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Abstract 

 

Random and undirected forces are rectified in biological and synthetic systems using ratcheting mechanisms, 
which employ periodic asymmetric potentials and nonequilibrium conditions to produce useful transport. The 
density of motors or transported particles is known to strongly affect the nature and efficacy of transport in 
biological systems, as well as in synthetic ratchets and active swimmer systems. While experimental ratchet 
implementations typically employ potentials varying in two dimensions (2D), the role of the density of 
interacting particles in such a system has not been modeled. Prompted by experimental observations and 
building upon previous simulations, this paper describes the ratcheting process of interacting particles in a 2D 
flashing ratchet, studied using classical simulations. Increased particle density is found to allow effective 
ratcheting at higher driving frequencies, compared to the low-density or non-interacting case. High densities 
also produce a new ratcheting mode at low driving frequencies, based on independent trajectories of high 
kinetic-energy particles, more than doubling transport at low frequencies. 

Introduction 
Molecular motors in biological systems utilize local asymmetries to rectify isotropic forces, such as chemical 
energy and Brownian motion.(1−3) Their mechanism, known as “ratcheting”, is fundamentally different from 
transport in response to the application of an overall potential gradient and can even do work against such a 
gradient.(4) Ratcheting relies on breaking temporal symmetry and spatial inversion symmetry in the direction of 
transport, and it requires the constant input of energy into the system. In biological systems, spatial asymmetry 
stems from the structure of the motors and their binding and conformational transitions, and temporal 
asymmetry results from cycles of consumption of chemical fuel (adenosine triphosphate (ATP)) and heavy 
damping of the motion.(5,6) In synthetic implementations, specifically of the “flashing ratchet” type, the 
amplitude of a periodic potential with asymmetric repeating units is oscillated in time, thus providing both 
asymmetry and energy input.(7) This potential is typically electrical and is used to drive electrically charged 
particles, from electrons(8,9) to charged molecules(10) to nano- or microspheres.(11) The ratchet mechanism 
displays properties characteristic of a highly out-of-equilibrium process, including an extreme sensitivity to all 
operating conditions: small variations in parameters such as the shape of the ratchet potential, frequency of 
driving, and the density of ratcheted particles change the magnitude and sometimes even the direction of 
transport.(1,12−14) Biological motors can exhibit cooperative transport, traffic jam formation and avoidance, 
self-assembled density patterns, and far-from-equilibrium transport phase transitions.(15−17) The precise 
nature of the interaction between the motors strongly affects their ability to work cooperatively, as was shown 
in theoretical work.(18) 

We have previously established the classical nature of transport within a damped electron ratchet(19) and, 
accordingly, were able to clarify several mechanisms of transport in our experimental electron ratchets with 
classical simulations of a charged particle ratchet. Specifically, we showed that introducing a second dimension 
(the thickness of the transport layer)—through which the particles travel and the applied field permeates—
enables a previously unknown mechanism of symmetry breaking and, consequently, the ability to produce 



ratchet current with a time-unbiased driving function, such as a sine wave.(20) That work explained our ability to 
drive an experimental flashing electron ratchet with a sine wave potential.(21,22) A major experimental result, 
fundamental to the ratchet mechanism, however, remained mysterious: a direct correlation of the optimal 
frequency of the ratchet—the oscillation frequency of the potential that produces the peak short-circuit 
current—with the carrier density. This result points to the critical role of interparticle interactions in the 
operation of the ratchet and mandates interpretation through multidimensional, multiparticle simulations. 

Several previous theoretical studies reveal a strong dependence of ratchet behavior on the density of repelling 
particles, specifically, single(23−25) or multipeaked(14,26) (including reversals of current polarity) dependence 
of ratchet current on particle density. Additionally, Nitzan and co-workers explored the ratcheting of interacting 
particles on a discrete-site chain and identified at least one regime where ratchet efficiency increases with 
increasing density of repulsive particles.(27) Even without considering interparticle interaction, a particle 
ensemble can behave differently from a single particle—in a feedback-controlled ratchet, an increasing particle 
count was shown to reduce the effectiveness of the feedback protocol and made periodic (nonfeedback) 
switching more effective at high densities.(28) Interparticle interactions can be utilized to create the asymmetric 
gradients required for ratcheting by pinning some of the interacting particles in a specific pattern, as was shown 
theoretically.(29,30) Excluded volume interactions in a magnetic colloidal ratchet have been shown 
experimentally to cause quantization of the transport as a function of field strength, due to the formation of 
particle clusters of defined sizes.(31) 

