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ABSTRACT 

TOWARD UNDERSTANDING THE ORIGIN OF MASS-INDEPENDENT 

FRACTIONATION IN SULFUR ALLOTROPES AND IN OZONE 

 

 

Igor Gayday, M.S. 

 

Marquette University, 2021 

 

 

Mysterious isotope effects, found in atmospheric ozone, cannot be explained by the 

standard mass-dependent statistical model. Similar mass-dependent isotope effects were 

also uncovered in sulfur deposits older than 2 billion years. In an effort to pinpoint possible 

reasons of these isotope effects, we build a theoretical description of the recombination 

reactions in sulfur allotropes and in ozone. No potential energy surface exists for the sulfur 

allotropes, so electronic structure calculations are also required. Ab initio calculation of 

two dimensionally reduced (2D and 3D) models of the potential energy surface for the 

tetrasulfur molecule at CCSD(T)-F12 and MRCI levels of theory are considered here. The 

2D model is used to calculate the vibrational states energies up to 2000 cm-1. Normal mode 

analysis indicates that the two considered modes in S4 represent a significant mixture of 

conventional bending and stretching motions. Analysis of the bound vibrational state 

properties in ozone reveals that the ratio between the number of states in asymmetric and 

symmetric ozone molecules deviates noticeably from the statistical factor of 2, but in 

different directions for the singly- and doubly-substituted molecules. However, in the upper 

part of the spectrum both singly- and doubly-substituted species behave in the same way, 

which can be a factor contributing to the isotope effects in ozone. Rotation-vibration 

coupling and its implications for the isotope effects have been studied in detail for ozone 

isotopomers for both bound states and scattering resonances, using uncoupled, partially 

coupled and fully coupled approached. We found that the effects of rovibrational coupling 

are minor for low values of 𝐽, but become more significant for large values of 𝐽. However, 

these effects are rather uniform for both symmetric and asymmetric ozone isotopomers, 

therefore we conclude that the Coriolis coupling does not seem to favor the formation of 

asymmetric ozone molecules and cannot be responsible for symmetry-driven mass-

independent fractionation of oxygen isotopes. A general program for calculation of 

energies and lifetimes of bound rotational-vibrational states and scattering resonances for 

ABA/AAB-type systems is developed (SpectrumSDT). The data calculated by this 

program can be useful for spectroscopic analysis and prediction of reaction rates. 
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coordinates used for the PES are shown in the left frame. An interpretation of bonding in 
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blue circles represent already computed points, the red circles are those that need to be 

computed. The energy at the empty symbols can be obtained by symmetry reflections of 

one of the filled symbols, so the ab initio calculations at those points are unnecessary. . 33 

Figure 13. Distribution of points as viewed in the (R, α2) plane for MRCI calculations. The 

dashed black line represents the isomerization plane (α1 = α2). The points are denser in the 

covalent well region (4-10 Bohr) and more rarefied outside. The isomerization plane is an 

important region, so more points are put in it. .................................................................. 34 

Figure 14. 1D slices through the isomerization plane of the PES. ................................... 35 

Figure 15. A part of the of the PES 3D PES of S4 computed at MRCI/aug-cc-pV(T+d)Z 

level of theory. The colorbar units are in cm-1. The dissociation threshold can be seen 

clearly. ............................................................................................................................... 35 

Figure 16. Example of series of 1D solutions in a slice through the transition state. The 

symmetric and antisymmetric solutions are shown on the left and right frame, respectively. 

The green line is the potential energy in the slice. ............................................................ 43 

Figure 17. One-dimensional energies computed in each slice along the reaction coordinate 

R. The blue curve represents the minimum energy path along R. Red dots show 1D energies 

for each value of R in the grid. Cut-off value of 8000 cm-1 is shown with the dashed line.
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Figure 18. Vibrational wave functions computed using 2D-PES of S4 constructed in this 

work. Two vibrational progressions can be identified. The longer progression corresponds 

to the motion along the channel on the PES. It contains up to 9 quanta of vibrational 

excitation, as labeled on the picture (within the energy window considered in this work, 

below 2000 cm-1). The other mode, across the channel, exhibits up to 4 quanta of excitation. 

Only symmetric (with respect to  = 90º) wave functions are included. ......................... 50 
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Figure 19. Same as Figure 18, but for antisymmetric vibrational states. Two vibrational 

progressions can be identified. The longer progression corresponds to the motion along the 

channel on the PES. It contains up to 10 quanta of vibrational excitation, as labeled on the 

picture (within the energy window considered in this chapter, below 2000 cm-1). The other 

mode, across the channel, exhibits up to 4 quanta of excitation. ...................................... 51 

Figure 20. A 1D slice (green) of the PES through the transition state point of S4 along the 

bending degree of freedom , and the spectrum of the 1D states computed for this slice. 

The energies of the states with the symmetric and the antisymmetric wave functions are 

shown in red and blue, respectively. One can see a pair of nearly degenerate states in the 

wells (dashed lines), a pair of split states closer to the barrier top, and a spectrum of non-

degenerate states at higher energies. ................................................................................. 52 

Figure 21. Visualization of molecular arrangements corresponding to different values of 

(휃, 𝜑) and a fixed value of 𝜌 in APH coordinates. The value of 휃 increases radially outward 

from the center (where 휃 = 0) to the rim (where 휃 = 𝜋/2). 𝜑 is an angle in the range 

[0; 2𝜋] measured from the bottom of the circle. Symmetric obtuse ABA configuration 

corresponds to 𝜑 = 𝜋. The value of 𝜌 defines overall size of the triangle formed by the 

three atoms. This figure is adapted from Ref. 106. ........................................................... 66 

Figure 22. Rotational block structure of the Hamiltonian matrix. Letters S, A and C indicate 

contributions from symmetric-top rotor, asymmetric-top rotor and Coriolis coupling terms, 

given in Eqs. (38)-(40), respectively. Other blocks of the matrix are zero. Individual blocks 

are labelled by values of Λ and Λ′ from a given pair of basis functions 𝐷Λ, given by Eq. 

(50). ................................................................................................................................... 72 

Figure 23. Block structure of the matrix 𝑈ΛΛ′ for the rotational states from 𝐽 = 0 to 𝐽 = 3 

(intuitive extrapolation to larger values of 𝐽 is relatively straightforward). The two parities 

are shown separately: 𝑝 = 0 in the left column and 𝑝 = 1 in the right column. The blocks 

are labelled by the values of Λ and Λ′. Color indicates magnitudes of matrix elements, with 

red means positive, blue negative, and white zero. When 𝐽 + 𝑝 is odd, all states 

corresponding to Λ = 0 or Λ′ = 0 do not exist and the corresponding blocks of the 

Hamiltonian matrix are excluded (hatched). ..................................................................... 77 

Figure 24. Same as in Figure 23, but for the matrix 𝑊ΛΛ′............................................... 80 

Figure 25. Left-hand side: a more detailed version of the Hamiltonian matrix structure 

presented in Figure 22. Rows/columns are labelled by vibrational symmetry (A1 or B1) 

and Λ (in superscript). Right-hand side: a possible rearrangement of rows and columns that 

leads to separation of the overall Hamiltonian into 2 independent blocks. ...................... 91 

Figure 26. Schematic representation of the PES of ozone in APH coordinates, illustrating 

differences between symmetric and asymmetric isotopomers. The three covalent wells are 

labelled as “886”, “688” and “868”, where “6” and “8” stand for 16O and 18O, respectively. 

Green and violet colors mark the regions of the PES conditionally associated with the 

symmetric and asymmetric ozone isotopomers, respectively. .......................................... 94 
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Figure 27. A map of the PES of ozone in APH coordinates. O and Q denote two different 

oxygen isotopes, such as 16O and 18O. Three potential energy wells (pink, orange) connect 

through three weak Van der Waals interaction regions (green, blue). Note, that asymmetric 

ozone molecules occupy two potential wells (orange), whereas symmetric ozone molecules 

occupy only one (red). .................................................................................................... 101 

Figure 28. The spectrum of nearly degenerate states for singly- (upper frame) and doubly-

substituted (lower frame) ozone molecules in the full energy range. Blue circles and red 

dots represent the covalently bound vibrational states of two symmetries, A1 and B1, 

respectively. Green circles and black dots mark the Van der Waals states of vibrational 

symmetries A1 and B1, respectively. State numbering is according to the Tables 19-20 and 

23-24. .............................................................................................................................. 109 

Figure 29. The spectrum of nearly degenerate states for singly- (upper frame) and doubly-

substituted (lower frame) asymmetric ozone molecules near the dissociation threshold. 

Blue circles and red dots represent the covalently bound vibrational states of two 

symmetries, A1 and B1, respectively. Green circles and black dots mark the Van der Waals 

states of vibrational symmetries A1 and B1, respectively. State numbering is according to 

the Tables 19-20 and 23-24............................................................................................. 110 

Figure 30. The spectrum of non-degenerate states for singly- (upper frame) and doubly-

substituted (lower frame) symmetric ozone molecules in the full energy range. Blue and 

red dots represent the covalently bound vibrational states of two symmetries, A1 and B1, 

respectively. Green and black diamonds mark the Van der Waals states of vibrational 

symmetries A1 and B1, respectively. State numbering is according to the Tables 17-18 and 

21-22. .............................................................................................................................. 111 

Figure 31. The spectrum of non-degenerate states for singly- (upper frame) and doubly-

substituted (lower frame) symmetric ozone molecules near the dissociation threshold. Blue 

and red dots represent the covalently bound vibrational states of two symmetries, A1 and 

B1, respectively. Green and black diamonds mark the Van der Waals states of vibrational 

symmetries A1 and B1, respectively. State numbering is according to the Tables 17-18 and 
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Figure 32. Comparison of the computed state energies (horizontal) with the results of 

Dawes115 and Poirier117. Vertical axis shows the modulus of deviation. Green and gray 

circles correspond to vibrational states of symmetries A1 and B1 from Ref. 115. Blue and 

red symbols correspond to Ref. 117 as follows: filled blue and red circles correspond to the 

vibrational states of symmetries A1 and B1, respectively, in the symmetric ozone molecule; 

empty blue circles and small red dots correspond to symmetries A1 and B1 of the 

asymmetric ozone molecule. ........................................................................................... 114 

Figure 33. Splittings of the nearly degenerate vibrational states of asymmetric ozone 

molecule, as a function of state energy. Orange and grey circles correspond to the 

covalently bound vibrational states and the weekly bound Van der Waals states, 

respectively, computed in this work. Green and blue diamonds show results available from 

Refs. 115 and 117, respectively. ..................................................................................... 116 
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Figure 34. Ratio of the average number of states in asymmetric and symmetric ozone 

molecules, as defined by Eq. (127). Blue and red curves correspond to singly- and doubly-

substituted ozone. Horizontal axis gives the averaging energy window size, E , which in 

this case is analogous to the thermal energy in the vibrational partition function. The 

statistical value of two is indicated by dashed line. The deviations of computed data from 

this reference are obvious in a broad range of energies. Asymptotically they reach ± 0.05.

......................................................................................................................................... 118 

Figure 35. Ratio of the average number of states in asymmetric and symmetric ozone 

molecules, as defined by Eq. (128). Blue and red curves correspond to singly- and doubly-

substituted ozone. Horizontal axis gives the averaging energy window size, E− , which in 

this case is analogous to the vibrational energy transfer due to bath gas collisions. The 

statistical value of two is indicated by dashed line. The deviations of computed data from 

this reference increase at low energies, reaching ±0.20, and then merge near E− ~ 20 cm-

1, indicating a possible source of -effect. ...................................................................... 120 

Figure 36. Absolute values of energy differences between the rotational-vibrational states 

computed here, and the corresponding states reported in Ref. 117 for 16O18O16O and 
16O16O18O. Individual colors are used for different parities 𝑝 and different values of angular 
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Figure 37. The progressions of energies of coupled ro-vibrational states up to 𝐽 = 5 

computed in this work for symmetric 16O18O16O and asymmetric 16O16O18O combined.

......................................................................................................................................... 133 

Figure 38. Absolute values of energy difference between the rovibrational states of ozone 

calculated using SpectrumSDT and the code of Kendrick (APH3D). The states of both 

values of inversion parity (𝑝 = 0 and 𝑝 = 1) are shown for the total angular momentum 

𝐽 = 3 of doubly substituted ozone molecule. The states of both 18O16O18O (green) and 
18O18O16O (violet) are included. Horizontal axis gives energy relative to the bottom of the 

well. ................................................................................................................................. 135 

Figure 39. Deviations of the ground vibrational state of 16O18O16O from the energies of a 

symmetric-top rotor due to the asymmetric-top rotor term for 𝐽 = 5. The states of two 

different parities are denoted by color and symbol type. The magnitude of splitting (Λ-

doubling) for Λ = 1 is indicated by a double arrow. ...................................................... 137 

Figure 40. Same as Figure 39, but for the Coriolis term. ................................................ 138 

Figure 41. Same as Figures 39 and 40, but for both asymmetric top rotor and Coriolis terms 

together (exact calculation). ............................................................................................ 141 

Figure 42. Evolution of energies and parity splittings for 𝐽 = 5 and Λ = 1 as a function of 

number of vibrational quanta along the three normal modes of ozone. For each progression, 

the other two normal modes are not excited (𝜈 = 0). Solid and dashed lines correspond to 

symmetric 16O18O16O and asymmetric 16O16O18O ozone isotopomers, respectively. 

Progressions in the lower frame have the same colors as those in the upper frame. ...... 143 
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Filled and empty symbols correspond to the exact values of splittings computed directly 

from the rovibrational energies for symmetric and asymmetric isotopomers, respectively. 

Solid and dashed lines show the predictions of the analytic fit of these data by Eq. (130) 
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Figure 45. Extrapolation of parity splittings for 16O18O16O (solid line) and 16O16O18O 

(dashed line) as a function of 𝐽. Symbols mark exact values of splittings calculated in this 

work. Different values of Λ are shown by different colors. The points at 𝐽 = 24 were 

computed separately to check the quality of extrapolation and are not included in the fit.
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Figure 46. Extrapolation of parity splittings for 18O16O18O (solid line) and 18O18O16O 
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Figure 47. The ratio of partition functions of asymmetric and symmetric isotopomers of 

ozone. The solid blue (red) color corresponds to the singly (doubly) substituted 

isotopologues of ozone. The dashed lines correspond to the case when the parity splittings 
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purely rotational spectrum, without inclusion of any vibrationally excited states. ........ 159 

Figure 48. Same as Figure 47, but with a separate set of rotational constants for each 
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Figure 49. A schematic representation of the PES of ozone in APH coordinates, labelled 

for the case of a singly substituted molecule. Three tight deep wells correspond to the 
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Figure 50. Distribution of the covalent and Van der Waals probabilities for scattering 

resonances in the singly substituted (upper frame) and doubly substituted (lower frame) 

molecules of ozone, based on the coupled ro-vibrational calculations up to J = 4. Color 
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Figure 51. Average resonance width (Γ), partition function (𝑄) and 휂-effect of scattering 

resonances in ozone as a function of rotational excitation up to 𝐽 = 4, for the states 

localized over the covalent well (as in Table 35). The blue (red) color corresponds to the 

singly (doubly) substituted isotopologues of ozone. The dots (x-symbols) correspond to 

symmetric (asymmetric) isotopomers. The solid (dashed) lines correspond to the exact 

coupled rotation-vibration (approximate symmetric-top rotor) calculations. ................. 186 

Figure 52. Same as Figure 51, but for the values of 𝑝, 𝑄𝑖 and 𝑁. .................................. 187 

Figure 53. Same as Figure 51, but for the states localized over the VdW plateau (as in Table 

36). The dots (x-symbols) correspond to homonuclear (heteronuclear) dissociation 
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Figure 54. Same as Figure 53, but for the values of 𝑝, 𝑄𝑖 and 𝑁. .................................. 189 

Figure 55. Same as Figure 51, but for both covalent and Van der Waals regions together 
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Figure 56. Same as Figure 55, but for the values of 𝑝, 𝑄𝑖 and 𝑁. .................................. 191 

Figure 57. A schematic rotational block structure of the Hamiltonian matrix for J = 7 and 

p = 1. Individual blocks are labelled by the values of Λ and Λ′ of the symmetric top rotor. 

Each block includes all vibrational basis functions. Red, green, and blue colors show 

contributions from 𝑇𝑠𝑦𝑚, 𝑇𝑐𝑜𝑟 and 𝑇𝑎𝑠𝑦𝑚 terms in the Hamiltonian operator, 

respectively. The four black dashed squares show the boundaries of “sub-matrixes” in the 

calculations for Λ = 0, 2, 4 and 6, up to Λ′ = Λ ± 2 in each case. The white p letter marks 

the only block, where the values of matrix elements are affected by parity. .................. 202 

Figure 58. Dynamical partition functions computed for symmetric ozone 16O18O16O at J = 

4 and p = 0. Calculations with no coupling (symmetric top) are shown in blue, partial 

coupling in red, and the full coupling (exact) in green. The black arrow shows the point 

(Λ = 2), where the partial coupling approach coincides with the exact method. ........... 205 

Figure 59. Parity-averaged dynamical partition functions for symmetric (16O18O16O, top 

frame) and asymmetric (16O16O18O, middle frame) ozone molecules at 𝐽 = 24, and the 

resultant 휂-effect (bottom frame). The blue and red lines correspond to the uncoupled 

(symmetric top) and partially coupled calculations, respectively. The solid lines are 

computed using the states of allowed ro-vibrational symmetry only. The dashed lines 

represent the symmetry-averaged case, when both allowed and forbidden symmetries are 

included. .......................................................................................................................... 208 

Figure 60. Same as Figure 59, but for 𝐽 = 28. ............................................................... 209 

Figure 61. Average values of resonance widths in symmetric (16O18O16O, top frame) and 

asymmetric (16O16O18O, middle frame) ozone molecules for 𝐽 = 24. The meaning of 

lines and colors is the same as in Figure 59. ................................................................... 212 

Figure 62. Same as Figure 61, but for 𝐽 = 28. ............................................................... 213 
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CHAPTER 1. INTRODUCTION 

1.1. The Role of Sulfur in Atmospheric Chemistry 

Sulfur is a naturally abundant element, most commonly found in its elemental, 

solid form in meteorites and rock deposits. In the Earth’s atmosphere sulfur is mainly 

represented by sulfur dioxide, which constitutes just a tiny fraction of atmosphere’s 

composition, about 2.5 x 10-6 %. Although nowadays concentration of sulfur in the 

atmosphere is quite low, it was not always the case. Geological records indicate that 

during the Archean eon (4.0 to 2.5 billion years ago) concentration of sulfur vapors, 

released in the atmosphere from volcanic activity, was substantially higher. Together 

with negligible presence of free oxygen in the atmosphere,1 this allowed for a chain of 

sulfur polymerization reactions (Eqs. (1)-(4)), which played an important role in the 

chemistry of early atmosphere and life. 

 S + S → S2 (1) 

 S + S2 → S3 (2) 

 S2 + S2 → S4 (3) 

 S4 + S4 → S8 (4) 



2 
 

The four stable isotopes of sulfur alongside with their natural abundances are 

shown in Figure 1. About 95% of sulfur isotopes are sulfur-32. The other isotopes are 

relatively rare and constitute less than 5% in total.2 

1.2. Isotope Fractionation in Sulfur 

One feature of particular interest observed in sulfur species is its anomalous 

isotope fractionation for which no explanation was found yet. Before we can discuss that, 

we have to introduce several concepts. 

First of all, it is important to understand, that the reaction rate of a specific 

reaction depends on isotopic composition of its reagents. Isotopic composition defines 

mass, which affects kinetic energy, density of states, tunneling probability and other 

quantities. Moreover, an isotopic substitution distorts symmetry of a molecule, which can 

change probabilities of some quantum state-to-state transitions. The dependence of a 

reaction rate on isotopic composition of reagents is called kinetic isotope effect, or just 

isotope effect, for brevity. 

 
Figure 1. Natural abundances of sulfur isotopes. 
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The existence of the isotope effect leads to another closely related phenomenon – 

isotope fractionation. To understand what isotope fractionation is, let us consider the 

reaction in Eq. (1), as shown in Figure 2. 

In the upper part of the figure, we see a schematic representation of the natural 

abundances of two sulfur isotopes: 34S and 32S (let us not worry about other sulfur 

isotopes for now). There is a certain ratio between the concentrations of different isotopes 

in nature (see Figure 1), let us define it as a reference isotope ratio: 

 𝑓𝑅
34 =

[ S 
34 ]

[ S 32 ]
 (5) 

Both isotopes can react with 32S, forming either 34S32S or 32S32S. Due to the 

isotope effect, formation reaction of the isotopically substituted product 34S32S occurs 

with a somewhat higher probability, which leads to an increased abundance of 34S among 

 
Figure 2. A schematic representation of isotope fractionation. 34S and 32S react with 32S 

with different rates (k2 and k1), which leads to an increased fraction of rare isotope on the 

products side. 
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the products, relative to its natural abundance, as shown in the lower part of Figure 2. In a 

manner similar to Eq. (5), let us define sample isotope ratio as: 

 𝑓𝑆
34 =

1[ S 
34 S 

32 ] + 0[ S 
32 S 

32 ]

1[ S 34 S 32 ] + 2[ S 32 S 32 ]
=

[ S 
34 S 

32 ]

[ S 34 S 32 ] + 2[ S 32 S 32 ]
 (6) 

The numerator of Eq. (6) counts the number of 34S atoms among the products: one 

per the 34S32S molecule and zero per the 32S32S molecule. In a similar way, the 

denominator counts the number of 32S atoms. Eq. (6) has the same meaning as Eq. (5) – it 

shows relative abundance of 34S atom, but on the product side of the reaction (lower part 

of Figure 2). 

Note that the definition given in Eq. (6) is specific for the reaction considered in 

this example and assumes the sample under consideration contains only products of this 

reaction, but the concept is not bound by it and can be defined for arbitrary samples in a 

similar way. 

Isotope fractionation is a measure of deviation between the natural abundance of 

a certain isotope and its abundance in a specific sample of certain product. For sulfur-34 

it is defined as: 

 𝛿34 =
𝑓𝑆
34

𝑓𝑅
34 − 1 (7) 

where 𝑓𝑆
34 term is sample-specific and can be defined in the same way as in the example 

above. Replacing all instances of 34S in the Eqs. (5) and (7) with either 33S or 36S would 

give us analogous definitions for 𝛿33 and 𝛿36 respectively. In all cases fractionation is 

defined for one of the rare isotopes relative to the most abundant isotope. 

Positive fractionations are usually referred to as enrichments. Negative 

fractionations are called depletions. 
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1.3. Mass-Dependent and Mass-Independent Fractionations 

If a process leads to enrichment with one isotope, it is reasonable to assume that 

the same process should also work with other isotopes. However, the magnitude of the 

effect is expected to be different (for example, because the zero-point energy for different 

isotopologues is not the same, which affects reaction barrier heights). So, what is the 

predicted relationship between different delta-values? It can be shown3 that in the 

statistical equilibrium limit, inevitably achieved on geological timescales, or at high 

temperature and pressure, in the condensed phase 𝛿33 and 𝛿36 can be expressed as a 

function of 𝛿34 as: 

 𝛿𝑥 = (1 + 𝛿34) 𝜆 
𝑥
− 1 (8) 

where 𝑥 = {33, 36} labels rare isotopes and 𝜆 
𝑥 = (

1

𝑚32
−

1

𝑚𝑥
) / (

1

𝑚32
−

1

𝑚34
) is 

determined based solely on differences in masses between different isotopes, so this 

behavior is called mass-dependent fractionation. 

When 𝛿34 is small, Eq. (8) can be very well approximated with a straight line 

using Tailor series, namely: 

 𝛿𝑥 ≈ 𝜆 
𝑥 ∗ 𝛿34 (9) 

where 𝜆 
33 ≈ 0.516 and 𝜆 

36 ≈ 1.890. 
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Eq. (9) has been proven to be quite accurate in practice by numerous experimental 

measurements of enrichments in many different rock samples taken from various 

locations all around the Earth (see Figure 3, reproduced from Ref. 4). 

 

 
Figure 3. The δ-values computed based on data obtained from rocks younger than 2 Ga. 

Linear approximation of the data is in a very good agreement with the mass-dependent 

statistical slopes of 33λ ≈ 0.516 and 36λ ≈ 1.890. This figure is reproduced from Ref. 4. 
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Surprisingly, rock samples older than 2.4 Ga showed significant deviation from 

what seemed to be a well-established behavior5–7 (see Figure 4, adapted from Ref. 8) for 

unknown reasons. Since this behavior could not be explained by the mass-based model, it 

was named mass-independent fractionation (MIF of sulfur or S-MIF). 

The amount of mass-independent fractionation is measured as amount of 

deviation from the predicted value: 

 Δ𝑥 = 𝛿𝑥 − 𝛿𝑥̅̅ ̅ (10) 

where 𝛿𝑥 is the actual (e.g. experimentally measured) enrichment and 𝛿𝑥̅̅ ̅ is the value of 

enrichment predicted by Eq. (8). 

 
Figure 4. Significant deviation from the mass-dependent behavior was observed in the 

samples older than 2.4 Ga. This figure is adapted from Ref. 8. 
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Analysis of the amount of S-MIF in samples of different age, revealed a large 

spike at approximately 2.4 Ga (see Figure 5, adapted from Ref. 4). The spike marks a 

significant change in the environmental conditions of the ancient Earth and is generally 

attributed to rise of oxygen levels and transition from the ancient anoxic atmosphere to an 

atmosphere much more similar to the one we have nowadays. 

S-MIF indicates the importance of gas-phase sulfur chemistry in the anoxic 

atmosphere of Earth during the Archean eon.9–11 This discovery offers the geochemists a 

unique tool for analysis of conditions on Earth just prior to, and during, the great 

oxygenation event (after which eukaryotic life emerged), based on isotope analysis of the 

Archean rock record available to us today.12–14 This knowledge can also serve as a 

 
Figure 5. The amount of S-MIF in samples of different age. A sharp spike in S-MIF, 

which is observed at approximately 2.4 Ga, is attributed to the great oxygenation event. 

This figure is adapted from Ref. 4. 
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foundation for understanding or predicting atmospheric conditions on potentially 

habitable exoplanets that pass through a similar stage of their evolution. 

1.4. Sources of S-MIF 

The reasons of S-MIF are currently unknown, but several research groups are 

actively investigating possible contributions from different processes. Primarily, they 

focus on photochemistry of sulfur compounds,15–21 gas-phase recombination reactions of 

sulfur allotropes,22,23 aerosol formation,24 surface deposition,25 and kinetic modelling of 

the outcome of all these processes acting together.26–28 Understanding each of these 

components is a challenge, but physical chemistry has much to offer for an interpretation 

of SMIF.2,29 

The idea we want to focus on in this work is to explore the chain of sulfur 

recombination reactions that are expected to play a significant role in anoxic conditions. 

In short, in the oxygen-rich atmosphere, such as we have today, photolytically produced 

sulfur atoms and diatomic molecules, S2, are quickly oxidized to sulfates, removed from 

the gas phase by rainout and dissolved in the ocean. But in anoxic conditions of the early 

Earth, sulfur recombination reactions are likely to proceed all the way up to formation 

and surface deposition of the elemental sulfur – S8. In particular, it was demonstrated 

recently22 that one step of this polymerization hierarchy, 

 S2 + S2  
+𝑏𝑎𝑡ℎ 𝑔𝑎𝑠
→         S4 (11) 

may, indeed, be responsible for the generation of large S-MIF. 

It was hypothesized that the mechanism of S-MIF is similar to that of the famous 

mass-independent fractionation of the oxygen isotopes, happening during recombination 

reactions that form ozone in the stratosphere of today’s Earth:30,31 
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 O + O2   
+𝑏𝑎𝑡ℎ 𝑔𝑎𝑠
→         O3 (12) 

1.5. Isotope Effects in Ozone 

In 1981 mass-independent fractionations of ozone,32,33 similar to those observed 

in sulfur, were discovered in the atmosphere of Earth by Mauersberger.34 In 1983 

Thiemens and Heidenreich managed to reproduce the observed effect in laboratory 

experiments and showed that it is mass-independent (same for 17O and 18O),35 and, later 

on, Mauersberger and coworkers proved decisively that the ozone recombination reaction 

(Eq. (12)) alone is responsible for the O-MIF.36 

Let us look at the ozone recombination reaction in more details. One can consider 

several different variations of it, when a single isotopic substitution with 18O is 

introduced. Asymmetric ozone 16O16O18O can be formed in two distinguishable 

pathways, called A and B: 

 16O + 16O18O   
     𝐴     
→      16O16O18O   

     𝐵     
←      16O16O + 18O (13) 

For the symmetric ozone molecule 16O18O16O both options are indistinguishable 

and called S: 

 16O + 18O16O   
     𝑆     
→      16O18O16O   

     𝑆     
←      16O18O + 16O (14) 

Similar labels can also be introduced for the doubly-substituted case: 

 18O + 18O16O   
     𝐴     
→      18O18O16O   

     𝐵     
←      18O18O + 16O (15) 

 18O + 16O18O   
     𝑆     
→      18O16O18O   

     𝑆     
←      18O16O + 18O 

(16) 

The reactions 13-16 can be written with 17O in place of 18O too, since oxygen has 

three stable isotopes: 16O, 17O and 18O with the corresponding abundances of 99.76%, 

0.04% and 0.2%.37 
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Note that the zero-point energy of reagents is different in pathways A and B since 

masses of 16O18O and 16O16O are different. Heavier species have lower zero-point energy, 

so in the singly-substituted case dissociation channel A opens earlier than B, while it is 

vice versa for the doubly-substituted case. The energy difference between channels A and 

B is referred to as ΔZPE. 

The experiments conducted by Janssen et al.38 in early 2000s allowed to measure 

reaction rates for each pathway separately, which revealed a strong correlation between 

the reaction rates and the amount of ΔZPE, as shown in Figure 6 (reproduced from Ref. 

39). One can see that the reactions going through the lower pathways (A for the singly-

substituted, and B for the doubly-substituted) are substantially faster than those going 

through the upper pathways. The correlation between the relative reaction rate 

coefficients and the amount of ΔZPE between the pathways A and B (taken with the 

positive sign for the lower pathways and the negative sign for the upper pathways) is 

called ζ-effect or ΔZPE-effect. 

Numerically, ζ-effect is measured as a reaction rate coefficient of a faster pathway 

relative to a slower pathway, which, essentially, represents dissimilarity between the two 

pathways:

 휁 =
𝜅𝑓𝑎𝑠𝑡

𝜅𝑠𝑙𝑜𝑤
 (17) 

where 𝜅𝑓𝑎𝑠𝑡 corresponds to the reaction rate constant of pathway A in the singly-

substituted case and pathway B in the doubly-substituted case, and 𝜅𝑠𝑙𝑜𝑤 is the reaction 

rate constant of the other pathway.Experimentally measured values of ζ-effect are 
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approximately equal to ζ = 1.55 and ζ = 1.63 for the singly- and doubly-substituted ozone 

molecules respectively.38  

Another effect that one can notice in Figure 6 is the deviation of reaction rate 

constants of the symmetric ozone species from the trend set up by the asymmetric ozone 

reaction rate constants dependency on ΔZPE. This effect is called η-effect.30,40–42 

Quantitatively, η-effect is defined as amount of difference between the linear 

prediction set up by the ΔZPE-trend and the actual reaction rate constants: 

 휂 =
(𝜅𝑓𝑎𝑠𝑡 + 𝜅𝑠𝑙𝑜𝑤)/2

𝜅𝑠𝑦𝑚
 (18) 

 
Figure 6. Isotope effects in ozone. Squares and rhombs mark pathways A and B, 

respectively. Green color corresponds to the 16O16O18O molecule, red to the 18O18O16O 

molecule, and blue to the 16O16O17O molecule. Horizontal axis shows the value of ΔZPE 

for the other pathway relative to the considered one. Vertical axis shows reaction rate 

coefficients relative to the unsubstituted ozone reaction rate coefficient. All symmetric 

ozone species are represented by the black dot. This figure is reproduced from Ref. 39. 
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where the meaning of 𝜅𝑓𝑎𝑠𝑡 and 𝜅𝑠𝑙𝑜𝑤 is the same as in Eq. (17) and 𝜅𝑠𝑦𝑚 is the reaction 

rate constant for the symmetric ozone species. The reaction rate constants for all varieties 

of symmetric ozone, including unsubstituted, singly-, doubly- and even triply-substituted 

species, are all very similar and are represented by a single black dot in Figure 6. 

Experimentally measured values of η-effect are nearly identical in both singly- 

and doubly-substituted case and are approximately equal to η = 1.16.38,43 

The experimental values of ζ-effect and η-effect have never been reproduced with 

adequate precision in theoretical calculations, despite many attempts made by different 

research groups. Although satisfactory explanation of the effects does not exist, some 

useful insights can be gained from the existing studies.44 In particular, it was shown that 

purely classical trajectories cannot explain the effects,41,45,46 so the origin has to be 

quantum mechanical. 

Several existing quantum mechanical studies of ozone47–50 conclude that ZPE 

difference between pathways A and B and properties of scattering resonances, especially 

Feshbach resonances,51 could be the key to the explanation. Another possible source 

could be in the process of stabilization of metastable ozone species by collision with a 

bath-gas.52,53 Nevertheless, the origin of the effects remains a mystery and the search 

continues. 

1.6. Objectives and the Structure of This Dissertation  

The ultimate goal of this work is to investigate possible sources of S-MIF and O-

MIF and estimate magnitudes of their contributions to the overall effect. Each chapter is 

focused on a particular aspect of this global problem. The content of this document is 

structured as follows: 
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Chapter 2 is dedicated to the electronic structure calculations for tetrasulfur (S4). 

First, the simplest possible model is considered at low energies in the vicinity of the 

isomerization pathway. Two degrees of freedom are included in this model: S2–S2 

distance R and the gearing motion angle α. The double-bond lengths are fixed, and all 

atoms are restricted to a single plane. Potential energy surface calculations are carried out 

at the CCSD(T)-F12a/VTZ-F1254,55 level of theory for a 2D-grid of points, and the PES is 

built using bi-cubic spline interpolation. The global PES up to the dissociation limit of 

S4 → S2 + S2 is explored using the multi-reference configuration interaction (MRCI) 

method.56–58 In these calculations a new degree of freedom, the second bending angle, is 

incorporated, which is important for the configurations outside of the isomerization 

pathway, at higher energies. 

In Chapter 3, the focus is on the calculation of the vibrational states of S4 using 

the computed 2D PES. We conducted accurate quantum calculations of vibrational states 

of S4 in the energy range up to 2000 cm-1 above the C2v minimum, which is well above 

the D2h transition state energy. These calculations were done using a custom computer 

code written in Fortran, which I developed from scratch. The calculations on the 3D PES 

will be a subject of a future work. 

In Chapter 4, we develop general theory of coupled rotation-vibration calculations 

in APH coordinates, derive analytical the matrix element expressions where possible, and 

provide practical advices about possible implementations of this theory. The developed 

theory is further applied to ozone isotopomers to study possible sources of the isotope 

effects in Chapters 5-8. The theoretical framework developed in this chapter is general 
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and can be applied to any three-atomic systems. Application to systems other than ozone 

is considered in Chapter 9. 

In Chapter 5, we present the results of accurate calculations of bound vibrational 

states up to the dissociation threshold for without overall rotation (𝐽 = 0) in singly- and 

doubly-substituted ozone molecules, to figure out whether the ratio between the number 

of purely vibrational states in asymmetric and symmetric molecules is different from 

statistical expectations. Analysis of these spectra suggests that the ratio between the 

number of states in asymmetric and symmetric ozone molecules may be a factor 

contributing to the η-effect during the stabilization of the metastable ozone species. 

In Chapter 6, we investigate the effect of rotation-vibration coupling on spectra of 

bound states in singly- and doubly-substituted ozone molecules with excitations up to 𝐽 =

5 and both inversion parities. The roles of the asymmetric-top rotor term and the Coriolis 

coupling term are determined individually, and it is found that they both affect these 

splittings, but in the opposite directions. Thus, the two effects partially cancel out, and the 

residual splittings are relatively small. Splittings between the states of different parities 

are calculated and analyzed. Analytical extrapolation of the splittings and their effect on 

larger values of 𝐽 is discussed. The computed spectra are used to estimate consequences 

of rotation-vibration coupling in bound states for the isotope effects in ozone. 

In Chapter 7, we study the role of rotation-vibration coupling for scattering 

resonances above the dissociation threshold for all values of the total angular momentum 

J from 0 to 4. To make these calculations numerically affordable, a new approach is 

developed, which employs one vibrational basis set optimized for a typical rotational 

excitation to run coupled rotation-vibration calculations at several desired values of 𝐽. In 
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order to quantify the effect of Coriolis coupling, new data are contrasted with those 

computed using the symmetric-top rotor approximation, where the rotation-vibration 

coupling terms are neglected. Implications of rovibrational coupling in the resonance 

spectra of ozone for the isotope effects are discussed. 

In Chapter 8, we devise a new method of partial coupling that allows to 

approximately take into account the effects of rotation-vibrational coupling for large 

values of 𝐽. The partially coupled approach enables the calculations of scattering 

resonances above dissociation threshold for large values of total angular momentum, J = 

24 and 28, which permits to quantify the role of Coriolis effect at room temperature. 

Once again we study the implications of rovibrational coupling in this regime to the 

isotope effects in ozone molecules. 

In Chapter 9, we generalize the program that we developed for ozone 

(SpectrumSDT) and make it applicable to other three-atomic systems. SpectrumSDT is 

capable of calculations of energies and lifetimes of bound rotational-vibrational states 

below and scattering resonances above the dissociation threshold on a global potential 

energy surface of a triatomic system, which may include stable molecules, weekly-bound 

van-der-Waals complexes, and unbound atom + diatom scattering systems. All options 

considered in Chapters 5-8 for ozone are generalized and can be used for other systems. 

A benchmark calculation of sulfur dioxide (SO2) is considered. 

In Chapter 10 an overall summary of the work and future plans are laid out. 
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CHAPTER 2. ELECTRONIC STRUCTURE CALCULATIONS FOR 

TETRASULFUR 

In this chapter we consider ab initio calculation of potential energy surface (PES) 

for tetrasulfur in reduced dimensionality (2D and 3D), using different methods. The 2D 

PES is further used in Chapter 3 to compute and analyze vibrational states of tetrasulfur. 

As it was suggested in the work of Babikov et al.,22 the sulfur recombination 

reaction (11) is one of the possible candidates for a major source of S-MIF contribution. 

Before we can study this reaction, we need to have a global potential energy surface 

(PES) for it. As of present, no accurate potential energy surfaces for sulfur allotropes 

exist beyond S2, so the first step we need to undertake is to compute one. We will start 

with an overview of the existing electronic structure calculations for S4, which will serve 

as a useful benchmark for our own PES. 

2.1. Overview of the Existing Electronic Structure Calculations for the 

Sulfur Species 

For S2, calculations by Francisco and coworkers at CCSD(T)59,60 level of theory 

with large basis sets and extrapolation to the complete basis set (CBS) limit gave the 

double-bond length, vibrational and rotational constants, and dissociation energy,61,62 all 

in an excellent agreement with experimental spectroscopic and thermochemical data. 

Calculations at the multi-reference configuration interaction (MRCI) level gave very 

similar results for S2,
23,63 but also permitted to construct its potential energy curve up to 

the dissociation limit. Such diatomic potentials were employed64 in classical trajectory 

simulations of recombination reaction 

 S + S 
+𝑏𝑎𝑡ℎ 𝑔𝑎𝑠
→         S2 (19) 
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and in a more recent study,23 where all ro-vibrational states of S2 (bound states up to the 

dissociation threshold and scattering resonances above it) were accurately computed and 

used in a quantum mechanical model for the reaction (3), to explore a possible source of 

S-MIF. In both cases argon was considered as bath gas, but it should be emphasized that 

interaction of Ar with the sulfur atoms in S2 was introduced in a pairwise-additive 

fashion, which is a computationally cheap and approximate method. 

For S3, both CCSD(T) and MRCI calculations of electronic structure were carried 

out to determine its geometry and energetics,62,63 and it was found that their results agree 

well. MRCI method was further used to compute one-dimensional slices through the PES 

of S3 (for the ground and excited electronic states, to provide some insights into its 

photochemistry),63 whereas CCSD(T) method was employed to construct a simplified 

PES for the chaperon mechanism of recombination (in a bath of argon):65 

 S + S2  
 +𝑏𝑎𝑡ℎ 𝑔𝑎𝑠   
→        S3 (20) 

Again, it should be stressed that a pairwise-additive description of interaction was 

employed, with separately computed three-body interaction terms added, and four-body 

interaction neglected. No accurate global PES was constructed. 

For S4, an emphasis was on identification of the lowest energy conformer. It was 

demonstrated recently, based on CCSD(T) calculations with large basis sets and the CBS 

extrapolation, that the global minimum of the singlet PES of S4 corresponds to an 

isosceles trapezoidal C2v structure,66 rather than to several other existing isomers.67 The 

structure and energetics of S4 predicted at CCSD(T) and MRCI levels66 are in an 

excellent agreement with experimental data. 
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The same computational study66 reported a transition state, where S4 has 

rectangular D2h shape, just 790 cm-1 above the minimum energy point. It was suggested 

that this low-energy transition state connects two energetically equivalent C2v structures, 

as indicated in Figure 7. 

