdU with or without drug as indicated, fixed, 

and processed for Click-IT EdU detection according to the manufacturer’s instructions 

(Thermo Scientific). Coverslips were mounted in Vectashield with DAPI, and ten fields 
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were imaged at 20x in the center of the coverslip. EdU intensity per cell was quantified 

with Cell Profiler from the Broad Institute (5). 

 

Cell Fractionation 

To isolate cytoplasmic, nuclear, and chromatin fractions for western blot or mass 

spectrometry, cells were lysed with the NE-PER kit according to the manufacturer’s 

instructions (Thermo Scientific). To isolate chromatin fractions, the insoluble pellet that 

remains from NE-PER lysis was resuspended in 60ul of 2x loading buffer with DTT, 

heated at 70C for 10 minutes, and sonicated in a BioRuptor (Diagenode) for 20 minutes 

on high, with a cycle of 30 seconds on and 30 seconds off. 

 

Western Blot 

All steps were performed according to the manufacturer’s instructions (Thermo 

Scientific). The protein concentration of different cellular fractions was determined by 

BCA Assay (Thermo Scientific). Samples were reduced with DTT in LDS loading buffer, 

and heated at 70C for 10 minutes. 40ug total protein was fully resolved on either a Tris-

Acetate gel (for large proteins) or a Bis-Tris gel (for small proteins), and transferred to a 

nitrocellulose membrane. The nitrocellulose membrane was processed for near-infrared 

quantitative westerns according to the manufacturer’s protocol (LiCor). The membrane 

was allowed to dry for 20 minutes (or overnight), total protein was stained with the 

REVERT stain as a total protein loading control, followed by blocking with Odyssey 

blocking buffer, treated with primary antibody overnight, followed by near-infrared 

secondary antibody (800CW) at 1:5000 for 1h. The membrane was allowed to dry prior 
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to imaging on the LiCor Odyssey Imager. Primary antibodies used include anti-BRCA2 

(Abcam ab123491, 1:1000); anti-CHD4 (Abcam ab54603 1:1000); anti-CHD4 (Abcam 

ab70469, for immunoprecipitation); anti-SMARCAL1 (Abam ab37003, 1:1000); anti-

ZFHX3 (Lifespan Biosciences LS-C179898-100); anti-PCNA (Abcam ab29); anti-B-actin 

(Sigma A5441, 1:15,000). 

 

Proteomics 

For SILAC, PEO1 were dual labeled in SILAC media with dialyzed FBS (Thermo 

Scientific) with heavy lysine (K+8) and heavy arginine (R+10) from Cambridge Isotope 

Labs. PEO1 and C4-2 (unlabeled SILAC media) were treated with cisplatin, collected 

with trypsin, counted, mixed at a 1:1 ratio, and fractionated together in the same 

Eppendorf tube with the NE-PER kit as described. Cellular fractions were fully resolved 

on SDS-PAGE gels, fixed with Imperial Protein Coomassie Stain (Thermo Scientific), 

washed in water overnight to remove excess stain, and cut into 13 molecular weight 

regions corresponding to the protein marker standard. Each region was reduced with 

DTT, alkylated with iodoacetamide, and digested with Trypsin Gold for Mass 

Spectrometry with ProteaseMAX according to the manufacturer’s instructions 

(Promega). Peptides were dried in a speedvac, resuspended in 6 ul buffer A (0.1% 

formic acid), and 2 ul tryptic digests were analyzed on the Thermo Q-Exactive mass 

spectrometer coupled to an EASY-nLC Ultra system (Thermo Fisher). Peptides were 

separated on reversed phase columns (12 cm x 100 μm I.D), packed with Halo C18 (2.7 

um particle size, 90 nm pore size, Michrom Bioresources) at a flow rate of 300 nl/min 

with a gradient of 0 to 40% acetonitrile (0.1% FA) over 55 min. Peptides were injected 
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into the mass spectrometer via a nanospray ionization source at a spray voltage of 2.2 

kV. The mass spectrometer was operated in a data-dependent fashion using a top-10 

mode (6). 

 

Processing of Proteomics Data  

Raw proteomics data were analyzed with MaxQuant software (7). We required a false 

discovery rate (FDR) of 0.01 for proteins and peptides and a minimum peptide length of 

7 amino acids. MS/MS spectra were searched against the human proteome from 

UniProt. For the Andromeda search, we selected trypsin allowing for cleavage N-

terminal to proline as the enzyme specificity. We selected cysteine 

carbamidomethylation as a fixed modification, and protein N-terminal acetylation and 

methionine oxidation were selected as variable modifications. Two missed tryptic 

cleavages were allowed. Initial mass deviation of precursor ion was up to 7 ppm, mass 

deviation for fragment ions was 0.5 Dalton. Protein identification required one unique 

peptide to the protein group. Known contaminants were removed from the analysis. To 

identify statistical significance, isotopic ratios of identified proteins from three biological 

replicates were analyzed using the limma statistical package (8). The isotopic ratio 

obtained from MaxQuant was subsequently converted to log2 scale and plotted against 

the -log10(p-value) for each gene in GraphPad Prism. 

