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Many studies have suggested the modifications and generalizations of the Weibull distribution to model the nonmonotone
hazards. In this paper, we combine the logarithms of two cumulative hazard rate functions and propose a new modified form of
the Weibull distribution. ,e newly proposed distribution may be called a new flexible extended Weibull distribution. Cor-
responding hazard rate function of the proposed distribution shows flexible (monotone and nonmonotone) shapes. ,ree
different characterizations along with some mathematical properties are provided. We also consider the maximum likelihood
estimation procedure to estimate the model parameters. For the illustrative purposes, two real applications from reliability
engineering with bathtub-shaped hazard functions are analyzed. ,e practical applications show that the proposed model
provides better fits than the other nonnested models.

1. Introduction

,e hazard rate function (also known as failure rate func-
tion) is an important reliability characteristic. It deals with
the failure of the system at the time, say t, given that the
system has not failed prior to time t. Among the hazard rate
functions, the bathtub-shaped hazard rate curve is well
known in reliability engineering. It represents the failure
behavior of various engineering systems having initially a
decreasing failure rate during the very first phase, a relatively
constant failure rate in the middle part of the life (usually
called useful life period), and finally an increasing failure rate
in the last phase. In the context of the reliability theory, these
three phases are known, respectively, as burning, random,
and wear-out failure regions.

In the last two decades, many new life distributions
capable of modeling data with the bathtub-hazard rate
function have been introduced in the literature. Most of
them are the modifications and extensions of the two-pa-
rameter Weibull distribution. For example, a three-pa-
rameter exponentiated Weibull (EW) by Mudholkar and

Srivastava [1] has a bathtub-shaped hazard function. A
three-parameter modified Weibull extension (MWEx) by
Xie et al. [2] exhibits data modeling with a bathtub shape.
,e truncatedWeibull distribution by Zhang and Xie [3] has
a bathtub-shaped hazard function. ,e two-parameter
flexible Weibull extension (FWEx) by Bebbington et al. [4]
has increasing, decreasing, or bathtub-shaped. A three-pa-
rameter generalization of the Weibull model proposed by
Ahmad [5] and a new interesting extension of the Weibull
model called Zubair–Weibull (ZW) distribution proposed
by Ahmad [5] are capable of modeling the data exhibiting
the bathtub-shaped failure rate. A three-parameter extended
alpha power transformedWeibull (EAPTW) by Ahmad et al.
[6] and a three-parameter new extended alpha power
transformed Weibull (NEAPTW) by Ahmad et al. [7] are all
having failure rate function that can be increasing, de-
creasing, or bathtub-shaped.

Lai et al. [8] proposed a new modification of the Weibull
distribution called modified Weibull (MW) by multiplying
eλx with the cumulative hazard rate function (CHRF) of the
Weibull model given by
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F(x) � 1 − e
− βxαeλx

, x≥ 0, α, β, λ> 0. (1)

Recent studies of the modified Weibull include beta-
modifiedWeibull (BMW) by Silva et al. [9]; Bayes analysis of
MW by Upadhyay and Gupta [10]; and Bayes analysis of
MW using the MCMC approach [11]. A four-parameter
Additive Weibull (AW) with bathtub-shaped hazard rate
function consisting of two 2-parameter Weibull distribu-
tions proposed by Xie and Lai [12] is given by

F(x) � 1 − e
− βxα− cxθ

, x≥ 0, α, β, c, θ> 0. (2)

A five-parameter new modified Weibull (NMW) by
Almalki and Yuan [13] has cumulative distribution function
(CDF) given by

F(x) � 1 − e
− βxα− cxθeλξ

, x≥ 0, α, β, c, θ, λ> 0, (3)

which has a bathtub-shaped hazard function consisting of
the modified Weibull and Weibull hazards.