The process of isomerization between the two C2v wells was in a focus of another 

study,68 where classical trajectory simulations, with gradients computed on-the-fly using 

DFT method, were launched to predict vibrational frequencies of S4. It was concluded 

that interconversion between the two isomers should occur readily at the room 

temperature, but careful reading of the paper reveals that the barrier height in the DFT 

calculations was lower, almost by a factor of 2, compared to the accurate benchmark 

CCSD(T) calculations of Ref. 66. Moreover, it is hard to justify the use of the classical 

trajectory method for a description of a process where four vibrational modes (out of six 

in S4) must remain at their zero-point energy level, and the two other modes may only 

receive one quantum of excitation. At such conditions, quantum dynamics calculations of 

 
Figure 7. The two energetically equivalent minima and the transition state of the tetra-

sulfur. The dimer-dimer distance R and the bending angle  are the two degrees of 

freedom varied in this work to compute a dimensionally-reduced PES of S4. 
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vibrational motion are indispensable, but those would require a PES, which was not 

constructed in Ref. 68. 

2.2. Benchmarking of the Ab Initio Methods 

In this section we compare the results of several ab initio method and basis sets, 

and decide which method is the most appropriate for calculation of the PES. 

Before computing the actual PES, we tested several levels of electronic structure 

theory by optimizing the C2v and the D2h geometries of S4. Following the benchmark 

study of Ref. 66 by Francisco and coworkers, we repeated their CCSD(T) calculations 

with gradually increasing size of the basis set: aV(T+d)Z, aV(Q+d)Z and aV(5+d)Z. In 

addition, we carried out calculations at the CCSD(T)-F12a/VTZ-F1254,55 level of theory, 

since it is known that the explicitly correlated methods generally provide faster 

convergence towards the CBS limit. The “a” version of the method was chosen according 

to a general recommendation on the MOLPRO’s website. All calculations were done 

using MOLPRO69,70 suit of electronic structure programs. 

Tables 1 and 2 summarize optimized geometric parameters of the C2v and the D2h 

structures of S4, including the lengths of the double bonds S=S, the length of the single 

bond S−S, the bending angle , and the diatomic-diatomic distance R (introduced above 

and in Figure 7). 
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The first two rows of each table indicate that our CCSD(T) results are nearly 

identical to those of Francisco and coworkers (given in brackets for comparison). 

Comparison of the third and fourth rows of each table indicates that the results of the 

explicitly-correlated F12 method with a relatively small basis set VTZ, are close to the 

standard coupled-cluster results, obtained with a very large basis set aV(5+d)Z. 

Moreover, our F12 calculations were a factor of seven faster than the 

CCSD(T)/aV(5+d)Z calculations, which is another argument in favor of the explicitly-

correlated approach. 

Comparison with experimental data,71,72 available for the minimum energy point 

(C2v), indicates that our predictions obtained with the F12 method are off by just 0.005 

Table 1. Geometric parameters of the equilibrium point of S4 (C2v). 

Method S=S (Bohr) S-S (Bohr) 𝜶 (deg) R (Bohr) 

CCSD(T)/aV(T+d)Z 3.6188 (3.6188) 4.0857 (4.0862) 104.25 (104.25) 4.9765 (4.9769) 

CCSD(T)/aV(Q+d)Z 3.6024 (3.6026) 4.0391 (4.0389) 104.65 (104.64) 4.9502 (4.9494) 

CCSD(T)/aV(5+d)Z 3.5955 4.0310 104.55 4.9343 

CCSD(T)-F12a/VTZ-F12 3.5949 4.0491 104.24 4.9336 

Experiment71 3.5899 4.1070 103.98 4.9742 

Experiment emp.72 3.5876 4.0726 104.22 4.9538 

Table 2. Geometric parameters of the transition state of S4 (D2h). 

Method S=S (Bohr) S-S (Bohr) 𝜶 (deg) R (Bohr) 

CCSD(T)/aV(T+d)Z 3.5944 (3.6128) 4.8393 (4.8583) 89.96 (90.00) 4.8366 (4.8583) 

CCSD(T)/aV(Q+d)Z 3.5772 (3.5773) 4.8102 (4.8027) 89.88 (90.00) 4.8024 (4.8027) 

CCSD(T)/aV(5+d)Z 3.5714 4.7926 89.88 4.7851 

CCSD(T)-F12a/VTZ-F12 3.5710 4.7956 89.97 4.7939 
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(0.007) Bohr for the double-bond length, by 0.058 (0.024) Bohr for the single-bond 

length, and by 0.26 (0.02) degree for the bending angle, where the numbers in the 

brackets correspond to deviations from the empirically corrected experimental data. 

Finally, comparison of the double-bond length S=S in Table 1 and Table 2 

indicates that, by going from the C2v to the D2h geometry, it changes by just 0.024 Bohr, 

according to our F12 calculations (in fact, exactly the same change is predicted at the 

CCSD(T)/aV(5+d)Z level of theory). 

Energies of critical points on the PES of S4, relative to the minimum energy point 

(C2v), computed using same four levels of the electronic structure theory are presented in 

Table 3. The second column of Table 3 gives energy of the transition state point in D2h 

geometry, third column gives dissociation energy of S4 computed as energy of isolated S2 

(in a triplet state) multiplied by two. These two columns, again, emphasize nearly perfect 

agreement of our results with the benchmark data of Francisco and coworkers (given in 

brackets for comparison) at the CCSD(T) level, except small differences by few 

wavenumbers in the case of the largest basis set. 

Table 3. The relative energies of the critical points on the PES of S4 (cm-1). 

Method S4 (D2h) 
2×S2 

(triplet)a 

S2+S2 

(singlet) 

2×S2 

(singlet) 

S2+S2 

(quintet)a 

CCSD(T)/aV(T+d)Z 613.65 (613.65) 7082.45 (7082.45) 19361.90 19361.76 7082.45 

CCSD(T)/aV(Q+d)Z 748.69 (748.69) 7896.90 (7896.71) 19993.77 19993.63 7896.89 

CCSD(T)/aV(5+d)Z 766.89 (768.82) 8236.04 (8232.28) 20269.29 20269.43 8236.03 

CCSD(T)-F12a/VTZ-

F12 
690.46 8853.45 20546.95 20546.79 8853.46 

a) The unrestricted open-shell version of the coupled-cluster was used for non-singlet systems. 
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Comparing results obtained with different methods one can see that transition 

state energy predicted by our F12 calculations with relatively small basis set is closer to 

result of CCSD(T)/aV(Q+d)Z (see Table 3). Namely, at the CCSD(T)-F12a/VTZ-F12 

level of theory transition state energy is 690.46 cm-1, which is 100 cm-1 below the value 

derived by Francisco and coworkers in the CBS limit based on two-point extrapolation. 

This seems to be acceptable, taking into account much lower cost of our calculations and 

the goal of covering large range of molecular shapes on the PES. Dissociation energy of 

S4 (derived as 2×S2, column 3 of Table 3) from our F12 calculations is 8853.45 cm-1, 

which is closer to prediction of CCSD(T)/aV(5+d)Z. It exceeds the CBS limit of 

dissociation energy from Francisco and coworkers by only 269 cm-1. This, again, attests 

for good accuracy of the explicitly-correlated approach, even when used with small basis 

set. The double-bond length in calculations for one individual S2 is r = 3.5788 Bohr, at 

the UCCSD(T)‑F12a/VTZ-F1273–75 level of theory. Note that this value differs from the 

double-bond lengths in the equilibrium C2v structure by 0.016 Bohr only (see Table 1). 

However, one has to realize that although the data for an isolated S2 are useful for 

thermochemical predictions, they are useless for construction of the global PES up to 

dissociation limit, where bond breakage should be described by calculations for S2+S2 

super-molecule, in the overall singlet state. Thus, for the 2D-PES (discussed in the next 

section) dissociation energy for S4 ⟶ S2 + S2 is found to be 20553.67 cm-1, which 

overshoots the actual value by a factor of almost three. In fact, this failure is to be 

expected since it is well known that coupled-cluster theory, which is a single-reference 

approach, cannot be used to describe bond-breaking. 
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In order to investigate what this high-energy dissociation limit corresponds to, we 

carried out several additional calculations for super-molecule S2+S2 with dimer-dimer 

distance set to 20 Å, and double bonds allowed to relax. Results are also presented in 

Table 3, and they, indeed, indicate dissociation energy on the order of 20000 cm-1. 

Looking at occupancy numbers of orbitals in these calculations we realized that the 

overall singlet state of the super-molecule is attained by placing each S2 dimer into a 

singlet state (with all electrons paired, in contrast to the usual triplet configuration of the 

ground state of S2 with two unpaired electrons). Thus, this high-energy dissociation 

threshold is an artifact of the closed-shell coupled-cluster method. 

To solidify this conclusion, we also derived dissociation energy of S4 as energy of 

an isolated S2 in its singlet state, multiplied by two. As expected, results obtained in this 

way were nearly identical to those for S2+S2 super-molecule in the singlet state (see Table 

3). Also, we carried out calculations for S2+S2 super-molecule in the overall quintet state, 

in order to restrict each S2 dimer to its triplet configuration with two unpaired electrons. 

These calculations give correct prediction of dissociation energy, as one can see from 

Table 3. Optimized length of double-bonds in the super-molecule at F12 level of theory is 

3.6053 Bohr which is only 0.01 Bohr longer than in the C2v minimum of S4, which, again, 

supports the frozen-bond approach for construction of the PES. 

Our conclusion is that the coupled-cluster PES of singlet S4 constructed in this 

work should be restricted to a reasonable vicinity of the equilibrium point and should not 

be used close to dissociation limit. Thus, we carry out calculations of vibrational states in 

S4 up to energy of 2000 cm-1. This is well above the D2h transition state energy but is well 

below the dissociation limit. 
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2.3. PES Dimensionality Considerations 

In this section we decide which degrees of freedom are to be included in our 

dimensionally-reduced model of PES. 

Construction of a global PES for a tetra-atomic system is a challenging task,76,77 

which requires massive electronic structure calculations and state-of-the-art fitting 

techniques for the six internal vibrational degrees of freedom.78–80 It is known, however, 

that rather useful insights can often be obtained based on a reduction of dimensionality in 

the problem.81–84 

First, the data in Table 1 and Table 2 show that the double bond lengths change 

very little, just by 0.024 Bohr between the C2v and the D2h structures and even less in 

comparison with the dissociation limit value. Thus, we can neglect this small change and 

use, for the whole surface, one fixed value of r = 3.5949 Bohr, optimized for the C2v 

configuration. This eliminates two degrees of freedom. 

To make further assumptions, we explored the isomerization path by doing 

geometry optimizations at several intermediate points between the minimum (C2v) and 

the transition state (D2h). The results of these optimizations are summarized in Table 4. It 

shows that the minimum energy path goes through a planar configuration with both 

bending angles staying nearly equal (the maximum deviation is ~ 2°). 
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In addition to this we carried out scans along the torsional angle for the same five 

points (the minimum, the transition state, and the three points in between). The results are 

Table 4. Optimized geometry parameters for different values of α1 along the 

isomerization pathway, computed at the CCSD(T)-F12a/VTZ-F12 level of theory. See 

Figure 8 for the definitions of these parameters. 

 
𝜶𝟏 = 90.00° 

(trans. state, D2h) 
𝜶𝟏 = 93.56° 𝜶𝟏 = 97.13° 𝜶𝟏 = 100.69° 

𝜶𝟏 = 104.24° 
(minimum, C2v) 

𝜶𝟐, degree 90.00 95.12 99.14 102.02 104.24 

R, Bohr 4.7939 4.7985 4.8200 4.8623 4.9334 

𝒓𝟏, Bohr 3.5710 3.5737 3.5805 3.5881 3.5949 

𝒓𝟐, Bohr 3.5710 3.5747 3.5819 3.5893 3.5949 

𝜷, degree 0.00 0.00 0.00 0.00 0.00 

 
Figure 8. All degrees of freedom in the tetra-sulfur system. r1 and r2 are the internuclear 

distances in each S2 dimer. R is the distance between the centers of mass of the two 

dimers. α1 and α2 are the bending angles between r1 and R, and r2 and R, correspondingly. 

The last degree of freedom, a torsional angle β (not shown) is defined as angle between 

the planes formed by segments (r1,R) and (R,r2). 
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summarized in Figure 9. One can see that the minimum energy point always corresponds 

to 0 degrees torsion (coplanar) and no other minima are observed in the significant 

energy range above that (about 10kT at room temperature). The same conclusion is also 

supported based on the findings of Ref. 68, where no three‑dimensional structures were 

observed during the well-to-well isomerization process. 

Based on these observations, we set the torsional angle equal to 0° and forced the 

two bending angles to be equal to each other, thus eliminating two more degrees of 

freedom. 

 
Figure 9. One-dimensional scans along the torsional angle 𝛽. Each color corresponds to a 

specific value of the “gearing” motion angle 𝛼. The value of R for each 𝛼 was 

preoptimized to make sure that each starting point belongs to the isomerization pathway. 

The double bonds were frozen at the same values as we used for the PES calculations (r 

= 3.5949 Bohr). 
   



28 
 

2.4. Bonding Character in Tetrasulfur 

The last question we want to discuss before proceeding to the PES calculations is 

bonding character (or bond order) in S4. Qualitatively, this molecule can be represented 

as a complex of two weakly-perturbed S2 molecules. Indeed, as one can see from Tables 

1 and 2, the lengths of the two double-bonds in S4 are less than 0.01 Å longer than in the 

unperturbed S2 (3.5788 Bohr at UCCSD(T)-F12/VTZ-F12 level of theory). Moreover, the 

vibrational frequency of the double-bond symmetric stretch mode in S4 (697.1 cm-1) is 

only ~4% lower than the vibrational frequency of S2 (728.8 cm-1, both obtained at the 

CCSD(T)-F12a/VTZ-F12 level of theory). One can argue that the two unpaired electrons 

in the antibonding  orbital of one S2 in a triplet state pair up with the two corresponding 

electrons of the other S2, creating two bonds in S4: one shorter and one longer. Authors of 

Ref. 66 came out with a similar conclusion and described S4 as two dimers connected by 

one single bond (as shown in Figure 7). 

However, Ref. 68 gives a picture of S4 with one double bond in the middle and 

two single bonds at the terminal atoms. This is contradictory, so we decided to count 

occupancies of the bonding, antibonding and nonbonding molecular orbitals in S4. 

We found that the two S2 dimers within S4 are connected not only by a single 

bond on one side, but also by a weaker bond on the other side, as shown in the left frame 
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of Figure 10.This longer bond in S4 has a bond order of roughly ½ and occurs due to 

several highly delocalized bonding orbitals in S4, one of which is presented in the right 

frame of Figure 10. Thus, the process of isomerization between the two C2v minima 

should not be described as a simple bending motion. Instead, it corresponds to swapping 

the shorter (single) bond with the longer bond (of the order of ½). This unusual bonding 

character has consequences for the vibrational modes in S4, as will be shown further. 

2.5. The Dimensionally Reduced PES (2D) 

In this section, we construct the first potential energy surface for S4, which covers 

two energetically equivalent C2v isomers and the D2h transition state between them. We 

use only two degrees of freedom: the distance R between center-of-mass points of the two 

S2 moieties within S4, and the bending angle , as shown in Figure 7. 

Ab initio calculations at the CCSD(T)-F12a/VTZ-F12 level of theory were carried 

out for S4 geometries in the ranges 4.0 ≤ R ≤ 8.0 Bohr and 90 ≤ 𝛼 ≤ 160°, for 2714 points. 

Along R, size of the step was 0.05 Bohr for 4.2 ≤ R ≤ 6.0 Bohr and was 0.1 Bohr outside 

   
Figure 10. One of the occupied molecular orbitals in S4. It has bonding character between 

the two most distant atoms in S4, and therefore is responsible for formation of a weak 

bond between them (roughly, an order of ½). The value of the isosurface is 0.05. The two 

coordinates used for the PES are shown in the left frame. An interpretation of bonding in 

S4 is given in the right frame, with the two weakly-perturbed S2 dimers bonded on both 

sides. 
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(59 points total). Along 𝛼, size of the step was 1° degree for 90 ≤ 𝛼 ≤ 110° and was 2° 

outside (46 points total). A simple reflection through 𝛼 = 90° was used to obtain the 

energies for the range 90 ≤ 𝛼 ≤ 160°, since the two C2v minima are energetically 

equivalent. This gave 5369 data points total, on both sides of the D2h transition state. In 

order to build a continuous PES, two-dimensional bi-cubic spline interpolation of these 

data was employed using code written by Wolfgang Schadow.85 

The PES is presented in Figure 11 as a function of two coordinates, 𝑉(𝛼, 𝑅), in 

the energy range below 𝑉 = 2000 cm-1. The two equivalent wells, similar to those 

observed in other sulfur species,86–88 are seen on the picture separated by the transition 

state at 𝛼 = 90°. The minimum is found at 𝑅 = 4.9336 Bohr, the transition state is at 𝑅 =

 
Figure 11. The 2D-PES of S4 computed at the CCSD(T)-F12a/VTZ-F12 level of theory. 

The energy range below 2000 cm-1 is shown. Deep blue color indicates the two 

equivalent wells. The narrow transition state between them appears in turquoise. Red 

color, which encircles these features, corresponds to higher energy. 
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 4.7939 Bohr (according to Table 1 and Table 2). The Fortran source files for this PES are 

available in the Supplemental Information of Ref. 89. 

The PES is clearly anharmonic and exhibits a definite double-well structure. As 

the dimer-dimer distance R is increased, the minimum energy points shift towards more 

acute trapezoidal structures, further from the rectangular shape. Closer to the energy of 

2000 cm-1 the PES acquires a very pronounced -shape. These properties indicate that 

prediction of the vibrational spectrum of S4, based on conventional normal mode analysis 

at the minimum energy point, is likely to be inaccurate. 

The 2D-model of the PES of tetrasulfur, considered in the previous section, is the 

simplest possible approximation of the tetrasulfur recombination reaction (11). Although 

it is useful as a first step, it is only suitable for the low-energy isomerization pathway 

exploration. In order to expand it to higher energies, a few changes are necessary: 

1. As the discussion after Table 3 mentions, single reference methods cannot be 

used to adequately describe bond-breaking processes, so the dissociation limit of our 2D 

PES overshoots the actual limit by a factor of almost 3. This was not a problem for the 

purposes of studying the isomerization process and properties of the low-lying states, but 

for the tetrasulfur recombination reaction (11) we need higher energy parts of the 

spectrum, so the correct dissociation limit is necessary. One way to obtain correct 

dissociation energy is to use a multi-reference method, such as Multi-Reference 

Configuration Interaction (MRCI).56–58,90 MRCI is a rigorous and powerful but expensive 

method: calculation of a single point on the PES takes up to 24 hours on a 32-core node. 

2. Outside of the plane with the isomerization pathway our geometries are not 

restricted to 2D, so we need to consider other degrees of freedom. The double-bonds 
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stretching and torsional motion are fairly harmonic (see Figure 9) and independent as 

shown in Section 3 below, so they can be approximated with an analytical model. The 

second bending angle, however, is harder to approximate analytically so in the 3D model 

we decided to make it independent. 

2.6. The Global PES of S4 (3D) 

The three-dimensional PES calculations are ongoing at MRCI+Q/aug-cc-

pV(T+d)Z level of theory with full valence active space and Davidson correction using 2-

state average, where the convergence criterion for the upper state is reduced for speedup. 

The PES is divided into two regions with different densities of the points: 

1. The “isomerization plane” 𝛼1 = 𝛼2 (the 2D PES we considered previously). 

Since this is an especially important part of the PES, the density of points is higher here. 

2. The space outside of the isomerization plane (𝛼1 ≠ 𝛼2). The density of points 

is lower here. 

The bending angles are sampled in the range 30° ≤ 𝛼1, 𝛼2 ≤ 150° with a step of 

5° in the isomerization plane and 10° outside. 

Furthermore, one can take advantage of the fact that the behavior of the PES near 

the dissociation limit is smooth and does not require as many points as in the covalent 

well region, so the step size along the R-coordinate varies as well. In the isomerization 

plane the considered values of R are 4 ≤ 𝑅 ≤ 8 Bohr with a step size of 0.1 Bohr, 8 ≤

𝑅 ≤ 12 Bohr with a step size of 0.5 Bohr and 12 ≤ 𝑅 ≤ 20 Bohr with a step size of 1 

Bohr. Outside of the isomerization plane the considered values of R are 4 ≤ 𝑅 ≤ 10 Bohr 

with a step size of 0.4 Bohr, as well as 12, 16 and 20 Bohr. 
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Distribution of points computed so far is presented in Figure 12. Note that 

because of the symmetry considerations, only the solid symbols in Figure 12 actually 

need to be computed, the rest can be obtained by symmetry reflections. Indeed, a point 

with coordinates (α1, α2) is indistinguishable from point (α2, α1). This symmetry can be 

viewed as reflection through the isomerization plane. Moreover, another kind of 

 
Figure 12. Distribution of points as viewed in the (α1, α2) plane for MRCI calculations. 

The blue circles are conditionally associated with cis-isomer, the red circles are 

conditionally associated with trans-isomer. Calculation at the hollow symbols are 

unnecessary since they are identical to one of the solid points. 
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symmetry tells us that (α1, α2) is the same as (180 – α1, 180 – α2), which represents 

inversion through the rectangular (90, 90) configuration. 

Figure 13 shows a view of the points distribution along the reaction coordinate R. 

This can be considered as a “side” view of Figure 12. The size of step along R was 

selected based on the analysis of spline interpolation behavior applied to the previously 

computed 2D surface. The points computed so far (marked blue in Figure 12 and Figure 

13) allow one to visualize the isomerization path. 

 
Figure 13. Distribution of points as viewed in the (R, α2) plane for MRCI calculations. 

The dashed black line represents the isomerization plane (α1 = α2). The points are denser 

in the covalent well region (4-10 Bohr) and more rarefied outside. The isomerization 

plane is an important region, so more points are placed in it. 
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One-dimensional slices through the isomerization path of the PES are shown in 

Figure 14. The whole isomerization plane of the PES is shown in Figure 15. 

 
Figure 14. 1D slices through the isomerization plane of the PES. 

 
Figure 15. A part of the of the PES 3D PES of S4 computed at MRCI/aug-cc-pV(T+d)Z 

level of theory. The colorbar units are in cm-1. The dissociation threshold can be seen 

clearly. 
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Another view of the surface in (𝛼1, 𝛼2)-plane, where R is relaxed is given in Figure 

16. The diagonal on this figure, where the two angles are equal, is the isomerization plane, 

which was the focus of the previously computed 2D PES. The global double-well minimum 

(dark blue) is associated with the cis-isomer of tetrasulfur. In addition to the global 

minimum, one can see that at the energies close to the dissociation threshold of tetrasulfur, 

there is a transition state, leading to a pair of secondary wells, corresponding to trans-

isomers of tetrasulfur. Analysis of the trans structures and their relevance to the 

recombination reaction of tetrasulfur is a work in progress and will be reported elsewhere. 

 
Figure 16. The 3D potential energy surface of S4 computed at MRCI/aug-cc-pV(T+d)Z 

level of theory, viewed as a function of the two bending angles 𝛼1 and 𝛼2. The values of 

R at each point are selected to minimize energy. 
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The obtained results can be used to estimate geometries and energies of the 

critical points on the global PES. Geometry parameters for the minimum energy point 

and transition state are presented in Tables 5 and 6. The first row of Table 5 shows the 

new results obtained at MRCI+Q/aug-cc-pV(T+d)Z level of theory. The numbers in 

parenthesis show analogous results, computed by Francisco and coworkers66 at the same 

level of theory. Small discrepancies in the bending angle are explained by different 

reference function: the authors of Ref. 66 retained the 50 most important configurations 

from a preceding CASSCF calculation, whereas we did not exclude any configurations. 

The remaining rows summarize the results already presented in Tables 1 and 2 

and are included here for the purpose of comparison with MRCI. One can see that the 

Table 5. Geometric parameters of the equilibrium point of S4 (C2v). 

Method S=S (Bohr) S-S (Bohr) 𝜶 (deg) R (Bohr) 

MRCI+Q/aug-cc-pV(T+d)Z 3.6230 (3.6230) 4.1592 (4.0969) 103.89 (105.26) 5.0291 (5.0505) 

CCSD(T)/aV(T+d)Z 3.6188 (3.6188) 4.0857 (4.0862) 104.25 (104.25) 4.9765 (4.9769) 

CCSD(T)-F12a/VTZ-F12 3.5949 4.0491 104.24 4.9336 

Experiment 44 3.5899 4.1070 103.98 4.9742 

Experiment emp.45 3.5876 4.0726 104.22 4.9538 

Table 6. Geometric parameters of the transition state of S4 (D2h). 

Method S=S (Bohr) S-S (Bohr) 𝜶 (deg) R (Bohr) 

MRCI+Q/aug-cc-pV(T+d)Z 3.6230a 4.9767 90.00 4.9767 

CCSD(T)/aV(T+d)Z 3.5944 (3.6128) 4.8393 (4.8583) 89.96 (90.00) 4.8366 (4.8583) 

CCSD(T)-F12a/VTZ-F12 3.5710 4.7956 89.97 4.7939 

a) The length of double-bond is frozen in our calculations 



38 
 

geometries obtained with MRCI are a little further from the experiment as compared to 

those, obtained with the coupled-cluster methods. 

Table 6 shows somewhat scarcer information available for the geometries of the 

transition state of S4. The authors of Ref. 66 did not present results of MRCI calculations 

for the transition state, so only our results are shown. Note, that the value of double-bond 

length is the same as for the minimum energy point. This is because the double-bond 

length was frozen in our PES calculation, so this value was not optimized and given for 

comparison purposes. 

The relative energies of the critical points on the PES of S4 are given in Table 7. 

One can see the main advantage of MRCI method: the dissociation limit, given in column 

3, has a reasonable value now. The computed results are in good agreement with a similar 

MRCI calculation carried out by Francisco and coworkers66 (given in parenthesis), as 

well as with the results of coupled-cluster method with the same basis set. 

The coupled-cluster results, extrapolated in Ref. 66, to 8219.2 cm-1 and 8390 cm-1 

at 298 K using DTQ and Q5 extrapolations respectively, are close to the experimentally 

measured value of 9275 ± 715 cm-1, which allows to conclude that the MRCI results are 

reasonable at 0 K for this basis set. 

Table 7. The relative energies of the critical points on the PES of S4 (cm-1). 

Method Isomerization energy Dissociation energyb 

MRCI+Q/aV(T+d)Z 637.90 7288.25 (7205) 

CCSD(T)/aV(T+d)Z 613.65 (613.65) 7082.45 (7082.45) 

CCSD(T)-F12a/VTZ-F12 690.46 8853.45 

a) The unrestricted open-shell version of the coupled-cluster was used for non-singlet systems. 

b) Computed as 2 x S2
 for coupled cluster methods and S2 + S2 supermolecule for MRCI 
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2.7. Summary 

In this chapter, we carried out ab initio calculations for the tetra-sulfur molecule, 

S4, with a goal to understand its electronic structure in the double-well region of the PES. 

Two potential energy surfaces were considered. The first one is the simplest possible 2D 

model, focused on the understanding of the isomerization pathway structure. Two 

degrees of freedom were taken into account: the dimer-dimer distance R, and the gearing 

motion angle α. Based on careful benchmarking against earlier calculations by other 

authors, we have chosen the CCSD(T)-F12a/VTZ-F12 level of theory (within the 

MOLPRO program), as a compromise between accuracy and speed of calculations. To 

the best of our knowledge, this 2D-PES is the first ever constructed. The Fortran source 

files for this PES are available in the Supplemental Information of Ref. 89. 

One interesting finding of this work is the interpretation of bonding character in 

S4. We noticed that the two weakly-perturbed S2 dimers (within S4) are connected by two 

bonds on their both sides, forming a trapezoidal structure, which can be viewed as an 

intermediate between a closed ring with two equal bonds, and an open cis-isomer with 

only one single bond between the two S2 dimers. The newly identified bond is longer and 

weaker (the bond order is roughly ½) than the other single bond in S4, but it has 

important implications for the vibrational motion of S4. 

The second model of the PES is focused on the global description of the 

tetrasulfur recombination reaction (11) up to the dissociation threshold. The calculations 

of the second PES are ongoing at the MRCI/aug-cc-pV(T+d)Z level of theory, which is 

required to adequately calculate electronic energy in the region of bond dissociation. The 
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second bending angle is introduced for this surface, which raises the dimensionality to 

3D. 

This surface will offer a theoretical prediction of the density of states near the 

dissociation threshold and above it. Using this information one can compute reaction rate 

constants and equilibrium constants, which allows to estimate the magnitude of isotope 

fractionations given by Eqs. (7) and (10) in the Introduction. 
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CHAPTER 3. VIBRATIONAL STATES CALCULATIONS FOR 

TETRASULFUR 

In this chapter we consider calculation and analysis of vibrational states on 2D 

potential energy surface (PES), constructed in Chapter 2 for tetrasulfur.89 The computed 

states are used to compare with the existing data to estimate accuracy of dimensionally-

reduced approach and determine further research directions. 

3.1. Methodology of Calculation of the Vibrational States 

We solve numerically the time-independent Schrodinger equation for the 

vibrational motion in two dimensions, �̂� 𝜓(𝛼, 𝑅) = 𝐸 𝜓(𝛼, 𝑅), where the Hamiltonian 

operator �̂� = �̂� + 𝑉(𝛼, 𝑅) contains the 2D-PES discussed in the last section. The two 

degrees of freedom are introduced to describe the distance 𝑅 between the centers of mass 

of the two S2 dimers within S4, and simultaneous symmetric bending of the two dimers, 

denoted 𝛼 (the gearing motion). The higher frequency vibration of S2 dimers is neglected 

(they are kept rigid), and the motion of all the atoms is restricted to one plane. The 

overall rotation of S4 is not included (J = 0). Then, a kinetic energy operator is:91 

 �̂� = �̂�𝑅 + �̂�𝛼 = −
ℏ2

2𝜇

𝜕2

𝜕𝑅2
− 2

ℏ2

2𝐼

𝜕2

𝜕𝛼2
 (21) 

Here, the first term describes relative motion of the two dimers. Reduced mass 𝜇, 

in the case of all equal masses (e.g., the same most abundant isotope 32S), appears to be 

equal to the mass of one sulfur atom: 

 𝜇 =
𝑚S2𝑚S2

𝑚S2 +𝑚S2

=
𝑚S2

2
= 𝑚S (22) 
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The second term of the kinetic energy operator describes rotations of the two 

dimers, each around its center of mass, by the same angle 𝛼, all in one plane. The 

moment of inertia I of each diatomic, in the case of equal masses, is given by 

  𝐼 = 2𝑚S (
𝑟

2
)
2

=
1

2
𝑚S𝑟

2 (23) 

where 𝑟 is the bond length of the diatomic moiety. The factor of 2 in Eq. (23) is because 

there are two atoms in each dimer, while the factor of 2 in front of the second kinetic 

energy term in Eq. (21) is due to the two simultaneously rotating dimers. 

A computational approach we adopted includes the Sequential Diagonalization 

Truncation (SDT) technique,92,93 which allows to greatly reduce the size of the 

Hamiltonian matrix. First, we generate a grid of N points along 𝑅. For each point n on the 

grid, we make a slice of the PES along coordinate 𝛼, named 𝑉𝑛(𝛼) = 𝑉(𝛼, 𝑅𝑛), and solve 

the one-dimensional Schrodinger equation for the motion along this slice: 

  ℎ̂𝑛 𝜙𝑘
𝑛(𝛼) = 휀𝑘

𝑛 𝜙𝑘
𝑛(𝛼) (24) 

where ℎ̂𝑛 = �̂�𝛼 + 𝑉𝑛(𝛼) is the corresponding 1D Hamiltonian operator. Index k labels 

1D-solutions within a given slice n, which includes the energies 휀𝑘
𝑛 and the wave 

functions 𝜙𝑘
𝑛(𝛼). 
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Some examples of one-dimensional solutions in a slice through the transition state 

are shown in Figure 17. One can see how the spectrum evolves as it transitions from the 

double-well behavior to the global single-well behavior. At low energies, the 

antisymmetric and symmetric states are nearly degenerate. However, above the 

isomerization barrier (starting from the third quantum of excitation), non-negligible 

splittings appear and intensify as the states move higher in energy, gradually 

transforming the spectrum character into that of the classical single-well harmonic 

oscillator, where symmetric and antisymmetric states alternate. If Ψ𝑎 and Ψ𝑏 are the 

“solutions” in each well, then the global symmetric and antisymmetric solutions can be 

thought of as 
1

√2
(Ψ𝑎 +Ψ𝑏) and 

1

√2
(Ψ𝑎 −Ψ𝑏), respectively. 

Couplings between different values of 𝑅 are contained in an overlap matrix: 

 𝑂𝑘𝑙
𝑛𝑚 = ⟨ 𝜙𝑙

𝑚| 𝜙𝑘
𝑛 ⟩ (25) 

These couplings are taken into account at the second step of the calculations, 

when the 1D wave functions  𝜙𝑘
𝑛(𝛼) from all the slices 𝑅𝑛 are collected and used to form 

 
Figure 17. Example of series of 1D solutions in a slice through the transition state. The 

symmetric and antisymmetric solutions are shown on the left and right frame, 

respectively. The green line is the potential energy in the slice. 
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an efficient (locally optimal) basis for representation of the overall 2D Hamiltonian 

matrix:93 

 𝐻𝑘𝑙
𝑛𝑚 = 𝑂𝑘𝑙

𝑛𝑚 × 𝑇𝑅
𝑛𝑚 + 𝛿𝑘𝑙

  𝛿𝑛𝑚
  휀𝑘

𝑛 (26) 

Here, 𝑇𝑅
𝑛𝑚 is a matrix element of the kinetic energy operator �̂�𝑅 in the DVR basis 

(which is a grid of N points 𝑅𝑛) and 𝛿 is the Kronecker symbol. A block-structure of the 

overall Hamiltonian matrix 𝐻𝑘𝑙
𝑛𝑚 was discussed in detail in Ref. 94. It has the same size 

as 𝑂𝑘𝑙
𝑛𝑚 and is obtained from it by multiplying each its 𝑅-blocks with the corresponding 

matrix element 𝑇 𝑅
𝑛𝑚, and then adding to each diagonal element the corresponding value 

of the one-dimensional energy 휀𝑘
𝑛. 

Efficient reduction of the Hamiltonian matrix size is achieved by truncating the 

number of the basis functions 𝜙𝑘(𝛼) in each slice, independently, using one global value 

of cut-off energy. In this work, only the functions with  휀𝑘
 <  8000 cm-1 were included in 

the basis. Closer to the edges of the grid, where the energies are high and no states with 

 휀𝑘
 <  8000 cm-1 are present at all, ten lowest energy states were still retained in each 

slice. 
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This process is reflected in Figure 18. One can see that at the edges of the grid we 

have very few basis functions, while in middle of the grid, in the region of deep covalent 

well, many basis functions are retained. This allows to optimize the size of the 

Hamiltonian matrix by keeping more solutions only in the regions where higher 

flexibility is needed. 

The resultant Hamiltonian matrix was diagonalized using LAPACK95 software, to 

obtain the energies 𝐸 and the wave functions 𝜓(𝛼, 𝑅) of the 2D-states. 

The one-dimensional Schrodinger equation for 𝛼 (at each value of 𝑅) was solved 

using a VBR of cosine or sine functions.94 Namely, for the antisymmetric solutions we 

used: 

 𝜙(𝛼) =∑𝑎𝑗  𝑓𝑗(𝛼)

𝑀

𝑗=1

 (27) 

 
Figure 18. One-dimensional energies computed in each slice along the reaction 

coordinate R. The blue curve represents the minimum energy path along R. Red dots 

show 1D energies for each value of R in the grid. Cut-off value of 8000 cm-1 is shown 

with the dashed line. 
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 𝑓𝑗(𝛼) =
1

√𝛼𝑚𝑎𝑥

sin {
𝜋𝑗

𝑎𝑚𝑎𝑥
(𝛼 − (90 − 𝛼𝑚𝑎𝑥))} (28) 

Similar definitions are used for the symmetric solutions, except that cos{… } 

functions are used instead of the sin{… } and the first function of the symmetric basis set 

is 𝑓0(𝛼) = 1/√2𝛼𝑚𝑎𝑥 . The range of 𝛼 around the symmetry plane is determined by one 

parameter: 𝛼 ∈ 90° ± 𝛼𝑚𝑎𝑥. We set 𝛼𝑚𝑎𝑥 = 70°, which gives the overall grid range 20 ≤ 

𝛼 ≤ 160°, same as for the PES. The basis set size M is a convergence parameter. In this 

basis set, elements of the 1D Hamiltonian matrix are given by: 

 ℎ𝑖𝑗 =
1

2𝜇
(
𝜋𝑗

𝛼𝑚𝑎𝑥
)
2

𝛿𝑖𝑗 + 𝑣𝑖𝑗 , 𝑖, 𝑗 ≤ 𝑀 (29) 

The matrix of the kinetic energy operator is analytic and diagonal, with ℎ00 = 0. 

The elements of the potential energy operator 𝑣𝑖𝑗 = ⟨𝑓𝑖(𝛼)|𝑉𝑛(𝛼)|𝑓𝑗(𝛼)⟩ are computed 

numerically, using a large 1D quadrature of equally spaced points. 

Note that the sequential mixed VBR/DVR approach allows us to separate the 

symmetric and the antisymmetric solutions at the level of 1D, thus reducing the total size 

of the 2D Hamiltonian matrix by a factor of two. This also provides automatic 

assignments of symmetry to the numerical solutions. 

The elements of the kinetic energy operator for R (in the DVR basis) were 

computed numerically using Fourier transform to compute derivatives. The same result 

could be obtained analytically:96,97 

  𝑇𝑅
𝑛𝑛 =

𝜋2

𝜇𝐿2
𝑁2 + 2

6
 (30) 

  
𝑇𝑅
𝑛𝑚 = (−1)𝑛−𝑚

𝜋2

𝜇𝐿2
1

sin2[(𝑛 − 𝑚)𝜋/𝑁]
 (31) 
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where L is the length of R grid in Bohr. The difference between the energies obtained 

with the analytic formula and with the numerical evaluation is of the order of 0.01 cm-1. 

The number of points for the 1D quadrature along 𝛼 was 3038, and the 

corresponding basis set size M was 40. The number of points along 𝑅 was 166, and the 

size of the truncated 2D Hamiltonian matrix was 2059 x 2059. 

3.2. Results of Calculation of the Vibrational States of Tetrasulfur (S4) 

We carried out accurate calculations of the vibrational state energies and the wave 

functions 𝜓(𝛼, 𝑅) on our dimensionally reduced PES of S4 using a rigorous method 

described in the last section. 

The energies and the assignments of the states in terms of the two vibrational 

modes, 𝑣1 and 𝑣2, are presented in Table 8. We identified 29 symmetric and 28 

antisymmetric states with the energies below 2000 cm-1. Symmetry is defined with 

respect to a reflection through 𝛼 = 90°. 

The assignments of the states were carried out based on the shapes of their wave 

functions and their energies relative to the other states in a vibrational progression. At 

low energies either of these two methods can be used to obtain a fairly certain and non-

contradictory assignment. Among the 57 states in Table 8, more than half are assigned 

unambiguously. 
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However, at high energies both approaches fail to provide a definitive assignment. 

The vibrational modes start mixing up , making the shapes of the wave functions rather 

Table 8. The energies and assignments of the vibrational states on the 2D-PES of the S4 

(cm-1). 

State Symmetric Antisymmetric (𝒗𝟏, 𝒗𝟐) 

1 317.63 317.65 (0,0) 

2 491.82 492.17 (1,0) 

3 658.24 661.18 (2,0) 

4 737.91 741.41 (0,1) 

5 813.15 827.83 (3,0) 

6 886.86 911.81 (1,1) 

7 964.76 995.00 (4,0) 

8 1023.63* 1076.35 (2,1) 

9 1105.87* 1129.98 (0,2) 

10 1133.62* 1163.79 (5,0) 

11 1185.30* 1251.05 (3,1) 

12 1245.09* 1310.70* (1,2) 

13 1305.72* 1335.71* (6,0) 

14 1359.35* 1427.26 (4,1) 

15 1392.11* 1484.55* (7,0) 

16 1433.98* 1490.09* (0,3) 

17 1490.82* 1519.45* (2,2) 

18 1536.81* 1603.23 (5,1) 

19 1582.66* 1655.94 (8,0) 

20 1606.23* 1695.98* (3,2) 

21 1660.86* 1716.27 (1,3) 

22 1701.25* 1777.78 (6,1) 

23 1750.53* 1822.38 (9,0) 

24 1760.22* 1859.03 (0,4) 

25 1808.90* 1888.56* (4,2) 

26 1847.91* 1924.57 (2,3) 

27 1879.89* 1951.79 (7,1) 

28 1933.75* 1988.10 (10,0) 

29 1977.01*  (5,2) 
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complicated, especially beyond the second quanta of excitation in the “gearing” mode, 

labeled by 𝑣2. In such cases we combined input from both approaches, using energy as 

the main criterion to narrow down possible choices and then judging by the shape of a 

wave function. In addition to that, we used antisymmetric states assignments as a 

guidance for the symmetric states. It turned out that assignments for both symmetries are 

identical. 