 

TCGA Database Analysis 

The TCGA database was used to identify ovarian cancer patients with germline 

mutations in BRCA2, and subsequently tested for predictive power of mRNA expression 
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of genes of interest on patient progression free survival. To obtain patient germline 

sequencing data, we applied for access to protected TCGA patient data through NIH. 

The germline BAM sequencing data for each patient at the BRCA2 locus was 

downloaded. The BAM Slicing tool option and the GDC API were used to automate the 

process. Sliced BAM files were sorted and indexed using SAMTOOLS (9), and 

mutations were identified using the Genome Analysis Tool Kit (GATK, Broad Institute) 

(10). We followed the GATK best practices for germline mutation calling until the last 

step of the protocol, where we used hard filtering instead of variant quality score 

recalibration (VQSR) because sliced BAM files at a single locus are not compatible with 

VQSR. Briefly, we called germline variants using the HaplotypeCaller tool in GVCF 

mode, consolidated the GVCF files using the GenomicsDBImport Tool, and called 

mutations using the GenotypeGVCFs tool. The data were hard filtered to isolate BRCA2 

germline mutations, and we classified mutations using the Variant Effect Predictor 

(VEP) from Ensembl (11). Finally, mutations were selected that are predicted to disable 

BRCA2, including premature stop codons, frameshift mutations, and deletions. A case 

list of patient barcodes was compiled harboring at least one of these BRCA2 disabling 

mutations, and cBioPortal and the TCGA-CDR (12-14) were used to obtain the 

progression free survival data and mRNA expression data (from the U133 Microarray, 

which was the most complete dataset for all genes except for KMT2B, for which we 

used the RNAseq data) for our genes of interest in this set of patients. To eliminate bias 

and subjectivity, patients with mRNA expression of the target gene over the median 

were classified as high expression; patients below were classified as low expression. 

The survival curves for the low and high expression groups were plotted with the 
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lifelines package for Python, and significance was determined using the Cox regression 

(15).  

 

Flow Cytometry with Annexin V and Propidium Iodide 

Cells were assayed for Annexin V and Propidium Iodide signal following the 

manufacturer’s instructions (Abcam). Briefly, PEO1 were plated at 100,000 cells per 10 

cm plate and allowed to adhere for 36h. Subsequently, the media was aspirated and 

replaced with 40ml of complete medium containing 500nM cisplatin in order to match 

the molar ratio of drug to cells found in the 96 well Cell Titer Glo assay (16). At 0h, 24, 

48, 72, and 120h, cells were trypsinized (including floating cells in the media), washed, 

stained with Annexin V and PI, and analyzed on a BD LSR II flow cytometer in the FITC 

and PI channels. Cells treated with 1uM camptothecin for 48h were processed 

identically. For inhibition of apoptosis with Z-VAD-FMK, cells were pretreated for 2h with 

50uM Z-VAD-FMK, and subsequently treated with cisplatin or camptothecin in media 

containing 50uM Z-VAD-FMK. Untreated controls were treated with DMSO as a vehicle 

control for Z-VAD-FMK and camptothecin. Quadrants for Annexin V signal, PI signal, 

and Annexin V and PI co-signal were selected based on the staining of the untreated 

control. For cell cycle controls, cells were collected after treatment, fixed on ice with 

70% ethanol with vortexing, resuspended in PBS with RNAse and propidium iodide, and 

on a BD LSR II flow cytometer in the PI channel; single cells were selected to eliminate 

clumped cells from the analysis. 

 

DNA Pulsed Field Capillary Electrophoresis 
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PEO1 were assayed for DSBs by pulsed field capillary electrophoresis with the Femto 

Pulse (Agilent). Briefly, 100,000 cells were plated per 10 cm plate and allowed to 

adhere for 36h. Subsequently, the media was aspirated and replaced with 40ml of 

complete medium containing 2.5uM cisplatin in order to match the molar ratio of drug to 

cells found in the 96 well Cell Titer Glo assay (16), or 1uM camptothecin; cells treated 

with apoptotic inhibitor were pretreated for 2h with 50uM Z-VAD-FMK and maintained 

for the duration of the experiment, and untreated controls received DMSO as a vehicle 

control. At 24h (for cisplatin) or 48h (for camptothecin), cells were trypsinized (including 

floating cells in the media), pelleted, and washed, and high molecular weight gDNA was 

isolated with the FiberPrep Genomic DNA Extraction Kit (Genomic Vision) according to 

the manufacturer’s instructions; the final digestion step was supplemented with an 

additional 5ul of beta-agarase to ensure full digestion of the agarose plug (New England 