In one case of soft-core colloids interacting in a two-dimensional (2D) plane and subject to a one-dimensional 
(1D) on/off asymmetric potential,(25) the optimal frequency of the ratchet was also found to vary with the 
particle density; however, the authors varied the spatial periodicity of the potential along with the density, so 
the application of these results to the experimentally relevant case—where the particle density changes, but the 
periodicity of the potential is fixed—is not straightforward. No study has explored the role of interparticle 
interactions in a ratchet with a 2D potential similar to the common experimental case, periodic and asymmetric 
in one dimension (the direction of transport), and aperiodic and nonuniform in the perpendicular dimension, 
nor explained the microscopic processes resulting in changes in current or optimal frequency in multiparticle 
systems, even for 1D systems. In the molecular machines field, recent results indicate that an uneven allocation 
of free energy across the duration of a cycle maximizes the current produced, highlighting the importance of 
exploring in detail the individual steps involved in the ratcheting process.(32) 

Here, we model a classical, sine wave-driven, 2D flashing particle ratchet, with a range of particle densities 
resulting in interparticle Coulombic repulsion, explore its behavior at different particle densities and operating 
frequencies, and elucidate the mechanisms responsible for the observed effects. The configuration of the 
modeled system is based on our experimental studies and is similar to other common experimental realizations; 
it thus allows for direct comparisons with previous work and can guide future experimental implementations of 
flashing particle and electron ratchets. We report two main observations: (i) increasing particle density enables 
transport at higher frequencies, as the interparticle repulsion serves as an additional driving force to spread 
particles in the potential wells; and (ii) at high particle densities and low driving frequencies, some particles 
obtain enough energy from interparticle collisions to escape the potential wells, when most particles are 
trapped, and explore the asymmetric potential landscape, traversing multiple spatial periods. The latter effect 
more than doubles the overall transport velocity. 

Computational Details 
We conduct finite-element simulations of an ensemble of interacting particles in a box of height d and length l, 
with periodic boundary conditions in the x-direction, and diffusely reflecting top and bottom boundaries; the 
center of the box is defined as (𝑥𝑥 =  0,  𝑧𝑧 =  0). Experimental ratchet systems are typically uniform in the 𝑦𝑦-



direction, so we only model the 𝑥𝑥 − 𝑧𝑧 plane. The particles are governed by a Newton–Langevin equation, eq 1, 
where 𝑚𝑚 is the mass of a particle: 

𝑚𝑚�̈�𝑟(𝑡𝑡) = −𝑑𝑑𝑑𝑑(𝑡𝑡,𝐫𝐫)
𝑑𝑑𝐫𝐫

− 𝛾𝛾�̇�𝐫 + 𝐹𝐹𝐵𝐵 + 𝐹𝐹𝐶𝐶,𝑖𝑖 + 𝜉𝜉(𝑡𝑡) (1) 

𝑉𝑉(𝑡𝑡, 𝒓𝒓)  =  𝑔𝑔(𝑡𝑡)𝑈𝑈(𝒓𝒓) is the spatially and temporally varying potential; 𝛾𝛾 =  6𝜋𝜋𝜇𝜇𝑟𝑟p is the viscous drag coefficient, 
where 𝜇𝜇 is the dynamic viscosity of the medium, and 𝑟𝑟p is the radius of a particle; 𝐹𝐹B describes collisions with 
boundaries; FC,𝑖𝑖 is the Coulombic interparticle interaction; and 𝜉𝜉(𝑡𝑡) is a white noise term. 

The potential 𝑈𝑈(𝐫𝐫) is periodic in 𝑥𝑥 with period 𝐿𝐿, such that 𝑈𝑈(𝑥𝑥)  =  𝑈𝑈(𝑥𝑥 +  𝐿𝐿). An asymmetric periodic 
potential 𝑈𝑈(𝑥𝑥, 𝑧𝑧 =  −𝑑𝑑/2) is applied to the bottom boundary of the simulation box, eq 2  