We also found that some progressions retain their definitive features even at 

higher energies, such as the long 𝑣1-progressions with 𝑣2 = 0 or 𝑣2 = 1 (see Figures 19 

and 20), thus allowing a definite assignment. 

Other progressions deteriorate faster, thus making the corresponding assignments 

less certain. These ambiguous assignments are marked by an asterisk in Table 8. In the 

considered energy range, about 50% of the states are assigned ambiguously, particularly 

those with more than one quantum of excitation in the second mode. 

The primary reason for the ambiguity of state assignments is evolution of the 

spectrum from the local double-well character at lower energies, where the symmetric 

and the antisymmetric states are expected to be (nearly) degenerate, to the global 

character above the isomerization threshold, where the symmetric and the antisymmetric 

states should alternate in the spectrum. 
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Figure 19. Vibrational wave functions computed 

using 2D-PES of S4 constructed in this work. 

Two vibrational progressions can be identified. 

The longer progression corresponds to the 

motion along the channel on the PES. It contains 

up to 9 quanta of vibrational excitation, as 

labeled on the picture (within the energy window 

considered in this work, below 2000 cm-1). The 

other mode, across the channel, exhibits up to 4 

quanta of excitation. Only symmetric (with 

respect to  = 90º) wave functions are included.  
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Figure 20. Same as Figure 19, but for 

antisymmetric vibrational states. Two vibrational 

progressions can be identified. The longer 

progression corresponds to the motion along the 

channel on the PES. It contains up to 10 quanta 

of vibrational excitation, as labeled on the picture 

(within the energy window considered in this 

chapter, below 2000 cm-1). The other mode, 

across the channel, exhibits up to 4 quanta of 

excitation. 
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This is illustrated by Figure 21, where a one-dimensional slice of the PES along 𝛼 

(with fixed 𝑅 = 4.7939 Bohr) is shown, together with the one-dimensional states 𝜓(𝛼) 

computed for this slice. The first pair of the symmetric and the antisymmetric states is, 

indeed, nearly degenerate. The second pair shows a non-negligible splitting, while the 

third pair of states is already in high energy part of the spectrum, where the symmetric 

and the antisymmetric states alternate. This fast evolution of the vibrational states 

character in S4 manifests in the two-dimensional spectrum reported in Table 8, and leads 

to irregularities of state energies in several vibrational progressions. 

3.3. Fitting of the Vibrational Energies 

We found that, overall, it is easier to assign progressions of the antisymmetric 

states, because their wave functions are required to vanish at 𝛼 = 90°, which results in a 

more regular and more independent nodal structure in the two wells of the PES. We also 

 
Figure 21. A 1D slice (green) of the PES through the transition state point of S4 along the 

bending degree of freedom , and the spectrum of the 1D states computed for this slice. 

The energies of the states with the symmetric and the antisymmetric wave functions are 

shown in red and blue, respectively. One can see a pair of nearly degenerate states in the 

wells (dashed lines), a pair of split states closer to the barrier top, and a spectrum of non-

degenerate states at higher energies. 
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found that, despite the assignment difficulties at higher energies, the lower part of the 

spectrum can be fitted with a simple analytic formula, such as Dunham expansion: 

𝐸fit(𝑣1, 𝑣2) = 𝑐 + 𝜔1 (𝑣1 +
1

2
) + 𝜔2 (𝑣2 +

1

2
) 

−𝛿1 (𝑣1 +
1

2
)
2

− 𝛿2 (𝑣2 +
1

2
)
2

− 𝛿12 (𝑣1 +
1

2
) (𝑣2 +

1

2
) 

Tables 9 and 10 list parameters of this model, for the symmetric and the 

antisymmetric progressions of the vibrational states fitted separately. In each case, 

several fits were obtained, with a different number of states included in the fit (which also 

determines the minimal number of the independent fitting parameters). The simplest fit, 

Table 9. Analytic fit parameters for the spectrum of the symmetric vibrational states in S4 

(cm-1). 

Fitted States 𝒄 𝝎𝟏 𝝎𝟐 𝜹𝟏 𝜹𝟐 𝜹𝟏𝟐 RMSE 

3 states 20.4 174.2 420.3 0 0 0 0 

below barrier (4) 17.5 182.0 420.3 3.9 0 0 0 

6 states -8.5 194.6 485.2 3.9 26.2 25.2 0 

“good” states (8) -8.4 195.8 484.6 4.1 25.1 27.0 0.92 

all states (29) 79.0 148.7 372.5 -2.1 1.6 -1.9 31.9 

 

Table 10. Analytic fit parameters for the spectrum of the antisymmetric vibrational states 

in S4 (cm‑1). 

Fitted States 𝒄 𝝎𝟏 𝝎𝟐 𝜹𝟏 𝜹𝟐 𝜹𝟏𝟐 RMSE 

3 states 18.5 174.5 423.8 0 0 0 0 

below barrier (4) 16.5 180.0 423.8 2.8 0 0 0 

6 states 2.3 182.0 460.9 2.7 17.6 4.1 0 

“good” states (10) 14.3 169.9 445.8 0.5 14.0 -3.9 1.52 

all states (28) 34.2 162.8 415.7 0.2 6.7 -10.2 10.7 
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based on three states: (0,0), (1,0), and (0,1), permits to determine the frequencies of the 

normal modes 𝜔1 and 𝜔2. Adding the state (2,0) to the set permits to determine the 

anharmonicity parameter for the first mode, 𝛿1. Note that these four states cover the 

energy range below the transition state point. Adding the states (1,1) and (0,2) to the set 

permits to determine 𝛿2 for the second mode and the inter-mode anharmonicity (or 

coupling) parameter 𝛿12. These fits are perfect (zero RMSE), since the number of the 

states is equal to the number of the fitting parameters. 

Adding more states to the set permits to expand the range of coverage but also 

leads to a larger RMSE. Two such fits are reported in each table. One fit includes only 

those states that keep the RMSE small: 8 in the symmetric progression (states 1 to 8) and 

10 in the antisymmetric progression (states 1 to 7, 9, 10 and 12) in Tables 9 and 10, 

respectively. The last fit includes all the available states. The RMSE of such global fit 

exceeds 20 cm-1 (for the symmetric states, see Table 9), since a simple Dunham 

expansion formula cannot reproduce evolution of the spectrum as energy exceeds the 

transition state point. Note, however, that the antisymmetric states of S4 exhibit much 

smaller RMSE, and thus are fitted much better by the Dunham expansion (see Table 10). 

This is because their wave functions are required to have a node at 𝛼 = 90°, which is the 

transition state for the isomerization. This forces the vibrational wave function to 

disappear over the isomerization barrier, minimizes the effect of the isomerization at 

higher energies and leads to simpler shapes of the wave functions and more regular 

progressions of energies. This feature may be useful for a spectroscopic characterization 

of S4. 
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Analysis of the data in Tables 9 and 10 indicates, first of all, that the frequencies 

of the modes are rather sensitive to the number of the states included in the fit. This 

means that the analytic description developed for the lower states of the spectrum must be 

adjusted when higher energy states are included, which, again, reflects the transformation 

of the vibrational spectrum as energy passes through the transition state point. The 

accurate fits (in the first four lines of Tables 9 and 10) give the frequency of the first 

mode in the range 174 to 196 cm-1, and the second mode in the range 420 to 485 cm-1, 

depending on a subset of the fitted states. Second, one sees that the anharmonicity of the 

second mode is rather large in many fits, up to 25 cm-1, or 5% of the mode’s frequency. 

This very anharmonic higher frequency vibration corresponds to the motion across the 

elongated “channel” on the PES of S4. The more harmonic, lower frequency vibrational 

mode corresponds to the motion along the “channel”. Also note that the fitted frequencies 

and the anharmonicities are somewhat different for the symmetric and the antisymmetric 

progressions of the vibrational states. 

Interestingly, the results of this section indicate that in S4 the lower frequency 

mode corresponds to stretching (a vibration along the channel, mostly along R) while the 

higher frequency mode corresponds to bending (a vibration across the channel, mostly 

along 𝛼), in contrast to a typical behavior. Indeed, in majority of small molecules, 

bending modes exhibit lower frequencies compared to stretching modes. The unusual 

behavior of S4 can be explained by the shape of the PES, which is rather tight for the 

motion across the channels but is relatively flat for the motion along the channel, as one 

can see in Figure 11. This property is further analyzed in the next section. 
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3.4. Normal Mode Analysis 

To check validity of the results reported in the previous section, we performed a 

two-dimensional normal mode analysis of our PES, using spline derivatives to compute 

the Hessian matrix at the minimum energy point. A diagonalization of the Hessian matrix 

gave us the frequencies of the normal modes and their components in terms of the two 

PES variables 𝛼 and 𝑅, or, more precisely, Δ𝛼 and Δ𝑅, defined as deviations from the 

minimum energy point. The results are presented in Table 11. 

Two components of the mode are, basically, projections of the mode’s direction 

vector onto axes 𝛼 and 𝑅 (see Figure 11), which helps to understand character of the 

corresponding vibrations. To facilitate comparison, the components were scaled to have 

the same value of Δ𝛼 = 32° in each mode, which corresponds to the arc length of 1 Bohr 

that S atoms swipe during the bending motion. From Table 11 we see that the first mode, 

indeed, has a significant amount of stretching mixed in, in addition to bending. In fact, 

the amount of stretch in the first mode is more than it is in the second, over the factor of 

two! 

One can probably say that bending and stretching modes swap in S4, but it is more 

accurate to say that neither of the two modes is closer to pure bending or pure stretching, 

since they both exhibit a significant amount of coupling between 𝛼 and 𝑅. The major 

difference between these two modes is that bending and stretching motions occur in 

Table 11. The normal mode analysis for the dimensionally-reduced 2D-PES of S4. 

Mode Frequency (cm-1) Deviation 𝚫𝜶 (Degree) Deviation 𝚫R (Bohr) 

179.1 32 0.83 

469.7 32 –0.37 
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phase for the first mode, while in the second mode they occur out of phase. Namely, for 

each Bohr of the bending motion of S atoms, the first mode shows 0.83 Bohr of 

stretching of the dimer-dimer distance 𝑅, while the second mode shows 0.37 Bohr of its 

compression. The second mode brings S atoms closer together and leads to steeper 

energy increase, that finally translates into higher frequency of vibration. 

The values of two normal mode frequencies in Table 11, roughly 179 and 470 cm-

1, fall in the ranges predicted by the fits in Tables 9 and 10. The best agreement is 

observed with the fit based on 6 lowest states. For this case, the normal mode frequencies 

deviate by 15.5 cm-1 from results of the fit of symmetric states, and by just 2.9 and 8.8 

cm-1 from results of the fit of antisymmetric states. 

We also carried out the standard ab initio normal mode analysis for S4, using 

MOLPRO. Results are presented in Table 12 for the minimum-energy point (C2v), and in 

Table 13 for the transition state point (D2h). 

Two levels of the electronic structure theory were employed. First, in order to 

compare with similar result of Ref. 66, we used CCSD(T)/aV(T+d)Z level of theory with 

average atomic masses (atomic weights). Then, we used CCSD(T)-F12a/VTZ-F12 level 

of theory, which is the method we used to compute our 2D-PES, with the mass of the 

most abundant sulfur isotope 32S. We see that our CCSD(T) frequencies are in excellent 

agreement with those of Ref. 66 (given in parenthesis in Tables 12 and 13). We also see 
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that the F12-frequencies are rather close to those of the standard coupled-cluster method, 

with differences on the order of few percents. 

We should stress that mode assignments in Tables 12 and 13 are qualitative, based 

on animations of the vibrational motion generated by MOLPRO. The two modes of 

interest are at 123 and 340 cm-1 (using CCSD(T)-F12a/VTZ-F12 theory level). However, 

Table 12. Ab initio normal mode frequencies (cm-1) for the minimum energy point of S4. 

Mode Assignment CCSD(T)/aV(T+d)Z 
CCSD(T)-F12a/VTZ-

F12 
Experiment b 

Symmetric bending
 a

 120.4 (118.8) 123.1  
 } 322 

Torsion 210.6 (210.5) 215.0 

Asymmetric bending 326.5 (325.2) 333.5 303 

S−S stretching
 a

 329.6 (328.7) 339.8 375 

S=S asymmetric 

stretching 
640.1 (640.2) 652.6 662 

S=S symmetric 

stretching 
681.2 (681.2) 697.1 678 

a) Assignments are qualitative; these two modes show significant mixing of bending and stretching. 

b) Summary of several experimental studies.67 

Table 13. Ab initio normal mode frequencies (cm-1) for the transition state of S4. 

Mode CCSD(T)/aV(T+d)Z CCSD(T)-F12a/VTZ-F12 

Symmetric Bending 109.2i (91.2i) 120.0i 

Torsion 232.8 (233.4) 239.0 

Asymmetric bending 260.3 (233.5) 280.2 

S-S Stretching 274.0 (278.1) 332.7 

S=S Asymmetric stretching 319.1 (319.6) 532.7 

S=S Symmetric stretching 713.8 (716.7) 732.7 
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these frequencies are somewhat different from the two frequencies computed using our 

PES: near 179 and 470 cm-1 (see Table 11 above). 

Why the ab initio normal-mode frequencies are different from those computed 

using the PES? One source of discrepancy is in local vs global behavior. Indeed, the 

standard ab initio normal-mode analysis (such as in MOLPRO) assumes harmonic 

behavior of the PES and uses information in the closest vicinity of the minimum energy 

point only. In contrast, the normal-mode analysis we implemented for the PES “sees” 

much further from the minimum and is expected to give more reliable results, especially 

in the case of highly anharmonic landscape, such as double-well PES of S4. Importantly, 

results of our normal mode analysis (Table 11) agree well with analytic fits (Tables 9 and 

10) of accurately computed spectra (Table 8). 

Another source of discrepancy is dimensionality of the problem. Our calculations 

with the PES have limitation imposed by dimensional reduction. We look at two degrees 

of freedom only, while the actual molecule has six vibrational modes (see Tables 12 and 

13), and the ab initio normal mode analysis permits to analyze all of them at once (in 

proximity of the minim energy point, as explained above). Thus, each method has its pros 

and cons. It would be instructive to estimate what can be gained by expanding our global 

approach onto more degrees of freedom (say by building a 3D-PES of S4, rather than 2D-

PES), and what coordinate is the most important to add? 

For this, we expressed six normal vibration modes in Tables 12 and 13 in terms of 

their components along six internal vibrational coordinates: two bending angles 𝛼1 and 

𝛼2, torsional angle 𝛽, dimer-dimer separation R and the two double-bond lengths r1 and 

r2. Note that our 2D-PES is obtained by freezing r1 and r2 at their equilibrium values, 
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keeping all four atoms planar by setting 𝛽 = 0, and requesting that 𝛼1 = 𝛼2. Results are 

presented in Table 14. Normalization and units are similar to those in Table 11 (degrees 

for angle increments, and Bohr for bond-length increments). Increments smaller than 1° 

and 0.02 a0 are neglected, for clarity. 

These data show clearly that angle 𝛽 is needed for description of the torsional 

mode only. Double-bond lengths r1 and r2 are most important for S=S stretching modes 

but have small effect on the other modes. The dimer-dimer separation R is essential for 

the two modes of interest (symmetric bending and S−S stretching in Table 14) but has no 

effect on the other modes. However, angles 𝛼1 and 𝛼2 are needed for three modes 

simultaneously. This observation suggests that adding one more independent coordinate 

to the PES, 𝛼2 ≠ 𝛼1, might enable more accurate and consistent description of three 

normal vibration modes: symmetric bending, asymmetric bending, and single-bond 

stretching in S4. 

Table 14. Ab initio normal modes of S4 expressed through increments of the internal 

coordinates. 

Mode 𝚫𝒂𝟏 𝚫𝒂𝟐 𝚫R 𝚫r1 𝚫r2 𝚫𝜷 

Symmetric bending a
 32 32 1.17 0.09 0.09 0 

Torsion 0 0 0 0 0 32 

Asymmetric bending –32 32 0 –0.06 0.04 0 

S-S stretching a
 9 9 –1.00 0 0 0 

S=S asymmetric stretching 0 0 0 1.00 –1.00 0 

S=S symmetric stretching 0 0 0 1.00 1.00 0 

a) Assignments are qualitative; these two modes show significant mixing of bending and stretching. 
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Finally, comparing Table 14 vs Table 11, we see that the two modes in Table 11 

(computed from the PES) are qualitatively-similar to the 1st and 4th modes in Table 14 

(predicted by full-dimensional analysis). In each case the modes are described by 

superposition of Δ𝛼 and Δ𝑅, with lower frequency mode characterized by in phase 

combination, and higher frequency mode characterized by out of phase combination of 

Δ𝛼 and Δ𝑅. We conclude that these two modes include a fair amount of coupling 

between stretching and bending motions. Assignment of one mode as symmetric bending 

and the other as S−S stretching, as in Tables 11-13, is not particularly accurate (used here 

for historic reasons only). 

Experimental data on vibration frequencies of S4 are sparse and rather 

inconclusive due to presence of multiple sulfur allotropes and isomers, which causes 

difficulty of band assignments.67 Absorption spectra in solid argon matrix98 contain one 

frequency of C2v isomer, at 662 cm-1, which most likely corresponds to asymmetric 

stretching of the double-bonds in S4. The other study of Raman spectra in hot vapor,99 in 

addition to symmetric stretching of the double-bonds at 678 cm-1, reports two lower 

frequencies at 375 and 303 cm-1 that probably correspond to S−S stretching and 

asymmetric bending of S4. One more frequency at 322 cm-1 was assigned as a 

combination of symmetric bending and torsional motion in S4. These data are 

summarized in the last column of Table 12. 

So, it appears that experimental frequency at 375 cm-1 is almost in the middle 

between predictions of the ab initio normal mode analysis (~340 cm-1, see Table 12) and 

the fitted spectrum of the 2D-PES (~420 cm-1, see Tables 9 and 10). Based on these data 
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it seems impossible to say what method of frequency prediction is in better agreement 

with experiment. 

3.5. Summary 

The vibrational states are computed on the 2D PES, discussed in Chapter 2, using 

an accurate numerical solution of the time-independent Schrodinger equation. The states 

are assigned quantum numbers, based on the shapes of the vibrational wave functions and 

positions in the energy spectrum. Two progressions of the vibrational states are 

identified. The long progression of easily assignable states that develop nodes along the 

“channels” on the PES corresponds to the lower frequency, ~180 cm-1. The other 

(shorter) progression of states that develops nodes across the “channels” is characterized 

by higher frequency, ~ 420 cm-1 and is much harder to assign due to the effect of the 

double-well nature of the PES. 

Normal mode analysis indicates that the two modes in S4, indeed, represent a 

significant mixture of the bending and the stretching motions of the trapezoidal shape of 

this molecule. When the bending angle is increased, the lower frequency mode 

corresponds to stretching of the distance between the two S2 dimers, while the higher 

frequency mode corresponds to compression of the distance between them. 

Our results are in a qualitative agreement with earlier ab initio studies of the 

normal modes in S4, and with rather limited experimental data. The advantage of our 

approach is in the global description of the vibrations, using the PES in a broad range of 

coordinates, which covers both wells and the transition state between them, and considers 

all this information at the same time (in contrast to the conventional normal mode 

analysis, which is performed locally, either at a minimum or at a transition state point). 
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Our calculations show that the transition state point in S4 is reached by only one 

quantum of excitation of the second mode, or two quanta of the first mode (in addition to 

the zero-point energy), which means that the spectrum is highly anharmonic and all the 

vibrational states, even the ground state, are highly delocalized over the PES. In this 

situation the conventional normal mode analysis is not expected to give an accurate 

prediction of the vibrational spectrum. 

The considered degrees of freedom, R and 𝛼, allow us to investigate the 

isomerization process at the simplest level possible. Despite the simplicity of our model, 

the obtained results are in qualitative agreement with the experiments and lay the 

groundwork for future improvements that will provide more precise results. Those 

improvements will include expansion of the PES onto more degrees of freedom and 

extension towards the dissociation limit. To the best of our knowledge, our calculations 

are the first variational calculations of the vibrational states of tetrasulfur. 

Calculations of a global 3D PES, using MRCI method are in progress. With little 

changes, needed to take into account another degree of freedom, the framework described 

in this chapter can be used to calculate the energies and lifetimes of the vibrational states 

of tetrasulfur on this global surface up to the dissociation limit. These data can be utilized 

to compute reaction rates and equilibrium constants and estimate the magnitude of the 

isotope effects given by Eqs. (7) and (10) in Introduction, which allows one to understand 

the role of tetrasulfur recombination reaction in S-MIF. 

Interestingly, in the ozone molecule that has been under intense investigation in 

the Babikov’s group in recent years, similar isotope effects are observed. The ozone 
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molecule is also 3D, so practice with the calculations of the vibrational states of ozone 

can serve as a good starting point for the 3D calculations in tetrasulfur. 

The 2D PES, used for calculations of vibrational states in this chapter, is available 

in the Supplemental Information of Ref. 89. 
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CHAPTER 4. GENERAL THEORY OF COUPLED ROTATION-

VIBRATION CALCULATIONS IN APH COORDINATES 

In this chapter we formulate theoretical concepts necessary to perform 

calculations of coupled rotation-vibration states in Adiabatically adjusting Principal axis 

Hyperspherical (APH) coordinates, and derive the necessary equations and matrix 

element expressions. The formulated theory is further used in Chapters 5-7 to perform 

calculations of rovibrational states in ozone and investigate various properties of bound 

states and scattering resonances in an effort to detect a robust and mass-independent trend 

that could be responsible for the experimentally observed isotope effects in ozone. In 

Chapter 9 this theory serves as a foundation for development of a general-purpose 

software package (SpectrumSDT), able to perform calculations of coupled rovibrational 

energies and lifetimes of bound states and scattering resonances for arbitrary triatomic 

systems (subject to the limitations outlined in Chapter 9). 

4.1. Adiabatically Adjusting Principal Axis Hyperspherical (APH) 

Coordinates 

The present theory is formulated in Adiabatically adjusting Principal axis 

Hyperspherical (APH) coordinates, which are designed specifically for (and restricted to) 

triatomic systems.79,100–105 
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In APH coordinates, the vibrational motion is described through three 

coordinates: 𝜌, 휃 and 𝜑. Qualitatively 𝜌 serves as a measure of the overall size of the 

bounding triangle for the system (the “breathing” motion); 휃 changes in the range from 0 

to 𝜋/2 and corresponds to translation from equilateral triangle at 휃 = 0 to a linear 

molecule at 휃 = 𝜋/2 (the “bending” motion); 𝜑 changes in the range from 0 to 2𝜋 and is 

responsible for isomerization, such that 𝜑 = 𝜋/3, 𝜋 and 5𝜋/3 correspond to AAB, ABA 

and BAA arrangements respectively, as shown in Figure 22 (adapted from Ref. 106). See 

 
Figure 22. Visualization of molecular arrangements corresponding to different values of 

(휃, 𝜑) and a fixed value of 𝜌 in APH coordinates. The value of 휃 increases radially 

outward from the center (where 휃 = 0) to the rim (where 휃 = 𝜋/2). 𝜑 is an angle in the 

range [0; 2𝜋] measured from the bottom of the circle. Symmetric obtuse ABA 

configuration corresponds to 𝜑 = 𝜋. The value of 𝜌 defines overall size of the triangle 

formed by the three atoms. This figure is adapted from Ref. 106. 
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also Ref. 101 for an interactive visualization tool of the motion along 𝜑 and Ref. 102 for 

3D representation of APH coordinates on the example of ozone. 

In contrast to more traditional coordinate systems, such as Jacobi coordinates, 

APH coordinates provide a number of advantages. First of all, APH coordinates have a 

somewhat simpler form of the Hamiltonian operator and thus are more efficient 

numerically. Second, they fully exploit the symmetry of the ozone molecule and allow 

the treatment of all isotopomers on equal footing, covering all wells on the global PES 

with the same grids and/or basis sets. Finally, APH coordinates facilitate isotopomer 

assignment of the computed states. 

The rotational motion is described through the usual Euler angles: 𝛼, 𝛽 and 𝛾. 

4.2. Definitions and General Considerations 

The full rotation-vibration Hamiltonian operator in APH coordinates can be 

written as a sum of the following terms:93 

�̂� = �̂�𝜌 + �̂�𝜃 + �̂�𝜑 + 𝑉pes + 𝑉ext + �̂�sym + �̂�asym + �̂�cor (32) 

where the first three operators are associated with the kinetic energy along each 

vibrational degree of freedom, 𝑉pes(𝜌, 휃, 𝜑) describes the electronic potential energy 

surface of the molecule under consideration, and 𝑉ext is an extra potential-like term. All 

these operators affect vibrational degrees of freedom only and the corresponding 

expressions are given by:93 

�̂�𝜌 = −
ℏ2

2𝜇

𝜕2

𝜕𝜌2
 

(33) 

�̂�𝜃 = −
2ℏ2

𝜇𝜌2
𝜕2

𝜕휃2
 

(34) 
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�̂�𝜑 = −
2ℏ2

𝜇𝜌2 sin2 휃

𝜕2

𝜕𝜑2
 

(35) 

𝑉ext = −
ℏ2

2𝜇𝜌2
(
1

4
+

4

sin2 2휃
) 

(36) 

where 𝜇 is the three-body reduced mass, given by: 

𝜇 = √
𝑚1𝑚2𝑚3

𝑚1 +𝑚2 +𝑚3
 

(37) 

where 𝑚1, 𝑚2 and 𝑚3 are masses of individual atoms. 

The remaining operators (�̂�sym, �̂�asym and �̂�cor) affect both vibrational and 

rotational degrees of freedom and their expressions are given by:94,107 

 �̂�sym =
𝐴 + 𝐵

2
𝐽2 + (𝐶 −

𝐴 + 𝐵

2
) 𝐽𝑧

2 
(38) 

 �̂�asym =
𝐴 − 𝐵

2
(𝐽𝑥

2 − 𝐽𝑦
2) 

(39) 

 �̂�cor = 4𝐵 𝑐𝑜𝑠 휃 (𝑖ℏ
𝜕

𝜕𝜑
) 𝐽𝑦 

(40) 

where the rotational constants 𝐴, 𝐵 and 𝐶 are given by: 

 𝐴−1 = 𝜇𝜌2(1 + 𝑠𝑖𝑛 휃) (41) 

 𝐵−1 = 2𝜇𝜌2 sin2 휃 (42) 

 𝐶−1 = 𝜇𝜌2(1 − 𝑠𝑖𝑛 휃) (43) 

and operators 𝐽𝑥, 𝐽𝑦 and 𝐽𝑧 are given by: 

𝐽𝑥 = −𝑖ℏ [−
cos(𝛾)

sin(𝛽)

𝜕

𝜕𝛼
+ sin(𝛾)

𝜕

𝜕𝛽
+ cot(𝛽) cos(𝛾)

𝜕

𝜕𝛾
] 

(44) 

𝐽𝑦 = −𝑖ℏ [
sin(𝛾)

sin(𝛽)

𝜕

𝜕𝛼
+ cos(𝛾)

𝜕

𝜕𝛽
− cot(𝛽) sin(𝛾)

𝜕

𝜕𝛾
] 

(45) 
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𝐽𝑧 = −𝑖ℏ
𝜕

𝜕𝛾
 

(46) 

The volume element for computing matrix elements of this operator is given by: 

𝑑6𝑣 = 𝑑𝜌 𝑑휃 𝑑𝜑 𝑑𝛼 sin(𝛽)𝑑𝛽 𝑑𝛾 (47) 

The full-dimensional ro-vibrational wave functions 𝐹𝑘, which includes both 

vibrational and rotational degrees of freedom (6D overall), can be represented by an 

expansion over the rotational components �̃�Λ(𝛼, 𝛽, 𝛾), where the vibrational components 

ΨΛ
𝑘(𝜌, 휃, 𝜑) play the role of expansion coefficients, namely: 

𝐹𝑘(𝜌, 휃, 𝜑, 𝛼, 𝛽, 𝛾) = ∑ ΨΛ
𝑘(𝜌, 휃, 𝜑)�̃�Λ(𝛼, 𝛽, 𝛾)

𝐽

Λ=0,1

 

(48) 

�̂�𝐹𝑘(𝜌, 휃, 𝜑, 𝛼, 𝛽, 𝛾) = 휀𝑘𝐹𝑘(𝜌, 휃, 𝜑, 𝛼, 𝛽, 𝛾) (49) 

where J is the total angular momentum quantum number and Λ is a quantum number 

corresponding to projection of total angular momentum onto body-fixed z-axis. 

The rotational basis functions �̃�Λ(𝛼, 𝛽, 𝛾) are taken in the form of the modified 

normalized Wigner D-functions of two parities (𝑝 = 0 and 𝑝 = 1): 

�̃�Λ𝑀
𝐽𝑝 = √

2𝐽 + 1

16𝜋2(1 + 𝛿Λ0)
[𝐷Λ𝑀

𝐽 (𝛼, 𝛽, 𝛾) + (−1)𝐽+Λ+𝑝𝐷−Λ𝑀
𝐽 (𝛼, 𝛽, 𝛾)] 

(50) 

where 𝛿 is a regular Kronecker delta function. 

The values of 𝑝 = 0 and 𝑝 = 1 generate two possible superpositions: one “in 

phase” and one “out of phase”, except that in the case of Λ = 0 only the in-phase 

superposition is possible. For even values of 𝐽 the term with Λ = 0 contributes only to 

𝑝 = 0, while for odd values of 𝐽 the term with Λ = 0 contributes only to 𝑝 = 1. This 

defines the starting value of Λ in Eq. (48), which is 0 if 𝐽 + 𝑝 is even or 1 otherwise. Note 
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that with the definition of Eq. (50) both +Λ and −Λ are taken into account 

simultaneously, in pairs, therefore only non-negative values of Λ are considered on the 

modified Wigner function �̃�Λ𝑀
𝐽𝑝

. The total number of different functions �̃�Λ𝑀
𝐽𝑝

 still stays 

the same as for regular Wigner functions, due to the extra parity index. 

The regular Wigner functions used in Eq. (50) are defined as: 

𝐷Λ𝑀
𝐽 (𝛼, 𝛽, 𝛾) = 𝑒𝑖𝑀𝛼𝑑Λ𝑀

𝐽 (𝛽)𝑒𝑖Λ𝛾 (51) 

where 𝑑Λ𝑀
𝐽 (𝛽) term is given by: 

𝑑Λ𝑀
𝐽 (𝛽)

= [(𝐽 + Λ)! (𝐽 − Λ)! (𝐽 + 𝑀)! (𝐽 − 𝑀)!]1/2

×∑
(−1)𝜅

(𝐽 − 𝑀 − 𝜅)! (𝐽 + Λ − 𝜅)! (𝜅 + 𝑀 − Λ)! 𝜅!
𝜅

× (cos (
𝛽

2
))

2𝐽+Λ−𝑀−2𝜅

(− sin (
𝛽

2
))

𝑀−Λ+2𝜅

 
(52) 

where Λ and 𝑀 are the quantum numbers for projections of the total angular momentum 

onto body-fixed and space-fixed z-axes. In contrast to the modified Wigner function of 

Eq. (50), the values of Λ in regular Wigner function of Eqs. (51) and (52) run from −𝐽 to 

𝐽, same as 𝑀. 

Different values of 𝐽, 𝑀 and 𝑝 are not coupled with each other and the 

corresponding calculations can be carried out independently. Since the values of 𝐽, 𝑀 and 

𝑝 stay constant within each calculation, their indexes are assumed implicit and are 

omitted further in the text, for clarity. Furthermore, in this formulation of theory, the 

exact value of 𝑀 has no effect on the result, therefore all calculated states are (2𝐽 + 1)-

degenerate. 
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The Hamiltonian matrix elements in a general basis of Eq. (48) can be written as: 

〈ΨΛ�̃�Λ|�̂�|ΨΛ′�̃�Λ′〉 = 〈ΨΛ|�̂�𝜌 + �̂�𝜃 + �̂�𝜑 + Vpes + Vext|ΨΛ′〉〈�̃�Λ|�̃�Λ′〉 

(53)  +  〈ΨΛ�̃�Λ|�̂�sym + �̂�asym + �̂�cor|ΨΛ′�̃�Λ′〉 

The first five terms of the Hamiltonian operator (Eq. (32)) only affect the 

vibrational degrees of freedom, therefore the integration over the rotational degrees of 

freedom (〈�̃�Λ|�̃�Λ′〉) can be factored out. The same cannot be done for the remaining 

terms, where both vibrational and rotational degrees of freedom have to considered 

together. 

4.3. Derivation of the Matrix Elements in General Vibrational Basis 

In this section we consider derivation of the matrix elements for the terms that 

affect rotational motion: �̂�sym, �̂�asym and �̂�cor, in terms of general vibrational basis 

functions ΨΛ of Eq. (53). 

4.3.1. Derivation of the Symmetric Top Rotor Matrix Elements 

Using the definition of Eq. (38), one can write the matrix element expression for 

�̂�sym as: 

〈ΨΛ�̃�Λ|�̂�sym|ΨΛ′�̃�Λ′〉

= 〈ΨΛ|
𝐴 + 𝐵

2
|ΨΛ′〉 〈�̃�Λ|𝐽

2|�̃�Λ′〉 + 〈ΨΛ|𝐶 −
𝐴 + 𝐵

2
|ΨΛ′〉 〈�̃�Λ|𝐽𝑧

2|�̃�Λ′〉 (54) 

This case is simple, since the modified Wigner functions �̃�Λ of Eq. (50) are 

eigenfunctions of both 𝐽2 and 𝐽𝑧
2 with the following eigenvalues:108 

〈�̃�Λ|𝐽
2|�̃�Λ′〉 = ℏ2𝐽(𝐽 + 1)𝛿ΛΛ′ (55) 

〈�̃�Λ|𝐽𝑧
2|�̃�Λ′〉 = ℏ2Λ2𝛿ΛΛ′ (56) 

where a modified Kronecker delta function is introduced: 
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𝛿ΛΛ′ = {
𝛿ΛΛ′            if   Λ, Λ

′ ≠ 0

𝛿(−1)𝐽+𝑝,1  if   Λ, Λ
′ = 0

 
(57) 

Plugging Eqs. (55) and (56) into Eq. (54), one obtains: 

〈ΨΛ�̃�Λ|�̂�sym|ΨΛ′�̃�Λ′〉

= ℏ2𝛿ΛΛ′ (𝐽(𝐽 + 1) 〈ΨΛ|
𝐴 + 𝐵

2
|ΨΛ′〉 + Λ2 〈ΨΛ|𝐶 −

𝐴 + 𝐵

2
|ΨΛ′〉) 

(58) 

Because of the 𝛿ΛΛ′ term, the symmetric-top rotor term (�̂�sym) contributes only to 

the diagonal Λ-blocks of the Hamiltonian matrix. In a schematic representation of its 

rotational block structure, shown in Figure 23 the blocks affected by �̂�sym are marked 

with “S”. 

4.3.2. Derivation of the Asymmetric Top Rotor Matrix Elements 

Next, let us consider the matrix element expression for the asymmetric top rotor 

operator �̂�asym. Using the definition of Eq. (39), one can write:, 

 
Figure 23. Rotational block structure of the Hamiltonian matrix. Letters S, A and C 

indicate contributions from symmetric-top rotor, asymmetric-top rotor and Coriolis 

coupling terms, given in Eqs. (38)-(40), respectively. Other blocks of the matrix are zero. 

Individual blocks are labelled by values of Λ and Λ′ from a given pair of basis functions 

�̃�Λ, given by Eq. (50). 
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〈ΨΛ�̃�Λ|�̂�asym|ΨΛ′�̃�Λ′〉 = 〈ΨΛ|
𝐴 − 𝐵

2
|ΨΛ′〉 〈�̃�Λ|𝐽𝑥

2 − 𝐽𝑦
2|�̃�Λ′〉 (59) 

The rotational basis functions �̃�Λ are not eigenfunctions of 𝐽𝑥
2 or 𝐽𝑦

2, therefore let us 

consider derivation of the last term of Eq. (88) separately. 

The following integral can be rewritten in terms of raising and lowering operators: 

〈�̃�Λ|𝐽𝑥
2 − 𝐽𝑦

2|�̃�Λ′〉 =
1

2
(〈�̃�Λ|𝐽+

2|�̃�Λ′〉 + 〈�̃�Λ|𝐽−
2|�̃�Λ′〉) (60) 

where raising and lowering operators, 𝐽+ and 𝐽−, are defined as:100 

𝐽+ = 𝐽𝑥 − 𝑖𝐽𝑦 (61) 

𝐽− = 𝐽𝑥 + 𝑖𝐽𝑦 (62) 

Or, the other way around: 

𝐽𝑥 =
𝐽+ + 𝐽−

2
 

(63) 

𝐽𝑦 =
𝐽− − 𝐽+
2𝑖

 
(64) 

Application of 𝐽± to a regular Wigner function 𝐷Λ of Eq. (51) is given by:103 

𝐽±𝐷Λ = ℏ𝜆±(𝐽, Λ)𝐷Λ±1 (65) 

where functions 𝜆±(𝐽, Λ) are given by: 

𝜆±(𝐽, Λ) = √(𝐽 ± Λ + 1)(𝐽 ∓ Λ) (66) 

The functions 𝜆±(𝐽, 𝐾) have the following useful properties (easily verifiable 

directly from their definitions): 

𝜆+(𝐽, −Λ) = 𝜆+(𝐽, Λ − 1) (67) 

𝜆−(𝐽, −Λ) = 𝜆−(𝐽, Λ + 1) (68) 

𝜆−(𝐽, Λ) = 𝜆+(𝐽, Λ − 1) (69) 

Using Eq. (65), the first term of Eq. (60) can be written as: 
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〈�̃�Λ|𝐽+
2|�̃�Λ′〉

=
2𝐽 + 1

16𝜋2√(1 + 𝛿Λ0)(1 + 𝛿Λ′0)

× 〈𝐷Λ + (−1)𝐽+Λ+𝑝𝐷−Λ|𝐽+
2|𝐷Λ′ + (−1)𝐽+Λ

′+𝑝𝐷−Λ′〉

=
2𝐽 + 1

16𝜋2√(1 + 𝛿Λ0)(1 + 𝛿Λ′0)
(ℏ2𝜆+(𝐽, Λ

′)𝜆+(𝐽, Λ
′ + 1)〈𝐷Λ|𝐷Λ′+2〉

+ (−1)𝐽+Λ+𝑝ℏ2𝜆+(𝐽, Λ
′)𝜆+(𝐽, Λ

′ + 1)〈𝐷−Λ|𝐷Λ′+2〉

+ (−1)𝐽+Λ
′+𝑝ℏ2𝜆+(𝐽, −Λ

′)𝜆+(𝐽, −Λ
′ + 1)〈𝐷Λ|𝐷−Λ′+2〉

+ (−1)𝐽+Λ+𝑝(−1)𝐽+Λ
′+𝑝ℏ2𝜆+(𝐽, −Λ

′)𝜆+(𝐽, −Λ
′ + 1)〈𝐷−Λ|𝐷−Λ′+2〉) (70) 

Normalization of regular Wigner functions is given by: 

〈𝐷Λ|𝐷Λ′〉 =
8𝜋2

2𝐽 + 1
𝛿Λ,Λ′ (71) 

Plugging Eq. (71) into Eq. (70) one obtains: 

〈�̃�Λ|𝐽+
2|�̃�Λ′〉

=
ℏ2

2√(1 + 𝛿Λ0)(1 + 𝛿Λ′0)
(𝜆+(𝐽, Λ

′)𝜆+(𝐽, Λ
′ + 1)𝛿Λ,Λ′+2

+ (−1)𝐽+Λ+𝑝𝜆+(𝐽, Λ
′)𝜆+(𝐽, Λ

′ + 1)𝛿−Λ,Λ′+2

+ (−1)𝐽+Λ
′+𝑝𝜆+(𝐽, −Λ

′)𝜆+(𝐽, −Λ
′ + 1)𝛿Λ,−Λ′+2

+ (−1)𝐽+Λ+𝑝(−1)𝐽+Λ
′+𝑝𝜆+(𝐽, −Λ

′)𝜆+(𝐽, −Λ
′ + 1)𝛿−Λ,−Λ′+2) (72) 

The second term of the sum is 0, since 𝛿−Λ,Λ′+2 = 0 for all Λ, Λ′ ≥ 0. In the fourth 

term, (−1)𝐽+Λ+𝑝(−1)𝐽+Λ
′+𝑝 = 1 for all Λ, Λ′ such that 𝛿−Λ,−Λ′+2 ≠ 0 (i.e. Λ and Λ′ have 

to be of the same parity). Plugging these results back into Eq. (72) and using Eq. (67), we 

obtain the final expression for the first term of Eq. (60): 
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〈�̃�Λ|𝐽+
2|�̃�Λ′〉

=
ℏ2

2√(1 + 𝛿Λ0)(1 + 𝛿Λ′0)
(𝜆+(𝐽, Λ

′)𝜆+(𝐽, Λ
′ + 1)𝛿Λ,Λ′+2

+ (−1)𝐽+Λ
′+𝑝𝜆+(𝐽, Λ

′ − 1)𝜆+(𝐽, Λ
′ − 2)𝛿Λ,2−Λ′

+ 𝜆+(𝐽, Λ
′ − 1)𝜆+(𝐽, Λ

′ − 2)𝛿Λ,Λ′−2) (73) 

In a very similar way one can derive an expression for the second term of Eq. (60) (this 

time using Eq. (68)): 

〈�̃�Λ|𝐽−
2|�̃�Λ′〉

=
ℏ2

2√(1 + 𝛿Λ0)(1 + 𝛿Λ′0)
(𝜆−(𝐽, Λ

′)𝜆−(𝐽, Λ
′ − 1)𝛿Λ,Λ′−2

+ (−1)𝐽+Λ+𝑝𝜆−(𝐽, Λ
′)𝜆−(𝐽, Λ

′ − 1)𝛿Λ,2−Λ′

+ 𝜆−(𝐽, Λ
′ + 1)𝜆−(𝐽, Λ

′ + 2)𝛿Λ,Λ′+2) (74) 

Using Eq. (69), Eq. (74) can be rewritten in terms of 𝜆+ as: 

〈�̃�Λ|𝐽−
2|�̃�Λ′〉

=
ℏ2

2√(1 + 𝛿Λ0)(1 + 𝛿Λ′0)
(𝜆+(𝐽, Λ

′ − 1)𝜆+(𝐽, Λ
′ − 2)𝛿Λ,Λ′−2

+ (−1)𝐽+Λ+𝑝𝜆+(𝐽, Λ
′ − 1)𝜆+(𝐽, Λ

′ − 2)𝛿Λ,2−Λ′

+ 𝜆+(𝐽, Λ
′)𝜆+(𝐽, Λ

′ + 1)𝛿Λ,Λ′+2) (75) 

Substitution of Eqs. (73) and (75) back into Eq. (60) gives: 
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〈�̃�Λ|𝐽𝑥
2 − 𝐽𝑦

2|�̃�Λ′〉

=
ℏ2

4√(1 + 𝛿Λ0)(1 + 𝛿Λ′0)
(2𝜆+(𝐽, Λ

′)𝜆+(𝐽, Λ
′ + 1)𝛿Λ,Λ′+2

+ ((−1)𝐽+Λ
′+𝑝 + (−1)𝐽+Λ+𝑝)𝜆+(𝐽, Λ

′ − 1)𝜆+(𝐽, Λ
′ − 2)𝛿Λ,2−Λ′

+ 2𝜆+(𝐽, Λ
′ − 1)𝜆+(𝐽, Λ

′ − 2)𝛿Λ,Λ′−2) (76) 

For any Λ, Λ′ such that 𝛿Λ,2−Λ′ ≠ 0 (−1)𝐽+Λ
′+𝑝 + (−1)𝐽+Λ+𝑝 = 2(−1)𝐽+Λ+𝑝 (since, 

again, Λ and Λ′ have to be of the same parity), therefore Eq. (76) can be simplified to: 

〈�̃�Λ|𝐽𝑥
2 − 𝐽𝑦

2|�̃�Λ′〉 =
ℏ2

2
𝑈ΛΛ′ (77) 

where 𝑈ΛΛ′  is defined as: 

𝑈ΛΛ′

=
1

√(1 + 𝛿Λ0)(1 + 𝛿Λ′0)
(𝜆+(𝐽, Λ)𝜆+(𝐽, Λ + 1)𝛿Λ,Λ′−2

+ 𝜆+(𝐽, Λ
′)𝜆+(𝐽, Λ

′ + 1)𝛿Λ,Λ′+2

+ (−1)𝐽+Λ+𝑝𝜆+(𝐽, Λ
′ − 1)𝜆+(𝐽, Λ

′ − 2)𝛿Λ,2−Λ′) (78) 

The first two terms of Eq. (78) make equal contributions to the second upper and 

lower off-diagonal Λ-blocks, respectively. The last term affects blocks (0, 2), (1, 1) and 

(2, 0). Because of the last term, the values of blocks (0, 2) and (2, 0) can either be 
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doubled (if 𝐽 + 𝑝 is even) or nullified (if 𝐽 + 𝑝 is odd). Contributions of 𝑈ΛΛ′ to different 

Λ-blocks of the Hamiltonian matrix are shown schematically in Figure 24. 