Biolabs). gDNA was analyzed on the Femto Pulse in the 3.5h mode for gDNA and large 

fragments per the manufacturer’s instructions (Agilent). The retention time of gDNA and 

DSBs was experimentally determined, with intact gDNA observed as signal above 8,000 

seconds of capillary retention time, and DNA DSBs and fragmentation observed in the 

3000 second to 8000 second window of capillary retention time; the percent of signal 

from gDNA and DSBs were plotted in Graph Pad Prism. 
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CHAPTER III: DISCUSSION 
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Expanded Discussion 

 

Summary and Conclusions: This dissertation proposes a new ssDNA theory of 

BRCAness and genotoxic agents and argues for a reconsideration and possible 

overturn the previous double strand break framework. The body of work demonstrates 

the ssDNA framework has superior predictive power with less complexity than the 

dogma for all genetic systems tested, including known, new, and edge cases, and 

establishes the theory as a legitimate competing framework. Moreover, the ssDNA 

theory accurately predicts that the double strand breaks observed after genotoxic 

therapy are in fact created by the apoptotic machinery and not by the drugs themselves, 

undermining confidence in the double strand break dogma. 

 

 

Table 3.1: An example of added dogma complexities that are difficult to reconcile with experiment. 

 

We propose these results place the ssDNA theory as the leading framework for 

BRCAness and genotoxic agents, and that confidence in the double strand break 

dogma is accordingly reduced to lower levels. Indeed, we considered a number of 
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complexities that could be added as an attempt to rescue the dogma, but found these 

inconsistent with experiment as they are currently understood (Table 1). However, we 

propose it is important that these two frameworks directly compete in order to improve 

experimental power, and we highlight here several important future experiments and the 

limitations of current technical approaches that should be improved. In addition, this 

section will highlight the broader implications of the ssDNA theory that were not 

discussed in the publication, including for DNA metabolism disorders, and will cover 

important future technologies, both for patient diagnostics as well as for improved 

mechanistic understanding of the ssDNA defect. 

 

Possibilities to Salvage the Dogma: Time Course of DNA Double Strand Breaks  

 

Future experiments should analyze the creation of DNA double strand breaks and 

ssDNA over time, with the goal of determining the earliest possible time point of their 

visibility, their approximate abundance, their predictive power for sensitivity, and if they 

are apoptotic. Indeed, it is possible that low levels of double strand breaks could be 

created at early time points, even minutes after treatment, that commit the cells to 

undergoing apoptosis; however, we propose such a result would represent a 

contributing role for double strand breaks within an ssDNA framework due to the 

abundance, toxicity, and predictive power of ssDNA. Importantly, if such breaks are 

detected, their repair may not be sufficient to rescue the cell after a signal to die has 

been sent; similar concepts apply for ssDNA and should be elucidated to ensure the 

correct time point for critical mechanistic and signaling events can be analyzed1. In 
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addition, we note here that apoptotic inhibitors should be used to control for a role in 

apoptosis in generating ssDNA; we did not complete this control in our publication 

because apoptosis is not reported to cause deficient replication fork arrest to the best of 

our knowledge. 

 

ssDNA in Genome Stability and Cancer Initiation 

 

Given the role of ssDNA as a critical BRCA gene function, phenotypes previously 

assigned to double strand breaks or fork protection will need to be reevaluated for a 

basis in ssDNA, including genomic instability and cancer initiation. Indeed, in normal, 

precancerous breast tissue2, recent reports indicate patients with a germline mutation in 

BRCA2 (haploinsufficiency) display a phenotype consistent with ssDNA gaps. 

Specifically, cells from such patients display an impaired replication stress response as 

measured by increased analog incorporation during stress similar to the assays 

described in this dissertation, which may indicate the presence of a fork restraint defect 

that results in ssDNA even in precancerous tissue. Moreover, this checkpoint defect is 

associated with an increased DNA damage response and increased DNA mobility in 

comet assays, again as would be expected if ssDNA were present. Given these reports, 

it is conceivable that ssDNA is present with BRCA haploinsufficiency, and that these 

ssDNA gaps lead to genomic instability that initiates the cancer via loss of the wild type 

allele to create the full BRCAness phenotype. Importantly, the BRCA haploinsufficient 

cells were also observed to display a defective apoptotic response as measured by 

reduced staining in the TUNEL assay in normal breast tissue; this could reflect a 



 59 

tolerization to apoptosis via consistent exposure to ssDNA that allows mutations to 

accumulate and removes yet another barrier to cancer initiation. 