𝑈𝑈(𝑥𝑥, 𝑧𝑧 = −𝑑𝑑/2) = 1
2
𝛼𝛼1 �1 + sin �2𝜋𝜋𝜋𝜋

𝐿𝐿
�� − 1

2
𝛼𝛼2 �1 + sin �4𝜋𝜋𝜋𝜋

𝐿𝐿
��  𝛼𝛼1 = 1; 𝛼𝛼2 =  0.25 (2) 

while the top boundary is grounded, 𝑈𝑈(𝑥𝑥,  𝑧𝑧 =  𝑑𝑑/2)  =  0. The potential applied from the bottom thus decays 
toward the top, according to the dielectric properties of the medium, creating the two-dimensional potential 
landscape 𝑈𝑈(𝐫𝐫). The temporal waveform 𝑔𝑔(𝑡𝑡) is defined by eq 3, where 𝐴𝐴 is the amplitude of the applied 
potential, and 𝑓𝑓 is the frequency of oscillation. 

𝑔𝑔(𝑡𝑡) = 𝐴𝐴 ⋅ sin (2𝜋𝜋𝑓𝑓𝑡𝑡) (3) 

The potential for one spatial period, at four time-steps during the temporal oscillation, is plotted in Figure 1a; 
the potential and the positions of particles are recorded at 200 time-steps during each oscillation, regardless of 
the oscillation frequency. 𝐹𝐹B describes diffuse scattering from the bottom and top boundaries of the simulation 
box, defined as 𝑤𝑤b(𝑥𝑥)  =  −𝑑𝑑/2;  𝑤𝑤t(𝑥𝑥)  =  𝑑𝑑/2. The velocity immediately following a boundary scattering 
event is defined by eq 4, where 𝜃𝜃 = 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎Γ = 𝜋𝜋

2
 , 𝛤𝛤 is a uniformly distributed random number in the range from 

−1 to 1, and �̂�𝑡 and 𝑛𝑛� are unit vectors tangential and normal to the boundary, respectively. 

𝑣𝑣(𝑡𝑡 + 𝑑𝑑𝑡𝑡) = |𝑣𝑣(𝑡𝑡)| sin𝜃𝜃�̂�𝑡 + |𝑣𝑣(𝑡𝑡)| cos𝜃𝜃𝑛𝑛�  

(4) 

𝜉𝜉(𝑡𝑡) is a 𝛿𝛿-correlated Gaussian white noise term, simulating the Brownian force, such that ⟨𝜉𝜉(𝑡𝑡)⟩  =  0, and 
⟨𝜉𝜉(𝑡𝑡)𝜉𝜉(𝑎𝑎)⟩  =  2𝛾𝛾𝛾𝛾B𝑇𝑇𝛿𝛿(𝑡𝑡 –  𝑎𝑎), where 𝛾𝛾B is the Boltzmann constant, and 𝑇𝑇 is the temperature of the 
system,(33) in accordance with the dissipation–fluctuation theorem. FC,𝑖𝑖, defined by eq 5, represents the force 
acting on the 𝑖𝑖th particle due to Coulombic repulsion by any other particles within 1000 nm of the particle under 
consideration; particles farther apart are assumed not to interact.  

𝐹𝐹C,𝑖𝑖 =
𝑒𝑒2

4𝜋𝜋𝜀𝜀0
�

(𝑟𝑟𝑖𝑖 − 𝑟𝑟𝑗𝑗)

�𝑟𝑟𝑖𝑖 − 𝑟𝑟𝑗𝑗�
3

𝑁𝑁

𝑗𝑗=1

 

(5) 



 
Figure 1. (a) Electric potential map in one spatial period at four equally spaced time-steps during the oscillation 
(indicated step 𝑡𝑡 of 200 per oscillation). (b) The ratcheting process broken into eight time steps during a single 
oscillation. (left) Electric potential map in one spatial period; (center) density of non-interacting particles within 
our four-period simulation box (the color scale is normalized for each panel separately; darker shade indicates 
higher particle density); dashed and solid vertical lines indicate the positions of the absolute maxima and 
minima of the applied potential, respectively; (right) histograms of the distances traveled by individual particles 
in the x-direction between the step pictured in the density map and the next step. The histograms all span 2500 
nm on the x-axis, and their y-scales vary. The mean travel distance of the ensemble is listed on the plot, in 
nanometers. (c) Histogram of the distances traveled during an entire oscillation. The plots in (b, c) incorporate 
the results from all analyzed oscillations and replicates at 𝑓𝑓 =  5 kHz. 
 