Recently, Singh [14] proposed a new model having a
bathtub-shaped hazard rate, called the additive Perks–Weibull
(APW) by combining the hazard functions of the Perks and
Weibull distributions. ,e CDF of the APW is given by

F(x) � 1 −
(1 + α)

1 + αeλx
e

− cxθ
, x≥ 0, α, θ, λ, c> 0. (4)

,e key goal of the modification and extension forms of
the Weibull model is to describe and fit the data sets with a
nonmonotonic hazard rate, such as the bathtub, unimodal,
and modified unimodal hazard rate. Many extensions of the
Weibull distribution have achieved the above purpose.
However, while the number of parameters has increased up
to 5 or more, the forms of the survival and hazard functions
become complicated and the parameter estimation will be
more difficult. On the other hand, unfortunately, some of the
modifications do not have a closed form for their CDFs.
Furthermore, as we have seen, the bathtub and the modified
unimodal shapes have three phases: initially decreasing
phase, relatively constant phase, and then an increasing
phase for the bathtub shape and the phases of the modified
unimodal shape are initially increasing, then decreasing, and
then increasing again. ,e main weakness of some of the
modified Weibull distributions is that they are unable to fit
the last phase of the bathtub shape.

Due to importance of the statistical distributions in reli-
ability engineering and other related fields, researchers have
shown a serious interest to propose new distributions.,e new
developments have been made through a number of ap-
proaches. One approach is to consider a convex combination of
two survival functions and generate a new function as

S(x) � η1S1(x) + 1 − η2( 􏼁S2(x), (5)

where 0< η1, η2 < 1 and η1 + η2 � 1. ,is approach of in-
troducing new functions is named as amixture of distributions.
One may also generate a new function by looking at a linear
combination with two cumulative hazard rate functions as

H(x) � βH1(x) + σH2(x). (6)

In terms of CHRF, the CDF can be expressed as

G(x) � 1 − e
− H(x)

, (7)

where the CHRF, denoted by H(x), satisfies the following
conditions:

(1) H(x) is a differentiable nonnegative and increasing
function of x,

(2) limx⟶0H(x)⟶ 0 and limx⟶∞H(x)⟶∞.

,e probability density function (PDF) corresponding to
(7) is given by

g(x) � h(x)e
− H(x)

. (8)

,e modified Weibull extensions proposed by Xie and
Lai [12]; Sarhan and Zaindin [15]; Almalki and Yuan [13];
and Lemonte et al. [16] belong to the class (7) with bounded
H(x). In this article, however, a new function logH(x)

replaces H(x) to relax the boundary conditions. Hence, the
expression (6) can be written as

H(x) � H
β
1(x) × H

σ
2(x). (9)

,e modified Weibull distributions suggested by Xie
et al. [2]; Lai et al. [8]; Nadarajah and Kotz [17]; and
Bebbington et al. [4] belong to the class (9). ,e expression
(9) can be expressed as

logH(x) � β logH1(x) + σ logH2(x). (10)

Here, a mixture of the two logarithms of cumulative hazard
rate functions, taken as logH1(x) � xα and logH2(x) �

− (1/xλ)􏼈 􏼉, is used to introduce a newmodel called, new flexible
extended Weibull (NFEW) distribution. So, the expression (10)
can be written as

H(x) � e
βxα− σ/xλ( ). (11)

Using (11) in (7), one arrives at the CDF of the NFEW
distribution. ,e new model is capable of modeling lifetime
data with unimodal, modified unimodal, or most impor-
tantly with bathtub-shaped failure rates.

,e rest of the paper is organized as follows: Section 2
provides the definition and sketch of the proposed distri-
bution. Some basic mathematical properties are derived in
Section 3. Section 4 offers the estimation of the model pa-
rameters. Certain characterizations of the proposed distri-
bution are discussed in Section 5. Two real-life applications
are presented in Section 6. Finally, some concluding remarks
are provided in Section 7.

2. New Flexible Extended Weibull Distribution

,e CDF of the NFEW distribution is given by

F(x) � 1 − exp − e
βxα− σ/xλ( )( )􏼚 􏼛, x≥ 0, α, β, σ, λ> 0.

(12)

,e probability density function (PDF) corresponding to
(12) is
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f(x) � αβx
α− 1

+
λσ

xλ+1􏼠 􏼡e
βxα− σ/xλ( )( )

· exp − e
βxα− σ/xλ( )( )􏼚 􏼛, x> 0.

(13)

,e survival function (SF) and hazard rate function
(HRF) of the proposed model are given, respectively, by

S(x) � exp − e
βxα− σ/xλ( )( )􏼚 􏼛, x> 0,

h(x) � αβx
α− 1

+
λσ

xλ+1􏼠 􏼡e
βxα− σ/xλ( )( ), x> 0.