 

 
Figure 24. Block structure of the matrix 𝑈ΛΛ′ for the rotational states from 𝐽 = 0 to 𝐽 = 3 

(intuitive extrapolation to larger values of 𝐽 is relatively straightforward). The two 

parities are shown separately: 𝑝 = 0 in the left column and 𝑝 = 1 in the right column. 

The blocks are labelled by the values of Λ and Λ′. Color indicates magnitudes of matrix 

elements, with red means positive, blue negative, and white zero. When 𝐽 + 𝑝 is odd, all 

states corresponding to Λ = 0 or Λ′ = 0 do not exist and the corresponding blocks of the 

Hamiltonian matrix are excluded (hatched). 
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Finally, plugging Eq. (77) into Eq. (59) one obtains an expression for the matrix 

elements of asymmetric top rotor: 

〈ΨΛ�̃�Λ|�̂�asym|ΨΛ′�̃�Λ′〉 =
ℏ2

4
𝑈ΛΛ′〈ΨΛ|𝐴 − 𝐵|ΨΛ′〉 (79) 

Contributions of the asymmetric top rotor term are marked with “A” in Figure 23. 

4.3.3. Derivation of the Coriolis Coupling Matrix Elements 

Using the definition of Eq. (40), one can write the expression for the matrix 

elements of the Coriolis coupling operator �̂�cor as: 

〈ΨΛ�̃�Λ|�̂�cor|ΨΛ′�̃�Λ′〉 = 〈ΨΛ|4𝐵 cos 휃
𝑑

𝑑𝜑
|ΨΛ′〉 〈�̃�Λ|𝑖ℏ𝐽𝑦|�̃�Λ′〉 (80) 

Once again the modified Wigner functions �̃�Λ are not eigenfunctions of 𝐽𝑦, 

therefore let us consider the last term of Eq. (80) separately. Using Eq. (64), this integral 

can be expressed through 𝐽+ and 𝐽− as: 

〈�̃�Λ|𝑖ℏ𝐽𝑦|�̃�Λ′〉 =
ℏ

2
(〈�̃�Λ|𝐽−|�̃�Λ′〉 − 〈�̃�Λ|𝐽+|�̃�Λ′〉) (81) 

Following the footsteps of the derivation in the previous section (compare with 

Eqs. (73) and (75)), one can show that 

〈�̃�Λ|𝐽+|�̃�Λ′〉

=
ℏ

2√(1 + 𝛿Λ0)(1 + 𝛿Λ′0)
(𝜆+(𝐽, Λ

′)𝛿Λ,Λ′+1

+ (−1)𝐽+Λ
′+𝑝𝜆+(𝐽, Λ

′ − 1)𝛿Λ,1−Λ′ − 𝜆+(𝐽, Λ
′ − 1)𝛿Λ,Λ′−1) (82) 

and 
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〈�̃�Λ|𝐽−|�̃�Λ′〉

=
ℏ

2√(1 + 𝛿Λ0)(1 + 𝛿Λ′0)
(𝜆+(𝐽, Λ

′ − 1)𝛿Λ,Λ′−1

+ (−1)𝐽+Λ+𝑝𝜆+(𝐽, Λ
′ − 1)𝛿Λ,1−Λ′ − 𝜆+(𝐽, Λ

′)𝛿Λ,Λ′+1) (83) 

This time the parity of the two Λ values is required to be different, therefore 

(−1)𝐽+Λ+𝑝(−1)𝐽+Λ
′+𝑝 = −1, which changes the sign of the last terms in Eqs. (110) and 

(94). 

Plugging Eqs. (110) and (94) back into Eq. (81), one obtains: 

〈�̃�Λ|𝑖ℏ𝐽𝑦|�̃�Λ′〉 =
ℏ2

2
𝑊ΛΛ′  (84) 

where 𝑊ΛΛ′ is defined as: 

𝑊ΛΛ′

=
1

√(1 + 𝛿Λ0)(1 + 𝛿Λ′0)
(𝜆+(𝐽, Λ)𝛿Λ,Λ′−1 − 𝜆+(𝐽, Λ

′)𝛿Λ,Λ′+1

+ (−1)𝐽+Λ+𝑝𝜆+(𝐽, Λ
′ − 1)𝛿Λ,1−Λ′) (85) 

Similar to the case of 𝑈ΛΛ′ in Eq. (78), the first two terms of Eq. (96) make equal 

contributions to the first upper and lower off-diagonal Λ-blocks, respectively. The last 

term affects the blocks (0, 1) and (1, 0) and either doubles or nullifies them, depending on 
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parity of 𝐽 + 𝑝. Contributions of 𝑊ΛΛ′ to different Λ-blocks of the Hamiltonian matrix 

are shown schematically in Figure 25. 

Finally, plugging Eq. (96) into Eq. (80), one obtains a matrix element expression 

for Coriolis term: 

〈ΨΛ�̃�Λ|�̂�cor|ΨΛ′�̃�Λ′〉 = 2ℏ2𝑊ΛΛ′ 〈ΨΛ|𝐵 cos 휃
𝑑

𝑑𝜑
|ΨΛ′〉 (86) 

Contributions of the Coriolis term are marked with “C” in Figure 23. 

 
Figure 25. Same as in Figure 24, but for the matrix 𝑊ΛΛ′.    
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4.4. Derivation of the Matrix Elements in Specific Vibrational Basis 

So far the matrix element expressions have been derived for the case of an 

entirely general vibrational basis function ΨΛ(𝜌, 휃, 𝜑). In order to derive more specific 

expressions, one has to consider more specific basis functions. In this work we use a 

product of DVR (discrete variable representation) functions for 𝜌 (ℎ𝑛(𝜌)) and locally 

optimized functions of the hyper-angles ΧΛ𝑛
𝑗 (휃, 𝜑), i.e. 

ΨΛ(𝜌, 휃, 𝜑) = ℎ𝑛(𝜌)ΧΛ𝑛
𝑗 (휃, 𝜑) (87) 

where ℎ𝑛(𝜌) is given by: 

ℎ𝑛(𝜌𝑖) = {

1

√Δ𝜌
, 𝜌𝑖 = 𝜌𝑛

0, 𝜌𝑖 ≠ 𝜌𝑛

 

(88) 

where Δ𝜌 is the step size in 𝜌-grid. Note that index 𝑗 on functions ΧΛ𝑛
𝑗
(휃, 𝜑) is different 

from uppercase 𝐽 (total angular momentum quantum number). 

In the case of 𝜌, the placement of points is actually optimized based on the shape 

of the PES in a way that puts more points in the region of deep covalent well and fewer 

points in the shallow van der Waals interaction (asymptotic) region, which reduces the 

number of points necessary for the targeted accuracy. Even though the spacing between 

points is not equidistant, one can still work with it as if it were equidistant by using a 

mapping procedure. The details of this can be found elsewhere.96 

Plugging Eq. (87) into Eqs. (58), (79) and (86) one obtains the following 

expressions: 

〈ℎ𝑛ΧΛ𝑛
𝑗
�̃�Λ|�̂�sym|ℎ𝑛′ΧΛ′𝑛′

𝑗′
�̃�Λ′〉 = 〈ℎ𝑛ΧΛ𝑛

𝑗
|𝑉rot

Λ |ℎ𝑛′ΧΛ𝑛′
𝑗′ 〉 𝛿ΛΛ′ 

(89)  = 〈ΧΛ𝑛
𝑗
|𝑉rot

Λ𝑛|ΧΛ𝑛
𝑗′ 〉 𝛿𝑛𝑛′𝛿ΛΛ′ 
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〈ℎ𝑛ΧΛ𝑛
𝑗
�̃�Λ|�̂�asym|ℎ𝑛′ΧΛ′𝑛′

𝑗′
�̃�Λ′〉 =

ℏ2

4
𝑈ΛΛ′𝛿𝑛𝑛′ 〈ΧΛ𝑛

𝑗 |𝐴𝑛 − 𝐵𝑛|ΧΛ′𝑛
𝑗′ 〉 

(90) 

〈ℎ𝑛ΧΛ𝑛
𝑗
�̃�Λ|�̂�𝑐𝑜𝑟|ℎ𝑛′ΧΛ′𝑛′

𝑗′
�̃�Λ′〉 = 2ℏ2𝑊ΛΛ′𝛿𝑛𝑛′ 〈ΧΛ𝑛

𝑗
|𝐵𝑛 cos 휃

𝑑

𝑑𝜑
|Χ

Λ′𝑛

𝑗′ 〉 
(91) 

where the modified Kronecker delta functions 𝛿ΛΛ′ are given by Eq. (57) and the 

expression for the rotational potential was introduced: 

𝑉rot
Λ (𝜌, 휃) = ℏ2 (𝐽(𝐽 + 1)

𝐴 + 𝐵

2
+ Λ2 (𝐶 −

𝐴 + 𝐵

2
)) 

(92) 

Here and later in the chapter, index 𝑛 is used to signify that 𝜌 is restricted to 𝜌 =

𝜌𝑛, e.g. 𝐴𝑛 = 𝐴𝑛(휃) = 𝐴(𝜌𝑛, 휃), 𝑉rot
Λ𝑛 = 𝑉rot

Λ (𝜌𝑛, 휃). In a similar way, index 𝑙 is used 

when 휃 = 휃𝑙 , etc. 

Using the definition of Eq. (87) and the results of Eqs. (89)-(91), the matrix 

elements of the Hamiltonian operator of Eq. (53) can be written as: 

〈ℎ𝑛ΧΛ𝑛
𝑗
�̃�Λ|�̂�|ℎ𝑛′ΧΛ′𝑛′

𝑗′
�̃�Λ′〉 

(93)  

= 〈ℎ𝑛ΧΛ𝑛
𝑗
�̃�Λ|�̂�𝜌|ℎ𝑛′ΧΛ′𝑛′

𝑗′
�̃�Λ′〉

+ 〈ℎ𝑛ΧΛ𝑛
𝑗
�̃�Λ|�̂�𝜃 + �̂�𝜑 + 𝑉pes + 𝑉ext + �̂�sym|ℎ𝑛′ΧΛ′𝑛′

𝑗′
�̃�Λ′〉

+ 〈ℎ𝑛ΧΛ𝑛
𝑗
�̃�Λ|�̂�asym + �̂�cor|ℎ𝑛′ΧΛ′𝑛′

𝑗′
�̃�Λ′〉

= 〈ℎ𝑛|�̂�𝜌|ℎ𝑛′〉 〈ΧΛ𝑛
𝑗
|Χ

Λ𝑛′
𝑗′ 〉 𝛿ΛΛ′

+ 〈ΧΛ𝑛
𝑗
|�̂�𝜃

𝑛 + �̂�𝜑
𝑛 + 𝑉pes

𝑛 + 𝑉ext
𝑛 + 𝑉rot

Λ𝑛|ΧΛ𝑛
𝑗′ 〉 𝛿𝑛𝑛′𝛿ΛΛ′

+ 〈ℎ𝑛ΧΛ𝑛
𝑗
�̃�Λ|�̂�asym + �̂�cor|ℎ𝑛′ΧΛ′𝑛′

𝑗′
�̃�Λ′〉 

 The structure of the Hamiltonian matrix in Eq. (93) can be greatly simplified if 

the hyper-angle basis functions ΧΛ𝑛
𝑗 (휃, 𝜑) are chosen to be the eigenfunctions of the 

corresponding 2D Hamiltonian: 
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�̂�2D
Λ𝑛 = �̂�𝜃

𝑛 + �̂�𝜑
𝑛 + 𝑉pes

𝑛 + 𝑉ext
𝑛 + 𝑉rot

Λ𝑛 (94) 

i.e.: 

�̂�2D
Λ𝑛ΧΛ𝑛

𝑗 (휃, 𝜑) = 휀Λ𝑛
𝑗
ΧΛ𝑛
𝑗 (휃, 𝜑) (95) 

Note that for each 𝜌𝑛 this operator includes the rotational potential 𝑉rot
Λ𝑛 of a symmetric 

top rotor, just like in Eq. (92), but with 𝜌 = 𝜌𝑛. 

Using Eqs. (90), (91) and (95), Eq. (93) transforms into the following final 

expression for the rovibrational Hamiltonian matrix element: 

〈ℎ𝑛ΧΛ𝑛
𝑗
�̃�Λ|�̂�|ℎ𝑛′ΧΛ′𝑛′

𝑗′
�̃�Λ′〉 = 𝛿ΛΛ′〈ℎ𝑛|�̂�𝜌|ℎ𝑛′〉 〈ΧΛ𝑛

𝑗
|Χ

Λ𝑛′
𝑗′ 〉 

(96)  

+ 𝛿ΛΛ′𝛿𝑛𝑛′𝛿𝑗𝑗′휀Λ𝑛
𝑗

+
ℏ2

4
𝑈ΛΛ′𝛿𝑛𝑛′ 〈ΧΛ𝑛

𝑗 |𝐴𝑛 − 𝐵𝑛|ΧΛ′𝑛
𝑗′ 〉

+ 2ℏ2𝑊ΛΛ′𝛿𝑛𝑛′ 〈ΧΛ𝑛
𝑗
|𝐵𝑛 cos 휃

𝑑

𝑑𝜑
|Χ

Λ′𝑛

𝑗′ 〉 

where the factor of 𝛿𝑗𝑗′  appears due to orthonormal properties of each set of ΧΛ𝑛
𝑗

 for 

given values of Λ and 𝑛. Note that the same simplification cannot be done for the first 

term of Eq. (96), since the values of 𝑛 on the basis functions there are different. 

4.5. Sequential Diagonalization Truncation (SDT) 

In this section we consider Sequential Diagonalization Truncation (SDT) 

approach to derive specific expressions for the hyper-angle basis functions ΧΛ𝑛
𝑗 (휃, 𝜑) of 

Eq. (96) in terms of underlying basis functions. 

In order to determine a suitable set of 2D functions ΧΛ𝑛
𝑗 (휃, 𝜑), the hierarchy of 

expansions is continued. Namely, for each point 𝑛 of 𝜌-grid and for each Λ the following 

expansion is constructed: 
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ΧΛ𝑛
𝑗 (휃, 𝜑) =∑∑𝑏Λ𝑛𝑙𝑖

𝑗
𝑔𝑙(휃)ΦΛ𝑛𝑙

𝑖 (𝜑)

𝑆Λ𝑛𝑙

𝑖

𝐿

𝑙

 
(97) 

where ΦΛ𝑛𝑙
𝑖 (𝜑) is a locally-optimal basis set of functions for the hyper-angle 𝜑, and 

𝑔𝑙(휃) is a set of DVR basis functions for the hyper-angle 휃, defined, in a way similar to 

Eq. (88), as: 

𝑔𝑙(휃𝑖) = {

1

√Δ휃
, 휃𝑖 = 휃𝑙

0, 휃𝑖 ≠ 휃𝑙

 

(98) 

where Δ휃 is the step size in 휃-grid. Here and later in the text index 𝑙 is used to signify 

that 휃 is restricted to 휃 = 휃𝑙 . 

The matrix elements of �̂�2D
Λ𝑛 (Eq. (94)) in this basis of Eq. (97) are given by: 

〈𝑔𝑙ΦΛ𝑛𝑙
𝑖 |�̂�2D

Λ𝑛|𝑔𝑙′ΦΛ𝑛𝑙′
𝑖′ 〉 = 〈𝑔𝑙|�̂�𝜃

𝑛|𝑔𝑙′〉 〈ΦΛ𝑛𝑙
𝑖 |ΦΛ𝑛𝑙′

𝑖′ 〉 

(99)  +〈ΦΛ𝑛𝑙
𝑖 |�̂�𝜑

𝑛𝑙 + 𝑉pes
𝑛𝑙 + 𝑉ext

𝑛𝑙 + 𝑉rot
Λ𝑛𝑙|ΦΛ𝑛𝑙

𝑖′ 〉𝛿𝑙𝑙′ 

Once again, 𝑔𝑙(휃) is non-zero only at 휃 = 휃𝑙 , so one can set 휃 = 휃𝑙  in the 

operator �̂�𝜑
𝑛 and in the functions 𝑉pes

𝑛 , 𝑉ext
𝑛  and 𝑉rot

Λ𝑛, by introducing in Eq. (99) their 

versions labelled by 𝑙. 

Looking at Eq. (99), one can see that the structure of this matrix is simplified by 

choosing ΦΛ𝑛𝑙
𝑖 (𝜑) to be the eigenfunctions of the 1D operator in hyper-angle 𝜑: 

�̂�1D
Λ𝑛𝑙 = �̂�𝜑

𝑛𝑙 + 𝑉pes
𝑛𝑙 + 𝑉ext

𝑛𝑙 + 𝑉rot
Λ𝑛𝑙 (100) 

i.e.: 

�̂�1D
Λ𝑛𝑙ΦΛ𝑛𝑙

𝑖 (𝜑) = 휀Λ𝑛𝑙
𝑖 ΦΛ𝑛𝑙

𝑖 (𝜑) (101) 

Each of the sets of ΦΛ𝑛𝑙
𝑖 (𝜑) is orthonormal, therefore Eq. (99) transforms to: 

〈𝑔𝑙ΦΛ𝑛𝑙
𝑖 |�̂�2D

Λ𝑛|𝑔𝑙′ΦΛ𝑛𝑙′
𝑖′ 〉 = 〈𝑔𝑙|�̂�𝜃

𝑛|𝑔𝑙′〉 〈ΦΛ𝑛𝑙
𝑖 |ΦΛ𝑛𝑙′

𝑖′ 〉 + 휀Λ𝑛𝑙
𝑖 𝛿𝑖𝑖′𝛿𝑙𝑙′ (102) 
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Finally, the locally optimal sets of 1D functions ΦΛ𝑛𝑙
𝑖 (𝜑) are expanded in a 

variational basis representation (VBR) basis set for hyper-angle 𝜑: 

ΦΛ𝑛𝑙
𝑖 (𝜑) =∑𝑎Λ𝑛𝑙𝑚

𝑖 𝑓𝑚(𝜑)

𝑀

𝑚

 
(103) 

The elementary VBR basis functions in Eq. (103) are represented by a set of 

normalized cosine (vibrational symmetry A1, labelled by “+” for symmetric) or sine 

(vibrational symmetry B1, labelled by “−” for antisymmetric) functions: 

𝑓𝑚
+(𝜑) =

1

√𝜋(𝛿𝑚0 + 1)
cos(𝑚𝜑) ,𝑚 = 0…𝑀 − 1 

(104) 

𝑓𝑚
−(𝜑) =

1

√𝜋
sin(𝑚𝜑)  𝑚 = 1…𝑀 

(105) 

In contexts where vibrational symmetry of 𝑓𝑚(𝜑) does not matter (i.e. both 

symmetries are treated in the same way), we make the symmetry label implicit, for clarity 

of notation. 

The matrix elements of �̂�1D
Λ𝑛𝑙 (Eq. (100)) in the basis of Eq. (103) are given by: 

〈𝑓𝑚|�̂�1D
Λ𝑛𝑙|𝑓𝑚′〉 = −𝑚2𝛿𝑚𝑚′ + 〈𝑓𝑚|𝑉pes

𝑛𝑙 |𝑓𝑚′〉 + (𝑉ext
𝑛𝑙 + 𝑉rot

Λ𝑛𝑙)𝛿𝑚𝑚′ (106) 

Practical implementation of this approach proceeds in the reverse order, starting 

from 1D and going to 6D. The first step is the calculation of eigenvalues 휀Λ𝑛𝑙
𝑖  and 

eigenvectors 𝑎Λ𝑛𝑙𝑚
𝑖  for each of the Λ × 𝑛 × 𝑙 one-dimensional operators �̂�1D

Λ𝑛𝑙, by 

diagonalization of the corresponding matrices given by Eq. (106). Before proceeding to 

the next step, this set of 1D solutions is truncated based on their energy, to keep only the 

solutions with 휀Λ𝑛𝑙
𝑖 < 𝐸cut, where 𝐸cut is a convergence parameter that depends on the 

system and the energy span of the spectrum. The retained solutions represent the locally 

optimal 1D-basis sets ΦΛ𝑛𝑙
𝑖 (𝜑) for Eq. (97). 
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The second step is the calculation of eigenvalues 휀Λ𝑛
𝑗

 and eigenvectors 𝑏Λ𝑛𝑙𝑖
𝑗

 for 

each of the Λ × 𝑛 two-dimensional operators �̂�2D
Λ𝑛, by diagonalization of the 

corresponding matrices given by Eq. (99). Again, before proceeding to the next step, this 

set of 2D solutions is truncated using the same energy criterion 휀Λ𝑛
𝑗

< 𝐸cut to determine 

the locally-optimized 2D-basis sets ΧΛ𝑛
𝑗 (휃, 𝜑) for Eq. (87). It should be emphasized that 

this method adjusts basis sets locally to the shape of the PES, but also takes into account 

the level of rotational excitation of the system (determined by the values of 𝐽 and Λ), 

since the rotational potential 𝑉rot
Λ𝑛𝑙 is introduced at the very beginning, in Eq. (100). 

At the final third step a set of three-dimensional vibrational eigenvectors 𝑐Λ𝑛𝑗
𝑘  is 

obtained by diagonalizing the Hamiltonian matrix of Eq. (96), which also takes into 

account the rotational-vibrational couplings (the asymmetric top rotor terms and the 

Coriolis coupling terms, including the effect of parity 𝑝). This gives the spectrum of 

coupled rotational-vibrational eigenstates of the system, 휀𝑘, and the overall 6D ro-

vibrational wave function, expressed by combination of Eqs. (103), (97), (87) and (48), as 

follows: 

𝐹𝑘(𝜌, 휃, 𝜙, 𝛼, 𝛽, 𝛾)

= ∑ ∑∑∑∑∑𝑐Λ𝑛𝑗
𝑘 𝑏Λ𝑛𝑙𝑖

𝑗
𝑎Λ𝑛𝑙𝑚
𝑖 ℎ𝑛(𝜌)𝑔𝑙(휃)𝑓𝑚(𝜑)�̃�Λ(𝛼, 𝛽, 𝛾)

𝑀

𝑚

𝑆Λ𝑛𝑙

𝑖

𝐿

𝑙

𝑆Λ𝑛

𝑗

𝑁

𝑛

𝐽

Λ=0,1

 
(107) 

Such sequential addition of the vibrational degrees of freedom, with truncation of 

solutions between the steps, is known as the Sequential Diagonalization Truncation 

(SDT) method.109,110 SDT approach allows to significantly reduce the size of the 

Hamiltonian matrix in comparison to brute-force applications of multi-dimensional basis 

sets, represented by a direct-product of generic DVR or VBR functions.111 
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4.6. Practical Considerations for Evaluation of the Matrix Elements 

In this section we follow the steps of SDT, outlined in the previous sections, and 

provide more practical guidelines and explicit analytic expressions for evaluation of 

matrix elements in terms of expansion coefficients over the elementary basis functions of 

Eq. (107): 𝑐Λ𝑛𝑗
𝑘 , 𝑏Λ𝑛𝑙𝑖

𝑗
 and 𝑎Λ𝑛𝑙𝑚

𝑖 . Such explicit analytical expressions provide a good 

practical way of evaluating the matrix elements, since the right-hand side only involves 

easily programmable operations such as addition or multiplication. 

As outlined in the previous section, practical implementations of the present 

methodology start from 1D problem and work their way up to 6D, step by step. First, 

consider evaluation of the 1D matrix elements, given by Eq. (106). The first term is the 

kinetic energy element for 𝜑, which is already analytical in the basis of functions 𝑓𝑚(𝜑) 

and represents a simple operation of addition of −𝑚2 to the diagonal of �̂�1D
Λ𝑛𝑙 matrix. The 

second term, 〈𝑓𝑚|𝑉pes
𝑛𝑙 |𝑓𝑚′〉, does not have an analytical expression and the corresponding 

integral is evaluated numerically, using a large 1D quadrature in 𝜑. The last term in this 

formula is just a constant energy shift of each individual 1D problem, since 𝑉ext
𝑛𝑙  and 𝑉rot

Λ𝑛𝑙 

moieties are reduced to just scalar numbers (see Eqs. (36), (41)-(43) and (92)). Therefore, 

�̂�1D
Λ𝑛𝑙 matrix can be readily built and diagonalized, which provides us with optimized 1D 

basis functions ΦΛ𝑛𝑙
𝑖 (𝜑) of Eq. (103), their expansion coefficients over the VBR 

functions (𝑎Λ𝑛𝑙𝑚
𝑖 ) and energies (휀Λ𝑛𝑙

𝑖 ). 

Next one needs to evaluate the matrix elements for 2D problem, given by Eq. 

(102). The first term there is the kinetic energy matrix element for 휃. Since the points 

along 휃 are equidistant, one can use an analytical expression to evaluate the kinetic 

energy matrix elements, using parameters of the 휃-grid only, as follows:96 
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〈𝑔𝑙|�̂�𝜃
𝑛|𝑔𝑙′〉 =

{
 
 

 
 

𝜋2

(휃𝑚𝑎𝑥 − 휃𝑚𝑖𝑛)2
𝐿2 + 2

6
 if 𝑙 = 𝑙′

(−1)𝑙−𝑙
′ 𝜋2

(휃𝑚𝑎𝑥 − 휃𝑚𝑖𝑛)2
1

sin2 (
(𝑙 − 𝑙′)𝜋

𝐿
)
 if 𝑙 ≠ 𝑙′

 

(108) 

where 𝐿 is the total number of points in 휃-grid and 휃𝑚𝑎𝑥 − 휃𝑚𝑖𝑛 is the physical length of 

the grid. 

The next term of Eq. (102) can be expressed via the expansion coefficients 𝑎Λ𝑛𝑙𝑚
𝑖 , 

readily available from the previous diagonalization step, as: 

〈ΦΛ𝑛𝑙
𝑖 |ΦΛ𝑛𝑙′

𝑖′ 〉

= 〈∑𝑎Λ𝑛𝑙𝑚
𝑖 𝑓𝑚

𝑀

𝑚

|∑𝑎Λ𝑛𝑙′𝑚′
𝑖′ 𝑓𝑚′

𝑀

𝑚′

〉 = ∑∑𝑎Λ𝑛𝑙𝑚
𝑖 𝑎Λ𝑛𝑙′𝑚′

𝑖′ 〈𝑓𝑚|𝑓𝑚′〉

𝑀

𝑚′

𝑀

𝑚

=∑𝑎Λ𝑛𝑙𝑚
𝑖 𝑎Λ𝑛𝑙′𝑚

𝑖′
𝑀

𝑚

 
(109) 

The last term is just addition of the energies 휀Λ𝑛𝑙
𝑖  to the diagonal of matrix �̂�2D

Λ𝑛. 

This concludes the construction of �̂�2D
Λ𝑛 matrix, diagonalization of which gives us 2D 

basis functions ΧΛ𝑛
𝑗 (휃, 𝜑) of Eq. (97), their expansion coefficients over 1D functions 

(𝑏Λ𝑛𝑙𝑖
𝑗

) and energies 휀Λ𝑛
𝑗

. 

Next, one needs to evaluate the final matrix element expression of the overall 

Hamiltonian matrix �̂�, given by Eq. (96). The first term in Eq. (96) is the kinetic energy 

matrix element for 𝜌. Unlike the kinetic energy matrix element for 휃, this term cannot be 

evaluated analytically, since the placement of grid points is not equidistant. Therefore, 

the following expression is evaluated numerically:93,96 
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〈ℎ𝑛|�̂�𝜌|ℎ𝑛′〉 = −
ℏ2

2𝜇
〈ℎ𝑛|

𝜕2

𝜕𝜌2
|ℎ𝑛′〉 = −

ℏ2

2𝜇
(
1

√𝐽𝜌

𝜕

𝜕𝜌

1

𝐽𝜌

𝜕

𝜕𝜌

ℎ𝑛′

√𝐽𝜌
)

𝑛

 

(110) 

where 𝐽𝜌 is 𝜌-grid Jacobian, obtained during optimized grid generation as discussed in 

Ref. 93, and 𝑛 subscript denotes operation of taking 𝑛-th element of the resulting vector. 

Individual derivatives in Eq. (110) can be evaluated, using, for example, discrete Fourier 

transform. 

The second term of Eq. (96) can be expressed through the expansion coefficients 

of 1D and 2D basis functions by invoking Eqs. (97), (109) and orthonormal properties of 

𝑔𝑙(휃) as: 

〈ΧΛ𝑛
𝑗
|Χ

Λ𝑛′
𝑗′ 〉

= 〈∑∑𝑏Λ𝑛𝑙𝑖
𝑗

𝑔𝑙ΦΛ𝑛𝑙
𝑖

𝑆Λ𝑛𝑙

𝑖

𝐿

𝑙

|∑ ∑ 𝑏
Λ𝑛′𝑙′𝑖′
𝑗′

𝑔𝑙′ΦΛ𝑛′𝑙′
𝑖′

𝑆
Λ𝑛′𝑙′

𝑖′

𝐿

𝑙′

〉

=∑∑∑∑𝑏Λ𝑛𝑙𝑖
𝑗

𝑏
Λ𝑛′𝑙′𝑖′
𝑗′ 〈𝑔𝑙|𝑔𝑙′〉 〈ΦΛ𝑛𝑙

𝑖 |ΦΛ𝑛′𝑙′
𝑖′ 〉

𝑆Λ𝑛𝑙

𝑖′

𝐿

𝑙′

𝑆Λ𝑛𝑙

𝑖

𝐿

𝑙

=∑∑(∑𝑏Λ𝑛𝑙𝑖
𝑗

𝑎Λ𝑛𝑙𝑚
𝑖

𝑆Λ𝑛𝑙

𝑖

)(∑ 𝑏
Λ𝑛′𝑙𝑖′
𝑗′

𝑎Λ𝑛′𝑙𝑚
𝑖′

𝑆
Λ𝑛′𝑙

𝑖′

)

𝑀

𝑚

𝐿

𝑙

 

(111) 

The third term of Eq. (96) is simply the energy of 2D basis functions 휀Λ𝑛
𝑗

, added 

to the diagonal of the Hamiltonian matrix �̂�. 

The fourth term of Eq. (96) is the asymmetric top rotor term. The value of matrix 

𝑈ΛΛ′ depends on 𝐽 and Λ only, and is straightforward to evaluate, using the definition of 

Eq. (78). The corresponding vibrational term can be evaluated analytically, similar to Eq. 

(111), as: 
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〈ΧΛ𝑛
𝑗 |𝐴𝑛 − 𝐵𝑛|ΧΛ′𝑛

𝑗′ 〉

= 〈∑∑𝑏Λ𝑛𝑙𝑖
𝑗

𝑔𝑙ΦΛ𝑛𝑙
𝑖

𝑆Λ𝑛𝑙

𝑖

𝐿

𝑙

|𝐴𝑛 − 𝐵𝑛|∑ ∑ 𝑏
Λ′𝑛𝑙′𝑖′
𝑗′

𝑔𝑙′ΦΛ′𝑛𝑙′
𝑖′

𝑆
Λ′𝑛𝑙′

𝑖′

𝐿

𝑙′

〉

=∑(𝐴𝑛𝑙 − 𝐵𝑛𝑙)∑(∑ 𝑏Λ𝑛𝑙𝑖
𝑗

𝑎Λ𝑛𝑙𝑚
𝑖

𝑆Λ𝑛𝑙

𝑖

)(∑ 𝑏
Λ′𝑛𝑙𝑖′
𝑗′

𝑎Λ′𝑛𝑙𝑚
𝑖′

𝑆
Λ′𝑛𝑙

𝑖′

)

𝑀

𝑚

𝐿

𝑙

 

(112) 

The final term of Eq. (96) is the Coriolis coupling term. Once again, the value of 

matrix 𝑊ΛΛ′ depends on 𝐽 and Λ only, and is straightforward to evaluate, using the 

definition of Eq. (85). The corresponding vibrational term can be evaluated analytically: 

〈ΧΛ𝑛
𝑗
|𝐵𝑛 cos 휃

𝑑

𝑑𝜑
|Χ

Λ′𝑛
𝑗′ 〉

= 〈∑∑∑𝑏Λ𝑛𝑙𝑖
𝑗

𝑎Λ𝑛𝑙𝑚
𝑖 𝑔𝑙𝑓𝑚

𝑀

𝑚

𝑆Λ𝑛𝑙

𝑖

𝐿

𝑙

|𝐵𝑛 cos 휃
𝑑

𝑑𝜑
|∑ ∑ ∑𝑏

Λ′𝑛𝑙′𝑖′
𝑗′

𝑎Λ′𝑛𝑙′𝑚′
𝑖′ 𝑔𝑙′𝑓𝑚′

𝑀

𝑚′

𝑆
Λ′𝑛𝑙′

𝑖′

𝐿

𝑙′

〉

= ∑ ∑ 𝑏Λ𝑛𝑙𝑖
𝑗

𝑎Λ𝑛𝑙𝑚
𝑖 𝑏

Λ′𝑛𝑙′𝑖′
𝑗′

𝑎Λ′𝑛𝑙′𝑚′
𝑖′ 〈𝑔𝑙|𝐵𝑛 cos 휃|𝑔𝑙′〉 〈𝑓𝑚|

𝑑

𝑑𝜑
|𝑓𝑚′〉

𝑙′,𝑖′,𝑚′𝑙,𝑖,𝑚

 
(113) 

Let us take a closer look at evaluation of 〈𝑓𝑚|
𝑑

𝑑𝜑
|𝑓𝑚′〉 term. The values of 

〈𝑓𝑚|
𝑑

𝑑𝜑
|𝑓𝑚′〉 depend on the mutual symmetry of two functions and two cases are 

possible: 

〈𝑓𝑚
±|

𝑑

𝑑𝜑
|𝑓𝑚′

± 〉 = ∓𝑚〈𝑓𝑚
±|𝑓𝑚′

∓ 〉 = 0 
(114) 

〈𝑓𝑚
±|

𝑑

𝑑𝜑
|𝑓𝑚′

∓ 〉 = ±𝑚〈𝑓𝑚
±|𝑓𝑚′

± 〉 = ±𝑚𝛿𝑚𝑚′ 
(115) 

As one can see, the integral is non-zero only when the functions of different 

symmetries are combined. The absence of the Coriolis coupling between the functions 𝑓𝑚 

of the same symmetry (together with the other features of the Hamiltonian matrix 
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structure, discussed in section 4.3) makes it possible to separate the Hamiltonian matrix 

into 2 submatrices and diagonalize them separately, as shown in Figure 26, which 

presents a “zoom in” on the Hamiltonian matrix structure previously shown in Figure 23. 

The inner structure of each block in Figure 23 is shown as 2x2 subblocks group here. 

Individual subblocks are labelled by combinations of vibrational symmetries of the basis 

functions 𝑓𝑚(𝜑). As one can see, symmetric and asymmetric top rotor terms only couple 

the same symmetries, whereas the Coriolis coupling term only couples the opposite 

symmetries (Eq. (115)). 

Rearranging rows and columns and shown in Figure 26 separates the Hamiltonian 

into two independent submatrices. Each submatrix uses only one symmetry of 𝑓𝑚 in a 

given Λ-block. The symmetry of 𝑓𝑚 alternates between successive Λ-blocks and starts 

with 𝑓𝑚
+ in one submatrix and 𝑓𝑚

− in the other one. Thus, the ± sign in Eq. (115) can be 

expressed through the value of Λ and the value of starting symmetry in the Λ = 0 block 

as: 

 
Figure 26. Left-hand side: a more detailed version of the Hamiltonian matrix structure 

presented in Figure 23. Rows/columns are labelled by vibrational symmetry (A1 or B1) 

and Λ (in superscript). Right-hand side: a possible rearrangement of rows and columns 

that leads to separation of the overall Hamiltonian into 2 independent blocks. 
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〈𝑓𝑚|
𝑑

𝑑𝜑
|𝑓𝑚′〉 = (−1)Λ+𝑠𝑚𝛿𝑚𝑚′ 

(116) 

where 𝑠 is the symmetry of the Λ = 0 block, defined as: 

𝑠 = {
0 for 𝑓𝑚

+ in Λ = 0
1 for 𝑓𝑚

− in Λ = 0
 

(117) 

Plugging Eq. (116) back into Eq. (113) one obtains: 

〈ΧΛ𝑛
𝑗
|𝐵𝑛 cos 휃

𝑑

𝑑𝜑
|Χ

Λ′𝑛

𝑗′ 〉

= (−1)Λ+𝑠∑𝐵𝑛𝑙 cos 휃𝑙∑𝑚(∑𝑏Λ𝑛𝑙𝑖
𝑗

𝑎Λ𝑛𝑙𝑚
𝑖

𝑆Λ𝑛𝑙

𝑖

)(∑ 𝑏
Λ′𝑛𝑙𝑖′
𝑗′

𝑎Λ′𝑛𝑙𝑚
𝑖′

𝑆
Λ′𝑛𝑙

𝑖′

)

𝑀

𝑚

𝐿

𝑙

 

(118) 

Inserting the results of Eqs. (111), (112) and (118), to the coupled rotational-

vibrational matrix element expression of Eq. (96), one obtains the following easily 

evaluable expression in terms of the expansion coefficients of 1D and 2D basis functions: 

〈ℎ𝑛ΧΛ𝑛
𝑗
�̃�Λ|�̂�|ℎ𝑛′ΧΛ′𝑛′

𝑗′
�̃�Λ′〉

= 𝛿ΛΛ′ (〈ℎ𝑛|�̂�𝜌|ℎ𝑛′〉∑∑𝑂
Λ𝑛𝑛′𝑙𝑚

𝑗

𝑀

𝑚

𝐿

𝑙

+ 𝛿𝑛𝑛′𝛿𝑗𝑗′휀Λ𝑛
𝑗 )

+
ℏ2

4
𝑈ΛΛ′𝛿𝑛𝑛′ ∑(𝐴𝑛𝑙 − 𝐵𝑛𝑙)∑𝑂

ΛΛ′𝑛𝑙𝑚

𝑗

𝑀

𝑚

𝐿

𝑙

+ (−1)Λ+𝑠2ℏ2𝑊ΛΛ′𝛿𝑛𝑛′ ∑𝐵𝑛𝑙 cos 휃𝑙∑𝑚𝑂
ΛΛ′𝑛𝑙𝑚

𝑗

𝑀

𝑚

𝐿

𝑙

 
(119) 

where the following replacement was introduced, for conciseness. 