In eq 5, e is the elementary charge, 𝜀𝜀0 is the permittivity of vacuum, and 𝑟𝑟𝑖𝑖 and 𝑟𝑟𝑗𝑗 are the position vectors of 
the 𝑖𝑖th and 𝑗𝑗th particles, respectively (all particles carry a single negative charge). 

The spatial periodicity of the potential in the x-direction is 𝐿𝐿 =  1 μm, and we simulate a box of four periods 
(𝑙𝑙 =  4𝐿𝐿), with periodic boundary conditions in the x-direction. The medium is water, with a dynamic viscosity at 
room temperature μ(293 K) = 0.001 009 Pa·s and relative dielectric constant 𝜀𝜀r =  80. The viscosity depends on 
the temperature, as detailed in the Supporting Information section. The particles have a radius of 𝑟𝑟p =  2.5 nm, 
which determines the degree of drag and the particle mass, but the model does not include any non-Coulombic 
interaction (e.g., hard-sphere; collisions with the boundaries are specified by the center of a particle); the 
density of Au (19.3 g/cm3); and carry a charge of −e each, where e is the elementary charge. At the start of the 
simulation, particles are released from randomly chosen points spread over the simulation area. In every 
simulation, we propagate the system during 10–20 oscillations of the potential, meaning the actual duration of 
the simulation varies with the frequency f. The number of oscillations is chosen to be long enough to allow the 
system to settle into a dynamic equilibrium, erasing the effect of initial particle positions. When analyzing 
results, we ignore the current during an initial number of oscillations (2 of 10, or 10 of 20) to allow the system to 
settle into a dynamic steady state (the period we analyze is termed the “analyzed oscillations” henceforth). We 



repeat every set of conditions four (for most cases) or eight (for eight particles per box) times and report the 
mean of the ensemble velocity. 

The system is simulated at 𝑇𝑇 =  293.15 K, unless otherwise noted. The values of the parameters used in the 
simulation are listed in Table S1 in the Supporting Information. The simulations were performed using the finite-
element software COMSOL Multiphysics 5.3a-5.4. The time steps taken by the solver are determined by the 
generalized-α method,(34) but the duration of each step cannot exceed (2000f)−1. 

Results and Discussion 
A Detailed Look at the 2D Ratchet Mechanism for Non-Interacting Particles 
The potential is applied from the bottom boundary of the transport layer, and it oscillates in time as a sine wave 
between attractive and repulsive stages (positive and negative polarities, respectively). Figure 1b shows the 
electrostatic maps (left) and the spatial distributions (center) of non-interacting particles at eight time-steps 
during a single temporal period of the oscillation of the potential at a frequency of 𝑓𝑓 =  5 kHz. The positions of 
particles are sampled at 200 time-steps per temporal oscillation (regardless of the frequency), and we highlight 
specific steps or periods of interest. This figure also shows histograms (right) of the distances traveled by all 
particles in the ensemble between these time-steps. The behavior at this frequency is representative of the 
general mechanism for non-interacting particles at all frequencies. During the oscillation, the particles (i) trap at 
the bottom boundary due to the attractive field; (ii) repel to the top boundary due to the repulsive field; 
(iii) spread along the top boundary due to repulsion from the applied potential and diffusion, to reach the points 
of weakest repulsion; and (iv) attract back to the bottom boundary. 

During the spread stage (𝑡𝑡 =  100 of 200), the particles reach the barrier between two spatial periods (solid 
line, marked with asterisk). This milestone is critical for ratcheting, as only particles to have crossed this barrier 
can be attracted to the adjacent potential well on the left when the potential turns attractive again, rather than 
return to their starting well. The histograms on the right-hand-side of Figure 1b show the distances traveled in 
the x-direction (Δx) by individual particles between one time-step and the next and list the mean ensemble Δx. 
Using the histograms, we see that ratchet current, defined as net travel of the ensemble in the x-direction 
without an applied bias in that direction, mostly occurs during the attract stage, while the trap, repel, 
and spread stages show largely symmetric movement of particles and small net transport. 