 

These reported observations are consistent with our ssDNA framework of BRCAness 

and indicate that suppression of ssDNA gaps is an appealing target for cancer 

prevention. Indeed, because defects in double strand break repair and fork protection 

have not been reported with BRCA haploinsufficiency to the best of our knowledge, it is 

reasonable to speculate that ssDNA is the initiating lesion that ultimately leads to the 

stronger genomic instability observed upon loss of heterozygosity of the wild type BRCA 

allele and the resulting fork protection defect. Moreover, recent reports indicate that 

ssDNA replication gaps are formed in BRCA deficient cells even due to normal cellular 

metabolism3, further implicating ssDNA as the fundamental lesion that leads to 

instability and loss of heterozygosity to initiate the cancer. 

 

The Role of ssDNA in Fanconi Anemia and DNA Metabolism Disorders 

 

Similar to cancer initiation, ssDNA could be the fundamental lesion that underlies the 

defects of Fanconi Anemia given that ssDNA may form in BRCAness cells during basic 

cellular metabolism. These metabolic ssDNA lesions could explain the hematological 

failure found in Fanconi Anemia, as the rapidly replicating cells of the bone marrow 

accumulate ssDNA due to defects in fork restraint from the Fanconi mutations; defects 

in homologous recombination, possibly at these ssDNA lesions, could also explain such 
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hematological defects. Similarly, a central role for ssDNA could also be found for the 

neuronal cell death that is observed in Fanconi Anemia patients.  

 

However, given the extreme phenotype of Fanconi Anemia, it is important to consider 

that defects in fork protection and DNA double strand break repair play a significant role 

in both cellular failure as well as cancer initiation. Nevertheless, defective fork restraint 

leading to ssDNA could exacerbate the requirement for both fork protection and 

homologous recombination, and may be an important therapeutic target. It will be 

important to determine if restoring fork restraint, gap filling, or the possible role of 

homologous recombination at ssDNA lesions, could be deployed as therapeutics for 

Fanconi Anemia patients. Similar principles for ssDNA should also be evaluated for 

other DNA metabolism disorders that result in developmental defects and 

neurodegeneration, such as Cockayne Syndrome4. 

 

Some thoughts on the nature of the ssDNA lesion 

 

Our theory proposes that ssDNA is the fundamental lesion of BRCAness, but beyond a 

dependence on DNA replication and conservation among genotoxins, the physical and 

molecular details are unknown. Several ideas have been already been proposed, 

including fork traversal, separation of the leading and lagging strand, and gaps 

emerging in the daughter strand, and all should be examined.  
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However, a possibility that has not been explored is the concept of “piled up forks,” 

which is mechanistically distinct and provides additional rationale for fork restraint. In a 

preliminary DNA combing experiment analyzed by atomic force microscopy5, we 

observed a structure containing a replication fork with two additional replication forks 

trailing behind: one on each copy. Moreover, the two trailing replication forks appeared 

to contain long regions of ssDNA in each of the resulting copies. Could these structures 

be the ssDNA regions we had detected? If so, the mechanism highlights additional 

importance for fork arrest: if one fork stalls, perhaps the forks behind must also be 

arrested to prevent the formation of this structure. Could the slowing defect observed in 

BRCAness cells lead to this fork pile-up that we detect as ssDNA by light microscopy 

methods? In addition, the possibility highlights what could be a highly aberrant 

replication process in cancers, and could help to explain the gene duplications, copy 

number variations, and genomic instability that are characteristic of the disease.  

 

 

 

 

 

 
Figure 3.1: Example of “piled up forks” observed by atomic force microscopy on combed gDNA. The facility locked 

down due to COVID during the experiment, so no image could be saved. Could these be the ssDNA structures? 
 

Moreover, with the establishment of dynamic molecular combing in BRCA cells as 

described in this dissertation, future combing experiments should be conducted to 

deepen our understanding of replication defects in BRCAness. What is the inter-origin 
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distance in hypersensitive and resistant BRCA cells? Are new origins and forks fired 

during stress? Are there defects in initiating and terminating replication forks? These 

important aspects of replication should be analyzed for a role in hypersensitivity and 

resistance. 

 

Finally, a role for mitochondrial DNA should be specifically considered and tested using 

combing and atomic force microscopy technology, especially considering the role of 

RAD51 in maintaining mtDNA6. Indeed, the mtDNA has been demonstrated to efficiently 

label with the same analogs used in DNA fiber assays, is readily isolatable from gDNA 

and other cellular components, and can be combed on silanized surfaces, either in 

linearized or circular form7. Are ssDNA regions created in mtDNA as well? Do they 

accurately predict response? Can the proteome be obtained to find protein mediators? 

These questions should be addressed given the critical role of the mitochondria in 

apoptosis8. Moreover, the mtDNA could be used as an incredibly sensitive method for 

double strand break detection after genotoxins: a double strand break will linearize the 

mitochondrial genome. Such an approach could be used to monitor the number of 

double strand breaks over time to determine if they are effectively resolved in 

BRCAness cells, and the method may be more sensitive than pulsed field experiments 

or DNA combing of gDNA to measure fragmentation. 