𝑂
ΛΛ′𝑛𝑛′𝑙𝑚

𝑗
= (∑ 𝑏Λ𝑛𝑙𝑖

𝑗
𝑎Λ𝑛𝑙𝑚
𝑖

𝑆Λ𝑛𝑙

𝑖

)( ∑ 𝑏
Λ′𝑛′𝑙𝑖′
𝑗′

𝑎Λ′𝑛′𝑙𝑚
𝑖′

𝑆
Λ′𝑛′𝑙

𝑖′

) 

(120) 
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4.7. Assignment of Rovibrational States 

In contrast to the symmetric top rotor approximation (where the overall 

Hamiltonian does not have couplings between different values of Λ, and thus each wave 

function can be characterized by one specific value of Λ), the fully coupled ro-vibrational 

wave functions 𝐹𝑘 have a probability distribution over multiple values of Λ. For each Λ 

this probability is given by the respective term of the outer sum in Eq. (48), so we can 

write: 

〈𝐹𝑘|𝐹𝑘
′
〉 = ∑ 𝑝Λ

𝑘

𝐽

Λ=0,1

= 𝛿𝑘𝑘′ 
(121) 

Eq. (121) can be used for assignment of Λ in cases where one term of Eq. (121) is 

significantly larger than other terms. 
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Figure 27 presents a map of the PES, which features three energetically 

equivalent wells. In isotopically-substituted ozone molecules that contain only 16O and 

18O, one of these wells corresponds to symmetric isotopomers (such as 16O18O16O or 

18O16O18O) and the other two wells correspond to asymmetric isotopomers (such as 

16O16O18O or 18O18O16O). Symmetric and asymmetric isotopomers of a given molecule 

are computed simultaneously in one run on a global PES. In contrast, different 

isotopologues (singly- vs. doubly-substituted ozone) are computed independently in two 

separate runs. 

Figure 27 also shows how the covalent well corresponding to the symmetric 

ozone isotopomer can be separated from the asymmetric ones using the value of hyper-

angle 𝜑. The wells of asymmetric isotopomers are centered at 𝜑 = ±𝜋/3, whereas the 

well of the symmetric isotopomer is centered at 𝜑 = 𝜋. Therefore, it is convenient to 

 
Figure 27. Schematic representation of the PES of ozone in APH coordinates, illustrating 

differences between symmetric and asymmetric isotopomers. The three covalent wells 

are labelled as “886”, “688” and “868”, where “6” and “8” stand for 16O and 18O, 

respectively. Green and violet colors mark the regions of the PES conditionally 

associated with the symmetric and asymmetric ozone isotopomers, respectively. 
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define a formal operator, which acts on the basis functions 𝑓𝑚(𝜑) by “cutting out” the 

part of a wave function that corresponds to the symmetric isotopomer: 

�̂�𝑠𝑦𝑚𝑓𝑚(𝜑) = {
𝑓𝑚(𝜑) for 𝜑 ∈ [

2𝜋

3
,
4𝜋

3
]

0 for 𝜑 ∉ [
2𝜋

3
,
4𝜋

3
]

 

(122) 

With this operator, the probability that a given state 𝐹𝑘 is a state of a symmetric 

molecule is given by 𝑝𝑠𝑦𝑚
𝑘 = 〈𝐹𝑘|�̂�𝑠𝑦𝑚|𝐹

𝑘〉. Since we have only two kinds of 

isotopomers, either symmetric or asymmetric, the probability that a given state is a state 

of an asymmetric molecule can be calculated simply as 𝑝𝑎𝑠𝑦𝑚
𝑘 = 1 − 𝑝𝑠𝑦𝑚

𝑘 . Expressing 

the value of this integral in terms of expansion coefficients of a wave function, we obtain: 

〈𝐹𝑘|�̂�𝑠𝑦𝑚|𝐹
𝑘〉 = ∑ 𝑐Λ𝑛𝑗

𝑘∗ 𝑏Λ𝑛𝑙𝑖
𝑗

𝑎Λ𝑛𝑙𝑚
𝑖 𝑐Λ𝑛𝑗′

𝑘 𝑏
Λ𝑛𝑙𝑖′
𝑗′

𝑎Λ𝑛𝑙𝑚′
𝑖′ 〈𝑓𝑚|�̂�𝑠𝑦𝑚|𝑓𝑚′〉

Λ,𝑛,𝑙,𝑗,𝑖,𝑚,𝑗′,𝑖′,𝑚′

= ∑ 〈𝑓𝑚|�̂�𝑠𝑦𝑚|𝑓𝑚′〉(∑𝑐Λ𝑛𝑗
𝑘∗ ∑𝑏Λ𝑛𝑙𝑖

𝑗
𝑎Λ𝑛𝑙𝑚
𝑖

𝑆Λ𝑛𝑙

𝑖

𝑆Λ𝑛

𝑗

)

Λ,𝑛,𝑙,𝑚,𝑚′

∑𝑐Λ𝑛𝑗′
𝑘 ∑𝑏

Λ𝑛𝑙𝑖′
𝑗′

𝑎Λ𝑛𝑙𝑚′
𝑖′

𝑆Λ𝑛𝑙

𝑖′

𝑆Λ𝑛

𝑗′

 

(123) 

where * denotes operator of complex conjugation. Here, in contrast to Eq. (109), we 

cannot eliminate the sum over 𝑚′, since functions �̂�𝑠𝑦𝑚𝑓𝑚(𝜑) are not orthogonal. 

In general, the integral ∫ 𝑓𝑚
±𝑓𝑚′

±𝑏

𝑎
𝑑𝜑, can be calculated analytically for arbitrary 

limits 𝑎 and 𝑏. In the case of 〈𝑓𝑚|�̂�𝑠𝑦𝑚|𝑓𝑚′〉 in Eq. (123), 𝑎 = 2𝜋/3 and 𝑏 = 4𝜋/3, 

which results in the following solutions: 

if 𝑚 = 𝑚′ = 0, then: 

〈𝑓𝑚|�̂�𝑠𝑦𝑚|𝑓𝑚′〉 = 1 3⁄  (124) 

if 𝑚 = 𝑚′ ≠ 0, then: 
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〈𝑓𝑚|�̂�𝑠𝑦𝑚|𝑓𝑚′〉 =
1

2𝜋
(
2𝜋

3
+ (−1)Λ+𝑠

sin (
2𝜋
3 𝑚)

𝑚
) 

(125) 

if 𝑚 ≠ 𝑚′, then: 

〈𝑓𝑚|�̂�𝑠𝑦𝑚|𝑓𝑚′〉

= −
1

𝜋√(𝛿𝑚0 + 1)(𝛿𝑚′0 + 1)

×

(

 
 
sin (

2𝜋
3
(𝑚 −𝑚′))

𝑚 −𝑚′
+ (−1)Λ+𝑠

sin (
2𝜋
3
(𝑚 +𝑚′))

𝑚 +𝑚′

)

 
 

 

(126) 

Eq. (123) can be used for isotopomer assignments in cases when 〈𝐹𝑘|�̂�𝑠𝑦𝑚|𝐹
𝑘〉 

evaluates to a number close to 0 or 1, which is always the case for low energies, where 

tunneling between the covalent wells is negligibly small. 

Finally, the states can also be labelled by their overall symmetry. Tables 15 and 

16 give a summary of possible symmetries of different components of ro-vibrational 

wave functions 𝐹𝑘 for the case of odd 𝐽 (on the example of 𝐽 = 5) and even 𝐽 (on the 

example of 𝐽 = 4). The first and the second columns show the values of 𝑝 (parity) and Λ 

(z-component of 𝐽), respectively. The third column shows symmetry of the rotational 

component �̃�𝐾𝑀
𝐽𝑝

 of the total wave function (Eq. (50)), which depends on 𝑝 and whether 

the value of Λ is even or odd. The fourth column shows possible symmetries of the 

vibrational component, defined by symmetry of 𝑓𝑚(𝜑), which can be either A1 
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(symmetric, 𝑓𝑚
+(𝜑)) or B1 (antisymmetric, 𝑓𝑚

−(𝜑)). Last column gives the rovibrational 

symmetry of 𝐹𝑘, obtained as a product of rotational and vibrational symmetries. 

As discussed in derivation of Eq. (116), the vibrational symmetries of 𝑓𝑚(𝜑) have 

to alternate and can start with either A1 or B1 in Λ = 0. Since symmetries of the nuclear 

spin wave function and the ground state electronic wave function of ozone are both A1, 

Table 15. A summary of possible symmetries of different components of ro-vibrational 

wave functions for the case of 𝐽 = 5 (odd). Green and red colors correspond to allowed 

and forbidden symmetries, respectively. 

Parity Λ Γrot Γvib Γrovib 

𝑝
=
0
 

5 B1 B1,  A1 A1,  B1 

4 A1 A1,  B1 A1,  B1 

3 B1 B1,  A1 A1,  B1 

2 A1 A1,  B1 A1,  B1 

1 B1 B1,  A1 A1,  B1 

𝑝
=
1
 

0 B2 B1,  A1 A2,  B2 

1 A2 A1,  B1 A2,  B2 

2 B2 B1,  A1 A2,  B2 

3 A2 A1,  B1 A2,  B2 

4 B2 B1,  A1 A2,  B2 

5 A2 A1,  B1 A2,  B2 

Table 16. Same as Table 15, but for the case of 𝐽 = 4 (even). 

Parity Λ Γrot Γvib Γrovib 

𝑝
=
0
 

4 A1 A1,  B1 A1,  B1 

3 B1 B1,  A1 A1,  B1 

2 A1 A1,  B1 A1,  B1 

1 B1 B1,  A1 A1,  B1 

0 A1 A1,  B1 A1,  B1 

𝑝
=
1
 

1 A2 A1,  B1 A2,  B2 

2 B2 B1, A1 A2,  B2 

3 A2 A1,  B1 A2,  B2 

4 B2 B1,  A1 A2,  B2 
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the overall symmetry of 𝐹𝑘 is the same as the rovibrational symmetry. Note that Λ = 0 

state exists only for even values of 𝐽 + 𝑝. 

Both 16O and 18O isotopes are bosons, i.e. have zero nuclear spin, therefore the 

overall wave function in both singly and doubly substituted ozone molecules is required 

to retain the same sign under permutation of identical particles (Bose-Einstein statistics). 

Only rovibrational states of symmetries A1 and A2 comply with that requirement, 

therefore they are allowed, while the other two symmetries (B1 and B2) are forbidden. 

As one can see from Tables 15 and 16, selecting vibrational symmetries A1 for 

𝑝 = 0 and B1 for 𝑝 = 1 in Λ = 0 (even when it does not exist) always yields allowed 

wave functions. Comparing this result with Figure 26, one can see that one of the blocks 

corresponds to allowed functions only, while the other block corresponds to forbidden 

functions only. In cases when only allowed functions are of interest, such separation 

allows one to reduce the necessary calculations twofold by diagonalizing only the 

allowed half of the Hamiltonian matrix. 

4.8. Summary 

In this chapter we developed theory for the efficient calculation of coupled 

rotational-vibrational states in triatomic molecules using APH coordinates and taking into 

account all terms of the Hamiltonian operator, including the asymmetric-top rotor 

coupling and the Coriolis coupling. Concise final formulas were derived for the efficient 

calculations of matrix elements, for construction of the Hamiltonian matrix, for 

expressing the total ro-vibrational wavefunction, for the assignment of quantum numbers 

to the computed eigenstates, and finally for the identification of possible isotopomers of 

the molecule on the global PES (i.e. symmetric vs. asymmetric ozone). Our numerical 
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approach is distinct from other available methods, since it uses an efficient combination 

of the VBR and DVR methods (taking advantage of an adaptive grid, which adjusts to the 

shape of the PES) and significantly reduces the size of the Hamiltonian matrix by 

constructing and truncating the locally-optimal basis sets at all levels of the calculations. 

The methodology developed here can be used for calculations of accurate 

rotational-vibrational states for any triatomic molecule, not just ozone. The states can be 

used to quantify the molecule’s spectroscopy near the bottom of the well, or to assess its 

chemical reactivity near the bond-breaking threshold and above it. In particular, it would 

be important to determine the role of rotational-vibrational couplings in the 

recombination reaction that forms ozone, focusing on the isotope effect. This is not an 

easy task, since it would require calculations for different isotopomers and isotopologues 

of ozone (at least 16O18O16O, 16O16O18O, 18O16O18O and 16O18O18O) in a broad range of 

rotational excitations (up to 𝐽 = 50) and vibrational excitations up to the dissociation 

threshold (up to 10 quanta in one mode). 
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CHAPTER 5. PROPERTIES OF PURELY VIBRATIONAL BOUND 

STATES IN OZONE AS A POSSIBLE SOURCE OF THE ISOTOPE 

EFFECT 

In this chapter the theory outlined in Chapter 4 is applied to calculation of bound 

vibrational states in ozone, without overall rotation (J = 0), with the purpose of 

investigating possible isotope effects that can come from purely vibrational treatment of 

bound states only. The ozone molecule has three degrees of freedom, the same number as 

in our MRCI PES for tetrasulfur (𝑅, 𝛼1, 𝛼2), therefore, in addition to the exploration of 

the isotope effects in ozone, this chapter has a goal of familiarizing with the 3D 

calculations of the vibrational states in general. 

As it was pointed out in Introduction, mass-independent fractionation of oxygen 

isotopes in Earth’s atmosphere is produced by recombination reaction that forms ozone 

molecules: O + O2 ⎯⎯⎯ →⎯+  gasbath 
 O3. One of the isotope effects related to this reaction, 

called -effect, makes the rate of this reaction about 16% slower for symmetric ozone 

molecules, as compared to the asymmetric ones. Here we focus on this effect and 

investigate how the ratio of between the number of states in asymmetric and symmetric 

ozone molecules can contribute to it. 

5.1. The Expected Ratio Between the Number of States in Asymmetric 

and Symmetric Ozone Molecules 

The number of states in the products has direct bearing on the reaction rate, and it 

is usually assumed that the number of states in symmetric ozone molecules is a factor of 

two smaller than in the asymmetric ozone molecules. This difference is rationalized, 

sometimes, by invoking rotational symmetry numbers for symmetric ozone molecules, 

but the actual reason for this factor is a doubled phase-space available for vibrations of 
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asymmetric ozone molecules. One can explain this in simple terms, if one notices that 

among the three possible isomers of isotopically singly substituted ozone (isotopomers) 

only one is symmetric, whereas two others are asymmetric and identical. For example, 

symmetric 16O18O16O vs. asymmetric 16O16O18O and 18O16O16O, and similar in the case of 

double substitution. 

More rigorous way of looking into this is through the “map” of the potential 

energy surface (PES) presented in Figure 28 in APH coordinates. This diagram shows 

three deep covalent wells of O3 connected to three O + O2 reaction channels, through the 

regions of weak Van der Waals interaction. One of these wells (in the middle) hosts the 

symmetric ozone molecule, while the other two wells host the asymmetric ozone 

molecule. Cleary, two wells can support twice larger number of the vibrational states. In 

a recent thesis94 and in another recent paper39 we carefully worked out what rotational-

 
Figure 28. A map of the PES of ozone in APH coordinates. O and Q denote two different 

oxygen isotopes, such as 16O and 18O. Three potential energy wells (pink, orange) 

connect through three weak Van der Waals interaction regions (green, blue). Note, that 

asymmetric ozone molecules occupy two potential wells (orange), whereas symmetric 

ozone molecules occupy only one (red). 
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vibrational states are allowed by symmetry and showed that, indeed, their numbers in the 

symmetric and asymmetric ozone molecules are in the ratio of one to two, roughly. We 

also showed that this factor of two, by itself, is not responsible for any isotope effects, 

since it cancels analytically if all features of this reaction are properly taken into account. 

But what if this difference is not exactly a factor of two? What if the ratio of the 

actual number of vibrational states deviates from this statistically-driven expectation? 

Surprisingly, literature search on this topic reveals that although several accurate PESs 

exist for ozone,48,80,112,113 and several calculations of its vibrational spectra have been 

reported,93,114–117 no one tried to compare the number of states in symmetric and 

asymmetric ozone molecules systematically, for both singly- and doubly-substituted 

cases. Here we report such data, obtained by accurate variational calculations of the 

vibrational states, and determine the ratio of the corresponding vibrational partition 

functions for the relevant isotopomers of ozone. Our results indicate a non-negligible 

deviation from the factor of two and, thus, attest for an appreciable isotope effect. To our 

best knowledge this property of ozone molecule has never been noticed before. 

5.2. Calculation of Bound Vibrational States in Ozone 

Calculations reported here were carried out in the entire range of the hyper-angle 

 that covers all three wells of Figure 28. This means that the vibrational states of both 

symmetric and asymmetric ozone isotopomers are computed at once and must be 

assigned and split into groups afterwards. In order to do these assignments, we computed 

for each vibrational wave function, four probabilities associated with colored regions of 

the coordinate space in Figure 28. Two of these probabilities correspond to the regions of 

deep covalent wells ( < 5 Bohr), and the other two correspond to the regions of shallow 
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Van der Waals wells (5 < ρ < 11 Bohr). For example, in the case of single isotopic 

substitution the four probabilities correspond to symmetric ozone 16O18O16O, asymmetric 

ozone 18O16O16O and 16O16O18O (the two wells combined), Van der Waals complex 

16O16O···18O, and Van der Waals complex 18O16O···16O (in the two channels combined). 

These four probabilities are listed for each vibrational state of ozone included in the 

Tables 17-24. Tables 17-20 report the data for ozone with single 18O, while Tables 21-24 

report the data for double substitutions with 18O. 

Each table contains 6 columns: state number (counted in each well separately), 

energy and the four probabilities in each considered region of the PES (see Figure 28). 

The order of the states is flipped to focus on the upper part of the spectrum (top 20 states 

in each group). The value of 0 cm-1 corresponds to the energy of the lower dissociation 

channel. The energies are given up to the energy of the upper dissociation channel (ΔZPE 

≈ 25.14 cm-1 for 16O18O16O and 20.38 cm-1 for 18O16O18O). The complete spectrum that 

includes all bound vibrational states is summarized in Figures 29-32. The full version of 

Tables 17-24 is available in the Supplemental Information of Ref. 118. All calculations 

were carried out with SpectrumSDT program.119 

Our calculations revealed 498 symmetric and 462 antisymmetric vibrational states 

below the upper dissociation threshold in the singly-substituted case, as well as 509 

symmetric and 469 antisymmetric states in case of the doubly-substituted ozone 

molecule. Note that the vibrational wave functions of singly- and doubly-substituted 

ozone are either symmetric (symmetry A1) or antisymmetric (symmetry B1) with respect 

to reflection through the dashed line in Figure 28. This assignment is exact, and, in fact, 

the states of different symmetries are computed in two independent runs with symmetry-
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adapted basis sets specified for the hyper-angle . The highest-energy bound states from 

each symmetry are reported separately: A1 states in the Tables 17, 19, 21 and 23, and B1 

states in the Tables 18, 20, 22 and 24. 

In addition, we tried our best to split the vibrational states onto the nearly 

degenerate pairs (that correspond to the double-well states of asymmetric ozone and the 

double-channel Van der Waals states) and the remaining non-degenerate states (that 

correspond to the single-well symmetric ozone and the single-channel Van der Waals 

states). The non-degenerate states are reported in the Tables 17-18 and 21-22, the nearly 

degenerate states are reported in the Tables 19-20 and 23-24. 

This degeneracy assignment is approximate but is quite certain for the majority of 

ozone states. A couple of states was considered degenerate if: 

• They belong to different vibrational symmetries 

• They have similar energies (less than 4 cm-1 apart) 

• Their wave functions are localized in the same regions of the PES (maximum 

probability difference per region is less than 0.2) 

• They do not belong to the symmetric molecule (symmetric molecule probability 

is less than 0.2)  
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Table 17. Top 20 bound non-degenerate 

states of symmetry A1 of the singly-

substituted symmetric ozone molecule 

(16O18O16O). 

# Energy, cm-1 

pi 

cov. 

686 

vdW 

6·86 

cov. 

668 

vdW 

66·8 

315 23.6893763651 0.01 0.77 0.01 0.01 

314 23.4766960120 0.00 0.20 0.18 0.11 

311 22.8511562110 0.00 0.02 0.75 0.18 

309 20.8678885548 0.01 0.12 0.05 0.14 

306 14.3202822547 0.00 0.00 0.00 0.98 

305 10.2525868971 0.04 0.31 0.01 0.00 

303 -2.9729153429 0.33 0.53 0.06 0.01 

301 -4.5047713654 0.28 0.39 0.07 0.10 

300 -5.1069236816 0.02 0.08 0.02 0.85 

298 -9.5383258922 0.23 0.71 0.02 0.02 

295 -20.1058808250 0.00 0.01 0.00 0.98 

293 -23.4812943829 0.08 0.89 0.02 0.00 

292 -28.3331707248 0.00 0.02 0.07 0.90 

291 -36.7950620624 0.96 0.03 0.01 0.00 

287 -45.4493037559 0.13 0.69 0.13 0.04 

286 -48.9005862386 0.02 0.35 0.28 0.35 

283 -53.7426924301 0.00 0.18 0.09 0.72 

282 -54.7323966658 0.82 0.18 0.00 0.00 

280 -60.1136860833 0.40 0.58 0.01 0.01 

277 -74.3981136466 0.39 0.57 0.03 0.01 
 

Table 18. Top 20 bound non-degenerate 

states of symmetry B1 of the singly-

substituted symmetric ozone molecule 

(16O18O16O). 

# Energy, cm-1 

pi 

cov. 

686 

vdW 

6·86 

cov. 

668 

vdW 

66·8 

316 24.1162464123 0.04 0.55 0.00 0.00 

313 23.2583154543 0.04 0.55 0.00 0.00 

312 22.9306479449 0.00 0.00 0.98 0.01 

310 21.3447095227 0.00 0.01 0.00 0.98 

308 20.5965729351 0.73 0.11 0.00 0.00 

307 16.6395365468 0.02 0.30 0.00 0.00 

304 7.5801311048 0.00 0.00 0.08 0.91 

302 -3.2731346615 0.02 0.79 0.07 0.02 

299 -5.6652306576 0.06 0.75 0.04 0.01 

297 -9.5389686786 0.93 0.06 0.01 0.00 

296 -19.2121723993 0.08 0.71 0.07 0.14 

294 -20.4161861314 0.02 0.27 0.07 0.65 

290 -41.4559043166 0.95 0.04 0.01 0.00 

289 -42.0286134158 0.00 0.00 0.18 0.82 

288 -43.3204944229 0.04 0.95 0.01 0.00 

285 -49.1977625604 0.53 0.23 0.13 0.12 

284 -49.3990597687 0.48 0.23 0.14 0.15 

281 -55.7157305500 0.21 0.76 0.01 0.02 

279 -71.2203480539 0.80 0.19 0.00 0.00 

278 -74.2060224992 0.32 0.64 0.03 0.01 
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Table 19. Top 20 bound nearly-degenerate 

states of symmetry A1 of the singly-

substituted asymmetric ozone molecule 

(16O16O18O). 

# Energy, cm-1 

pi 

cov. 

686 

vdW 

6·86 

cov. 

668 

vdW 

66·8 

322 24.1907605106 0.00 0.20 0.07 0.10 

321 23.0040525521 0.00 0.00 0.18 0.73 

320 22.4463128046 0.02 0.64 0.00 0.00 

319 21.8778962690 0.02 0.38 0.03 0.02 

318 20.9747830225 0.03 0.33 0.01 0.04 

317 19.6980194234 0.00 0.48 0.02 0.00 

316 18.9026783906 0.00 0.71 0.01 0.00 

315 18.3871567785 0.02 0.31 0.06 0.01 

314 16.9015060508 0.00 0.25 0.03 0.02 

313 16.3431688074 0.01 0.34 0.07 0.00 

312 16.1325567930 0.00 0.05 0.88 0.00 

311 15.7571040215 0.01 0.07 0.09 0.55 

310 15.2182593368 0.03 0.30 0.06 0.11 

309 13.1760129736 0.06 0.46 0.01 0.00 

308 12.0635393430 0.00 0.26 0.01 0.00 

307 11.4630593880 0.00 0.56 0.05 0.00 

306 8.9697708272 0.00 0.21 0.01 0.00 

305 7.8274872728 0.07 0.40 0.05 0.00 

304 6.1340194017 0.02 0.42 0.00 0.00 

303 5.2911041596 0.00 0.38 0.03 0.04 
 

Table 20. Top 20 bound nearly-degenerate 

states of symmetry B1 of the singly-

substituted asymmetric ozone molecule 

(16O16O18O). 

# Energy, cm-1 

pi 

cov. 

686 

vdW 

6·86 

cov. 

668 

vdW 

66·8 

322 24.4964675184 0.00 0.01 0.01 0.27 

321 21.1011477081 0.00 0.03 0.08 0.64 

320 22.2043504806 0.02 0.63 0.01 0.02 

319 21.5660379021 0.11 0.33 0.01 0.02 

318 23.7648627285 0.01 0.43 0.08 0.05 

317 19.7732872430 0.02 0.59 0.01 0.01 

316 18.8698783968 0.00 0.72 0.01 0.02 

315 19.0387022961 0.07 0.24 0.04 0.06 

314 16.9550655222 0.03 0.26 0.10 0.13 

313 16.1419933317 0.02 0.33 0.15 0.01 

312 16.1057595673 0.00 0.07 0.83 0.00 

311 17.7895343608 0.02 0.10 0.12 0.49 

310 14.2297254128 0.03 0.37 0.03 0.00 

309 11.0902028546 0.03 0.57 0.00 0.00 

308 12.0761254701 0.00 0.24 0.01 0.00 

307 11.4886191115 0.01 0.42 0.05 0.00 

306 8.9625884030 0.00 0.21 0.01 0.00 

305 8.9313243023 0.03 0.37 0.04 0.01 

304 6.3877294142 0.01 0.33 0.02 0.00 

303 5.3093598165 0.00 0.30 0.03 0.00 
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Table 21. Top 20 bound non-degenerate 

states of symmetry A1 of the doubly-

substituted symmetric ozone molecule 

(18O16O18O). 

# Energy, cm-1 

pi 

cov. 

868 

vdW 

8·68 

cov. 

886 

vdW 

88·6 

316 15.7091158552 0.01 0.67 0.07 0.08 

314 13.7913145398 0.00 0.07 0.39 0.18 

313 9.5340988894 0.91 0.09 0.00 0.00 

312 7.9063426862 0.00 0.19 0.22 0.19 

311 7.5775495047 0.77 0.22 0.00 0.00 

309 1.0985607486 0.00 0.06 0.01 0.70 

307 -1.9881012021 0.00 0.13 0.10 0.57 

306 -3.3210394465 0.05 0.95 0.00 0.00 

305 -3.7732856890 0.00 0.04 0.11 0.23 

302 -20.2393314097 0.04 0.83 0.08 0.05 

300 -23.7946893281 0.04 0.32 0.14 0.50 

299 -24.1766493714 0.70 0.29 0.00 0.01 

297 -43.4506875502 0.14 0.82 0.02 0.02 

294 -48.0246994592 0.04 0.58 0.02 0.35 

293 -52.9770668657 0.00 0.12 0.29 0.59 

290 -55.5730392579 0.00 0.26 0.16 0.58 

289 -62.3064222046 0.19 0.81 0.00 0.00 

286 -67.8430707536 0.00 0.03 0.71 0.26 

284 -79.7019302308 0.00 0.00 0.05 0.94 

282 -82.4068124950 0.43 0.55 0.01 0.01 
 

Table 22. Top 20 bound non-degenerate 

states of symmetry B1 of the doubly-

substituted symmetric ozone molecule 

(18O16O18O). 

# Energy, cm-1 

pi 

cov. 

868 

vdW 

8·68 

cov. 

886 

vdW 

88·6 

318 17.3092760961 0.00 0.06 0.01 0.32 

317 16.1701874115 0.02 0.32 0.05 0.33 

315 15.0802428547 0.01 0.24 0.13 0.16 

310 7.2861250591 0.00 0.12 0.06 0.66 

308 -0.5430607183 0.09 0.73 0.03 0.03 

304 -14.2493446449 0.45 0.55 0.00 0.00 

303 -19.4785846953 0.06 0.23 0.08 0.64 

301 -20.2642971158 0.30 0.43 0.08 0.20 

298 -36.5654385547 0.18 0.82 0.00 0.00 

296 -46.1993979590 0.31 0.61 0.04 0.05 

295 -47.0775801702 0.63 0.22 0.04 0.10 

292 -54.3520047142 0.09 0.53 0.18 0.20 

291 -55.1144419973 0.13 0.48 0.17 0.21 

288 -62.3844735744 0.70 0.30 0.00 0.00 

287 -66.7091942498 0.00 0.03 0.38 0.59 

285 -73.1052026047 0.00 0.00 0.27 0.73 

283 -80.4515967581 0.21 0.79 0.00 0.00 

280 -89.7929155192 0.82 0.18 0.00 0.00 

279 -102.3537525696 0.65 0.35 0.00 0.00 

275 -116.7238105262 0.05 0.95 0.00 0.00 
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Table 23. Top 20 bound nearly-degenerate 

states of symmetry A1 of the doubly-

substituted asymmetric ozone molecule 

(16O18O18O). 

# Energy, cm-1 

pi 

cov. 

868 

vdW 

8·68 

cov. 

886 

vdW 

88·6 

330 19.4286022286 0.00 0.20 0.03 0.26 

329 18.8301101318 0.01 0.59 0.03 0.14 

328 18.4260052029 0.01 0.44 0.04 0.10 

327 17.6490092060 0.00 0.03 0.02 0.61 

326 17.4366493037 0.02 0.78 0.00 0.00 

325 15.5242092764 0.03 0.81 0.03 0.04 

324 14.6305351162 0.00 0.05 0.04 0.55 

323 12.4361381094 0.16 0.70 0.04 0.01 

322 12.1614272074 0.01 0.04 0.20 0.33 

321 11.4134052468 0.00 0.06 0.34 0.28 

320 10.4601473398 0.06 0.94 0.00 0.00 

319 8.3481392224 0.00 0.03 0.04 0.23 

318 7.9833384500 0.00 0.02 0.70 0.09 

317 5.6353311379 0.00 0.13 0.06 0.17 

316 5.0382523414 0.00 0.34 0.16 0.15 

315 2.7833361700 0.00 0.15 0.03 0.28 

314 1.6602756026 0.02 0.71 0.06 0.13 

313 -0.7148160202 0.00 0.00 0.00 0.38 

312 -2.8138383509 0.00 0.91 0.02 0.03 

311 -4.9074134837 0.00 0.05 0.71 0.23 
 

Table 24. Top 20 bound nearly-degenerate 

states of symmetry B1 of the doubly-

substituted asymmetric ozone molecule 

(16O18O18O). 

# Energy, cm-1 

pi 

cov. 

868 

vdW 

8·68 

cov. 

886 

vdW 

88·6 

330 19.8587230969 0.00 0.10 0.03 0.25 

329 18.5302046571 0.00 0.69 0.01 0.01 

328 19.1313012803 0.02 0.43 0.04 0.05 

327 16.7386432580 0.01 0.11 0.03 0.67 

326 17.6590148782 0.04 0.78 0.01 0.02 

325 15.5765207942 0.01 0.95 0.00 0.01 

324 13.9777936356 0.01 0.05 0.13 0.52 

323 13.5000523941 0.06 0.69 0.07 0.02 

322 12.7161290091 0.00 0.00 0.16 0.46 

321 12.1785819135 0.00 0.02 0.45 0.19 

320 10.4746994062 0.01 0.97 0.01 0.01 

319 10.2259879823 0.00 0.08 0.14 0.32 

318 7.9568415081 0.00 0.11 0.88 0.00 

317 6.2449342269 0.00 0.23 0.11 0.20 

316 4.1080022436 0.01 0.43 0.11 0.20 

315 1.5976426166 0.01 0.11 0.06 0.25 

314 2.8159763487 0.07 0.63 0.06 0.06 

313 -0.9909871890 0.01 0.12 0.03 0.24 

312 -2.8224728519 0.00 0.99 0.01 0.01 

311 -4.7191900218 0.00 0.01 0.84 0.15 
    



109 
 

 

 

 
Figure 29. The spectrum of nearly degenerate states for singly- (upper frame) and 

doubly-substituted (lower frame) ozone molecules in the full energy range. Blue circles 

and red dots represent the covalently bound vibrational states of two symmetries, A1 and 

B1, respectively. Green circles and black dots mark the Van der Waals states of 

vibrational symmetries A1 and B1, respectively. State numbering is according to the 

Tables 19-20 and 23-24. 
   



110 
 

 

 

 
Figure 30. The spectrum of nearly degenerate states for singly- (upper frame) and 

doubly-substituted (lower frame) asymmetric ozone molecules near the dissociation 

threshold. Blue circles and red dots represent the covalently bound vibrational states of 

two symmetries, A1 and B1, respectively. Green circles and black dots mark the Van der 

Waals states of vibrational symmetries A1 and B1, respectively. State numbering is 

according to the Tables 19-20 and 23-24. 
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Figure 31. The spectrum of non-degenerate states for singly- (upper frame) and doubly-

substituted (lower frame) symmetric ozone molecules in the full energy range. Blue and 

red dots represent the covalently bound vibrational states of two symmetries, A1 and B1, 

respectively. Green and black diamonds mark the Van der Waals states of vibrational 

symmetries A1 and B1, respectively. State numbering is according to the Tables 17-18 

and 21-22. 
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Figure 32. The spectrum of non-degenerate states for singly- (upper frame) and doubly-

substituted (lower frame) symmetric ozone molecules near the dissociation threshold. 

Blue and red dots represent the covalently bound vibrational states of two symmetries, A1 

and B1, respectively. Green and black diamonds mark the Van der Waals states of 

vibrational symmetries A1 and B1, respectively. State numbering is according to the 

Tables 17-18 and 21-22. 
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Figures 29 and 31 show the energies of all bound vibrational states, starting from 

the ground state. Figures 30 and 32 zoom in on energies of the vibrational states in the 

upper part of spectrum for the singly- and doubly-substituted ozone. At lower energies, in 

the asymmetric ozone molecule the states of symmetries A1 and B1 are nearly degenerate 

(see Figure 30), just like in a classic double-well problem, while in the spectrum of 

symmetric ozone the energies of the states of symmetries A1 and B1 alternate (see Figure 

32). However, near dissociation threshold, at energies above –130 cm-1, the PES opens up 

toward dissociation channels and the spectrum is significantly modified. The weakly-

bound Van der Waals states dominate in this energy range, but several vibrational states 

localized in the covalent well are also present. For this reason, the densities of states in 

both symmetric and asymmetric ozone molecules increase near threshold, as one can see 

from Figures 30 and 32. 

Careful analysis of the computed data reveals that the vibrational states of 

covalently bound symmetric and asymmetric ozone isotopomers (pink and orange in 

Figure 28) never mix. However, the weakly-bound states with dominantly Van der Waals 

character (green in Figure 28) sometimes mix with symmetric (pink) and asymmetric 

(orange) ozone molecules simultaneously. Such cases, however, are not numerous. They 

represent exceptions rather than a rule. Overall, one can say that the vibrational states of 

symmetric and asymmetric ozone molecules are rather independent. 
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In Figure 33 we present comparison of our computed state energies with those 

reported by Dawes and coworkers115 and Poirier and coworkers117 (available for the 

singly-substituted ozone only), using the same PES. In our calculations the values of 

energies converged to 10-3 cm-1 for the vibrational states with energies below –4800 cm-1 

(about 50 lowest symmetric and 45 lowest antisymmetric states), to 10-2 cm-1 in the 

energy range below –2700 cm-1 (about 150 lowest symmetric and 135 lowest 

antisymmetric states) and to 10-1 cm-1 at higher energies. Overall, the agreement is better 

with Poirier,117 who also reported convergence of his data as 10-3 cm-1 (for about 100 

lower energy states, both symmetries combined). We found that for many states of 

 
Figure 33. Comparison of the computed state energies (horizontal) with the results of 

Dawes115 and Poirier117. Vertical axis shows the modulus of deviation. Green and gray 

circles correspond to vibrational states of symmetries A1 and B1 from Ref. 115. Blue and 

red symbols correspond to Ref. 117 as follows: filled blue and red circles correspond to 

the vibrational states of symmetries A1 and B1, respectively, in the symmetric ozone 

molecule; empty blue circles and small red dots correspond to symmetries A1 and B1 of 

the asymmetric ozone molecule. 
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asymmetric ozone 18O16O16O our energies deviate from those of Poirier by ~ 10-2 cm-1, 

although some energies deviate less and some deviate more. Interestingly, the differences 

are systematically larger for symmetric ozone 16O18O16O. The deviations of our predicted 

energies from those reported by Dawes115 are somewhat larger. They form a trend that 

spans a broad energy range, and, on average, their absolute values are about ~ 0.7 cm-1 

closer to the dissociation threshold (see Figure 33). Surprisingly, for many Van der Waals 

states near the threshold agreement is much better (with energy differences ~ 10-2 cm-1 

for several states, see Figure 33). Also, we noticed that, when shifted to the same energy 

origin, all eigenvalues of Poirier are lower than those of Dawes, and ours are even lower 

than those of Poirier. Figure 33 gives the absolute values (moduli) of the deviations. 

In Figure 34 we present splittings between the nearly degenerate states of 

symmetries A1 and B1 in the asymmetric ozone molecule 18O16O16O. Some relevant data 

available from literature are also presented, for comparison. The splittings we obtained 

for several lower vibrational states are on the order of 10-8 cm-1, but they increase roughly 

exponentially with increasing vibrational excitation. One can wonder if these predictions 

are reliable at all, since the values of splitting are so small. 

We carefully checked all convergence parameters and concluded that the values 

of those tiny splittings are converged, on average, within 20% of their values. 

Importantly, Dawes reported that the value of splitting in his calculations was on the 

order of 10-8 cm-1 for the ground state,115 which is quite similar to our results. Moreover, 
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the values of splittings we found for the Van der Waals states in the upper part of 

spectrum are also in reasonable agreement with the data of Dawes115 (see Figure 34). 

5.3. Analysis of the Impact of the Bound Vibrational States of Ozone on 

the η-Effect 

Energies of vibrational states of ozone 𝐸𝑖, can be used to compute the following 

averaged characteristics for the spectra of symmetric and asymmetric ozone molecules: 

 
0

up ( ) exp i
i
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E E
Q E p

E

− 
 = − 

 


 

(127) 

This moiety is very similar to the vibrational partition function where thermal 

energy is replaced by a continuous positive variable Δ𝐸 measured here in the units of 

 
Figure 34. Splittings of the nearly degenerate vibrational states of asymmetric ozone 

molecule, as a function of state energy. Orange and grey circles correspond to the 

covalently bound vibrational states and the weekly bound Van der Waals states, 

respectively, computed in this work. Green and blue diamonds show results available 

from Refs. 115 and 117, respectively. 
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wavenumber. Summation is over all states including two vibrational symmetries (A1 and 

B1) but is done differently for symmetric and asymmetric ozone molecules. Namely, 

when Eq. (127) is used to compute 𝑄𝑢𝑝
𝑠𝑦𝑚

 and 𝑄𝑢𝑝
𝑎𝑠𝑦𝑚

 the corresponding probabilities are 

invoked, 𝑝𝑖
𝑠𝑦𝑚

 and 𝑝𝑖
𝑎𝑠𝑦𝑚

, respectively. These are taken from Tables 17-24 and are 

introduced to handle those cases when the vibrational wave function is delocalized over 

both red and orange wells of the PES in Figure 28 (i.e. contributes to both symmetric and 

asymmetric ozone molecules). The second difference between 𝑄𝑢𝑝
𝑠𝑦𝑚

 and 𝑄𝑢𝑝
𝑎𝑠𝑦𝑚

 is the 

origin of their spectra – the ground state energy 𝐸0. For the singly-substituted ozone the 

ground state of the asymmetric 18O16O16O molecule is 14.25 cm-1 above the ground state 

of the symmetric 16O18O16O molecule. In the doubly-substituted case the order is 

reversed: the ground state of the symmetric 18O16O18O molecule is 14.49 cm-1 above the 

ground state of the asymmetric 16O18O18O molecule. 
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In Figure 35 we report the ratio of the average number of states in asymmetric and 

symmetric ozone molecules, computed as 𝑅𝑢𝑝 = 𝑄𝑢𝑝
𝑎𝑠𝑦𝑚

/𝑄𝑢𝑝
𝑠𝑦𝑚

 for both singly- and 

doubly-substituted ozone, plotted as a function of Δ𝐸 in a broad energy range. The 

expected statistical value of this ratio is 2, but our data agree with this number only if the 

value of Δ𝐸 is small, below 70 cm-1. Note that the vibrational quanta of ozone near the 

bottom of the well are on the order of 700 cm-1. We see that for Δ𝐸 ~ 700 cm-1 the value 

of 𝑅𝑢𝑝 for the singly-substituted ozone is clearly below 2, while for the doubly-

substituted ozone it is clearly above 2. For Δ𝐸 ~ 7000 cm-1, when the upper vibrational 

 
Figure 35. Ratio of the average number of states in asymmetric and symmetric ozone 

molecules, as defined by Eq. (127). Blue and red curves correspond to singly- and 

doubly-substituted ozone. Horizontal axis gives the averaging energy window size, Δ𝐸, 

which in this case is analogous to the thermal energy in the vibrational partition function. 