(14)

Some possible shapes for the PDF of the proposed model
are shown in Figure 1.

Some possible shapes for the HRF of the proposed model
are sketched in Figures 2 and 3.

2.1. Motivations. ,e key motivations for using the pro-
posed model in practice are the following:

(1) ,e distribution function as well as the survival
function of the proposed model have closed forms.

(2) It is capable of modeling data with monotonic and
nonmonotonic failure rates.

(3) ,e proposed model is capable of modeling the last
phase of the modified unimodal-shaped failure rate
function closely (see Figure 2).

(4) It has a long constant failure rate period (as shown in
Figure 3) which is capable to model the second phase
of the bathtub-shaped failure rate.

(5) It is capable of modeling the last phase of the
bathtub-shaped failure rate closely (see Figure 3).

(6) It may provide a better fit to the reliability data
having a bathtub-shaped failure rate function than
the other well-known bathtub-shaped extensions of

the Weibull distribution with the same and higher
number of parameters.

3. Basic Properties

In this section, some basic properties of the proposed model
are derived.

3.1. Quantile and Median. ,e expression for the qth
quantile, say xq, of the NFEW model is given by

βx
α
q −

σ
xλ

q

− log − log(1 − q)􏼈 􏼉 � 0. (15)

Using q � 0.5 in (15), one obtains the median of the
NFEW model. Also, setting q � 0.25 and q � 0.75 in (15),
one obtains the 1st and the3rd quartiles of the NFEW
distribution, respectively.

3.2. Generation of Random Numbers. ,e expression for
generating random numbers from NFEW distribution is
given by

βx
α

−
σ
xλ − log − log(1 − R)􏼈 􏼉 � 0, R ∼ U(0, 1). (16)

3.3.Moments. Generally speaking, we always need to keep in
mind the importance of the moments in any statistical
analysis particularly in applied fields. For example, through
moments, the important characteristics such as tendency,
dispersion, skewness, and kurtosis of a distribution can be
studied. If X has the NFEW distribution with parameters
vector (α, β, σ, λ), the rth moment of X is derived as

μ/r � 􏽚
∞

0
x

r
f(x)dx. (17)

Using (13) in (17), we obtain

μ/r � 􏽘
∞

i�0
􏽘

∞

j�0

(− 1)i(i + 1)jβj

i!j!
αβ􏽚
∞

0
x

r+α(j+1)− 1
e

− σ(i+1)/xλ{ }dx + λσ 􏽚
∞

0
x

r+αj− λ− 1
e

− σ(i+1)/xλ{ }dx􏼚 􏼛. (18)

Finally, the following expression is observed:

μ/r � 􏽘

∞

i�0
􏽘

∞

j�0

(− 1)i(i + 1)jβj

i!j!

· αβλ
Γ(r + α(j + 1) − 2/λ)

σ(i + 1)r+α(j+1)− 2/λ + λ2σ
Γ(r + αj − (λ − 1) − 2/λ)

σ(i + 1)r+αj− (λ− 1)− 2/λ􏼨 􏼩.

(19)

3.4. hth Order Negative Moments. ,e hth order negative
moment of the NFEW random variable X is derived as

μ/− h � 􏽚
∞

0
x

− h
f(x)dx,

μ/− h � 􏽚
∞

0
x

r αβx
α− 1

+
λσ

xλ+1􏼠 􏼡e
βxα− σ/xλ( )( ) exp − e

βxα− σ/xλ( )( )􏼚 􏼛dx.

(20)
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We have the following expression:

μ/− h � 􏽘
∞

i�0
􏽘

∞

j�0

(− 1)i(i + 1)jβj

i!j!

· αβλ
Γ(α(j + 1) − h − 2/λ)

σ(i + 1)α(j+1)− h− 2/λ􏼨

+ λ2σ
Γ(αj − (λ − 1) − h − 2/λ)

σ(i + 1)αj− (λ− 1)− h− 2/λ 􏼩.