 

A Possible Role for Polycomb? 
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Our systems biology analysis of the BRCA patients in the TCGA implicates the 

polycomb group genes as critical to hypersensitivity (see Appendix II)9. Specifically, the 

top predictive gene in the BRCA2 ovarian cohort is PHC2, a polycomb gene member 

that does not appear to be well studied in humans. Low PHC2 mRNA predicts poor 

patient survival consistent with acquired chemoresistance. Most strikingly, a literature 

search indicates that CHD4 and EZH2 interact with polycomb members10; ZFHX3/4 and 

FEN1 interact with CHD4, and may interact with polycomb as well. 

 

As the polycomb genes represent a large, repressive complex, could removing such a 

complex from replication sites be creating space for other proteins to bind and resolve 

ssDNA at the fork? Importantly, more relaxed chromatin appears to be consistent with 

our observation that depletion of CHD4, EZH2, ZFHX3, and FEN1 appeared to increase 

replication permissivity in addition to filling gaps. Indeed, this is also consistent with the 

concept of TLS or repriming being activated to fill gaps. Such a model would also fit with 

a competitive model of DNA repair choices, where a set of factors must be removed to 

allow new mediators access to the lesion. Mechanistically, we currently favor this 

competition model of physical access to the replication fork for proteins such as PHC2, 

CHD4 and ZFHX3, rather than their roles in gene regulation, for determining 

hypersensitivity and resistance. 

 

If the polycomb complexes were removed, what factors would take their place to confer 

resistance? Here, the TCGA implicates LIG4 – with high LIG4 levels predicting one of 

the worst survival profiles in the dataset. LIG4 is a DNA ligase previously associated 
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with repairing double strand breaks via NHEJ, but would also be perfectly consistent 

with translesion synthesis or repriming. However, rather than developing individual 

hypothesis, we propose an shRNA screen of the top TCGA candidates, after examining 

larger BRCA patient cohorts, would be more effective in constructing a framework. 

Indeed, all of the factors on the right side of the graph in Appendix II represent potential 

drug targets to disrupt resistance. 

 

Figure 3.2: Low PHC2 or High LIG4 mRNA predict poor BRCA2 ovarian cancer patient response. 

 

Generalization of the ssDNA Framework Across Genotoxins 

 

With the development of DNA combing, other genotoxins should be explicitly tested to 

determine if they also produce a slowing defect and ssDNA in BRCAness cells. 

Although ssDNA is a well-known lesion that is generated after genotoxic therapy, these 

agents should be specifically tested for ssDNA behind the replication fork that predicts 

response as we report here. Our report utilized hydroxyurea as a model for genotoxins 

because hydroxyurea generates high quality fibers that are not covalently damaged; we 

propose our extrapolation to the broader class of genotoxins was justified based on our 

observation that the ssDNA framework was accurate for PARPi, which generated 

LIG4PHC2
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ssDNA identical to hydroxyurea; the observation of the slowing defect with cisplatin; and 

observation that ssDNA accurately predicted patient response in the TCGA in breast 

and ovarian cancers, which are treated with a wide range of genotoxic agents, including 

platinum, PARPi, doxorubicin, ionizing radiation, and taxanes. We propose these agents 

should be explicitly tested for predictive ssDNA by combing, which improves the quality 

of even covalently damaged fibers, perhaps because the increased stretching allows 

the denaturing process to be more effective to visualize the incorporated analogs. 

 

Advanced Technologies to Detect ssDNA and DNA Lesions 

 

We propose it will be important to develop several advanced technologies to detect 

ssDNA, both for patient diagnostics and for improved mechanistic understanding of 

BRCAness. More specifically, we propose that the field should embrace technologies 

that physically assay the gDNA and the structure of the DNA replication fork, rather than 

relying on indirect methods such as foci and genetics. Physical analysis of the DNA 

polymer should be preferred to assuming particular fork structures based on genetics 

and gene depletions, or using protein phosphorylation events as indicators of specific 

DNA lesions, rather than as general indicators of stress or damage. 

 

Technologies for Patient Diagnostics 

 

For patients, we propose the best possible diagnostic test appears to combine dynamic 

molecular combing of DNA with atomic force microscopy5,11,12. Indeed, dynamic 
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molecular combing presents several important advantages for diagnostics compared to 

other DNA fiber analysis methods. First, large numbers of intact gDNA fibers are 

combed linearly, as opposed to tangled fibers, which improves consistency and 

reproducibility that will be required for patient diagnostics. Second, this improved fiber 

distribution from combing also opens up the potential for reliable image analysis from 

software to greatly improve the speed and reliability of results. Third, dynamic molecular 

combing is a method that maximizes the integrity of gDNA and the associated DNA 

structures, including replication forks and ssDNA regions. Importantly, the DNA isolation 

protocol for DNA combing is identical to that used for pulsed field gel electrophoresis to 