The statistical value of two is indicated by dashed line. The deviations of computed data 

from this reference are obvious in a broad range of energies. Asymptotically they reach ± 

0.05. 
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states near the dissociation threshold start contributing into 𝑄𝑢𝑝, the deviations from 2.00 

approach ±0.05. Therefore both singly- and doubly-substituted ozone deviate 

significantly from the expected factor of 2, but these deviations occur in the opposite 

directions. It is important to emphasize that these effects occur due to the vibrational 

states of ozone bound in the covalent wells, and thus are robust. Any reasonable 

calculations of the vibrational states of ozone should be able to reproduce this property. 

It is rather clear that 𝑄𝑢𝑝 of Eq. (127) gives preference to the low-energy states, 

near the bottom of the covalent well on the PES, just as the usual vibrational partition 

function. In order to characterize properties of the upper parts of the spectra we tried to 

compute: 
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 −
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  (128) 

where 𝐸∗ is dissociation threshold and the Δ𝐸 is negative. Upper vibrational states, just 

below the dissociation threshold, are more important for the process of ozone formation, 

since the scattering resonances above the threshold (the metastable ozone states) are 

stabilized into the upper bound states by bath gas collisions. The energy transfer process 

is typically exponential, therefore the sum of Eq. (128) is expected to reflect the total 

stabilization probability (besides giving the average number of states near the threshold). 

Thus, Δ𝐸 can be thought of as the average amount of transferred energy. The values of 

threshold energies 𝐸∗ are defined based on zero-point energies of 16O16O, 16O18O and 

18O18O in the corresponding dissociation/reaction channels.47,49 Zero energy always 

corresponds to the lowest dissociation threshold. Thus, in the case of single substitution, 

the threshold for asymmetric 18O16O16O is 25.14 cm-1 above the threshold for the 
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symmetric 16O18O16O, which represents zero-point energy change between 16O16O and 

16O18O. In the case of double substitution, the order is opposite: the threshold for 

symmetric 18O16O18O is 20.38 cm-1 above the threshold for asymmetric 16O18O18O, which 

represents zero-point energy change between 16O18O and 18O18O. 

In Figure 36 we report the ratio of the average number of states in asymmetric and 

symmetric ozone molecules, computed as 𝑅𝑑𝑛𝑤 = 𝑄𝑑𝑤𝑛
𝑎𝑠𝑦𝑚

/𝑄𝑑𝑤𝑛
𝑠𝑦𝑚

 using Eq. (128), for both 

singly- and doubly-substituted ozone and plotted versus −Δ𝐸 in a broad range. The 

limiting values of 𝑅𝑑𝑤𝑛 for large Δ𝐸 match those of 𝑅𝑢𝑝 in Figure 35, namely 2.00 ± 

 
Figure 36. Ratio of the average number of states in asymmetric and symmetric ozone 

molecules, as defined by Eq. (128). Blue and red curves correspond to singly- and 

doubly-substituted ozone. Horizontal axis gives the averaging energy window size, −Δ𝐸, 

which in this case is analogous to the vibrational energy transfer due to bath gas 

collisions. The statistical value of two is indicated by dashed line. The deviations of 

computed data from this reference increase at low energies, reaching ±0.20, and then 

merge near −Δ𝐸~ 20 cm-1, indicating a possible source of -effect. 
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0.05, as one might expect, since in the limit of large Δ𝐸 they both reflect just the total 

number of states. What is more interesting is that when the value of Δ𝐸 is reduced to 

about −Δ𝐸~ 100 cm-1, the values of 𝑅𝑑𝑤𝑛 for singly- and doubly-substituted molecules 

split even further apart, reaching 2.00 ± 0.20 (i.e. 20% difference). These numbers 

indicate a very significant difference between symmetric and asymmetric ozone 

molecules that has never been noticed before. Unfortunately, this property does not help 

to explain the -effect, because our data also indicate that singly- and doubly-substituted 

molecules behave in the opposite ways, namely, in the singly-substituted case the 

symmetric ozone molecule exhibits more states than expected, whereas in the doubly-

substituted case the asymmetric ozone molecule exhibits more states than expected. 

However, at small values of Δ𝐸 the behaviors of two 𝑅𝑑𝑤𝑛(Δ𝐸) dependencies 

drastically change. We see from Figure 36 that in the energy range −Δ𝐸 < 20 cm-1 the 

values of 𝑅𝑑𝑤𝑛 for singly- and doubly-substituted ozone molecules approach each other, 

while both exceeding the value of 2.00, substantially. This happens because for small 

values of Δ𝐸 only the very top portion of the spectrum is available, where the ratio of the 

number of states between asymmetric and symmetric ozone molecules is similar in both 

singly- and doubly-substituted cases. This holds true only at the top of the spectrum, so, 

as Δ𝐸 increases and more states become available, the main trend, observed in Figure 35, 

starts to dominate again and the curves return to the same asymptotic values. 

Although the behavior of 𝑅𝑑𝑤𝑛 in the range of small −Δ𝐸 is potentially important 

for explanation of the -effect, it should be stated that this phenomenon is not 

particularly robust with respect to the variations of theory. For example, we tried to alter 

(artificially) the values of dissociation thresholds, by few wavenumbers, and found that 
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such modifications may change the low-Δ𝐸 behavior of 𝑅𝑑𝑤𝑛 seen in Figure 36. Indeed, 

the upper part of the spectra contains many delocalized van der Waals states but only a 

few vibrational states that are localized in the covalent wells of symmetric and 

asymmetric isotopomers. Thus, addition or removal of just one vibrational state in this 

energy range may have a significant effect. Such alternation can be caused by small 

changes of the potential energy surface, or by rotational excitation of the molecule, or by 

involvement of scattering resonances above the dissociation threshold (not considered 

here). All we can say is that for the PES at hands, and with the spectra we have accurately 

computed, the intriguing low-Δ𝐸 behavior of 𝑅𝑑𝑤𝑛 seen in Figure 36 is obtained and is 

potentially important. 

It is also debatable whether the Van der Waals states of ozone are important for 

the recombination process or not. Even if the Van der Waals complexes of ozone are 

formed, they are easily destroyed by collisions with bath gas and are hard to stabilize into 

the main (covalent) well,120 where the stable ozone molecules are eventually formed. 

Therefore, it was argued in the past that these states could be neglected. Here, for the 

exploratory purpose, we tried to include the Van der Waals states into the overall state 

count, but with the reduced weights of only 10% (which, of course, is rather arbitrary) of 

their corresponding probabilities, in order to reflect their weak collisional coupling to the 

rest of the ozone states. With this scaling factor, we counted the Van der Waals states in 

the average 𝑄𝑑𝑤𝑛 by: a) Associating with asymmetric ozone molecule the probabilities 

from the “blue” Van der Waals part of the map in Figure 28; and by b) Splitting between 

symmetric and asymmetric ozone molecules the probabilities from the “green” Van der 

Waals part of the map. The corresponding results are indicated by shaded areas in Figure 
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36. We can see that in the range of small −Δ𝐸 < 20 cm-1 these areas overlap (pink and 

blue), again, indicating the same behavior of the singly- and doubly-substituted ozone 

molecules. Thus, inclusion of the Van der Waals states is unlikely to change conclusions 

of the previous paragraph. 

The unexpected properties of the vibrational states spectra in ozone molecules 

may help to identify possible source of the mysterious -effect. One very strange feature 

of the -effect is that it has the same direction and magnitude in both singly- and doubly-

substituted ozone. In both cases the asymmetric ozone molecules are formed faster. This 

is incomprehensible, because symmetric and asymmetric isotopomers of ozone behave 

differently in the singly- and doubly-substituted cases. For example, in the case of single 

substitution the spectrum of asymmetric ozone is shifted up relative to the spectrum of 

symmetric ozone by ZPE (roughly 10-20 cm-1), while it is just opposite in the case of 

the double substitution. Moreover, the vibrational partition functions ratios, both 𝑅𝑢𝑝 and 

𝑅𝑑𝑤𝑛, deviate down from the statistical factor of 2 in the case of single substitution (up to 

10%), while it is just opposite in the case of the double substitution (see Figure 35 and 

Figure 36). These are very robust indications of different behavior of symmetric and 

asymmetric ozone molecules in the cases of single and double substitutions, yet the 

experimental -effect is the same. 

One new property reported here, that may contribute to explanation of the -

effect, is behavior of the upper parts of the vibrational spectra, just below the dissociation 

threshold. It appears that in this energy range the asymmetric ozone molecules contain 

more than twice as many states than the symmetric ozone molecules, and this property 

seems to hold for both singly- and doubly-substituted cases. It should be taken into 
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consideration that the experimental value of energy transfer in ozone121 is expected to be 

close to −Δ𝐸~ 20 cm-1. Thus, the process of ozone formation must be very sensitive to 

the properties of this narrow part of the vibrational spectrum. Accurate incorporation of 

this effect into the models of ozone forming recombination reaction requires calculations 

of the energy-transfer process, and those are numerically demanding, if at all affordable 

at present time. However, the findings of this work may help to develop a practical 

approximation for the energy-transfer process that still captures this effect. 

5.4. Summary 

Accurate calculations of vibrational states in singly- and doubly-substituted ozone 

molecules are carried out, up to the dissociation threshold. The computed spectrum of the 

singly-substituted ozone is in a good agreement with the results previously obtained by 

Dawes and coworkers,115 and Poirier and coworkers.117 The spectrum of the doubly-

substituted molecule is reported for the first time. The complete dataset used in this 

chapter is available in the Supplemental Information in Ref. 118. 

Analysis of these spectra reveals noticeable deviations from the statistical factor 

of 2 for the ratio between the number of states in asymmetric and symmetric ozone 

molecules. It is found that, for the lower energy parts of spectra, the ratio is below 2 in 

the singly-substituted ozone molecules, but it is above 2 in the doubly-substituted ozone 

molecules. However, the upper parts of spectra, just below dissociation thresholds, 

exhibit a different behavior. In this energy range the singly- and doubly-substituted ozone 

molecules behave similar, with the ratio of states in asymmetric and symmetric ozone 

molecules being above 2 in both cases. This property may contribute to explanation of 

the mysterious η-effect (Eq. (18) in Introduction) in the ozone forming reaction, that 
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favors formation of the asymmetric ozone molecules. Unfortunately, this effect is not 

particularly robust and may be coincidental. 

The above calculations were done in the absence of rotational excitation (𝐽 = 0). 

At room temperature many rotational levels in ozone are excited, so it is important to 

understand the role of rotational excitations on the observed deviations of state ratios 

from the expected statistical factor of 2. For that, we need to recalculate the spectrum for 

several typical values of 𝐽 > 0 and repeat the above analysis for the spectra of rotationally 

excited ozone. 
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CHAPTER 6. THE ROLE OF ROTATION-VIBRATION COUPLING 

FOR THE BOUND STATES IN OZONE 

In this chapter we use the theory outlined in Chapter 4 to calculate coupled bound 

rovibrational states in ozone with the values of 𝐽 ≤ 5, compare the results with the 

uncoupled calculations and discuss possible implications of rotation-vibration coupling 

for the isotope effects in ozone. 

In Chapter 5 we found an interesting feature of the near-dissociation bound 

vibrational spectrum of ozone that can potentially contribute to the 휂-effect. However, as 

it was outlined there, the discovered effect is not particularly robust and it does not take 

into account the resonance spectra above the dissociation threshold, which is expected to 

be important to the ozone recombination reaction. An extensive study of the properties of 

such spectra, especially in relation to the isotope effects, has been recently carried out by 

Teplukhin and Babikov.39,51,94,122 In their work they were able to reproduce a large 

portion of 휁-effect, but the 휂-effect was not reproduced and remained unexplained. This 

implies that a crucial (for 휂-effect) feature has not been considered in their model. 

It was recently proposed by the group of Rudolf Marcus in a series of recent 

papers,41,123 that the Coriolis effect, responsible for the rotation-vibration interaction, 

occurs more efficiently in the isotopically substituted asymmetric ozone molecules (e.g. 

16O16O18O), compared to the symmetric molecules (e.g. 16O18O16O). The group of Marcus 

carried out classical trajectory simulations to gain some insight into the mechanism of 

this phenomenon but did not find enough evidence for its justification.123 Interestingly, 

they concluded with the following statement: “We speculate that the symmetry effect of 

Coriolis coupling can appear in quantum mechanical analysis of the model.” 



127 
 

The Coriolis effect (rotation-vibration coupling) was not taken into account in the 

work of Teplukhin and Babikov, therefore the goal of this chapter is to test the hypothesis 

of Marcus and determine if inclusion of rotation-vibration coupling introduces any effects 

that favor the asymmetric ozone isotopomers more than the symmetric ones consistently 

in different isotopologues. 

Accurate quantum mechanical treatment of coupled rotational-vibrational motion 

can be a challenging task, even for the smallest molecules such as triatomic, if the range 

of rotational and vibrational excitations is significant (e.g., up to the dissociation 

threshold), the atoms are heavy (non-hydrogen). With rotation-vibration interaction terms 

included, the size of the Hamiltonian matrix is proportional to 𝐽 (total angular momentum 

quantum number), and the cost of diagonalization typically grows as 𝐽3, therefore the 

numerical cost of finding the eigenstates of such Hamiltonian is very significant, often 

unpractical. 

Because of the high computational cost, the symmetric-top rotor approximation 

remains a popular practical tool for the prediction of ro-vibrational state 

energies.93,118,124,125 In this simplified method, the terms in the Hamiltonian operator, 

responsible for the coupling of rotational and vibrational degrees of freedom, are 

neglected (assumed to be small), which permits to split the overall Hamiltonian matrix 

into a number of independent smaller blocks that can be labeled by the value of quantum 

number Λ, corresponding to projection of the total angular momentum (J) onto z-axis. 

Within each block, accurate calculations of the vibrational states can be carried out, and 

then the overall spectrum of molecule is obtained by collating these individual pieces 

back together. 
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The major drawback of this simplified approach is that the resultant spectrum 

lacks the so-called Λ-doubling.126,127 Namely, for all values of Λ in the range 1 ≤ Λ ≤ J, 

the ro-vibrational states computed in this simplified way are doubly-degenerate, while in 

nature they are known to exhibit non-zero splittings, the Λ-doubling.126–128 Importantly, 

such splittings represent a unique spectroscopic feature of the molecule,129 and may also 

play a role in natural phenomena, such as absorption of solar light by atmospheric 

species.15,88 

Despite the cost, one can find occasional examples of such nearly exact 

calculations of the rotational-vibrational spectra in the literature for many molecules, 

such as H3
+,130 HeHF,131 LiNC,132 HeN2

+,133 H2O,134 H2S
135, SO2,

126,127 HO2,
136 and 

Ar3,
137 but none of those papers consider calculation of scattering resonances. 

For ozone, several accurate quantum calculations of the rovibrational states are 

available from literature,47,93,114–116,118 but those are restricted to the ground rotational 

state (J = 0) and one simplest excited rotational state (J = 1 of negative parity), where 

there is only one rotational block in the Hamiltonian matrix and the Coriolis coupling 

does not occur. 

Rotationally excited ozone states were computed in several papers focused on the 

recombination reaction that forms ozone,50,51,122,124 for a very broad range of rotational 

excitations up to 𝐽~50 , but in all those cases the Coriolis coupling terms were neglected 

to ease calculations. Other systematic studies of the rotationally excited states of ozone 

were also conducted by Tyuterev and coworkers, using the method of effective 

Hamiltonian (see Ref. 138 and references therein). Their approach gives valuable 

interpretation of the experimental spectra, and also permits to validate or even adjust the 
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potential energy surface (PES) but, due to semi-empirical nature of their Hamiltonian, the 

method remains accurate only in a limited part of spectrum of given molecule, which 

restrains its predictive capability. 

The first entirely general quantum calculation of the rotational-vibrational states 

in symmetric and asymmetric ozone molecules 16O16O18O and 16O18O16O with the 

Coriolis coupling terms included was published just recently.117 Both the calculations 

themselves and the assignment of these states were challenging, so only the lowest 100 

ro-vibrational states (for 16O16O18O and 16O18O16O isotopomers combined) were 

computed, assigned and reported, up to only J = 5. This first step is encouraging, but for 

the prediction of the formation rate coefficients, we need to push these calculations to 

much higher energy range and much larger rotational excitation range, for both singly 

and doubly substituted ozone isotopologues. 

In this chapter we start with a relatively simple calculation of coupled rotation-

vibration bound states in ozone isotopomers for 𝐽 ≤ 5 and analyze the effect of the Λ-

coupling terms (asymmetric top rotor and Coriolis) on individual states and spectrum as a 

whole. 

6.1. Overview of the Computed Spectrum 

The calculations of coupled rotation-vibration bound states were carried out for 

four ozone isotopomers: 16O18O16O, 16O16O18O, 18O16O18O and 16O18O18O, for 𝐽 = 0 to 5 

and both inversion parities (𝑝), using an optimized grid along 𝜌 with 90 DVR functions 

in the range of 3.4-6.1 Bohr, 130 DVR functions along 휃 in the range 0.43-1.56 rad and 

100 VBR functions of each symmetry. The 3D problem was solved using sequential 

diagonalization truncation approach (SDT) with the truncation energy set to 6000 cm-1. 
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Further 20%-perturbations on each of our convergence parameters did not lead to 

changes in energies greater than 10-3 cm-1. All calculations were carried out with 

SpectrumSDT program.119 

The masses of oxygen isotopes used in this work are 15.99491461956 u and 

17.9991596129 u for 16O and 18O, respectively. The conversion factor from the unified 

atomic mass unit (u) to kilograms is 1.660538921×10-27 kg/u, and from atomic unit of 

mass to kilograms is 9.10938291×10-31 kg/me. Thus, the conversion factor from unified 

atomic mass unit to atomic unit of mass was obtained as a ratio of the above numbers and 

is equal to 1822.88848477004 me/u. The conversion factor from the atomic unit of 

energy, Hartree (Eh), to wavenumbers used in this work is 219474.6313708 cm-1/Eh. The 

above constants are taken from Ref. 139. 

The potential energy surface of ozone used in this work was constructed by 

Dawes et al.112 The computed rovibrational levels where shifted by the values of De = 

9274.99560025014 cm-1 and ZPE of 16O18O = 769.370806301787 cm-1 to align 0 cm-1 

with the lower dissociation threshold of 16O16O18O. The values of De and ZPE were 

computed numerically. 

For all ro-vibrational states calculated in this work we computed the values of 𝑃Λ 

of Eq. (121) and found that the majority of states are still localized in one dominant value 

of Λ, so this value can still be used to label the ro-vibrational states, just like in the case 

of the symmetric top rotor approximation. We also saw that when the energies of two 

states are close to each other, they may display a mixture of several values of Λ, but such 

cases are relatively rare. Namely, among all the states considered in this chapter (7200 

states overall), we found only one pair of energetically close states where the weights of 
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two largest Λ-components were in the ratio close to 50/50. We also saw two examples 

when the two largest Λ-components gave the ratio of about 80/20. For all other states, the 

weight of the second largest value of Λ was below 5%. 

The full dataset computed for analysis in this chapter can be found in 

Supplementary Information of Refs. 107 and 140. 

When all terms of the Hamiltonian matrix are included, our results show an 

excellent agreement with the results of the recent work by Poirier and co-workers.117 

Figure 37 plots the absolute values of the deviations of the state energies computed here 

relative to those reported in Ref. 117. These data include both symmetric 16O18O16O and 

 
Figure 37. Absolute values of energy differences between the rotational-vibrational states 

computed here, and the corres`ponding states reported in Ref. 117 for 16O18O16O and 
16O16O18O. Individual colors are used for different parities 𝑝 and different values of 

angular momentum up to 𝐽 = 5. 
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asymmetric 16O16O18O isotopomers of ozone, combine the results of calculations with 

𝐽 = 0 to 5 for about 80 rotational-vibrational states of each parity, per each value of 𝐽 

(about 850 states total). In Figure 37 each combination of (𝐽, 𝑝) is shown by its own 

color. As one can see from the picture, the differences of computed energies are on the 

order of 10-3 cm-1 for the majority of states and on the order of 10-2 cm-1 in the worst case, 

which matches the target accuracy of Poirier and coworkers. We found that the values of 

these differences depend on the vibrational character of the states (𝑣1, 𝑣2, 𝑣3), but are 

relatively insensitive to the rotational quantum numbers (𝐽, Λ, 𝑝). 

It should be stressed that the two sets of very similar results presented in Figure 

37 (this work vs. Poirier and coworkers) were obtained independently by two groups 

without any communication, using different coordinates (hyper-spherical vs. Jacobi), 

employing two different codes (SpectrumSDT vs. ScalIT) and using different computer 

systems. The excellent agreement at low vibrational energies gave us enough confidence 

in the theory and the new code we developed to tackle a much more demanding problem 

– a large range of vibrational excitations. 

Namely, for each set of the rotational quantum numbers (𝐽, Λ, 𝑝) considered here, 

we computed 600 vibrational states, 21600 coupled ro-vibrational states total. These new 

spectra cover roughly 90% of the covalent well of the ozone PES and stop just before the 

energy where the PES of ozone opens up toward a shallow plateau of the weak van der 

Waals interaction, followed by the bond breaking and dissociation onto O + O2. 

Calculations of the vibrational states in the remaining 10% of the energy range are also 

possible, but this would require a significant expansion of the 𝜌-grid, which is beyond the 

scope of this chapter, focused mostly on the rotation-vibrational coupling. Large-
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amplitude states near the threshold will be reported elsewhere, together with calculations 

of scattering resonances above the dissociation threshold. 

Figure 41 summarizes the energy progression of these ro-vibrational states for 

both symmetric 16O18O16O and asymmetric 16O16O18O ozone up to 𝐽 = 5. We see that 

these spectra extend up to about 1000 cm-1 below the dissociation threshold for all values 

of 𝐽. The states for each value of 𝐽 are numbered separately. The spectrum of larger 

values of 𝐽 is denser due to more values of Λ, available for those 𝐽. 

For the doubly-substituted ozone isotopomers (18O16O18O and 16O18O18O) there 

are no results published in literature to compare with. Therefore, to validate this part of 

 
Figure 38. The progressions of energies of coupled ro-vibrational states up to 𝐽 = 5 

computed in this work for symmetric 16O18O16O and asymmetric 16O16O18O combined. 
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the calculations, we carried out calculations for 𝐽 = 3 again, using a different well-tested 

code of Kendrick (APH3D).104 

The code of Kendrick also uses APH coordinates, but it is different in many 

respects. First of all, it starts with a general Fourier basis 𝑒±𝑖𝑚𝜑 for the hyper-angle angle 

𝜑, and the vibrational states of two symmetries are projected out only at the 2D level. In 

contrast, in SpectrumSDT the two symmetries are treated separately from the very 

beginning, by employing the real-valued basis sets of either sin(𝑚𝜑) or cos(𝑚𝜑) 

functions (Eqs. (104) and (105)). Second, APH3D uses a basis of polynomials for the 

hyper-angle 휃, while here a simple DVR grid is used. Third, APH3D solves the coupled-

channel equations for hyper-radius 𝜌 using the method of Numerov, while here we 

implement one more level of truncation and then build and diagonalize the Hamiltonian 

matrix for the vibrational 3D problem, using a DVR grid in 𝜌 optimized to the shape of 

the PES.93,96 Finally, for the description of rotation APH3D uses the z-axis perpendicular 

to the plane of the molecule and includes the Coriolis terms from the beginning, while in 

SpectrumSDT the z-axis is placed in the molecular plane and the Coriolis couplings are 

taken into account only at the last step of calculations. 

Rotational-vibrational states of both parities (𝑝 = 0 and 𝑝 = 1) were computed 

using these two codes for 𝐽 = 3 of the doubly-substituted ozone, both symmetric 

18O16O18O and asymmetric 18O18O16O isotopomers, up to the energy of about 5200 cm-1 

above the bottom of the well, which is about 4800 cm-1 below the dissociation threshold 

(roughly, 100 vibrational states per each value of Λ). The absolute values of energy 

differences between the corresponding states computed with the two codes are presented 
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in Figure 39. As one can see, the majority of the states agree to within 10-3 cm-1 or better, 

reaching the difference of about 0.05 cm-1 in the worst case at the high energy part of the 

spectrum. The overall agreement between the results of the two codes allows us to 

conclude that the ro-vibrational wave functions and their energies, computed with our 

code are correct. 

 
Figure 39. Absolute values of energy difference between the rovibrational states of ozone 

calculated using SpectrumSDT and the code of Kendrick (APH3D). The states of both 

values of inversion parity (𝑝 = 0 and 𝑝 = 1) are shown for the total angular momentum 

𝐽 = 3 of doubly substituted ozone molecule. The states of both 18O16O18O (green) and 
18O18O16O (violet) are included. Horizontal axis gives energy relative to the bottom of the 

well. 
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6.2. Shifts and Splittings Introduced by Asymmetric Top Rotor and 

Coriolis Terms 

In this section we want to estimate individual and combined effects of both 

coupling terms (asymmetric top rotor and Coriolis) on uncoupled spectrum of bound 

states in ozone on example of singly-substituted ozone isotopologue. 

To begin with, we carried out calculations of the vibrational-rotational states of 

ozone in the symmetric-top rotor approximation with only diagonal blocks included (“S” 

in Figure 23), where both the asymmetric-top rotor terms and the Coriolis couplings were 

neglected. Then, in one set of intermediate calculations, in order to determine the role of 

asymmetric top rotor term, we added just the asymmetric-top rotor blocks to the matrix 

(only the “A” and “S” terms in Figure 23 were included in the Hamiltonian matrix) and 

we recomputed the vibrational-rotational states. Next, in the second set of intermediate 

calculations, in order to determine the magnitude of the Coriolis effect alone, we added 

just the Coriolis coupling blocks to the matrix (only the “C” and “S” terms in Figure 23 

were included in the Hamiltonian matrix) and recomputed the vibrational-rotational states 

again. In the final set of exact calculations, we included all three types of blocks in the 

Hamiltonian matrix (the “S”, “C” and “A” terms in Figure 23). 



137 
 

In Figure 40 we present the shifts of the energies of the ground vibrational state 

(𝑣1, 𝑣2, 𝑣3) = (0,0,0) in 16O18O16O due to inclusion of the asymmetric-top rotor term for 

the rotational excitation with 𝐽 = 5. Here we see, first of all, a moderate negative shift by 

~ 0.5 cm-1 for the Λ = 0 state (parity is 𝑝 = 1) and then two relatively large shifts of the 

Λ = 1 states, but in the opposite directions for two values of parity: positive shift for 𝑝 =

1, and negative shift for 𝑝 = 0. This creates a splitting of ~ 3.5 cm-1. For Λ = 2 this 

splitting is reduced to ~ 0.5 cm-1, in which case it is almost exclusively due to the positive 

shift of the 𝑝 = 1 state, since the 𝑝 = 0 state exhibits only a tiny shift. For Λ = 3 the 

shifts of the 𝑝 = 0 and 𝑝 = 1 states are both positive and small, which leads to a tiny 

 
Figure 40. Deviations of the ground vibrational state of 16O18O16O from the energies of a 

symmetric-top rotor due to the asymmetric-top rotor term for 𝐽 = 5. The states of two 

different parities are denoted by color and symbol type. The magnitude of splitting (Λ-

doubling) for Λ = 1 is indicated by a double arrow. 
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splitting. For Λ = 4 and Λ = 5 the splittings of the ro-vibrational states of the two parities 

are vanishingly small. 

In Figure 41 we present the shifts of energies of the ground vibrational state 

(𝑣1, 𝑣2, 𝑣3) = (0,0,0) in 16O18O16O due to inclusion of the Coriolis coupling term for the 

rotational excitation with 𝐽 = 5. We see, first of all, that the Coriolis effect is an order of 

magnitude larger than the asymmetric-top rotor effect. For example, the shift of the Λ =

0 state is ~ 5 cm-1. However, since the shifts are negative for both 𝑝 = 0 and 𝑝 = 1 parity 

states, the resultant splittings are of the same order of magnitude as before: close to 4 cm-

1 for Λ = 1, about 0.5 cm-1 for Λ = 2, a tiny splitting for Λ = 3, and vanishingly small 

splittings for Λ = 4 and Λ = 5. Still, the shifts due to the Coriolis term are not small even 

for Λ = 5, which is close to negative 1 cm-1 for both 𝑝 = 0 and 𝑝 = 1 parity states. 

 
Figure 41. Same as Figure 40, but for the Coriolis term. 
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In order to understand the features of Figures 40 and 41, it is useful to analyze 

Eqs. (79) and (86), which provide analytical expressions for the contributions of 

asymmetric and Coriolis terms respectively. The magnitude of deviation from the energy 

of the symmetric top rotor is determined by the values of matrix elements of �̂�asym and 

�̂�cor. One can see that, for the asymmetric term, the matrix elements are proportional to 

𝑈ΛΛ′ and 
𝐴−𝐵

4
, while for the Coriolis term they are proportional to 𝑊ΛΛ′ and 2𝐵 cos 휃. 

For the equilibrium geometry of ozone, 
𝐴−𝐵

4
= 0.0138 cm-1 and 2𝐵 cos 휃  =

0.489 cm-1. Thus, the Coriolis coupling term is expected to be more important than the 

asymmetric top rotor term, at least for the low energy states and small values of 𝐽, which 

is indeed the case, as one can see from Figures 40 and 41. However, the values of 𝑊ΛΛ′ 

grow only as 𝑂(𝐽) (Eq. (85)), whereas the values of 𝑈ΛΛ′ grow as 𝑂(𝐽2) (Eq. (78)), 

making the asymmetric-top rotor term more important for the highly excited rotational 

states (large 𝐽). It can also become more important for the excited vibrational states due to 

larger deviations from the equilibrium geometry. 

Looking at the definitions of Eqs. (78) and (85) and Figures 24 and 25, one can 

see that the matrix elements 𝑈ΛΛ′ and 𝑊ΛΛ′ have their maximum values at Λ = 0 and 

decrease as Λ increases, approaching the limit of 𝑂(𝐽) in the case of the asymmetric-top 

term and 𝑂(√𝐽) in the case of the Coriolis term, but they never vanish. Because of that, 

the deviation from the symmetric top rotor limit would be the largest for small values of 

Λ, decrease as Λ increases, but never reach zero, even when Λ = 𝐽. This is indeed what 

we see in Figures 40 and 41. 
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In contrast to the energy shifts, the splittings between the states of the two parities 

do not depend on the magnitudes of the matrix elements of �̂�asym and �̂�cor directly, but 

rather on the difference of their magnitudes for the cases of different parities. Looking at 

Eqs. (78) and (85), one finds that the parity affects two things only. First, it either doubles 

or nullifies the blocks with Λ = 0. Second, it changes sign of the diagonal block 

Λ = Λ′ = 1 of the matrix 𝑈ΛΛ′ (see Figure 24). This makes the Λ = 1 case the most 

susceptible to the splitting (at least for low values of 𝐽), since in one parity it is coupled 

with the Λ = 0 state, in another parity it is not; in one parity the sign of the diagonal 

block Λ = Λ′ = 1 of 𝑈ΛΛ′ is positive, in another parity it is negative (with the same 

magnitude). The states with other values of Λ experience these effects indirectly, through 

chain coupling with Λ = 1, thus their splittings decrease exponentially as Λ increases and 

eventually vanish. As it was stated earlier, at high values of 𝐽 the asymmetric top rotor 

term is expected to take precedence over the Coriolis term. Thus, it is likely that for the 

high values of 𝐽, the splittings for the Λ = 2 state may become more pronounced than 

those for Λ = 1. 
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In Figure 42 we present the shifts of energies of the ground vibrational state 

(𝑣1, 𝑣2, 𝑣3) = (0,0,0) in 16O18O16O for the rotational excitation with 𝐽 = 5, due to 

inclusion of both the Coriolis coupling term and the asymmetric-top rotor term. Most 

importantly, this figure indicates that the energy shifts due to these two factors often 

occur in the opposite directions and thus partially cancel each other out with few 

exceptions (e.g. Λ = 0, and Λ = 1 and 2 with 𝑝 = 0 for 𝐽 = 5 where the shifts occur in 

the same directions). The value of the splitting for Λ = 1 is about 1 cm-1, and it is only on 

the order of ~ 0.1 cm-1 for Λ = 2. For Λ ≥ 3 the splittings are negligible. However, the 

effect of the Coriolis coupling survives, since energies of all states are still reduced 

(relative to the symmetric-top rotor approximation) by a non-negligible shift. It varies in 

 
Figure 42. Same as Figures 40 and 41, but for both asymmetric top rotor and Coriolis 

terms together (exact calculation). 
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the range between negative 5 cm-1 and 1 cm-1 as the value of Λ is increased from Λ = 0 to 

Λ = 5. 

6.3. Effect of Vibrational Excitations 

In this section we explore dependency of Λ-doublings on vibrational excitation of 

a molecule, on example of singly-substituted ozone isotopologue. 

Overall, the spectra we computed and assigned contain up to the 11 quanta of 

bending motion, 8 quanta of asymmetric stretch and 7 quanta of symmetric stretch. For 

comparison, in the work of Poirier and co-workers117 for 𝐽 = 5 the states with no more 

than 2 quanta of vibrational excitation in one mode were computed. We found that the 

assignments of the vibrational states in terms of the normal mode quantum numbers 

(𝑣1, 𝑣2, 𝑣3) are relatively certain for the lower 100 vibrational states for each set of 

(𝐽, Λ, 𝑝) for both 16O18O16O and 16O16O18O. A complete list of these assignments can be 

found in Supplementary Information of Refs. 107 and 140. 

Figure 43(a) summarizes the progressions of energies for the normal mode 

overtones, which validates our vibrational assignments, while Figure 43(b) represents the 

dependence of parity splittings (or Λ-doublings) on the number of quanta in these 

vibrational progressions. From Figure 43 one can see that the value of splitting 

monotonically increases for the bending mode progression and monotonically decreases 

for the symmetric stretching mode progression of ozone. In contrast, for the asymmetric 

stretching mode progression of ozone, the value of splitting first increases and then 

slowly decreases, remaining roughly the same through a broad range of vibrational 

excitations.   
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Figure 43. Evolution of energies and parity splittings for 𝐽 = 5 and Λ = 1 as a function of 

number of vibrational quanta along the three normal modes of ozone. For each 

progression, the other two normal modes are not excited (𝜈 = 0). Solid and dashed lines 

correspond to symmetric 16O18O16O and asymmetric 16O16O18O ozone isotopomers, 

respectively. Progressions in the lower frame have the same colors as those in the upper 

frame. 
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Figure 44. Same as Figure 43, but for Λ = 2. 
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When parity changes, the asymmetric top rotor contribution (given by Eq. (39)) in 

Λ = 1 block changes sign (due to Eq. (78)), therefore the magnitude of parity splittings is 

proportional to the magnitude of the asymmetric top rotor term, which, in turn, is 

proportional to the difference between the rotational constants 𝐴 and 𝐵 (degree of 

asymmetry). As we will see later in this chapter, the changes in the values of parity 

splittings observed in Figures 43 and 44 indeed correlate with the changes in relative 

values of rotational constants 𝐴 and 𝐵, which appear due to distortions in molecular 

geometry, associated with the vibrational excitations. 

Similar dependencies for Λ = 2, where the magnitudes of splittings are much 

smaller, are shown in Figure 44. Qualitatively, the splittings of the Λ = 2 states follow 

the same trends as we can see for Λ = 1 in Figure 43. Looking at the data in Figures 43 

and 44, we can conclude that the values of splittings do not change dramatically through 

the range of vibrational excitations considered here. 

6.4. Fitting and Analysis of Rovibrational Spectra 

In order to compare and contrast the spectra of symmetric and asymmetric ozone 

molecules we fitted their rotational energy levels using the following expression: 

𝐸rot(𝐽, Λ, 𝑝)

= 𝐸vib +
𝐴 + 𝐵

2
𝐽(𝐽 + 1) + (𝐶 −

𝐴 + 𝐵

2
)Λ2 + (−1)𝐽+Λ+𝑝

Δ𝑊(𝐽, Λ)

2
 

(129) 

The first term corresponds to the vibrational energy, the next two terms add 

rotational energy of the symmetric top rotor (parity-independent), and the last term is 

responsible for the splitting between the two parities, where the absolute value of the 

splitting is given by Wang’s formula through binomial coefficients:141,142 
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Δ𝑊(𝐽, Λ) = 8(𝐶 − 𝐴) (
𝐽 + Λ
Λ

) (
𝐽
Λ
)Λ2 (

𝛽

8
)
Λ

(1 − 𝛽)−1 
(130) 

where 

𝛽 =
𝐴 − 𝐵

2𝐶 − 𝐴 − 𝐵
  

(131) 

is used to characterize the degree of asymmetry of a rotor. 

First, we tried to fit the rotational spectrum of the ground vibrational state (0,0,0) 

in each ozone isotopomer by the symmetric-top rotor formula, with the parity splitting 

neglected, i.e. by setting Δ𝑊 = 0 in Eq. (129). The results of such fitting are presented in 

Table 25. The first row shows the fitted values of the vibrational energy for the ground 

state of each molecule. The values in parenthesis are given for comparison and 

correspond to the exact vibrational energies, computed in this chapter. The next two rows 

report the values of the fitting coefficients (𝐴 + 𝐵)/2 and 𝐶 for given isotopomers. 

Experimental data143 are given in parenthesis for comparison. In all cases the fitted values 

of (𝐴 + 𝐵)/2 are in perfect agreement with the experimental data, while the fitted values 

Table 25. Least squares fitting coefficients (in cm-1) of Eq. (129), where the parity 

splitting term Δ𝑊 is set to 0, computed using all rotational states with 0 ≤ 𝐽 ≤ 5 of the 

ground vibrational state for listed ozone isotopomers. The numbers in parenthesis are 

experimental spectroscopic constants,143 or, in case of 𝐸vib, the accurately computed 

energies of the ground vibrational state. Energy is defined with respect to the lower 

dissociation channel of the corresponding isotopomer. 

Parameter 16O18O16O 16O16O18O 18O16O18O 18O18O16O 

𝑬𝐯𝐢𝐛 
-8629.717 

(-8629.724) 

-8615.466 

(-8615.474) 

-8617.638 

(-8617.645) 

-8632.133 

(-8632.140) 

(𝑨 + 𝑩)/𝟐 
0.418 

(0.418) 

0.397 

(0.397) 

0.375 

(0.375) 

0.395 

(0.396) 

𝑪 
3.300 

(3.290) 

3.498 

(3.488) 

3.432 

(3.422) 

3.235 

(3.225) 

RMSE 0.123 0.105 0.0954 0.112 
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of 𝐶 indicate differences on the order of 0.01 cm-1. The last row gives the root mean 

square error (RMSE) for a given fit, and all of those values are on the order of 0.1 cm-1. 

Next, we fitted the rotational spectrum of the ground vibrational state in each 

ozone isotopomer using the fully relaxed version of Eq. (129). The values of fitting 

coefficients for this case are given in Table 26, which is structured in the same way as 

Table 25. In contrast to the Table 25, these fits correspond to the asymmetric-top rotor 

molecules and allow one to determine the values of 𝐴 and 𝐵 separately, based on the 

magnitudes of parity splittings. The non-zero difference between 𝐴 and 𝐵 also permits us 

to determine the value of asymmetry parameter 𝛽 for each isotopomer of ozone, reported 

in the fifth row of Table 26. Note that when the Δ𝑊 parameter in Eq. (129) is relaxed, the 

values of RMSE are reduced by an order of magnitude, to about 0.01 cm‑1, which means 

that the quality of the fit of the data is significantly improved. 

Looking at the values of rotational constants in Table 26, one can see that they are 

similar in all isotopomers of ozone, roughly equal to 𝐴 ≈ 0.42 cm−1, 𝐵 ≈ 0.37 cm−1 and 

Table 26. Same as Table 25, but with relaxed Δ𝑊 term. 