To summarize the mechanism of current production—the repulsive (negative) potential sends particles to the 
top boundary, where a fraction of them cross the barrier between adjacent potential wells. The asymmetry of 
the repulsive potential causes the majority of particles to be located to the left of the barrier at the end of 
the spread phase, such that, when the potential turns attractive, more particles move left (to the next potential 
well), than return to their original well. Particles then travel along the bottom boundary and come to rest at the 
bottoms of the potential wells. At every oscillation of the potential, a plurality of particles return to their original 
wells (central peak in Figure 1c), and smaller fractions move one spatial period to the left and right, respectively. 
The asymmetry between the left and right peaks in the histogram for the entire oscillation (Figure 1c) reflects 
the transport achieved by the ratcheting process during that oscillation. Though this general mechanism is 
operative for a range of driving frequencies, as the frequency increases, the process becomes less efficient. 
The spread stage must last long enough for the particles to reach the barrier between spatial periods, and as the 
time allotted for this stage decreases, fewer particles reach the barrier. 



The Magnitude and Frequency Dependence of the Ratchet Current Vary with Particle 
Density 
The behavior of the ratchet (with respect to particle trajectories, frequency dependence, sign, and magnitude of 
the net particle velocity) does not, of course, depend on particle density if the particles are non-interacting (the 
case labeled “1” in Figure 2); simulating an ensemble of non-interacting particles is equivalent to multiple single-
particle simulations. If we introduce a Coulombic repulsion between particles, as described in the Computational 
Details section above, we see clear trends in ratchet behavior on going from low densities (as few as eight 
particles per simulation box) to high densities (up to 512 particles per simulation box). For instance, for 8–32 
particles, the ratchet operates optimally at an ∼10 kHz oscillation frequency (Figure 2a). With increasing particle 
density, the optimal operating frequency (“peak frequency”) increases, as does the peak velocity. Figure 2b 
shows the velocity versus particle density for three oscillation frequencies. Tracking mean particle velocity as a 
function of oscillation frequency (as we do in Figure 2a) is analogous to the experimental measurement of short-
circuit current while scanning oscillation frequency. It is not, however, a proper view with which to analyze the 
effect of particle density on transport mechanism, because, even if the fraction of the particles that switch to an 
adjacent potential well during an oscillation period remains unchanged from density to density, increasing the 
oscillation frequency will trivially increase the observed velocity by giving the particles more chances to jump 
wells. We therefore plot (in Figure 2c,d) the mean distance traveled by the ensemble per oscillation, calculated 
by dividing the velocity on the y-axis of Figure 2a by the oscillation frequency; this parameter is analogous to an 
experimental measurement of the power conversion efficiency of the ratchet. Figure 2c,d contains the same 
data, but Figure 2c highlights the dependence of transport on particle density for densities of 1–256 particles per 
box, while Figure 2d highlights this dependence for densities of 64–512 particles per box. We use two separate 
figures to emphasize that the dependence of transport on particle density appears to separate into two distinct 
responses. The velocity and distance per oscillation plots are plotted with standard deviations of the mean 
in Figure S4 of the Supporting Information. 

Figure 2 

 
Figure 2. (a) Mean ensemble time-averaged negative velocity as a function of oscillation frequency, for different 
particle numbers (indicated). (b) Mean ensemble time-averaged negative velocity as a function of particle count 
per simulation box, for three oscillation frequencies (indicated); (c, d) the data in (a), divided by frequency, to 
give the distance traveled by the ensemble per oscillation, and separated into two plots to highlight the two 
density regimes. Simulations are run at intervals of 1 kHz between 3 and 10 kHz, 2 kHz between 12 and 50 kHz, 



and 10 kHz above. The plotted values in all panels are the means of four replicates (or eight replicates for eight 
particles, to increase signal-to-noise ratio), and in (b) the error bars are standard deviation of the mean. 
 

Figure 2c shows that, for particle densities from 1 to 16 per box, we observe net transport from −0.10 to −0.15 
μm per oscillation (corresponding to a net 10–15% of particles moving one well to the left) at low frequencies 
and a turn-off of transport at frequencies above 20 kHz. For 16 to 256 particles, the frequency response 
broadens, such that, at 256 particles, transport occurs up to ∼100 kHz, allowing use of higher driving 
frequencies to ratchet. Figure 2d shows that, between 256 and 512 particles, the high-frequency region of the 
response stabilizes, but transport at low frequencies (∼3–10 kHz) increases to values greater than −0.35 μm per 
oscillation, equivalent to 35% of particles moving one well to the left. 

Below, we use the types of particle density maps and histograms shown in Figure 1b to explain the two trends 
with increasing particle density highlighted in Figure 2c,d: (i) the shift to a higher frequency response at low-to-
medium particle densities and (ii) the increase in low-frequency current at medium-to-high particle densities. 