maintain mega-base sized gDNA. The physical process of combing is extremely gentle 

because it relies on the meniscus of water to deposit and straighten the intact gDNA, 

which is estimated to result in forces of less than ten pico-newtons and far is superior to 

other methods - which require pipetting, nuclease digestion, or chromatography - to 

preserve the integrity of any gDNA structures that could predict BRCAness and therapy 

response. Lastly, analysis by atomic force microscopy not only presents picometer 

resolution - the DNA helix is easily visible - but also does not require analog labeling or 

nuclease treatments, which makes for a simpler diagnostic test: simply biopsy, lyse, and 

comb. Samples can be readily stored as plugs for weeks in any physician's office and 

shipped stably for analysis. Similarly, the speed of new atomic force microscopes allows 

for an entire coverslip of combed gDNA to be analyzed in minutes to hours, and are 

feasible to deploy for clinical diagnostics. 
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Such a diagnostic test could also be used to identify the molecular profile of BRCAness 

empirically rather than by relying solely on data mining from clinical resources such as 

the TCGA. Patient samples could be evaluated for ssDNA gaps by atomic force 

microscopy and subsequently sequenced to identify candidate BRCAness mutations. 

This dataset could then be combined with the mutation and expression data from large 

scale studies such as the TCGA and tested in laboratory cell culture experiments to 

build a robust BRCAness profile. 

 

Technologies for Mechanistic Understanding 

 

We also propose advanced technologies will be important to study BRCAness and DNA 

metabolism more generally. As discussed above, combing of DNA preserves many 

structures that are destroyed by current methods, and analysis by atomic force 

microscopy is of vastly higher resolution than what can be achieved by light microscopy. 

Light microscopy is resolution limited by diffraction to spheres of approximately 300nm; 

in contrast, the diameter of gDNA, depending on the support surface and conditions, is 

on the order of 2-10nm. Therefore, it is inevitable that substantial information about 

DNA structures and the replication fork are missing in light microscopy studies, and 

could be a vast oversimplification. Are single fluorescent tracks really representative of 

a single replication fork? Why, then, do the replication tracks appear as “beads on a 

string” - or are they really composed of multiple forks? Why does the first fluorescent 

label change length after therapy even when it is established before drug is added? Are 

the ssDNA regions we report really gaps in the DNA, or another structure? These are 
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critical questions that can only be answered by more sophisticated approaches. 

Moreover, atomic force microscopy can be combined with fluorescence microscopy in 

one instrument, and can even be used in aqueous conditions e.g. to observe enzymes, 

like S1, interacting with the DNA in picometer resolution movies with high framerates. 

Atomic force microscopy can also be used to detect the processing of DNA lesions over 

time, or to monitor ssDNA at timepoints distant from drug treatment, which cannot 

maintain the analog label. 

 

Similarly, combing could lead to a substantial advance for electron microscopy analysis 

of DNA. gDNA is easily combed onto nanometer-thick silicon windows, which are 

molecularly similar to glass and are readily silanizable. With combing, intact gDNA can 

be deposited for analysis as discussed above; current electron microscopy methods 

require pipetting and digestion for deposition of DNA, which inevitably destroys 

vulnerable DNA structures. In addition, electron microscopy requires either labeling the 

DNA with heavy metals that bind to the backbone for transmission electron microscopy, 

or creation of a replica with rotary shadowing for scanning electron microscopy. 

Alternatively, could gDNA instead be combed onto a porous silicon window that has 

been silanized? In this case, the gDNA would be suspended over the pores - like a 

tightrope - in a vacuum, which is reported to lead to stunning resolution of unlabeled 

DNA13. With no heavy metal requirement, would we then be able to detect individual 

platinum lesions, which scatter electrons far more than the carbon-based DNA, and be 

able to discern the DNA structures created around them? Indeed, individual platinum 

atoms are readily detectable on carbon nanotubes, demonstrating the feasibility of the 
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goal14. Such an approach would be able to determine if platinum atoms were present in 

ssDNA regions, or at the ends of gDNA, which would indicate a double strand break, 

and would provide meaningful physical evidence to investigate the competing 

frameworks. 

 

Limitations of Current Double Strand Break and ssDNA Techniques 

 

In light of a new competing framework, we propose it will be important for future 

publications to discuss the limitations of the technical approaches used to measure 

DNA lesions and to explicitly address the inherent uncertainty in the techniques. 