(21)

3.5.Order Statistics. Let X1, X2, . . . , Xk be a random sample
from NFEW distribution with parameters (α, β, σ, λ) and
let X(1:k) ≤ . . . ≤X(k:k) be the corresponding order statis-
tics. ,e density function of X(r:k) for r � 1, 2, 3, . . . , k is
given by

fr:k(x) �
f(x)

B(r, k − r + 1)
􏽘

k− r

v�0

k − r

v

⎛⎝ ⎞⎠(− 1)
v
F(x)

v+r− 1
,

(22)

α = 1.5, β = 4, σ = 1, λ = 2.5
α = 1.2, β = 3, σ = 1, λ = 2.2
α = 0.8, β = 2, σ = 1, λ = 1.5

0.40.2 0.60.0 1.41.21.00.8
x

0

1

2

3

4

5
f (

x)

(a)

α = 1.5, β = 2.8, σ = 0.5, λ = 0.5
α = 1.8, β = 2.5, σ = 2.2, λ = 0.7
α = 2.1, β = 1.8, σ = 0.5, λ = 0.7

0.40.2 0.60.0 1.0 1.20.8
x

0.0

0.5

1.0
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2.0

f (
x)

(b)

Figure 1: Plots of PDF of the NFEW distribution for selected parameter values.
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Figure 2: Plots of HRF of the NFEW distribution for selected values of parameters.

4 Mathematical Problems in Engineering



where B(., .) denotes the beta function. Using (12) and (13)
in (22), we obtain the densities of the order statistics of
NFEW distribution.

4. Maximum Likelihood Estimation

In this section, the maximum likelihood estimates of the
model parameters are obtained. Let x1, x2, . . . , xk be ob-
served values of a random sample from the NFEW distri-
bution with parameters (α, β, σ, λ). ,en, the log-likelihood
function of this sample is

ln L � 􏽘
k

i�1
log αβx

α− 1
i +

λσ
xλ+1

i

􏼠 􏼡 + 􏽘
k

i�1
βx

α
i −

σ
xλ

i

􏼠 􏼡

− 􏽘
k

i�1
e

βxα
i
− σ/xλ

i( )( ).

(23)

Computing the partial derivatives of (23) with respect to
the model parameters and then setting the result equal to
zero, one has

z

zα
ln L � β􏽘

k

i�1

αxα− 1
i log xi( 􏼁 + xα− 1

i( 􏼁

αβxα− 1
i + λσ/xλ+1

i( 􏼁( 􏼁
+ β􏽘

k

i�1
x
α
i log xi( 􏼁 − β􏽘

k

i�1
log xi( 􏼁x

α
i e

βxα
i
− σ/xλ

i( )( ) � 0, (24)

z

zβ
ln L � 􏽘

k

i�1

αxα− 1
i

αβxα− 1
i + λσ/xλ+1

i( 􏼁( 􏼁
+ 􏽘

k

i�1
x
α
i − 􏽘

k

i�1
x
α
i e

βxα
i
− σ/xλ

i( )( ) � 0, (25)

z

zσ
ln L � 􏽘

k

i�1

λ/xλ+1
i

αβxα− 1
i + λσ/xλ+1

i( 􏼁( 􏼁
− 􏽘

k

i�1

1
xλ

i

+ 􏽘
k

i�1

e βxα
i
− σ/xλ

i( )( )

xλ
i

� 0, (26)

z

zλ
ln L � 􏽘

k

i�1

σ
αβxα− 1

i + λ/xλ+1
i( 􏼁( 􏼁

xλ+1
i − λxλ+1

i slog xi( 􏼁

xλ+1
i( 􏼁

2
⎛⎝ ⎞⎠ + 􏽘

k

i�1

log xi( 􏼁

xλ
i

− σ 􏽘
k

i�1

e βxα
i
− σ/xλ

i( )( )log xi( 􏼁

xλ
i

� 0. (27)

From (24)–(27), it is clear that these expressions do not
have closed form solutions. ,erefore, the estimates of the
model parameters can be obtained numerically by using the
iterating procedure. ,e “SANN” algorithm is used in the R
language to obtain the numerical estimates of the model
parameters in this paper.

5. Characterizations

In this section, we present certain characterizations of
NFEWdistribution.,e first characterization is based on the

hazard function, the second one is based on the ratio of two
truncated moments, and the third is based on conditional
expectation of certain function of the random variable.