Interparticle Repulsion Increases the Effective Diffusion Rate and Reduces Effective 
Spatial Periodicity, Allowing for Higher Operating Frequencies 
The transport process illustrated in Figure 1b requires the particles to reach the barriers between potential wells 
during the spread phase, so that, when the potential turns attractive again, they can be drawn to an adjacent 
spatial period. The spreading process for non-interacting particles relies on the interaction of the applied 
potential with each individual particle and on diffusion due to Brownian motion. Figure 3a, left, shows the 
spatial densities of either non-interacting or 512 interacting particles at four time-steps during a single 
oscillation, at the much higher oscillation frequency of f = 50 kHz (compared to 5 kHz for Figure 1b). 

 
Figure 3. (a) Normalized density of non-interacting particles, and 512 interacting particles at specific time steps 
(indicated, of 200 per oscillation) during the simulation, focusing on one part of the simulation box, for 𝑓𝑓 =  50 



kHz. (b, c) Histograms of the distance traveled over an oscillation at 𝑓𝑓 =  50 kHz by non-interacting (b) and 512 
interacting particles (c); also indicated are the fraction of particles that traveled to the left and the mean travel 
distance of the ensemble. (a–c) Results from all analyzed oscillations and replicates. (d) Mean ensemble 
negative velocity as a function of oscillation frequency, for non-interacting particles at different temperatures 
(indicated); (e) the data in (d), divided by frequency, to give the distance traveled by the ensemble per 
oscillation. The values are the mean of four replicates, and the error bars are standard deviation of the mean. 
 

In contrast with the transport achieved in Figure 1b, Figure 3a, left, shows that no ratcheting occurs for non-
interacting particles at this high operating frequency; the particles merely return to their original well at the end 
of the cycle (Figure 3b). The reason for the lack of transport is that the time during which particles can spread is 
shorter than the characteristic time to traverse the distance between wells (solid lines) and barriers (dashed 
lines). The maximum spread of the particles is marked by the red block labeled “3” (at 𝑡𝑡 =  150 out of 200 per 
oscillation). No particles reach the barrier, and so none cross to the adjacent well. 

For interacting particles, as shown in Figure 3a, right, interparticle repulsion acts as a strong driving force to 
spread the particles along the top boundary—see the maximum spread of the particles, marked by the red block 
labeled “4” (at 𝑡𝑡 =  150). Additionally, when the particles repel each other, they are less localized in the wells 
during the trap stage than are non-interacting particles (see blocks “1” and “2”, at 𝑡𝑡 =  40, Figure 3a). Some 
start their journey at the top boundary closer to the barrier and therefore need to cover a shorter distance to 
travel to the next well. In essence, interparticle repulsion shortens the effective periodicity of the potential for 
some of the particles, and so rather than having one distinct spatial periodicity in the ratchet, we now have a 
collection of different periodicities, based on the particles’ positions in the wells. Each periodicity results in a 
different cutoff frequency for ratchet operation, so interparticle repulsion results in an overall broadening of the 
cutoff frequency to include higher operating frequencies than in the non-interacting case, Figure 2c. This mutual 
repulsion-aided motion also broadens the histogram of average distance moved by the particles in achieving 
ratcheting: compare Figure 1c with Figure 3c. 

The increased spreading of particles along the top boundary due to interparticle repulsion is, in its 
consequences, equivalent to lowering the viscosity of the medium. To demonstrate this analogy, we increased 
the temperature of the medium (decreasing the viscosity) for a system with non-interacting particles. The cutoff 
frequency for ratchet operation indeed shifts to higher frequency with increasing temperatures (Figure 3d,e). 
Note that the turn-off of current with increasing frequency (for various temperatures) is quite sharp in the non-
interacting particle case, whereas for interacting particles (Figure 2c), the decrease in transport efficiency with 
increasing frequency is more gradual, especially for higher particle densities. Similarly, compare the sharp peaks 
of the velocity in Figure 3d with the much wider peaks of Figure 2a. 

A higher temperature also increases the intensity of Brownian forces, however simulations where we 
independently modulate the intensity of Brownian forces but keep the viscosity of the medium constant show 
that Brownian forces have little impact on the observed transport (Figure S9 of the Supporting Information) and 
so are not responsible for the data in Figure 3e. This result is not surprising, as in this specific transport 
mechanism, the particles are almost constantly driven, as opposed to the classic on/off ratchet, where particles 
diffuse freely for long periods. 