 

Pulsed Field Gel/Capillary Electrophoresis: We propose pulsed field experiments are 

currently the best techniques for the physical analysis of the length of gDNA polymers in 

order to directly detect double strand breaks. However, the assays are not without flaw; 

the techniques are sensitive but likely can only detect upwards of ten double strand 

breaks per cell. In addition, the gel is relatively qualitative and variable; the capillary 

version of the technique is quantitative and more consistent, but loading the gDNA onto 

the instrument likely induces double strand breaks that would be protected in the gel 

version of the technique. In addition, larger sizes of gDNA over approximately 1MB  

cannot reliably be distinguished in the capillary. An important limitation of both 

techniques is that they almost certainly also cause ssDNA regions to break during 

analysis; they cannot conclusively differentiate between a double strand break and a 

break caused in ssDNA due to handling or from being pulled through the matrix. 
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Comet Assays: Similar to pulsed field experiments, comet assays specifically measure 

the mobility of gDNA in a matrix and electric field. Although comet assays of varying 

conditions are described as being specific for double or single stranded breaks, we 

propose this language should be avoided. Indeed, both ssDNA and double strand 

breaks will increase the mobility of the gDNA through the matrix regardless of pH; this 

should be acknowledged in the discussions of results. 

 

DNA Fiber Analysis and S1: We propose DNA fiber spreads should be replaced with 

DNA combing in order to obtain quantitative results, and these combed fibers should be 

analyzed by software to improve the rigor of the analysis for the modern age. Several 

limitations exist as described previously, most notably S1 activity against multiple DNA 

lesions that include loops; it will be important to directly observe ssDNA by electron 

microscopy or atomic force microscopy in order to accurately describe the lesion. For 

lesions many kilobases behind the fork, the emerging technique of combing with atomic 

force microscopy will likely prove superior to electron microscopy, which destroys the 

gDNA regions behind replication forks. Moreover, these physical techniques with their 

superior resolution will be an important complement to fluorescence microscopy. 

Indeed, fluorescence microscopy is limited to resolutions of approximately 300nm, 

whereas the diameter of DNA is approximately 2nm; it is nearly certain that light 

microscopy analysis of fibers is a drastic oversimplification. 
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yH2AX and Other Foci: We propose it will be important for the field to acknowledge that 

yH2AX and other proteins are not highly specific for a given DNA lesion, as proteins 

have a wide range of roles15. Foci analysis should be supported with a technique that 

physically analyzes the DNA polymer to detect the lesion, and we propose foci should 

not be used as a method for detecting low single digit numbers of double strand breaks 

or ssDNA15.  

 
The Evolutionary Role of ssDNA 
 
 
As an appropriate conclusion, we note that our ssDNA theory made another surprising 

prediction: that e. coli and other bacteria would have an apoptotic pathway. Although we 

were unaware at the time, the presence of an apoptotic pathway in bacteria was highly 

disputed, and only became generally accepted sometime after 201516,17. Accordingly, 

because genotoxins create double strand breaks in bacteria as well as in cancer cells, 

our theory lends support to this former controversy and has several interesting 

implications in the context of cancer. 

 

The first problem was to determine why a single celled organism such as e. coli would 

have an apoptotic pathway to begin with. It appears this has been reconciled by the 

concept of altruism, which we largely agree with; an example given is the e. coli eject 

their DNA into a biofilm to protect the population when the individual has suffered too 

much DNA damage to continue. Other suggested advantages include saving resources 

- or passing resources to related group members. But a different possibility that would 

be less altruistic is shared between e. coli and cancers: gene transfer. Although 
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replicating seems to be the desired outcome, in the event of catastrophic DNA damage, 

it would be favorable for cells to be able to measure damage to know when replication 

was largely impossible and no longer worth pursuing – and to send the DNA to the 

lifeboats as a last ditch, and more effective, effort. This would likely require fragmenting 

the DNA so it can be exported out of the cell and transferred to healthy cells nearby – 

and this DNA fragmentation is conserved in apoptosis. Importantly, cancers almost 

certainly use this strategy for nefarious means – shedding of gDNA and other antigens 

into the microenvironment is a strategy to reprogram nearby healthy cells, or to tolerize 

the immune system for immune-evasion; the cancer is not bound by kin selection. 

 

Single stranded DNA could be an easy lesion to create as such a measurement: 

determine when it is favorable for a cell to fragment the DNA and push it to the 

environment. This “measurement” aspect of ssDNA could explain why it seems 

omnipresent with DNA damage, and it would make sense that the ssDNA lesion would 

control programmed cell death rather than a more difficult lesion like a double strand 

break, especially considering DNA is an incredibly stable polymer. It should also require 

a substantial number of lesions to resort to apoptosis, for which ssDNA is well suited – it 

does not seem favorable for programmed cell death to be on a hair trigger, and this is 

consistent with experiment in human cancers. 