5.1.Characterization in termsofHazardFunction. ,ehazard
function hF(x) of a twice differentiable distribution function,
F(x), satisfies the following first order differential equation:

f/(x)

f(x)
�

h/
F(x)

hF(x)
− hF(x). (28)

α = 0.007, β = 0.5, σ = 1.5, λ = 0.001
α = 0.005, β = 0.5, σ = 0.5, λ = 0.006
α = 0.004, β = 0.5, σ = 0.5, λ = 0.009

20 40 800 60
x

0

2

4

6

8

10

h 
(x

)

Figure 3: Plots of HRF of the NFEW distribution for selected
values of parameters.
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It should be mentioned that for many univariate con-
tinuous distributions, the above equation is the only dif-
ferential equation available in terms of the hazard function.
In this section, we present a characterization of NFEW
which is not of the above trivial form.

Proposition 1. Let X: Ω⟶ (0,∞) be a continuous ran-
dom variable.Ee random variable X has PDF (13) if and only
if its hazard function hF(x) satisfies the following differential
equation:

h
/
G(x) − αβx

α− 1
+

λσ
xλ+1􏼠 􏼡hF(x)

� α(α − 1)βx
α− 2

−
λ(λ + 1)σ

xλ+2􏼠 􏼡exp βx
α

−
σ
xλ􏼚 􏼛, x> 0.

(29)

Proof. If X has PDF (13), then clearly the above differential
equation holds. Now, if the differential equation holds, then
d
dx

exp − βx
α

−
σ
xλ􏼒 􏼓􏼚 􏼛hF(x)􏼔 􏼕

� α(α − 1)βx
α− 2

−
λ(λ + 1)σ

xλ+2􏼠 􏼡 �
d
dx

αβx
α− 1

−
λσ

xλ+1􏼠 􏼡, x> 0,

(30)

which gives the hazard function corresponding to the PDF
given by (13). □

5.2. Characterizations Based on Two Truncated Moments.
In this section, we present characterizations of the NFEW
distribution in terms of a simple relationship between two
truncated moments. Our first characterization employs a
theorem due to Glänzel [18], see,eorem 1 of the Appendix.
Note that the result holds also when the interval is not
closed. Moreover, it could be also applied when the CDF
F(x) does not have a closed form. As shown by Glanzel [19],
this characterization is stable in the sense of weak
convergence.

Proposition 2. Let X: Ω⟶ (0,∞) be a continuous ran-
dom variable and let q1(x) ≡ 1 and q2(x) � exp[−

exp(βxα − (σ/xλ))􏼈 􏼉] for x> 0. Ee random variable X has
PDF (13) if and only if the function η(x) defined inEeorem 1
has the form

η(x) �
1
2
exp − exp βx

α
−

σ
xλ􏼒 􏼓􏼚 􏼛􏼔 􏼕, x> 0. (31)

Proof. Let X be a random variable with PDF (13), then

(1 − F(x))E q1(X)
􏼌􏼌􏼌􏼌 X≥ x􏼐 􏼑 � exp − exp βx

α
−

σ
xλ􏼒 􏼓􏼚 􏼛􏼔 􏼕, x> 0,

(1 − F(x))E q2(X)
􏼌􏼌􏼌􏼌 X≥ x􏼐 􏼑 �

1
2
exp − 2 exp βx

α
−

σ
xλ􏼒 􏼓􏼚 􏼛􏼔 􏼕, x> 0,

(32)

and finally

η(x)q1(x) − q2(x) �
1
2
exp − exp βx

α
−

σ
xλ􏼒 􏼓􏼚 􏼛􏼔 􏼕< 0, for x> 0.

(33)

Conversely, if η(x) is given as above, then

s
/
(x) �

η/(x)q1(x)

η(x)q1(x) − q2(x)

� αβx
α− 1

−
λσ

xλ+1􏼠 􏼡exp βx
α

−
σ
xλ􏼚 􏼛, x> 0.

(34)

Now, in view of ,eorem 1, X has density (13). □

Corollary 1. Let X: Ω⟶ (0,∞) be a continuous random
variable and let q1(x) be as in Proposition 2. Ee random
variable X has PDF (13) if and only if there exist functions
q2(x) and η(x) defined in Eeorem 1 satisfying the following
differential equation:

η/(x)q1(x)

η(x)q1(x) − q2(x)
� αβx

α− 1
−

λσ
xλ+1􏼠 􏼡exp βx

α
−

σ
xλ􏼚 􏼛, x> 0.