At Higher Particle Densities, Transport Occurs over a Larger Fraction of the Oscillation 
Cycle 
We now focus on the dependence of ratchet current on particle density in the low-frequency region (<10 
kHz), Figure 2d. Initially, there is little change in distance traveled per oscillation with increasing particle density 
in this region; however, we observe a factor of 2 increase in transport at low driving frequencies between 128 



and 512 particles per box. To help understand this increase, we plot in Figure 4a the ensemble means of several 
relevant parameters during a single oscillation of the potential, at 𝑓𝑓 =  5 kHz (left) and 50 kHz (right). In the top 
panels we plot the mean z-position, which shows how the particles oscillate between the top and bottom 
boundaries; higher particle densities are not as strongly localized as lower particle densities, especially at the top 
boundary, where the field is weakest, because interparticle repulsion forces the particles to spread over a larger 
volume. 

Figure 4 

 
Figure 4. (a) Ensemble mean of the z-position, root-mean-square velocities in the z- and x-directions and velocity 
in the x-direction vs time step (of 200 per oscillation), averaged over all oscillations and replicates, for different 
particle counts (indicated), at 𝑓𝑓 =  5 kHz (left) and 𝑓𝑓 =  50 kHz (right). (b, c) Number of particles crossing the 
barrier between spatial periods, rightward and leftward, over the course of an oscillation (top), and the net 
crossing events leftward (bottom), for 1 and 512 interacting particles (indicated), at 𝑓𝑓 = (b) 5 and (c) 50 kHz. 
 

In the middle two panels we plot the root-mean-square (rms) velocities in the x- and z-directions, which are 
measures of kinetic energy; with increasing particle density, rms velocities in both directions increase drastically. 
Notably, the dense, interacting particles remain highly mobile even during the trap stage at the bottom 
boundary. The high rms velocities also reflect the poor localization of interacting particles inside wells; rather, 
interacting particles accelerate toward the well, only to collide with other particles, be repelled, and accelerate 
again toward the well. Even at 5 kHz, the oscillation is too rapid to allow the particles to settle into equilibrium 
positions, maintaining an active nonequilibrium state. 

In the bottom panels we plot the negative velocity of the particles in the x-direction (which serves as the 
observable for ratcheting); for non-interacting particles, transport (𝑣𝑣𝜋𝜋) only occurs during a short fraction of the 
oscillation (see single peak around time step 170 in the black trace of Figure 4a, bottom left). In contrast, for 
higher densities of interacting particles, a longer fraction of each oscillation supports net transport, all while the 
particles are near the bottom boundary (time steps 1–50 and 150–200 in Figure 4a, bottom; see Figure S11 of 
the Supporting Information for other particle densities). This transport is correlated with high rms velocities of 
the particles even during the trap stage. 

Figure 4b,c shows more explicitly how high kinetic energy and mobility of the particles during the trap stage, 
enabled by interparticle repulsion, translate to increased ratchet current at low frequencies. Here, we plot the 
number of border-crossing events, in the left or right directions, for different particle counts and oscillation 
frequencies. At 𝑓𝑓 =  5 kHz (Figure 4b, top), non-interacting particles (“1”) only cross the border between time 
steps 50 and 150 (repel and spread stages), when the particles are at the top boundary, in agreement with the 



four-stage mechanism shown in Figure 1b. The net difference in crossings (Figure 4b, bottom) produces net 
transport. For 512 interacting particles, the same mechanism is seen, though crossings occur earlier in the cycle 
(closer to time step 50), due to the driving force produced by the interparticle repulsion, which helps the 
particles spread faster. Additionally, with 512 interacting particles, we also observe crossings while the particles 
are at the bottom boundary, time steps 1–50 and 150–200, with an even greater leftward bias. Even during the 
so-called “trap” stage, some interacting particles possess enough kinetic energy to escape their potential wells 
and freely explore the asymmetric potential surface, crossing the barriers between the wells. During their travel, 
they lose kinetic energy to friction and eventually settle in a new potential well. The asymmetric shape of the 
potential biases the particles’ motion leftward, and the ratchet thus acts much like the temperature ratchet 
extensively studied in the literature.(1,35) 

Crossings during the trap stage are seen to a much smaller degree at a faster driving frequency (Figure 4c), 
where presumably the oscillation is too fast to allow even the energetic interacting particles to meaningfully 
explore the space. The emergence of this repulsion-enabled mechanism for ratcheting at low frequencies and 
high particle densities is responsible for the enhancement of transport with increased density highlighted 
in Figure 2d and complements the previously discussed four-stage mechanism. 