Parameter 16O18O16O 16O16O18O 18O16O18O 18O18O16O 

𝑬𝐯𝐢𝐛 
-8629.717 

(-8629.724) 

-8615.466 

(-8615.474) 

-8617.638 

(-8617.645) 

-8632.133 

(-8632.140) 

𝑨 
0.445 

(0.445) 

0.420 

(0.420) 

0.396 

(0.396) 

0.420 

(0.420) 

𝑩 
0.391 

(0.391) 

0.374 

(0.374) 

0.354 

(0.354) 

0.371 

(0.372) 

𝑪 
3.300 

(3.290) 

3.498 

(3.488) 

3.432 

(3.422) 

3.235 

(3.225) 

𝜷 
9.36x10-3 

(9.40x10-3) 

7.40x10-3 

(7.44x10-3) 

6.82x10-3 

(6.87x10-3) 

8.66x10-3 

(8.48x10-3) 

RMSE 0.0128 0.0126 0.0118 0.0118 
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𝐶 ≈ 3.3 cm−1, with differences on the order of ±5% due to isotopic substitutions. These 

numbers satisfy reasonably well the condition of the symmetric top rotor approximation, 

𝐴 ≈ 𝐵 ≪ 𝐶, which was frequently used in the past to ease calculations but is avoided 

here, in order to reach the new higher level of accuracy. The fitted values of 𝐴 and 𝐵 

match the experimental values precisely for all molecules, with the exception of 0.001 

cm-1 difference for 𝐵 in the case of 18O18O16O. The fitted values of 𝐶 deviate from the 

corresponding experimental measurements only by 0.01 cm-1. The ground ro-vibrational 

energies predicted by these fits are also in good agreement with the results of the exact 

calculations, all higher by only about 0.007 cm-1. This excellent agreement with 

experimental results serves as another benchmark test for the accuracy of SpectrumSDT. 

The values of the asymmetry parameter approach 𝛽 ≈ 0.01 for all isotopomers of 

ozone. One can see that in the case of single isotopic substitution, the symmetric ozone 

molecule 16O18O16O has slightly higher value of 𝛽 than the asymmetric molecule 

16O16O18O. But, in case of the double substitution the behavior is reversed: now the 

asymmetric molecule 18O18O16O demonstrates slightly higher values of 𝛽, compared to 

the symmetric molecule 18O16O18O. 
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These trends are further explored in Figure 45, where we collected the values of 

parity splittings for the cases of Λ = 1 and Λ = 2, for each isotopomer of ozone 

considered here. Roughly, for Λ = 1 the splittings are on the order of Δ𝑊 ≈ 0.04 cm-1 

for 𝐽 = 1, and they are increased tenfold when the rotational excitation is raised to 𝐽 = 4, 

reaching Δ𝑊 ≈ 0.4 cm−1. In the case of Λ = 2, the splittings are about two orders of 

magnitude smaller, starting from Δ𝑊 ≈ 0.0005 cm-1 for 𝐽 = 2 and reaching about Δ𝑊 ≈

0.02 cm-1 for 𝐽 = 5. The data presented in Figure 45 are also reported in Tables 27 and 

 
Figure 45. Absolute values of parity splittings in the ground vibrational state of different 

ozone isotopomers for Λ = 1 (upper series) and Λ = 2 (lower series), as a function of 𝐽. 
Filled and empty symbols correspond to the exact values of splittings computed directly 

from the rovibrational energies for symmetric and asymmetric isotopomers, respectively. 

Solid and dashed lines show the predictions of the analytic fit of these data by Eq. (130) 

for symmetric and asymmetric isotopomers, respectively. The blue and red colors 

correspond to singly and doubly substituted ozone isotopologues, respectively. 
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28. From this figure and tables, one can clearly see that symmetric and asymmetric ozone 

molecules behave differently in the cases of singly and doubly substituted ozone. 

Namely, in the case of single substitution the splitting is larger for the symmetric 

isotopomer, while in the case of double substitution the splitting is larger for the 

asymmetric isotopomer. 

In order to include the effect of vibrational excitation, we modified Eq. (129) by 

expressing 𝐸vib through the second order Dunham expansion as: 

𝐸vib(𝑣1, 𝑣2, 𝑣3) = 𝐸elec +∑𝜔𝑖 (𝑣𝑖 +
1

2
)

3

𝑖=1

+ ∑ 𝜒𝑖𝑗 (𝑣𝑖 +
1

2
) (𝑣𝑗 +

1

2
)

3

𝑖,𝑗=1

 

(132) 

The first term of Eq. (132) is the lowest energy on the PES, the bottom of the well. The 

next term adds harmonic contribution from each mode (3 normal modes total in case of 

ozone) and the last term adds the intra-mode and inter-mode anharmonicities. 

Table 27. The values of the splittings Δ𝑊(𝐽, Λ = 1) in cm-1 for the ground vibrational 

state in various ozone isotopomers. 

𝑱 16O18O16O 16O16O18O 18O16O18O 18O18O16O 

𝑱 = 𝟏 0.0539 0.0459 0.0417 0.0492 

𝑱 = 𝟐 0.162 0.138 0.125 0.148 

𝑱 = 𝟑 0.324 0.275 0.250 0.295 

𝑱 = 𝟒 0.539 0.459 0.417 0.492 

𝑱 = 𝟓 0.809 0.688 0.626 0.737 

Table 28. Same as Table 28, but for Λ = 2. 

𝑱 16O18O16O 16O16O18O 18O6O18O 18O18O16O 

𝑱 = 𝟐 0.000756 0.000509 0.000427 0.000638 

𝑱 = 𝟑 0.00379 0.00255 0.00213 0.00319 

𝑱 = 𝟒 0.0114 0.00764 0.00640 0.00958 

𝑱 = 𝟓 0.0265 0.0178 0.0149 0.0224 
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First, we used Eqs. (129)-(132) to fit only the rovibrational states with no more 

than one quantum of the vibrational excitation in each mode, assuming a harmonic 

oscillator model, i.e. setting all 𝜒𝑖𝑗 = 0. The results of such fitting are presented in Table 

29 for all isotopomers of ozone considered here. Now the first row represents electronic 

energy 𝐸elec relative to the dissociation limit. For comparison, the energy values at the 

minimum energy point on the PES are given in parenthesis (different in the singly and 

doubly substituted ozone molecules, since the dissociation energy includes zero-point 

energy of the heaviest diatomic fragment, which is 16O18O in the case of the singly 

substituted ozone but is 18O18O in the case of the doubly substituted ozone). The next 

Table 29. Least squares fitting coefficients (in cm-1) of Eq. (129) and (132), where the 

anharmonicity terms 𝜒𝑖𝑗 are set to 0, computed using all rotational states with 0 ≤ 𝐽 ≤ 5 

and vibrational states with up to 1 quanta of excitation (4 vibrational states total) for 

different ozone isotopomers. The numbers in parenthesis are experimental spectroscopic 

constants143,144 or, in case of 𝐸elec, the actual lowest energy of the PES. Energy is defined 

with respect to the lower dissociation channel of the corresponding isotopomer. 

Parameter 16O18O16O 16O16O18O 18O16O18O 18O18O16O 

𝑬𝐞𝐥𝐞𝐜 
-10015 

(-10044) 

-10014 

(-10044) 

-9995 

(-10024) 

-9995 

(-10024) 

𝝎𝟏 
1068 

(1074) 

1085 

(1090) 

1066 

(1072) 

1055 

(1061) 

𝝎𝟐 
687.7 

(696.3) 

679.2 

(684.6) 

662.8 

(668.1) 

672.1 

(677.5) 

𝝎𝟑 
1015 

(1008) 

1034 

(1028) 

1025 

(1019) 

999.3 

(993.9) 

𝑨 
0.443 

(0.445) 

0.418 

(0.420) 

0.394 

(0.396) 

0.418 

(0.420) 

𝑩 
0.389 

(0.391) 

0.372 

(0.374) 

0.352 

(0.354) 

0.369 

(0.372) 

𝑪 
3.301 

(3.290) 

3.499 

(3.488) 

3.432 

(3.422) 

3.235 

(3.225) 

RMSE 0.236 0.233 0.236 0.216 
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three rows of Table 29 report the fitted values of harmonic frequencies 𝜔1, 𝜔2 and 𝜔3. 

For comparison, experimental values of the fundamental excitation energies144 are given 

in parenthesis for each molecule. These data demonstrate a very good agreement between 

theory and experiment, with differences of only ~6 cm-1 in all modes of all isotopomers. 

The next three rows of Table 29 list the rotational constants 𝐴, 𝐵 and 𝐶 derived from this 

rovibrational fit. Their values are similar to the ones given in Tables 25 and 26, but not 

exactly the same, which indicates that vibrational excitation has some effect on the 

rotational spectrum. 

To explore this question in detail, we carried out the fits of rotational spectra 

using Eqs. (129)-(131) separately for the first excited vibrational state of each mode: 

(001), (010) and (100). The resultant fitting parameters are collected in Tables 30-32. 

Comparing these data with the results of Table 26, one can see that excitation of the 

bending and asymmetric stretching vibrational modes increases the values of 𝛽, while 

excitation of the symmetric stretching mode decreases it. 

The accuracy of the common rovibrational fit, Eqs. (129)-(132), is relatively 

lower, compared to the purely rotational fits of individual vibrational states, as evidenced 

by increased values of RMSE. However, such behavior is expected, since the magnitude 
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of vibrational quanta are much larger than rotational, and the absolute value of RMSE is 

still small, therefore we conclude that this fit is accurate. 

Finally, we used Eq. (132) without restrictions on anharmonicities to fit the 

rovibrational states with no more than 2 quanta of excitation, cumulatively across all 

Table 30. Same as Table 26, but for the first vibrationally excited state in the bending 

mode (0, 1, 0), second vibrational state overall. 

Parameter 16O18O16O 16O16O18O 18O16O18O 18O18O16O 

𝑬𝟎 -7942.247 -7936.536 -7955.073 -7960.294 

𝑨 0.444 0.419 0.395 0.419 

𝑩 0.389 0.372 0.352 0.369 

𝑪 3.351 3.549 3.479 3.282 

𝜷 9.39x10-3 7.42x10-3 6.84x10-3 8.69x10-3 

RMSE 0.0138 0.0136 0.0128 0.0127 

Table 31. Same as Table 26, but for the first vibrationally excited state in the asymmetric 

stretching mode (0, 0, 1), third vibrational state overall. 

Parameter 16O18O16O 16O16O18O 18O16O18O 18O18O16O 

𝑬𝟎 -7614.874 -7581.576 -7591.836 -7632.546 

𝑨 0.441 0.416 0.392 0.416 

𝑩 0.384 0.366 0.345 0.364 

𝑪 3.253 3.451 3.381 3.193 

𝜷 10.1x10-3 8.17x10-3 7.79x10-3 9.31x10-3 

RMSE 0.0132 0.0131 0.0122 0.0122 

Table 32. Same as Table 26, but for the first vibrationally excited state in the symmetric 

stretching mode (1, 0, 0), fourth vibrational state overall. 

Parameter 16O18O16O 16O16O18O 18O16O18O 18O18O16O 

𝑬𝟎 -7561.458 -7530.665 -7551.638 -7576.739 

𝑨 0.443 0.418 0.394 0.418 

𝑩 0.393 0.376 0.357 0.372 

𝑪 3.299 3.498 3.438 3.231 

𝜷 8.69x10-3 6.69x10-3 5.97x10-3 8.04x10-3 

RMSE 0.0126 0.0127 0.0131 0.0116 
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modes, which includes overtones and combination bands (10 vibrational states total). The 

results of this fit are given in Table 33. As one can see, the values of RMSE increase 

again but not critically, reaching 0.35 cm-1 on average for all isotopomers considered 

here. This number is not large, considering the span of the fitted spectrum of roughly 

2000 cm-1 which fills about a quarter of the potential energy well in ozone on its way to 

the dissociation towards O + O2. 

The first row in Table 33 shows excellent agreement between the fitted and the 

actual electronic energies, with the average deviation of about 2 cm-1. The values of 

harmonic frequencies 𝜔1, 𝜔2 and 𝜔3 in Table 33 should not be mixed with excitation 

Table 33. Same as Table 29, but without restriction on the values of 𝜒𝑖𝑗 (vibrational 

anharmonicities). 

Parameter 16O18O16O 16O16O18O 18O16O18O 18O18O16O 

𝑬𝐞𝐥𝐞𝐜 
-10042 

(-10044) 

-10042 

(-10044) 

-10021 

(-10024) 

-10022 

(-10024) 

𝝎𝟏 1094 1112 1090 1082 

𝝎𝟐 701.5 693.3 676.4 685.4 

𝝎𝟑 1064 1084 1076 1046 

𝝌𝟏𝟏 -2.919 -4.861 -2.484 -4.865 

𝝌𝟐𝟐 -1.308 -1.283 -1.210 -1.249 

𝝌𝟑𝟑 -12.83 -14.95 -13.82 -13.70 

𝝌𝟏𝟐 -7.419 -7.850 -7.140 -7.490 

𝝌𝟏𝟑 -33.00 -26.26 -31.30 -25.35 

𝝌𝟐𝟑 -14.87 -15.21 -15.26 -14.17 

𝑨 
0.441 

(0.445) 

0.416 

(0.420) 

0.392 

(0.396) 

0.416 

(0.420) 

𝑩 
0.387 

(0.391) 

0.370 

(0.374) 

0.350 

(0.354) 

0.367 

(0.372) 

𝑪 
3.302 

(3.290) 

3.500 

(3.488) 

3.433 

(3.422) 

3.236 

(3.225) 

RMSE 0.363 0.361 0.357 0.336 
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energies, and should not be directly compared to the experimental data given in Table 29, 

since those numbers do not take into account anharmonicity effects. 

Analysis of the intra-mode anharmonicity parameters in Table 33 indicates that 

the bending mode is the least anharmonic, with 𝜒22 ≈ −1.2 cm-1, while the asymmetric-

stretching mode is the most anharmonic, with more than ten times larger anharmonicity 

parameter of about 𝜒33 ≈ −14 cm-1. Both of these characteristics change little across the 

four isotopic substitutions considered here, indicating similar values for symmetric and 

asymmetric ozone molecules with single and double isotopic substitutions. 

However, we found that the symmetric-stretching mode in ozone has its own 

interesting property. This mode is less anharmonic in symmetric ozone molecules with 

𝜒11 ≈ −2.7 cm-1 and is more anharmonic in asymmetric ozone molecules with 𝜒11 ≈

−4.9 cm-1, and this large difference is systematically present in both singly and doubly-

substituted ozone species. The inter-mode anharmonicity parameters 𝜒12 ≈ −7.5 cm‑1 

and 𝜒23 ≈ −15 cm-1 remain roughly the same across the four isotopomers, but the value 

of 𝜒13 behaves differently. It is larger in symmetric ozone molecules, 𝜒13 ≈ −32 cm-1, 

and is smaller in asymmetric ozone molecules, 𝜒13 ≈ −25 cm-1, and this appreciable 

difference is systematically present in both singly and doubly-substituted ozone species. 

These systematic mass-independent differences might be related to the isotope effects in 

ozone, 휂-effect in particular. 

6.5. Extrapolation of Parity Splittings 

Excellent agreement of the fitted spectroscopic constants with the experimental 

results, together with the low values of RMSE of the fits in the previous section, permit 
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us to use Eqs. (129)-(132) to estimate the behavior of the spectrum of ozone molecules at 

larger values of 𝐽 that are difficult to calculate explicitly. 

Figure 46 shows extrapolation of the parity splittings for the ground vibrational 

state of the singly substituted ozone isotopomers (16O18O16O and 16O16O18O) as a function 

of 𝐽 for different values of Λ. The fitted data points, available in the range 1 ≤ 𝐽 ≤ 5, are 

shown by symbols. Solid and dashed lines correspond to the analytic fits of these data for 

symmetric 16O18O16O and asymmetric 16O16O18O isotopomers, respectively. The fits are 

extended to extrapolate up to 𝐽 = 50. The curves corresponding to 1 ≤ Λ ≤ 5 are 

labelled explicitly in the picture; the curves for Λ > 5 can be easily identified using the 

 
Figure 46. Extrapolation of parity splittings for 16O18O16O (solid line) and 16O16O18O 

(dashed line) as a function of 𝐽. Symbols mark exact values of splittings calculated in this 

work. Different values of Λ are shown by different colors. The points at 𝐽 = 24 were 

computed separately to check the quality of extrapolation and are not included in the fit. 
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overall trend. Figure 47 shows similar data for the doubly substituted isotopomers, 

symmetric 18O16O18O and asymmetric 18O18O16O. 

From the Figures 46 and 47, and from Eq. (130), one can see that for the low 

values of 𝐽 the splittings between different parities decrease exponentially as a function of 

Λ but they increase as a function of 𝐽, as 𝑂(𝐽2Λ). Thus, the curves corresponding to the 

higher values of Λ start lower, but grow faster and eventually cross the curves 

corresponding to the lower values of Λ. This is indeed what we can see at 𝐽 ≈ 30, where 

Λ = 1 crosses the Λ = 2 curve, and at 𝐽 ≈ 50, where the Λ = 2 curve is crossed by Λ =

3. The analytical fits allow us to predict that in the region of 𝐽 = 50 the states with Λ =

1 to 5 are all expected to have splittings above 1 cm-1. 

 
Figure 47. Extrapolation of parity splittings for 18O16O18O (solid line) and 18O18O16O 

(dashed line) as a function of 𝐽. Symbols mark exact values of splittings calculated in this 

work. Different values of Λ are shown by different colors. 
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As for the symmetric vs. asymmetric molecule behavior, the trends reported in 

Figure 45 for the low values of 𝐽 are expected to hold for higher values of 𝐽 as well. 

Namely, Figures 46 and 47 indicate that the splittings of 16O18O16O are greater than those 

of 16O16O18O in the whole range of the considered values of 𝐽, while for the doubly 

substituted isotopomers the behavior is just the opposite, i.e. the splittings for 18O18O16O 

are greater than those of 18O16O18O. This order is not expected to change for any value of 

𝐽 and Λ due to the way the splittings depend on them in Eq. (130), although the absolute 

value of difference between the splittings in the symmetric and asymmetric molecules 

grows as a function of 𝐽, which can be clearly seen in the case of Λ = 5. 

6.6. Rovibrational Partition Functions 

Extrapolation of the spectra toward large values of 𝐽 can also be used to compute 

the rovibrational partition functions 𝑄asym and 𝑄sym for asymmetric and symmetric 

ozone molecules, as: 

𝑄(𝑇) =∑(2𝐽𝑖 + 1) exp (−
𝐸𝑖 − 𝐸1
𝑘𝑇

)

𝑁

𝑖=1

 
(133) 

where the sum is over all ro-vibrational states of the corresponding isotopomer. 

The partition functions of Eq. (133) can be used to determine the ratio of the 

number of states in asymmetric and symmetric ozone molecules, 𝑅 = 𝑄asym/𝑄sym, in the 

same way as in Chapter 5, which may demonstrate a source of isotope effects, if it 

deviates from the statistical value of 𝑅 = 2. 
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Figure 48 summarizes our results for the singly and doubly substituted ozone in 

the range of temperatures relevant to the stratosphere and the laboratory studies. The 

solid blue and red lines give the values of 𝑅 = 𝑄asym/𝑄sym for the singly and doubly 

substituted ozone molecules respectively (calculated from their extrapolated spectra). In 

each case the spectrum was fitted with Eqs. (129)-(132), using the rovibrational states 

with 0 ≤ 𝐽 ≤ 5 and up to 2 quanta of vibrational excitation, and extrapolated up to the 

energy ~4000 cm-1 above the bottom of the potential energy well. One can see that in the 

singly substituted ozone molecule the ratio of the partition functions deviates from the 

statistical value of 𝑅 = 2 by about +0.05 (2.5%) in the whole range of the considered 

 
Figure 48. The ratio of partition functions of asymmetric and symmetric isotopomers of 

ozone. The solid blue (red) color corresponds to the singly (doubly) substituted 

isotopologues of ozone. The dashed lines correspond to the case when the parity 

splittings are neglected. The gray lines in the background show analogous result 

calculated based on purely rotational spectrum, without inclusion of any vibrationally 

excited states. 
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temperatures, while in the doubly substituted case the same deviation occurs in the 

opposite direction, –0.05. Interestingly, the singly-substituted and the doubly-substituted 

ozone molecules behave differently, and the difference of 𝑅 values for them is on the 

order of 0.1, which is a substantial deviation from the statistical value of 𝑅 = 2. 

The dashed red and blue lines in Figure 48 are given to demonstrate the effect of 

parity splittings on the value of the ratio 𝑅 = 𝑄asym/𝑄sym. These dashed lines were 

obtained using the fits of the spectra by a simplified expression, with fixed Δ𝑊 = 0 in 

Eq. (129). One can see that at low temperatures the effect of parity splittings is negligible, 

since only the low levels of rotational excitations are accessible, where the values of 

parity splittings are small. For higher temperatures, the effect of splittings on 

𝑅 = 𝑄asym/𝑄sym becomes visible, but is still relatively small (on the order of 0.005), an 

order of magnitude smaller than the effect of the single vs. double isotopic substitutions. 

The gray lines in the background of Figure 48 were obtained using purely 

rotational partition functions 𝑄asym and 𝑄sym of the ground vibrational state only, 

without including any excited vibrational states. These are given to illustrate the effect of 

vibrational excitation. As before, the dashed gray lines correspond to the case when the 

parity splittings are neglected. We can see that inclusion of the vibrational excitations has 

small effect at low temperature, but becomes more important at higher temperatures. 

Without vibrations, the values of the ratios 𝑅 = 𝑄asym/𝑄sym remain nearly constant 

throughout the considered temperature range. 

As an experiment, we also tried to use a more relaxed version of the fit, where the 

rotational constants 𝐴, 𝐵 and 𝐶 are allowed to have different values for different 

vibrational states, which was done by carrying out separate fits for all vibrational states in 
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the considered energy range, similar to the data demonstrated in Tables 30-32. The result 

of this is presented in Figure 49. This way of calculation has better flexibility, since each 

vibrational state is allowed to have its own set of rotational constants. However, a single-

set approach, considered in Figure 48, already has RMSE low enough to leave this 

flexibility mostly unused, as one can see by comparing the results of Figure 48 and 

Figure 49. 

6.7. Summary 

In this chapter we computed the rotational-vibrational states of singly- and 

doubly-substituted ozone isotopologues, for the rotational excitations up to 𝐽 = 5. The 

range of vibrational excitations extends up to 7 quanta of excitations in one mode. To the 

 
Figure 49. Same as Figure 48, but with a separate set of rotational constants for each 

vibrational state. 
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best of our knowledge such calculations have never been reported before for the 

rotationally excited doubly substituted ozone molecule. 

The code (SpectrumSDT) was rigorously tested by comparing the calculated data 

with the results recently published by Poirier and coworkers117 and the results of an 

existing well-tested APH3D program of Kendrick). Excellent agreement was found. 

First, we carried out the simplest calculations within the symmetric-top rotor 

approximation, and then we added the asymmetric-top rotor terms and the Coriolis 

coupling terms, one at a time, and finally all together. This was done for the 

methodological reason, in order to illuminate the effect of each term on the spectrum of 

rotational-vibrational states, and most importantly on the Λ-doubling, which is the 

splitting of energies for the states of two parities. We showed that for the low values of 

rotational excitation in ozone, the Coriolis coupling effect is about an order of magnitude 

stronger than the asymmetric top rotor effect (in terms of shifts from the symmetric top 

rotor limit). The splittings due to the Coriolis and the asymmetric-top rotor effects, 

however, were on the same order of magnitude, but occurred in the opposite directions. 

Overall, in the exact calculations with both effects included, the influence of the two 

phenomena partially cancels out, leading to relatively small residual splittings (Λ-

doublings). 

Our new data computed here allows us to do a systematic analysis of isotope 

effects in the rotational-vibrational spectra of ozone. Namely, we checked whether it is 

reasonable to expect that, due to the Coriolis coupling effect, the asymmetric ozone 

isotopomers (singly substituted 16O16O18O and doubly substituted 18O18O16O) would 

behave similar to each other but different from the symmetric ozone isotopomers (singly 
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substituted 16O18O16O and doubly substituted 18O16O18O), which in turn would also 

behave similar to each other. So far, we found no justification for this hypothesis. We 

found that for ozone the deviations of rotational constants from the standard symmetric-

top-rotor behavior is affected by isotopic composition as much as it is affected by the 

symmetry of the molecule. For example, in the case of single isotopic substitution the 

value of the rotational asymmetry parameter 𝛽 appears to be smaller in asymmetric 

16O16O18O than it is in symmetric 16O18O16O, but, it is just opposite in the case of double 

substitution, where the value of the rotational asymmetry parameter 𝛽 is found to be 

larger in asymmetric 18O18O16O than it is in symmetric 18O16O18O. 

Another relevant feature, that has never been discussed in the literature on ozone 

before, is the value of parity splitting (Λ-doubling) due to the Coriolis coupling effect. 

These splittings, accurately captured by our calculations, were determined and examined 

here for 1 ≤ Λ ≤ 5, for the four ozone isotopomers considered here. We found that these 

splittings are affected by isotopic substitutions as much as they are affected by molecular 

symmetry, namely: in the case of single isotopic substitution the splittings are larger in 

symmetric ozone 16O18O16O, but in the case of double isotopic substitution the splittings 

are larger in asymmetric ozone 18O18O16O. Again, one cannot claim that symmetry is a 

determining factor. 

Then we checked how a “bulk” energy-averaged characteristic of the molecule, 

such as its rotational-vibrational partition function, is affected by the Coriolis coupling 

effect, and how much these partition functions are different in different isotopomers of 

ozone. Since it is expected that the number of allowed rovibrational states in asymmetric 

molecules would be twice larger than it is in symmetric molecules, we have chosen to use 
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the ratio of partition functions for asymmetric and symmetric ozone molecules to serve as 

a useful metric: 𝑅 = 𝑄asym/𝑄sym. Its value is expected to be close to 𝑅 = 2, therefore 

any deviation would be considered as an isotope effect. We found, first of all, that for the 

temperatures below 500 K the effect of parity splittings on the ratio 𝑅 is very small and 

thus the role of the Coriolis coupling is negligible. We also found that the accurately 

computed value of this metric deviates from the expected statistical 𝑅 = 2, but the 

direction of this deviation depends on the number of isotopic substitutions. Namely, in 

the singly substituted case the ratio 16O16O18O/16O18O16O is larger than expected, while in 

the doubly substituted case the ratio 18O18O16O/18O16O18O is smaller than expected, in 

both cases by approximately the same amount, ±0.05. Although by itself this is an 

interesting isotope-related phenomenon, this effect is relatively small, and is driven by 

masses, not by the symmetry. 

The data used in this chapter, including state energies, vibrational symmetries, 

parities 𝑝, isotopomer-specific assignments and the weights of all Λ-components for each 

ro-vibrational coupled state, are available from the archive file included in the 

Supplementary Information of Refs. 107 and 140. 
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CHAPTER 7. THE EFFECT OF ROTATION-VIBRATION COUPLING 

ON SCATTERING RESONANCES IN OZONE 

In this chapter we use the theoretical framework outlined in Chapter 4 to calculate 

scattering resonances above dissociation threshold for four isotopically substituted ozone 

species: 16O18O16O, 16O16O18O, 18O16O18O and 16O18O18O, for all values of the total 

angular momentum J from 0 to 4. To make these calculations numerically affordable, a 

modification of the theory in Chapter 4 is developed, which allows to employ one 

vibrational basis set, optimized for a typical rotational excitation (𝐽, Λ), to run 

calculations at several desired values of 𝐽. In order to quantify the effect of Coriolis 

coupling, new data are contrasted with those computed using the symmetric-top rotor 

approximation, where the rotation-vibration coupling terms are neglected. 

The effect of rotation-vibration coupling on the bound states of ozone (below the 

dissociation threshold) was studied in great detail, using both a semi-empirical model 

Hamiltonian,138,145 and the first-principle calcualtions,118,146 including the results, 

presented in Chapter 6.107,140 There, we concluded that the observed effect of rotation-

vibration coupling was not significantly different for symmetric and asymmetric 

isotopomers of ozone. This, however, might not hold true for the scattering resonances 

(above the dissociation threshold), whose properties are of much greater importance for 

the recombination reaction of ozone. Thus, in this manuscript we focus specifically on 

the properties of the scattering resonances. 

Both scattering resonances and the effects of rotation-vibration coupling are 

computationally demanding in their own right, let alone when taken together. For this 

reason, the previous workers concerned with the scattering resonances in ozone,50,51,93,147–



166 
 

149 did not take the rotation-vibration coupling into account. To the best of our 

knowledge, the data presented in this chapter is the first data on fully coupled 

rovibrational spectra of scattering resonances in 16O18O16O, 16O16O18O, 18O16O18O and 

16O18O18O, obtained entirely from the first-principle calculations. Importantly, in our 

calculations symmetric and asymmetric isotopomers of ozone (such as 16O16O18O and 

16O18O16O in the case of single isotopic substitution) are addressed simultaneously, as the 

two isotopomers of the same molecule that can interconvert at high energies. 

In the traditional (rotationally-adiabatic) basis approach, described in Chapter 4, 

one needs to compute a separate vibrational basis set for each Λ, since the basis set is 

adjusted to a specific rotational potential. Assessing computational cost of such approach, 

we found that in cases when vibrational basis set is large, which is necessary for 

calculation of scattering resonances, large portion of the overall cost comes from the 

necessity to compute a new vibrational basis set for each Λ and even larger portion from 

necessity to evaluate a new set of vibrational overlaps (Eq. (111)). 

Here we present a modification of the original method that helps to carry out these 

calculations through the range of several values of the total angular momentum 𝐽 in a 

more efficient way. A similar idea has been considered by Leforestier, but the theory has 

only been formulated for the case of Jacobi coordinates.150 In the case of APH 

coordinates, another similar approach has been exploited in a context of the coupled-

channel calculations of the reactive scattering,151 but our approach is different and more 

efficient. 
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7.1. Rotationally Fixed Basis Method 

The general theoretical framework of SpectrumSDT has been covered in detail in 

Chapter 4, where we considered traditional rotationally-adiabatic basis set. In this section 

we discuss the advantages and disadvantages of this approach, and introduce 

modifications to make the calculations more efficient for the case of scattering 

resonances. 

Recall from Chapter 4 that the 2D vibrational basis functions ΧΛ𝑛
𝑗
(휃, 𝜑) have a 

dependency on 𝐽 (implicit index) and Λ, due to the presence of rotational potential term 

𝑉rot
Λ𝑛 in Eq. (94). Such choice permits to take into account the effects of rotational 

excitation and distortion, by adjusting the 2D vibrational basis set ΧΛ𝑛
𝑗

 adiabatically, to be 

optimized specifically for each individual rotational state of the symmetric-top rotor 

(𝐽, Λ). This requires solving the 2D vibrational problem 𝐽 + 1 times for each value of 𝐽, 

which by itself is not computationally demanding. The advantage of this elegant 

traditional approach is that we always operate with the most optimal basis set, which is 

expected to give the fastest convergence (with respect to the basis set size) and thus 

produce the smallest Hamiltonian matrix. 

The snag, however, is that one also needs to compute the overlap matrixes 

〈ΧΛ𝑛
𝑗
|Χ

Λ′𝑛′
𝑗′ 〉 (Eq. (111)) for each such set of solutions. The functions ΧΛ𝑛

𝑗
 are not 

analytical, so the overlaps have to be computed by explicit numerical integration and, for 

accurate calculations of the excited vibrational states or scattering resonances, the size of 

these matrices can be rather large. We found that in practice the computational cost of 

this integration far outweighs the advantage of having a slightly smaller Hamiltonian 

matrix when vibrational basis set is large. 
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One way to circumvent this issue is to use the same set of 2D vibrational basis 

functions Χ𝑛
𝑗
 for all values of 𝐽 and Λ (note that index Λ does not appear anymore since 

all functions Χ𝑛
𝑗
 have the same value of Λ here). One natural choice is to use basis 

functions obtained for the non-rotating molecule, 𝐽 = 0 and Λ = 0, which has a simple 

physical motivation: the energy of rotational excitation (the “lift” of the potential energy 

surface (PES) that the molecule experiences as it rotates) is typically smaller than the 

vibrational energy of the molecule (the depth of the PES itself). Therefore, inclusion of 

the rotational excitation can be considered as a perturbation to the purely vibrational 

problem, and the basis set optimized for a non-rotating molecule should in principle be 

suitable. One downside of this approach is that at large values of 𝐽 the number of basis 

functions Χ𝑛
𝑗
, needed for convergence of results, may be higher compared to the 

rotationally-adiabatic choice of the basis. 

The most straightforward way to define a basis set for non-rotating molecule is to 

simply move the rotational potential term out of the definition of �̂�2D
𝑛 , so that Eq. (94) 

becomes: 

�̂�2D
𝑛 = �̂�𝜃

𝑛 + �̂�𝜑
𝑛 + 𝑉pes

𝑛 + 𝑉ext
𝑛  (134) 

and Eq. (93) becomes: 

〈ℎ𝑛Χ𝑛
𝑗
�̃�Λ|�̂�|ℎ𝑛′Χ𝑛′

𝑗′
�̃�Λ′〉 = 〈ℎ𝑛|�̂�𝜌|ℎ𝑛′〉 〈Χ𝑛

𝑗
|Χ

𝑛′
𝑗′ 〉 𝛿ΛΛ′  

(135) 
 

+〈Χ𝑛
𝑗
|�̂�2𝐷

𝑛 |𝛸𝑛
𝑗′〉 𝛿𝑛𝑛′𝛿ΛΛ′ + 〈Χ𝑛

𝑗
|𝑉rot

Λ𝑛|Χ𝑛
𝑗′〉 𝛿𝑛𝑛′𝛿ΛΛ′

+ 〈ℎ𝑛Χ𝑛
𝑗
�̃�Λ|�̂�asym + �̂�cor|ℎ𝑛′Χ𝑛′

𝑗′
�̃�Λ′〉 

In a way similar to the derivations in section 4.3.1, one can show that: 

〈Χ𝑛
𝑗
|𝑉rot

Λ𝑛|Χ𝑛
𝑗′〉 = ℏ2 (𝐽(𝐽 + 1) 〈Χ𝑛

𝑗
|
𝐴𝑛 + 𝐵𝑛

2
|Χ𝑛

𝑗′〉 + Λ2 〈Χ𝑛
𝑗
|𝐶𝑛 −

𝐴𝑛 + 𝐵𝑛
2

|Χ𝑛
𝑗′〉) (136) 
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Note, that the matrix of Eq. (136) is diagonal in 𝑛 and Λ due to the 𝛿𝑛𝑛′𝛿𝛬𝛬′  factor in Eq. 

(135). The asymmetric-top rotor term �̂�asym and the Coriolis term �̂�cor are treated as 

before. 

The basis set Χ𝑛
𝑗
 of the non-rotating molecule (𝐽, Λ) = (0,0) can be efficient and 

sufficient for the ro-vibrational calculations at small values of 𝐽. However, for prediction 

of thermal reaction rates at room temperature one often has to deal with rotational states 

up to 𝐽max~ 100. For ozone recombination reaction in particular, the calculations of 

rotational states up to 𝐽max~ 50 are desirable. If the calculations for all these values of 𝐽 

and Λ are to be carried out with the same basis set, it would certainly make more sense to 

choose one that corresponds to the values of 𝐽 and Λ somewhere in the middle of the 

broad range of rotational excitations. 

Let us say that we optimized one basis set Χ𝑛
𝑗
 for a chosen pair of (𝐽, Λ) =

(𝐽bs, Λbs) (“bs” = “basis set”), picked somewhere in the range 0 ≤ 𝐽bs ≤ 𝐽max and 0 ≤

Λbs ≤ 𝐽bs based on physical intuition, energy considerations, or some kind of a 

convergence study (note that the values of 𝐽bs and Λbs, selected for the basis functions 

Χ𝑛
𝑗
, are in general different from the values of 𝐽 and Λ for the overall problem). The 

corresponding value of the vibrating symmetric-top rotor energy 𝑉rot
Λbs  will be denoted as 

𝑉rot
bs . 

To achieve the desired effect, we simply add 𝑉rot
bs  to Eq. (134) and subtract it from 

the symmetric-top rotor term in Eq. (135), i.e. Eqs. (134) and (135) become: 

�̂�2D
𝑛 = �̂�𝜃

𝑛 + �̂�𝜑
𝑛 + 𝑉pes

𝑛 + 𝑉ext
𝑛 + 𝑉rot

bs,𝑛
 (137) 

and 
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〈ℎ𝑛Χ𝑛
𝑗
�̃�Λ|�̂�|ℎ𝑛′Χ𝑛′

𝑗′
�̃�Λ′〉 = 〈ℎ𝑛|�̂�𝜌|ℎ𝑛′〉 〈Χ𝑛

𝑗
|Χ

𝑛′
𝑗′ 〉 𝛿ΛΛ′  

(138) 
 

+〈Χ𝑛
𝑗
|�̂�2𝐷

𝑛 |Χ𝑛
𝑗′〉 𝛿𝑛𝑛′𝛿ΛΛ′

+ 〈Χ𝑛
𝑗
|𝑉rot

Λ𝑛 − 𝑉rot
bs,𝑛|Χ

𝑛′
𝑗′ 〉 𝛿𝑛𝑛′𝛿ΛΛ′

+ 〈ℎ𝑛Χ𝑛
𝑗
�̃�Λ|�̂�asym + �̂�cor|ℎ𝑛′Χ𝑛′

𝑗′
�̃�Λ′〉 

The goal of this swap of terms is to compensate for the centrifugal lift of the 

chosen basis set, permitting to predict ro-vibrational energies for any rotational excitation 

𝐽, which can be both smaller (𝐽 < 𝐽bs) or larger (𝐽 ≥ 𝐽bs) than that of the chosen basis set. 

Incorporating these results into the final expression for the Hamiltonian matrix 

element in terms of the expansion coefficients of 1D (𝑎𝑛𝑙𝑚
𝑖 ) and 2D (𝑏𝑛𝑙𝑖

𝑗
) basis functions 

(as in Eq. (119)) we obtain: 

〈ℎ𝑛Χ𝑛
𝑗
�̃�Λ|�̂�|ℎ𝑛′Χ𝑛′

𝑗′
�̃�Λ′〉

= 𝛿ΛΛ′ (〈ℎ𝑛|�̂�𝜌|ℎ𝑛′〉∑∑𝑂
𝑛𝑛′𝑙𝑚

𝑗

𝑀

𝑚

𝐿

𝑙

+ 𝛿𝑛𝑛′𝛿𝑗𝑗′휀𝑛
𝑗)

+
ℏ2

4
𝑈ΛΛ′𝛿𝑛𝑛′ ∑(𝐴𝑛𝑙 − 𝐵𝑛𝑙)∑𝑂𝑛𝑙𝑚

𝑗

𝑀

𝑚

𝐿

𝑙

+ (−1)Λ+𝑠2ℏ2𝑊ΛΛ′𝛿𝑛𝑛′ ∑𝐵𝑛𝑙 cos 휃𝑙∑𝑚𝑂𝑛𝑙𝑚
𝑗

𝑀

𝑚

𝐿

𝑙

+ ℏ2𝛿ΛΛ′𝛿𝑛𝑛′ × ((
𝐽(𝐽 + 1) − 𝐽bs(𝐽bs + 1)

2
)∑(𝐴𝑛𝑙 + 𝐵𝑛𝑙)∑𝑂𝑛𝑙𝑚

𝑗

𝑀

𝑚

𝐿

𝑙

+ (Λ2 − Λbs
2 )∑(𝐶𝑛𝑙 −

𝐴𝑛𝑙 + 𝐵𝑛𝑙
2

)∑𝑂𝑛𝑙𝑚
𝑗

𝑀

𝑚

𝐿

𝑙

) 

(139) 

where 𝑂
𝑛𝑛′𝑙𝑚

𝑗
 is the same as in Eq. (120), except it does not depend on Λ anymore: 
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𝑂
𝑛𝑛′𝑙𝑚

𝑗
= (∑𝑏𝑛𝑙𝑖

𝑗
𝑎𝑛𝑙𝑚
𝑖

𝑆𝑛𝑙

𝑖

)(∑𝑏
𝑛′𝑙𝑖′
𝑗′

𝑎𝑛′𝑙𝑚
𝑖′

𝑆
𝑛′𝑙

𝑖′

) 

(140) 

7.2. Overview of Computed Data 

The methodology described in the previous section was utilized to compute all 

coupled rotational-vibrational states of singly and doubly substituted ozone molecules up 

to the energy of 1000 cm-1 above the dissociation threshold for five values of the total 

angular momentum 0 ≤ 𝐽 ≤ 4 and with all values of Λ included. The reference basis set 

Χ𝑛
𝑗
 was optimized for 𝐽 = 4 and Λ = 2. Only the states with positive energy (scattering 

resonances above dissociation threshold) were considered in the following analysis 

(around 80000 states total). A complex absorbing potential (CAP) in the form suggested 

by Manolopoulos152 was used to impose the boundary conditions. The CAP was defined 

with the minimum absorption energy 𝐸min = 7 cm-1 and spans the range of ~6 Bohr from 

the end of the 𝜌-grid. The optimized DVR-grid for 𝜌 coordinate covered the range of 3 ≤

𝜌 ≤ 20 Bohr and consisted of 94 functions total. An equidistant DVR grid for 휃 covered 

the range 0.43 ≤ 휃 ≤ 1.56 rad with a total of 100 functions. The number of VBR 

functions for φ coordinate was 200 and the value of basis cut-off energy was set to 6000 

cm-1. 