(35)

Corollary 2. Ee general solution of the differential equation
in Corollary 1 is

η(x) � exp − exp βx
α

−
σ
xλ􏼒 􏼓􏼚 􏼛 − 􏽚 αβx

α− 1
−

λσ
xλ+1􏼠 􏼡􏼢

· exp βx
α

−
σ
xλ􏼒 􏼓exp − exp βx

α
−

σ
xλ􏼒 􏼓􏼚 􏼛

× q1(x)( 􏼁
− 1

q2(x)dx + D􏽩,

(36)

where D is a constant. We like to point out that one set of
functions satisfying the above differential equation is given in
Proposition 2 with D� 0. Clearly, there are other triplets
(q1, q2, η) which satisfy conditions of Eeorem 1.

5.3. Characterization Based on the Conditional Expectation of
Certain Function of the RandomVariable. In this section, we
employ a single function ψ of X and characterize the dis-
tribution of X in terms of the truncated moment of ψ(X).
,e following proposition has already appeared in Hame-
dani [20], so we will just state it here which can be used to
characterize the NFEW distribution.

Proposition 3. Let X: Ω⟶ (e, f) be a continuous random
variable with CDF F(x). Let ψ(x) be a differentiable function
on (e, f) with limx⟶e+ψ(x) � 1. Een, for δ ≠ 1,

E[ψ(X) | X≥x] � δψ(x), x ∈ (e, f), (37)

if and only if

ψ(x) � 1 − F(x){ }
(1/δ)− 1

, x ∈ (e, f). (38)
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Remark 1. For (e, f) � (0,∞), ψ(x) � exp[− exp(βxα−􏼈

(σ/xλ))}], and δ � (1/2), Proposition 3 provides a charac-
terization of the NFEW distribution.

6. Applications

For the practical illustration, the results of applying the
NFEW distribution to two well-known data sets with
bathtub-shaped failure rates are compared to other
modified forms of the Weibull distribution such as the
exponentiated Weibull (EW) by Mudholkar and Srivas-
tava [1]; Additive Weibull by Xie and Lai [12]; Mar-
shall–Olkin Weibull (MOW) by Marshall and Olkin [21];
new modified Weibull by Almalki and Yuan [13]; and
additive Perks–Weibull by Singh [14]. ,e EW distribu-
tion is one of the most interesting modifications of the
Weibull distribution offering data modeling with non-
monotonic failure rate function.

,e hazard function of the AW distribution is very
interesting, offering data modeling with bathtub-shaped
hazard rate function. Since there are two modes of failure
(early and degradation) in the data set, Xie and Lai [12]
showed that it would be better to consider a model with
additive hazard containing one decreasing and one in-
creasing hazard rates for analyzing data having a bathtub
shape. Almalki and Yuan [13] showed that the NMW dis-
tribution fits these two data sets better than beta-modified
Weibull (BMW), AW, and modified Weibull distribution by
Sarhan and Zaindin [15]. ,e MOW model is another
prominent extension of the Weibull model which has been
used for modeling data in reliability engineering and other
related fields. Recently, Singh [14] showed that the APW
distribution fits these two data sets better than NMW and
AW distributions.

,e densities of the competing models are given as
follows:

(1) ,e Additive Weibull distribution by Xie and Lai:

f(x) � αβx
α− 1

− θcx
θ− 1

􏼐 􏼑e
− βxα− cxθ

,

x> 0, α, β, c, θ> 0.
(39)

(2) ,e new modified Weibull by Almalki and Yuan:

f(x) � αβx
α− 1

− cx
θ− 1

(xλ + θ)e
λx

􏼐 􏼑e
− βxα− cxθeλx

,

x> 0, α, β, c, θ, λ> 0.
(40)

(3) ,e additive Perks–Weibull by Singh:

f(x) �
αλeλx

1 + αeλx
− θcx

θ− 1
􏼠 􏼡

(1 + α)

1 + αeλx
e

− cxθ
,

x> 0, α, c, θ, λ> 0.