This new transport mechanism, where dense, energetic particles escape their traps and explore the asymmetric 
potential, gives rise to another result: at high densities, interacting particles can be transported across multiple 
spatial periods within one cycle of the potential. In Figure 5 we plot histograms of the distances traveled by 
individual particles over the course of an oscillation. Thirty-two interacting particles (Figure 5a) act like non-
interacting particles at 𝑓𝑓 =  5 kHz (Figure 1c); they might travel one period (1000 nm) to the left or right or 
simply return to their original positions. With increasing particle densities (Figure 5b,c and Figure S5 of the 
Supporting Information), growing fractions of particles travel two or even three periods in either direction in a 
single oscillation of the potential. The four-stage ratcheting mechanism we explained above (Figure 1b) does not 
include travel over multiple spatial periods. Energetic particles exploring the asymmetric potential, however, are 
not inherently limited to traversing a single spatial period, and their travel distances are determined by the 
duration of the trap stage and the rates of energy loss (to friction) and gain (from interparticle collisions and the 
potential). When the duration of the trap stage is reduced, at a driving frequency of 𝑓𝑓 =  50 kHz, we only 
observe travel across single spatial periods, even for 512 interacting particles per box (Figure S6 of the 
Supporting Information). Particles traversing multiple spatial periods contribute proportionally to the mean 
distance traveled by the ensemble and also contribute to the observed increase in transport at low frequencies 
with increased particle density. 



 
Figure 5. Histograms of the distance traveled by individual particles during a single oscillation, summed over all 
analyzed oscillations and over four replicates at 𝑓𝑓 =  5 kHz, the fraction of particles that traveled to the left, and 
the mean travel distance of the ensemble over the oscillation, for (a) 32; (b) 181, and (c) 512 interacting 
particles. 
 

Conclusions 
In this work, we use classical simulations to explore the behavior of repulsively interacting particles in a 2D 
flashing ratchet. As the particle density increases, we find that the ratchet can be operated at higher and higher 
driving frequencies, producing greater transport velocities. The effective driving frequency is limited by the rate 
at which particles spread along a boundary in one stage of the ratcheting process, and interparticle repulsion 
provides an additional driving force to assist spreading. In addition, we find that high particle densities give rise 
to a new transport process at low driving frequencies. The new process results from weak localization of dense 
particles in wells during the trap stage, and it is distinct from the orderly four-stage process that dominates at 
low particle densities or high driving frequencies. Dense but weakly trapped particles occasionally obtain 
sufficient kinetic energy from interparticle collisions to escape their potential wells and explore the asymmetric 
potential surface. In their energetic state they may travel multiple spatial periods, a feat not possible in the four-
stage ratcheting process. 

These results have important implications for the design and operation of experimental ratchets. We have 
shown that the optimal operating frequency of the ratchet can be modified not only by changes to the spatial 
periodicity or inherent mobility of the device but also by modulating the particle density, the latter a much 
simpler modification. High density unlocks a new mode of ratcheting, which doubles the transport efficiency and 
provides transport over a much wider fraction of the cycle, smoothing the obtained current. Our results 
highlight the importance of characterizing device performance at different densities, as the differences in 
behavior as a function of density are both quantitative and qualitative. The insights into the substeps of the 



ratcheting process, detailed in this work, enable the future tuning of the temporal driving and physical 
properties of ratchet devices to selectively address and modify rate-limiting steps. 

Supporting Information 
The Supporting Information is available free of charge on the ACS Publications website at 
DOI: 10.1021/acs.jpcc.9b00344. 

Complete simulation details; viscosity plot; complete velocity and distance plots; additional histograms of the 
travel distances; mean ensemble velocity, z-position, rms x-velocity and x-velocity of non-interacting particles at 
different temperatures; ensemble x-velocity plots for each particle density for f = 5 and 50 kHz; velocity and 
distance versus frequency for non-interacting particles at different applied potential amplitudes (PDF)  
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