 

More generally, the presence of such an apoptotic strategy places the BRCAness 

phenotype into a new perspective: the vulnerabilities of rapid replication may not be as 

one sided as we would like to believe. 
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APPENDIX I: Atomic Force Microscopy on combed gDNA to measure ssDNA and 

lesions. I have developed a technique to measure combed gDNA via atomic force 

microscopy on a variety of silanized surfaces. The method will directly detect DNA forks 

and lesions, including ssDNA gaps, on combed gDNA at sub-nanometer resolution, and 

is able to detect the individual turns of the DNA double helix. Importantly, the combing 

approach applies less than 10pN of force and maximizes the gDNA structures that are 

preserved for analysis. In addition, atomic force microscopy can be combined with 

fluorescence imaging for analysis of labeled regions. To generate thin and stable silane 

coatings compatible with AFM, surfaces should be activated with an argon plasma for 

approximately ten minutes, and silanization should be applied by chemical vapor 

deposition for approximately ten minutes with the aid of a dry nitrogen bag to prevent 

polymerization. Importantly, the technique is compatible with nm thick TEM windows 

using air plasma, and the windows can even be successfully combed by using the 

silicon pad to mount the window to a coverslip for dipping; this surprising trick opens up 

the possibility of transmission electron microscopy analysis of combed gDNA. 

 

Appendix I: Analysis of combed gDNA by atomic force microscopy. Left, amplitude image of a combed gDNA fiber 
from BRCAness cells. The individual turns of the DNA helix are visible. Right, height image of same combed gDNA 
fiber. A literature search has been unable to find publications of AFM of combed gDNA on silanized surfaces, 
although early studies using lambda DNA are reported. 

Amplitude Height
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APPENDIX II: Bioinformatics Tools for TCGA patient analysis and modeling. I 

have developed a set of Python tools to automate the TCGA survival analysis described 

in Panzarino et al. The tools rapidly identify clinically relevant candidate genes for 

therapy response in silico. The code groups patients of interest by high and low 

expression for all ~12,000 reported genes, followed by survival analysis with lifelines 

and p-value determination; importantly, the area under the survival curve is superior to 

graphing the IC50 value due to the data distribution. The full six-hundred ovarian cancer 

patient cohort can be analyzed in approximately ten minutes. This approach can be 

merged with other techniques, including mass spectrometry proteomics and shRNA 

screens, to model and elucidate detailed mechanisms of chemoresponse, including a 

possible BRCAness signature, in a modern, systems biology manner. 

1. Panzarino, N. J. et al. Replication Gaps Underlie BRCA Deficiency and Therapy 

Response. Cancer Research. 2021. 

 

Appendix II: Bioinformatics tools to model TCGA patient response. A) The unbiased model of tumor genes that 
predict therapy response in BRCA2 deficient ovarian cancer patients. B) The gene PHC2 has no apparent predictive 
power in the full ovarian cancer group, but in the BRCA2 germline group, C), PHC2 mRNA displays one of the 
highest predictive powers of all genes included in the TCGA for this subset. PHC2 was identified using these tools 
without bias, i.e. without a hypothesis; we have successfully identified the predictive power of all 12,000 genes in the 
BRCA2 germline subset. Survival of each group is determined by integration (area under the survival curve). D) The 
TCGA survival predictions can be combined with mass spectrometry to construct protein models of therapy response 
that can be validated by shRNA; here the nuclear fraction of PEO1 (Heavy) vs C4-2 (Light) as published.  
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APPENDIX III: Replication fork protection confers genome stability and 

chemotherapeutic resistance. In a collaboration with A. Chaudhuri and A. 

Nussenzweig, we published that stabilized replication forks confer chemoresistance in 

BRCA2 deficient cells when CHD4 is depleted (A). We found forks were stabilized likely 

because MRE11 foci and chromatin localization had been eliminated (B, C, D), which 

implicated MRE11 as the nuclease that degrades forks into double strand breaks to 

confer hypersensitivity as predicted by the dogma. As controls, we confirmed CHD4 

depletion did not alter the cell cycle or reduce total MRE11 levels (E, F). N. Panzarino 

created panels B, C, D, F, and assisted with A and E; D is unpublished.  

 

1. Chaudhuri, A. R. et al. Replication fork stability confers chemoresistance in BRCA-

deficient cells. Nature 535, 382–7 (2016). 

 

Appendix III: Replication fork protection confers chemotherapeutic resistance. A) Fiber ratio of IdU versus CldU in 
BRCA2-mutated PEO1 cells either mock (shNSC) infected or infected with shRNA against CHD4 (shCHD4). One 
hundred and twenty-five replication forks were analysed. B) Immunostaining for MRE11 and PCNA in PEO1 cells 
infected with shNSC and shCHD4 upon treatment with 4 mM HU; C), quantification for MRE11 recruitment upon HU 
treatment. At least 100 cells were analysed per condition; experiments were repeated three times. D) Near infrared 
western blot for MRE11 in PEO1 cells infected with shNSC and shCHD4 after 500nM CDDP for 18h. E) Cell cycle 
profiles in PEO1 cells infected with shNSC and shCHD4 as measured by the incorporation of EdU versus DAPI. F) 
Western blot analysis for CHD4 and MRE11 levels in PEO1 cells infected with shNSC and shCHD4.   
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