(41)

(4) ,e exponentiated Weibull by Mudholkar and
Srivastava:

f(x) � αcβx
α− 1

e
− βxα

1 − e
− βxα

􏼐 􏼑
c− 1

,

x> 0, α, β, c> 0.
(42)

(5) ,e Marshall–Olkin Weibull by Marshall and Olkin:

f(x) �
αβθxα− 1e− βxα

1 − (1 − θ) 1 − e− βxα
( 􏼁( 􏼁

2,

x> 0, α, β, θ> 0.

(43)

,e analytical measures for model comparison such as
the Akaike information criterion (AIC), Bayesian infor-
mation criterion (BIC), Kolmogorov–Smirnov (KS) statistic,
and the corresponding p value are considered. Using these
statistical measures, it is shown that the NFEW distribution
provides a better fit than the competing models.

6.1. Arset Data. ,e first data set representing the lifetimes
of 51 devices taken from [22] is as 0.1, 0.2, 1, 1, 1, 1, 1, 2, 3, 6,
7, 1, 1, 12, 18, 18, 18, 18, 18, 21, 32, 36, 40, 45, 46, 47, 50, 55,
60, 63, 63, 67, 67, 67, 67, 72, 75, 79, 82, 82, 83, 84, 84, 84, 85,
85, 85, 85, 85, 86, and 86. Many authors have analyzed this
data set, includingMudholkar and Srivastava [1]; Xie and Lai
[12]; Lai et al. [8]; Sarhan and Zaindin [15]; and Silva et al.
[9]. ,is data set is known to have a bathtub-shaped hazard
rate as shown by the scaled TTT-transform plot (Figure 4).
Table 1 provides maximum likelihood estimates (MLEs) of
the parameters of the NFEW model and other competing
distributions with standard errors in brackets, and the
goodness of fit measures are provided in Table 2. From
Table 2, it is clear that the proposed model could be chosen
as the best model among the fitted models since it has the
lowest values of the AIC, BIC, and KS. From Figure 5, it is
clear that the CDF of NFEW fits the data well and its survival
function follows the Kaplan–Meier estimate closely.

6.2. Meeker and Escobar Data. ,e second data representing
the failure times of a sample of 30 devices taken fromMeeker
and Escobar [23] are given by 2, 10, 13, 23, 23, 28, 30, 65, 80,
88, 106, 143, 147, 181, 173, 212, 245, 247, 261, 266, 275, 293,
300, 300, 300, 300, 300, 300, 300, and 300. ,ese data have a
bathtub-shaped hazard function as indicated by the scaled
TTT-transform plot (Figure 6). ,e maximum likelihood
estimates of the model parameters with standard errors in
brackets are provided in Table 3. Again, the proposed dis-
tribution provides a better fit than the other competing
distributions, as can be seen from Table 4. From Figure 7, it
can easily be detected that the CDF of NFEWfits the data well.
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Figure 4: ,e PP-plot of the NFEW distribution and time scale TTT-transform plot for Arset data.

Table 1: MLEs with their standard errors in brackets for the Arset data.

Dist. 􏽢β 􏽢α 􏽢c 􏽢θ 􏽢λ 􏽢σ
NFEW 2.011 × 10− 5 (1.20 × 10− 4) 2.133 × 10− 9 (3.10 × 10− 10) 0.186 (1.008) 0.005 (0.003)
EW 1.373 (0.184) 0.002 (0.201) 0.495 (0.079)
MOW 0.707 (0.3698) 0.131 (0.259) 3.620 (4.4248)
NMW 7.01 × 10− 8 (1.50 × 10− 7) 0.071 (0.031) 0.016 (3.602) 0.595 (0.128) 0.197 (0.184)
AW 0.086 (0.036) 1.13 × 10− 8 (5.18 × 10− 8) 0.102 (4.004) 4.214 (1.033)
APW 7.15 × 10− 17 (4.36 × 10− 8) 0.443 (0.005) 0.0532 (0.020) 0.6884 (0.092)

Table 2: Summary values of the models fitted to the Arset data.

Dist. AIC BIC KS p value
NFEW 430.70 438.49 0.084 0.806
EW 485.97 491.77 0.201 0.036
MOW 488.88 494.68 0.178 0.076
NMW 435.86 445.48 0.088 0.803
AW 451.09 458.71 0.127 0.365
APW 433.75 441.40 0.091 0.804
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Figure 5: ,e Kaplan–Meier survival plot (a) and estimated CDF (b) of the NFEW distribution for Arset data.
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Figure 6: ,e PP-plot of the NFEW distribution and time scale TTT-transform plot for Meeker and Escobar data.

Table 3: MLEs with their standard errors in brackets for Meeker and Escobar data.

Dist. 􏽢β 􏽢α 􏽢c 􏽢θ 􏽢λ 􏽢σ
NFEW 0.019 (0.0196) 3.94 (0.914) 0.372 (0.095) 0.973 (0.263)
EW 1.086 (0.0807) 0.003 (0.0017) 1.076 (0.2522)
MOW 1.013 (0.2698) 0.009 (0.1059) 3.458 (1.4248)
NMW 5.99 × 10− 8 (8.164 × 10− 8) 0.024 (0.019) 0.012 (1.29) 0.629 (0.15) 0.056 (0.024)
AW 0.019 (0.018) 1.320 × 10− 7 (7.435 × 10− 8) 0.604 (0.197) 2.830 (0.974)
APW 5.424 × 10− 12 (8.062 × 10− 8) 0.088 (0.002) 0.011 (0.009) 0.807 (0.171)

Table 4: Summary values of the models fitted to Meeker and Escobar data.

Dist. AIC BIC KS p value
NFEW 341.09 347.76 0.131 0.876
EW 375.49 379.70 0.224 0.104
MOW 371.93 376.13 0.223 0.098
NMW 344.49 351.46 0.148 0.482
AW 364.28 369.83 0.191 0.197
APW 343.82 349.42 0.134 0.655
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Figure 7: ,e Kaplan–Meier survival plot (a) and estimated CDF (b) of the NFEW distribution for Meeker and Escobar data.
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7. Concluding Remarks

In this study, a new flexible extendedWeibull distribution with
a nonmonotone hazard rate function is proposed and inves-
tigated by taking into account a convex combination of the
logarithms of two cumulative hazard functions. ,e resulting
hazard rate function of the proposed model is capable of ac-
commodating different shapes of the failure rates including
bathtub shape to describe the failure behavior of a variety of real
lifetime data sets. Some mathematical properties of the pro-
posed model have been studied. ,ree different characteriza-
tions of the proposed distribution are presented. ,e estimates
of the model parameters are obtained via the method of
maximum likelihood estimation. Finally, two real data sets with
a bathtub-shaped failure rate, as indicated by the scaled TTT-
transform plots, have been analyzed for illustrative purposes.
For these data sets, some goodness of fit measures along with
the p values are calculated to compare the goodness of fit of the
proposed model to the other competing distributions. ,ese
measures reveal that the proposed distribution provides the
best fit to these bathtub-shaped data than the other distribu-
tions considered. To support the numerical results, empirical
CDF and Kaplan–Meier plots are also sketched which show
that the CDF of the NFEW model fits the data well, and its
survival function follows the Kaplan–Meier estimate very
closely. We hope that the proposed model will attract wider
applications in the reliability engineering and other related
fields.

Appendix

Theorem 1. Let (Ω, F, P) be a given probability space and let
H � [d, e] be an interval for some d< e(d � − ∞, e �

∞might as well be allowed). Let X: Ω⟶ H be a continuous
random variable with the distribution function F(x) and let
q1(x) and q2(x) be two real functions defined on H such that

E q2(X)
􏼌􏼌􏼌􏼌 X≥x􏼐 􏼑 � E q1(X)

􏼌􏼌􏼌􏼌 X≥ x􏼐 􏼑η(x), x ∈ H,

(A.1)

is defined with some real function η(x). Assume that
q1(x), q2(x) ∈ C1(H), η(x) ∈ C2(x), and F(x) is twice
continuously differentiable and strictly monotone function on
the set H. Finally, assume that the equation η(x)q1(x) �

q2(x) has no real solution in the interior of H. Een, F(x) is
uniquely determined by the functions q1(x), q2(x), and η(x),
particularly,

F(x) � 􏽚
x

a
C

η/(u)

η(u)q1(u) − q2(u)

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
exp(− s(u))du, (A.2)

where the function s(u) is a solution of the differential
equation s/(u) � (η/(u)q1(u)/(η(u)q1(u) − q2(u))) and C
is the normalization constant, such that 􏽒

H
dF � 1.
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