For every resonance we computed its energy 𝐸𝑖 and width Γ𝑖, which determines 

its lifetime through τ𝑖 = ℏ/Γ𝑖, and the decay rate 𝑘𝑖 = Γ𝑖/ℏ. The states with widths > 50 

cm-1 as well as the states contributing less than 0.02 to 𝑄 (computed by setting 𝑝𝑖 =

𝑝𝑖
SYM + 𝑝𝑖

ASYM + 𝑝𝑖
VdW(S) + 𝑝𝑖

VdW(A)
+ 𝑝𝑖

VdW(B)
, the total probability) were excluded 

from the analysis as unphysical artefacts. The meaning of 𝑄 and 𝑝𝑖 is explained further in 

this chapter (section 7.4). 
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It is nearly impossible to converge every individual state above the dissociation 

threshold. Therefore, our convergence parameters, including position of the CAP, were 

adjusted to ensure convergence of the overall dynamical partition function of the 

molecule (𝑄, as defined further in section 7.4) to within 1%. Convergence of the 

individual states depends on their properties. Broad resonances with Γ ~ 10 cm-1 are 

converged to within 1 cm-1 or better (both energy and width). Narrower resonances are 

converged much better. Convergence of broader resonances is not important, since they 

make negligibly small contributions to the dynamical partition function 𝑄 (their weights 

𝑤𝑖 are close to 1, but their probabilities 𝑝𝑖 are close to 0). 

Moreover, in order to have more information about the nature of each state, we 

integrated the modulus squared of its wave function over five specific regions of the PES, 

indicated by color in Figure 50. The resultant five probabilities are also listed in Table 34 

for the case of singly substituted ozone molecule. For the doubly substituted case, the 

labelling of regions in Figure 50 and Table 34 is analogous and can be obtained simply 

by changing all 16O isotopes to 18O and vice versa. 

Note that VdW(A) is separated from VdW(S) by a potential energy barrier on the 

PES. The corresponding isomers do not interconvert freely, and therefore should both be 

defined and included into consideration separately. This is particularly important since 

one of them is associated with symmetric, while the other one with asymmetric ozone 

molecule, even though asymptotically they both merge into a single dissociation channel. 
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Table 34: Definitions of five probabilities computed for each ro-vibrational state of 

ozone. 

Color in Figure 50 Meaning 
Probability 

label 

Dark green Covalently bound symmetric ozone molecule 16O18O16O 𝑝𝑖
SYM 

Violet Covalently bound asymmetric ozone molecules 16O16O18O 𝑝𝑖
ASYM 

Turquoise 
Van der Waals complex in the 16O + 16O18O channel, near 

asymmetric 16O16O18O 
𝑝𝑖
VdW(A)

 

Light green 
Van der Waals complex in the 16O18O + 16O channel, near 

symmetric 16O18O16O 
𝑝𝑖
VdW(S)

 

Pink Van der Waals complexes in the 16O16O + 18O channel 𝑝𝑖
VdW(B)

 

 

 
Figure 50. A schematic representation of the PES of ozone in APH coordinates, labelled 

for the case of a singly substituted molecule. Three tight deep wells correspond to the 

covalently bound ozone molecules: 16O18O16O (single well) and 16O16O18O (double well). 

Five broad and shallow plateaus correspond to the weakly bound van der Waals 

complexes: 16O18O···16O, 16O16O···18O and 16O···16O18O (double-well each). The 

meaning of colors is summarized in Table 34. The arrow shows direction of change of 𝜑-

coordinate. 
  



174 
 

The exact definitions of the regions in Figure 50 are as follows. The covalent 

wells of the symmetric and asymmetric molecules are defined as the regions of PES with 

120° ≤ 𝜑 ≤ 240° and 240° ≤ 𝜑 ≤ 120° respectively, and the values of 𝜌 up to the 

position of the centrifugal barrier between the covalent and Van der Waals wells, which 

is generally situated around 𝜌 = 5.5 Bohr. The exact position of the barrier was 

computed accurately based on the analysis of 2D basis functions Χ𝑛
𝑗
(휃, 𝜑) and depends 

on 𝐽, Λ and a specific pathway under consideration. 

The Van der Waals wells B, A and S are defined as the regions with the values of 

𝜌 from the border between the covalent and Van der Waals wells to 11 Bohr and the 

following values of 𝜑: 

• −60° ≤ 𝜑 ≤ 60° for VdW B 

• 60° ≤ 𝜑 ≤ 𝜑𝑏𝑎𝑟 or −𝜑𝑏𝑎𝑟 ≤ 𝜑 ≤ −60° for VdW A 

• 𝜑𝑏𝑎𝑟 ≤ 𝜑 ≤ 360° − 𝜑𝑏𝑎𝑟 for VdW S 

The values of barrier position between VdW A and S (𝜑𝑏𝑎𝑟) was found 

numerically by scanning the PES and are equal to 𝜑𝑏𝑎𝑟 = 117.65° for the singly 

substituted and 𝜑𝑏𝑎𝑟 = 122.35° for the doubly substituted ozone isotopologues. The area 

beyond 11 Bohr is considered a fully dissociated molecule and integrated separately from 

the Van der Waals area. 

The complete set of data computed for this chapter can be found in Ref. 153. 

7.3. Distribution of State Properties 

We found that the complexity of the PES of ozone is responsible for the 

appearance of a broad distribution of properties of its states. An overview of these 

properties is presented in Figure 51, where each point corresponds to one computed ro-

vibrational state. 
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The two axes give the total covalent (𝑝𝑖
SYM + 𝑝𝑖

ASYM) and total Van der Waals 

(𝑝𝑖
VdW(A) + 𝑝𝑖

VdW(B) + 𝑝𝑖
VdW(S)) probabilities. Color reflects the value of Γ𝑖 (on a log 

scale). 

From Figure 51 we can see that both singly and doubly substituted ozone 

molecules exhibit broad distributions of state properties. The lower right corner of each 

frame corresponds to mainly covalent states, while the upper left corner corresponds to 

mainly Van der Waals (VdW) states, and we see that both kinds of resonance states are 

possible in ozone. 

The five probabilities defined in Table 34 and used to plot Figure 51 correspond 

to contiguous regions on the PES, so, whenever they do not add up to 1, the remaining 

probability corresponds to the asymptotic part of the PES (dissociation channels). 

Qualitatively, the more a point deviates from the diagonal in Figure 51, the more 

probability in the dissociation region it has. In particular, the points near the origin have 

all their probability in the dissociation region and correspond to the continuum of free 

particle states, while the points on the diagonal have no probability in the dissociation 

region and correspond to the bound states. 
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Figure 51. Distribution of the covalent and Van der Waals probabilities for scattering 

resonances in the singly substituted (upper frame) and doubly substituted (lower frame) 

molecules of ozone, based on the coupled ro-vibrational calculations up to J = 4. Color 

corresponds to decimal logarithm of the resonance width (Γ𝑖, in cm-1), as indicated by the 

color bar. 
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Finally, note the absence of any states along the horizontal axis in Figure 51. Any 

hypothetical state there would need to have significant probabilities in the covalent and 

dissociation regions, while having zero probability in the VdW region. The covalent and 

dissociation regions are separated by VdW region, so it comes as no surprise that all the 

actual states that have non-zero probability in covalent and dissociation regions 

simultaneously, also have non-zero probability in VdW region. 

Tracking the points from right to left along the edge of this empty area in the right 

half of the plot, one can see that any probability “missing” from the covalent region gets 

redistributed between VdW and dissociation regions rather uniformly, taking into account 

that the dissociation region is about 60% larger than VdW. The same does not hold true 

in the left half of the plot, where the points along the edge start having more probability 

in the dissociation region compared to the VdW region. 

The typical values of resonance widths vary through four orders of magnitude 

range, 10−2 ≤ Γ𝑖 ≤ 102 cm-1. Narrower (longer lived) states are shown by blue points in 

Figure 51, and are found mainly in the covalent corner, in the VdW corner, and along the 

diagonal line that connects them. They correspond to the relatively stable states, not 

coupled to the asymptotic region of free particle states, which explains their stability. 

Broader (short lived) states are shown by red points, and are found mainly near the 

origin, which corresponds to the mostly free-particle states, which also makes sense. Note 

that the states with substantial VdW probability (around 0.5) appear to be longer-lived 

(they have smaller gammas) than the states with the same probabilities in the covalent 

region. 
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7.4. Average Properties of Scattering Resonances 

Since different resonances exhibit rather different properties, it is useful to average 

those over the distribution, in order to obtain a small set of representative values (which 

can be used for comparison of different isotopomers of ozone, for example). In order to 

be meaningful, this should be a weighted average that takes into account the importance 

of a given scattering resonance in the ozone recombination reaction. Building upon the 

previous work,51 we define the weight of each state 𝑖 in the average as its contribution to 

the corresponding partition function: 

𝑄𝑖 = 𝑝𝑖
mol𝑤𝑖 exp (−

𝐸𝑖
𝑘𝑇
) 

(141) 

In what follows, the average values will be computed separately for the covalent 

and the VdW states, for symmetric and asymmetric ozone isotopomers, and for the singly 

and doubly substituted ozone isotopologues. Therefore, the first factor in Eq. (141) is 

introduced to separate contributions to different molecules and corresponds to the state’s 

probability 𝑝𝑖 associated with a given region on the PES, as defined in Table 34. 

The second factor in Eq. (141) is a weight 𝑤𝑖, defined as: 

𝑤𝑖 =
Γ𝑖/ℏ

Γ𝑖/ℏ + [M]𝑘𝑖
stab

 
(142) 

This weight is based on the standard Lindeman mechanism of recombination154 

and accounts for state population at a given pressure of bath gas, which lets one to give 

higher weights to wider states that are naturally more important for the recombination 

reaction. The lower the pressure, the less restrictive this factor is. For example, in the 

limit of zero pressure, all states would be equally important regardless of their widths. 
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For stabilization rate coefficient 𝑘𝑖
stab, we use a simple model introduced previously.51 

Namely, the value of 𝑘𝑖
stab is calculated as: 

𝑘𝑖
stab = σstab𝑣(𝑝𝑖

SYM + 𝑝𝑖
ASYM) (143) 

where σstab is the stabilization cross-section taken from Ref. 53 as σstab = 154.0326 𝑎0
2, 

and 𝑣 is the average speed of O3 + Ar system: 

𝑣 = √
8𝑘𝑇

𝜋𝜇stab
 

(144) 

where 𝜇stab is the reduced mass of O3 + Ar system: 

𝜇stab =
m(O3)m(Ar)

m(O3) + m(Ar)
 

(145) 

where m(O3) and m(Ar) are the masses of O3 and Ar, respectively. 

The last thing in Eq. (141) is the Boltzmann factor at given temperature. Here and 

further in this chapter we assume the conditions that correspond to the experiments of 

Mauersberger group with [M] = 267 hPa (about 0.3 Bar) and 𝑇 = 298K.36,38 

All three factors in Eq. (141) vary between zero and one, so the value of 𝑄𝑖 is also 

less than one. Importantly, the sum of 𝑄𝑖 over the states of a given molecule represents its 

dynamical partition function:51 

𝑄 =∑𝑄𝑖 (146) 

The “dynamical” prefix here is used to stress that it depends on dynamical factors, 

such as lifetime of the states, as well as on pressure and temperature. It is important to 

take into account these factors since they play a crucial role in the ozone recombination 

reactions. 
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Note that here we report the values of vibrational partition functions 𝑄 per 

rotational state (of a symmetric top rotor, i.e. divided by the number of rotational Λ-

blocks in the ro-vibrational calculation). Space degeneracy (factor of 2𝐽 + 1) is also not 

taken into account in order to facilitate comparison between different values of 𝐽. 

Additionally, the values of 𝑄 for asymmetric ozone isotopomers are divided by 2, to 

account for the number of wells and put all partition functions values on the same scale. 

The dynamical partition functions 𝑄 and other related properties are presented in 

Tables 35-37. In Table 35, the values of 𝑄 were computed for resonances localized in 

covalent wells, by setting 𝑝𝑖
mol = 𝑝𝑖

SYM for symmetric isotopomers (columns 2 and 4) and 

𝑝𝑖
mol = 𝑝𝑖

ASYM for asymmetric isotopomers (columns 3 and 5) in Eq. (141). In Table 36, 

the values of 𝑄 were computed for resonances localized in VdW wells, by using 𝑝𝑖
mol =

𝑝𝑖
VdW(B)

 for homonuclear dissociation channel (columns 2 and 4) and 𝑝𝑖
mol = 𝑝𝑖

VdW(A) +

𝑝𝑖
VdW(S)

 for heteronuclear dissociation channel (columns 3 and 5). In Table 37, the values 

of 𝑄 were computed with contributions from both covalent and Van der Waals wells, by 

setting 𝑝𝑖
mol = 𝑝𝑖

SYM + 𝑝𝑖
VdW(S)

 for symmetric isotopomers (columns 2 and 4) and 

𝑝𝑖
mol = 𝑝𝑖

ASYM + 𝑝𝑖
VdW(A) + 𝑝𝑖

VdW(B)
 for asymmetric isotopomers (columns 3 and 5). 

The first row of these tables lists considered isotopomers, and the main question 

here is how the symmetric and asymmetric ozone molecules compare and contrast. In the 

second row we report the weighted average values of the resonance width, computed as: 

Γ̃ =
∑𝑄𝑖Γ𝑖
∑𝑄𝑖

=
∑𝑄𝑖Γ𝑖
𝑄

 
(147) 
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The corresponding partition functions 𝑄 are reported in the third row. Rows 4 to 6 

report several other weighted average properties, calculated in a way similar to Eq. (147). 

Namely, the average wavefunction probability is given by: 

Table 35. Average properties of scattering resonances localized over the covalent wells of 

ozone, computed for various isotopic substitutions based on the coupled ro-vibrational 

calculations for all 𝐽 up to 𝐽 = 4. The data in parentheses correspond to the approximate 

symmetric-top rotor treatment. 

 16O18O16O 16O16O18O 18O16O18O 16O18O18O 

�̃�, cm-1 3.12 (3.19) 3.29 (3.36) 2.06 (2.14) 3.05 (3.16) 

𝑸 4.66 (4.53) 4.54 (4.41) 5.86 (5.65) 5.12 (4.93) 

 �̃� 0.532 (0.552) 0.528 (0.541) 0.575 (0.600) 0.499 (0.522) 

�̃�𝒊 0.230 (0.242) 0.241(0.245) 0.254 (0.266) 0.238 (0.248) 

�̃� 20.4 (18.9) 18.8 (18.0) 23.1 (21.3) 21.5 (20.0) 

 0.975 (0.974) 0.874 (0.873) 

Table 36. Same as Table 35, but for the scattering resonances localized over Van der 

Waals plateaus. 

 16O16O⋯18O 16O⋯16O18O and 
16O18O⋯16O 

16O⋯18O18O  16O18O⋯18O and 
18O16O⋯18O 

�̃�, cm-1 6.01 (6.10) 7.20 (7.25) 7.03 (7.18) 6.12 (6.19) 

𝑸 17.1 (16.7) 17.0 (16.7) 18.2 (17.7) 17.7 (17.4) 

 �̃� 0.458 (0.473) 0.397 (0.408) 0.346 (0.360) 0.427 (0.443) 

�̃�𝒊 0.299 (0.304) 0.270 (0.275) 0.224 (0.230) 0.275 (0.282) 

�̃� 57 (55.1) 63.4 (61.2) 81.6 (77.6) 64.5 (61.7) 

Table 37. Same as Table 35, but for both covalent and VdW regions together. 

 16O18O16O 16O16O18O 18O16O18O 16O18O18O 

�̃�, cm-1 6.24 (6.30) 5.95 (6.02) 5.04 (5.12) 5.83 (5.95) 

𝑸 21.8 (21.3) 21.6 (21.1) 23.2 (22.7) 23.3 (22.6) 

 �̃� 0.328 (0.333) 0.451 (0.455) 0.366 (0.374) 0.430 (0.431) 

�̃�𝒊 0.192 (0.194) 0.278 (0.274) 0.207 (0.210) 0.266 (0.260) 

�̃� 114 (111) 77.7 (77.0) 112 (109)  (87.1) 

 0.991 (0.992) 1.00 (0.999) 
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𝑝 =
∑𝑄𝑖𝑝𝑖

mol

𝑄
 

(148) 

where the values of 𝑝𝑖
mol are calculated for different columns as described above. 

The average contribution of one resonance to a partition function is given by: 

�̃�𝑖 =
∑𝑄𝑖𝑄𝑖
𝑄

=
∑𝑄𝑖

2

𝑄
 

(149) 

And the average “number of resonances” is given by: 

�̃� =
𝑄

�̃�𝑖
=

𝑄2

∑𝑄𝑖
2 =

(∑𝑄𝑖)
2

∑𝑄𝑖
2  

(150) 

Note, that �̃� is not literally a number of resonances, but rather a factor relating 𝑄 

and �̃�𝑖, which can be roughly thought of as a “number of resonances” (and such 

terminology will be used in this paper), but one should still be careful with its 

interpretation. 

Finally, the last row of Tables 35 and 37 gives the value of 휂-effect, defined as the 

ratio between of the values of 𝑄, computed for symmetric and asymmetric isotopomers. 

Namely: 

휂 =
𝑄( O 

16 O 
16 O 

18 )

𝑄( O 16 O 18 O 16 )
 

(151) 

for single substitution, and 

휂 =
𝑄( O 

18 O 
18 O 

16 )

𝑄( O 18 O 16 O 18 )
 

(152) 

for double substitution. 

For ozone resonances localized over the covalent well we found that average 

values Γ̃ in asymmetric ozone molecules are larger than those in symmetric ones, by 

5.5% in the case of single and by as much as 48% in the case of double substitution (see 
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Table 35). We attribute it to the fact that the well on the PES that hosts the symmetric 

ozone molecule (see Figure 50), and the vibrational wave functions that sit in this well, 

are always symmetric with respect to the well’s dissociation channels (16O + 18O16O and 

16O18O + 16O in singly-substituted case), i.e. each such wave function must decay equally 

into these channels. In contrast, the double-wells on the PES that host asymmetric ozone 

molecules are slightly tilted, which introduces asymmetry into the vibrational wave 

functions. Some of these states lean more towards one channel (say 16O + 16O18O) and 

dissociate primarily into it, while other states lean more towards the other channel 

(16O16O + 18O). Overall, such asymmetric dissociation appears to be more efficient, and 

this is observed for the states localized over the covalent wells in both singly and doubly 

substituted molecules. Therefore the “driving force” of this effect is symmetry, not mass. 

Interestingly, scattering resonances distributed over the VdW plateau of the PES 

behave differently. In the case of single substitution, VdW states in the asymmetric 

channel (16O + 16O18O) exhibit larger values of Γ̃ than those in the symmetric channel 

(16O16O + 18O) by 20%. But in the case of double substitution the picture is reversed and 

VdW states in the asymmetric channel (16O18O + 18O) exhibit smaller values of Γ̃ than 

those in the symmetric channel (16O + 18O18O) by 13%. Explanation for this “flip” is that 

the VdW states, located in the channel region of the PES, are primarily influenced by the 

value of asymptotic vibrational zero-point energy (ZPE) of the channel. In the case of 

single substitution the asymmetric channel is deeper, because ZPE(16O18O) < 

ZPE(16O16O), but in the case of double substitution the symmetric channel is deeper, 

because ZPE(16O18O) > ZPE(18O18O). The decay of resonances into a deeper channel is 
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always more efficient, and therefore for the VdW states the “driving force” of the effect 

is mass, rather than symmetry. 

Comparing Tables 35 and 36, one notices that the values of Γ̃ for VdW states are 

much larger than those for the covalent states, by a factor of ×2 to ×3. This makes sense, 

since resonances located in the long-range part of the PES are expected to decay faster. 

This might seem to contradict the results in Figure 51, but keep in mind that the weight 

function of Eq. (141) favors certain states more than others, which makes the direct 

comparison of these quantities from Figure 51 non-trivial. Also from Tables 35 and 36, 

one can clearly see that the partition functions 𝑄 of resonances distributed over the VdW 

parts of the PES are significantly larger than those of the resonances localized over the 

covalent wells, by a factor of ×3 to ×4. 

At present time it is not entirely clear what is the role of the VdW states of ozone 

in the recombination process,120,149,155 but here, as a limiting case, we will compute the 

average values for resonances of both kinds put together. The results of this are presented 

in Table 37, where one can clearly see that when the covalent and the VdW resonances 

are both accounted, the values of partition functions 𝑄 for symmetric and asymmetric 

ozone species equalize (to within less than 1% difference), in both singly and doubly 

substituted cases. It was not the case when only the covalent well probabilities were 

included into 𝑄, as one can see from Table 35, where asymmetric ozone molecules 

exhibited smaller 𝑄 than the symmetric ones, by 3% and 13% in the cases of single and 

double substitutions, respectively. 

As for the values of average resonance widths Γ̃, the mass-driven pattern, 

associated with the VdW states (Table 36), dominates over the symmetry-driven pattern, 
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associated with the covalent states (Table 35), which comes as no surprise, since the 

values of partition function 𝑄 are much larger in the case of the VdW states. Namely, in 

the singly substituted case, the values of Γ̃ for asymmetric molecules are smaller by 5% 

than those for symmetric molecules, but this is opposite in the doubly substituted case, 

where the values of Γ̃ for asymmetric molecules are larger by 15%. 

7.5. Influence of Rotational Excitation 

The values presented in Tables 35-37 are computed based on all available values 

of 𝐽 (𝐽 ≤ 4). However, it is also instructive to study how these values evolve as function 

of 𝐽 in order to understand how much they can change for larger values of 𝐽. 

In Figures 52, 54 and 56 we reported 𝑄(𝐽) and Γ̃(𝐽) dependencies, obtained in the 

same way as in Tables 35-37, but for each value of 𝐽 separately. One can see that in 

Figures 54 and 56 the values of 𝑄(𝐽) gradually decrease, as expected due to increase in 

centrifugal barrier that separates the lowest-energy covalent states in the vicinity of the 

dissociation threshold from the dissociation area, therefore reducing their width-factor 𝑤𝑖 

(Eq. (141)) and making them contribute less to 𝑄. Looking at the values of Γ̃(𝐽), one can 

see that the largest change is often observed for going from 𝐽 = 0 to 𝐽 = 1, after which 

they decrease slower and rather monotonic, for the same reasons as 𝑄(𝐽). Interestingly, 

these trends are less pronounced in the case of covalent states (Figure 52). The remaining 

properties are discussed in the following sections. 
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Figure 52. Average resonance width (Γ̃), partition function (𝑄) and 휂-effect of scattering 

resonances in ozone as a function of rotational excitation up to 𝐽 = 4, for the states 

localized over the covalent well (as in Table 35). The blue (red) color corresponds to the 

singly (doubly) substituted isotopologues of ozone. The dots (x-symbols) correspond to 

symmetric (asymmetric) isotopomers. The solid (dashed) lines correspond to the exact 

coupled rotation-vibration (approximate symmetric-top rotor) calculations. 
  



187 
 

  

  

 

   
Figure 53. Same as Figure 52, but for the values of 𝑝, �̃�𝑖 and �̃�. 
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Figure 54. Same as Figure 52, but for the states localized over the VdW plateau (as in 

Table 36). The dots (x-symbols) correspond to homonuclear (heteronuclear) dissociation 

channels. 
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Figure 55. Same as Figure 54, but for the values of 𝑝, �̃�𝑖 and �̃�. 
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Figure 56. Same as Figure 52, but for both covalent and Van der Waals regions together 

(as in Table 37). 
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Figure 57. Same as Figure 56, but for the values of 𝑝, �̃�𝑖 and �̃�. 
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7.6. Implications for Symmetry-Driven Isotope Effect 

As it was stated earlier, recombination reaction that forms ozone exhibits a robust 

symmetry-driven isotope effect. Namely, in the experiment38 the asymmetric ozone 

molecules (such as 16O16O18O and 16O18O18O) are formed at a rate that is about 16% 

higher than the rate of formation of symmetric ozone molecules (such as 16O16O16O, 

16O18O16O or 18O 16O18O). It is sometimes argued in the literature156,157 that this effect can 

be explained if one assumes (and proves) that the symmetric and asymmetric ozone 

molecules possess different lifetimes. Let us review the data in Tables 35-37 in the light 

of this hypothesis. 

To begin with, one should keep in mind that the rate of ozone recombination is 

determined by the dynamical partition function of scattering resonances 𝑄, rather than by 

Γ̃ directly. The dependence of 𝑄 on the values of Γ𝑖 of individual resonances is given by 

their weights 𝑤𝑖 in Eq. (141) above. 

With the choice of [M] = 267 hPa, the value of weight 𝑤𝑖 = 0.5 corresponds to 

Γ𝑖 ≈ 8 ∗ 10−3 cm-1, while the values of 𝑤𝑖 = 0.1 and 0.9 correspond to Γ𝑖 ≈ 9 ∗ 10−4 

and 7 ∗ 10−2 cm-1, respectively. For practical purposes, all resonances with Γ𝑖 > 1 cm-1 

can be considered as broad, which means that their weight 𝑤𝑖 at a given pressure reached 

the maximum (𝑤𝑖 = 1) and thus it does not depend on the actual value of Γ𝑖 anymore. 

With this in mind, let us look at the results of Table 35 first, for resonances 

localized over the covalent wells. We see that, indeed, the asymmetric ozone molecules 

16O16O18O and 16O18O18O exhibit larger values of Γ̃ and one may (erroneously) expect 

that those would translate into larger values of weights 𝑤𝑖 and partition functions 𝑄 (and 

thus higher rates of recombination). However, the values of 𝑄 in Table 35 show an 
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opposite trend, they are smaller for the asymmetric molecules, compared to the 

symmetric ones. How can that be? Well, notice that the values of average Γ̃ reported in 

the Table 35 are in the range of broad resonances, when the actual values of resonance 

widths do not affect the recombination process anymore (even if they show some mass-

independent symmetry-driven trend). Therefore, a property other than the resonance 

width Γ𝑖 must be important for explanation of the trends of 𝑄 values seen in Table 35. 

Let us consider the quantities in rows 4-6 of Tables 35-37. All these quantities are 

weighted averages, which take into account the contribution 𝑄𝑖 of each state (its 

importance). From these data it becomes very clear that the values of partition function 𝑄 

correlate well with the average number of resonances �̃�, rather than with the average 

resonance width Γ̃, which means that the main driver of the effect is the number of 

metastable states in the symmetric and asymmetric ozone molecules (not their lifetimes). 

It appears that asymmetric ozone molecules have smaller number of effective states �̃�, 

compared to the symmetric ozone molecules, just opposite to what we hoped to find 

(beyond the factor of 2, applied to the values of 𝑄 for asymmetric isotopomers, as stated 

above). 

The symmetry-driven isotope effect itself, can be expressed as a ratio of partition 

functions for asymmetric and symmetric molecules. In the experiments of Mauersberger 

group38 these numbers were found to be on the order of 휂 = 1.16. The last row of Tables 

35 and 37 reports our data for 휂, based on the calculations for 0 ≤ 𝐽 ≤ 4 combined. The 

dependence of isotope effect on rotational excitation, 휂(𝐽), is presented in the last frame 

of Figures 52 and 56. Unfortunately, neither of these data come close to the experimental 

results. Indeed, in all considered cases we obtain 휂 < 1, for both singly and doubly 
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substituted cases, while in the experiment the isotope effect is observed to occur in the 

opposite direction, 휂 > 1. 

7.7. The Effect of Van der Waals States 

Table 36 and Figures 54 and 55 contain the same analysis, but for the scattering 

resonances distributed over the VdW parts of the PES. Since the partition functions 𝑄 of 

the VdW states are larger than those of the covalent-well states, it is not surprising that 

many properties listed in Table 37 are dominated by those listed in Table 36. 

Interestingly, the overall average number of resonances �̃� in Table 37 is still smaller for 

asymmetric ozone molecules, in both singly and doubly substituted cases. This feature 

can be (at least partially) explained by the fact that for the highly delocalized states 

probability in the asymmetric region of PES is expected to be roughly twice as large 

compared to the symmetric region (see Figure 50). This contributes to higher values of 𝑝 

and �̃�𝑖 for asymmetric isotopomers and eventually translates to lower values of �̃�. 

These differences, although mass-independent, have no influence on the isotope 

effect, which depends on the values of 𝑄 only. Importantly, the isotope effect 휂 vanishes 

almost entirely when all ozone states are taken together, in both cases of single and 

double isotopic substitutions (last row in Table 37). 

Figure 56 represents evolution of the corresponding isotope effect as a function of 

total angular momentum 𝐽. Here we can see some progressive deviation from the 

reference value of 휂 = 1 (which corresponds to no isotope effect), but it is rather small 

and occurs in the opposite directions for singly and doubly substituted ozone molecules, 

which is consistent with our earlier findings for the bound states of ozone in Chapters 5 
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and 6, but is inconsistent with experimental data, where the same value of 휂 is found 

irrespectively of the number of isotopic substitutions. 

It is quite unfortunate, but based on the data obtained here for a limited range of 

rotational excitations 0 ≤ 𝐽 ≤ 4, we cannot reproduce large and robust 휂-effect observed 

in the experiments. 

7.8. The Influence of Rotation-Vibration Coupling (Coriolis Effect) 

One of the main goals of this paper was to check whether the symmetry-driven 

isotope effect could be explained by the Coriolis coupling which, according to a recently 

published hypothesis,123 may act differently in symmetric and asymmetric ozone 

molecules. All results presented and discussed so far were obtained using an accurate 

(basically exact) coupled rotational-vibrational calculations, which include the 

asymmetric-top rotor term and the Coriolis coupling term in the Hamiltonian. Such 

calculations are numerically demanding. In addition, we carried out a set of approximate 

calculations neglecting these rotation-vibration coupling terms, which corresponds to a 

symmetric-top rotor approximation (where Λ is assumed to be a good quantum number). 

Such calculations are much cheaper, since different Λ-blocks of the Hamiltonian matrix 

are uncoupled, and thus can be diagonalized independently. The results of these 

simplified calculations are also presented in Tables 35-37 (in parenthesis), and Figures 

52-57 (dashed-lines). 

Without going through comparison of each pair of numbers, let us summarize 

what we learned about the role of rotation-vibration coupling: 

The values of 𝑄, Γ̃ and �̃� are indeed somewhat affected by inclusion of the 

rotation-vibration coupling, but these changes are almost uniform across isotopomers, so 
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none of the computed properties change their relative order. Therefore, the value of 

isotope effect 휂 remains nearly the same for both singly and doubly substituted ozone 

molecules, in both Table 35 (only resonances localized over the covalent well) and Table 

37 (VdW states added to the covalent ones). 

The values of 𝑄 and �̃� always increase as the rotation-vibration coupling is 

included, which indicates that on average the spectrum of the uncoupled ozone states is 

less dense, as one might expect. In contrast, the values of Γ̃ always decrease, which 

indicates that on average the resonances are made more stable by inclusion of the 

rotation-vibration coupling, they live longer, decay slower. 

The change is slightly larger for resonances localized over the covalent well, than 

for the VdW states because in the covalent case the number of effective resonances is 

smaller and thus the values of 𝑄 and the average properties are more sensitive to changes 

in each individual states. Moreover, the stretched VdW complexes are closer to the 

symmetric-top rotor model, than their compact covalently bound counterparts. 

From Figures 52, 54 and 56, we see that at larger values of 𝐽 the effect of rotation-

vibration coupling on the magnitude of the partition function 𝑄 grows roughly linearly 

with 𝐽. However, this effect is rather uniform for symmetric and asymmetric isotopomers, 

therefore we also see that the value of isotope effect 휂, remains small and mostly 

unchanged through the range of 𝐽 considered here. 

7.9. Summary 

In this chapter we developed a modification of theory presented in Chapter 4 that 

permits to decrease computational cost in the case of calculation of coupled scattering 

resonances with large vibrational basis set. Such calculations are required when we want 
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to predict thermal rate of a reaction, or another property (such as partition function) 

averaged over a broad distribution of rotational excitations. Traditional approach is to use 

multiple vibrational basis sets, optimized and truncated for each individual rotational 

state. This is elegant but is numerically inefficient. We demonstrated here that it is 

possible to choose one vibrational basis set, optimized for a typical rotational excitation 

(𝐽, Λ), say somewhere in the middle of the desired range of rotational excitations, to 

employ it in the coupled rotation-vibration calculations for many values of 𝐽, in a 

relatively broad range. 

The goal of this chapter was to reach higher vibrational energies, above the 

dissociation threshold, to determine how the rotation-vibration coupling influences 

scattering resonances in ozone. These metastable states participate in the ozone forming 

reaction and their properties are believed to be responsible for the mass-independent 

symmetry-driven isotope effect. Not only the states localized in the compact covalent 

well of ozone, but also the large-amplitude states distributed over a broad VdW 

interaction plateau of the PES are of interest. 

The data computed in this chapter gives us accurate and valuable information 

about the influence of rotation-vibration coupling (the Coriolis force) on the 

recombination reaction of ozone, and on the corresponding isotope effect. This was not 

available in the past. 

Namely, analysis of our data indicates that the average properties of scattering 

resonances, such as their average lifetime Γ̃, the average number of such states �̃�, and 

their cumulative partition function 𝑄, are all affected by the rotation-vibration coupling, 

and this effect grows as the value of angular momentum 𝐽 is increased. However, we also 
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found that various isotopomers and isotopologues of ozone (symmetric and asymmetric 

ozone molecules with single and double isotopic substitutions) are influenced by the 

Coriolis effect rather uniformly. When the ratio 휂 of partition functions for asymmetric 

vs. symmetric ozone molecules is computed, the Coriolis effect largely cancels, and this 

cancelation seems to occur for all values of 𝐽. So far, we were not able to attribute any 

appreciable mass-independent symmetry-driven isotopic fractionation to the Coriolis 

coupling effect. 

All data computed for this chapter is available in Ref. 153. 
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CHAPTER 8. EFFICIENT METHOD FOR AN APPROXIMATE 

TREATMENT OF ROTATION-VIBRATION COUPLING 

The conclusions of the previous chapter were based on the results obtained for the 

values of 𝐽 ≤ 4. One can argue that larger values of 𝐽 (around 𝐽 ≈ 25) have larger 

contribution to the recombination reaction of ozone (as indicated by Ref. 51), and thus 

need to be taken into account. Unfortunately, even with the optimization developed in 

Chapter 7, higher values of 𝐽 remain computationally unaffordable and further 

approximations need to be developed in order to explore the effect of rotation-vibration 

coupling on the scattering resonances with large total angular momentum 𝐽. 

In this chapter we develop an approximate method that enables us to take into 

account a large portion of rotation-vibration interaction, while keeping the calculations 

computationally affordable. This method is applied to calculation of scattering 

resonances in ozone with large values of 𝐽 in effort to determine whether the effect of 

rotation-vibration coupling could lead to appearance of symmetry-driven isotope effects. 

Exact rotational-vibrational Hamiltonian matrices include up to 𝐽 + 1 Λ-blocks, 

corresponding to the symmetric-top rotor states (see Figure 23), which makes the them 

unaffordably large for direct diagonalization, especially when calculation of scattering 

resonance is concerned, where the presence of a complex absorbing potential (CAP) 

makes the Hamiltonian matrix non-Hermitian, large vibrational basis, needed to describe 

delocalized high energy states above the dissociation threshold, increases the size of each 

Λ-block, and a large number of eigenvalues is required. 

For example, in the case of ozone calculation presented below, the size of each Λ-

block is about 20000, which results in the full Hamiltonian matrix of the size about 
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500000 × 500000 for 𝐽 ~ 25 and about 10% of eigenvalues are needed. Such large 

eigenproblems are basically impossible to solve even on the fastest computers available 

to us today. 

A well-known straightforward way to make such calculations affordable is to 

neglect all off-diagonal Λ-blocks in the Hamiltonian matrix (due to �̂�cor and �̂�asym terms 

of the Hamiltonian operator), in which case the overall matrix splits into the independent 

diagonal Λ-blocks that can be diagonalized one by one for any value of 𝐽. This is called 

the symmetric top rotor approximation, or the Λ-conserving approximation (since Λ 

becomes a good quantum number). It has been applied extensively in the past to study 

many molecules and processes, including the kinetics of ozone recombination 

reaction.39,51,93,118,122,124 The effects of neglecting rotation-vibration coupling, and various 

methods of improving the accuracy of this approximation, have been recently discussed 

in detail.158 But what if the contribution of �̂�cor and �̂�asym is expected to be important and 

cannot be neglected? 

For these cases, we developed and tested an approximate method to take into 

account the effects of rotation-vibration coupling, which remains practical even for large 

values of 𝐽. Let us consider the method. 

8.1. Partially Coupled Method 

First, recall from Chapter 4 that the rotational structure of the Hamiltonain matrix 

produced by the last three terms of the Hamiltonian operator (�̂�sym, �̂�asym and �̂�cor, see 

Eq. (32)) in the basis of DVR functions in ℎ𝑛(𝜌) (Eq. (88)), optimized hyper-angle 

functions ΧΛ𝑛
𝑗 (휃, 𝜑) (Eq. (97)) and symmetrized Wigner functions �̃�Λ(𝛼, 𝛽, 𝛾) (Eq. (50)), 

considered in this work, is “block three-diagonal”, as shown in Figure 23. 
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Namely, �̂�sym only couples basis functions with the same values of Λ (i.e., within 

the diagonal blocks of the matrix, Λ′ = Λ), while �̂�cor and �̂�asym couple functions with 

the values of Λ different by ±1 and ±2, respectively (producing the off-diagonal blocks 

with Λ′ = Λ ± 1 and Λ′ = Λ ± 2). �̂�asym also contributes to one diagonal block with Λ′ =

Λ = 1. 

The two methods considered before represent two limiting cases, in which either 

all Λ-blocks are included (the full-coupled exact approach) or one Λ-blocks is included 

(symmetric top rotor approximation) in the Hamiltonian matrix. But why not to try an 

intermediate partially coupled method, in which some Λ-blocks of the overall 

Hamiltonian matrix are included for each Λ? For example, it makes sense to include 

several nearest blocks in the vicinity of each Λ that are directly coupled to it by �̂�cor and 

�̂�asym, namely Λ′ = Λ ± 1 and Λ′ = Λ ± 2. These are expected to be the most important 

for a given value of Λ. All other more distant values of Λ′, linked by chain coupling 

through these blocks, are expected to be less important and therefore can be neglected. 

Since in this method we include some of the Λ-blocks, but not necessarily all of them, we 

would like to call this approach a partially-coupled method, or a PC-method for short, to 

complement the well-known coupled-channel (CC), centrifugal-sudden (CS) and infinite-

order sudden (IOS) methods.125,159–161 

Just as in the symmetric top rotor approximation, in our PC-method a series of 

independent matrix diagonalizations needs to be done for different values of Λ to cover 

the range of 0 ≤ Λ ≤ 𝐽. Performing these calculations for all values of Λ up to 𝐽, one can 

obtain a complete spectrum of states for that 𝐽. Alternatively, it may be more efficient to 

do calculations for some values of Λ, and then interpolate in between. An example of this 
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process is shown in Figure 58, where borders of reduced “sub-matrices” considered for 

every other value of Λ are shown with dashed lines. Note that the maximum number of Λ-

blocks included in each calculation is always limited to five, which makes such 

calculations affordable even for large values of 𝐽. 

Indeed, the cost of matrix diagonalization grows at least quadratically. Therefore, 

replacing one diagonalization of a matrix that contains (𝐽 + 1) × (𝐽 + 1) blocks, with a 

series of 𝐽 + 1 independent diagonalizations of the matrices that contain 5 × 5 blocks at 

most, one can gain a substantial computational advantage. Interestingly, a similar idea 

 
Figure 58. A schematic rotational block structure of the Hamiltonian matrix for J = 7 and 

p = 1. Individual blocks are labelled by the values of Λ and Λ′ of the symmetric top rotor. 

Each block includes all vibrational basis functions. Red, green, and blue colors show 

contributions from �̂�𝑠𝑦𝑚, �̂�𝑐𝑜𝑟 and �̂�𝑎𝑠𝑦𝑚 terms in the Hamiltonian operator, respectively. 

The four black dashed squares show the boundaries of “sub-matrixes” in the calculations 

for Λ = 0, 2, 4 and 6, up to Λ′ = Λ ± 2 in each case. The white p letter marks the only 

block, where the values of matrix elements are affected by parity. 
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was recently developed in the context of a non-reactive inelastic scattering and was found 

to be both accurate and numerically efficient.162 

The accuracy of PC-method for each state depends on the distribution of Λ-values 

in its wave function. Since the range of the Λ-states in the truncated basis set is restricted 

to only five (Λ′ = Λ ± 2), the wave functions with much broader distributions would not 

be accurately described. The actual accuracy of the method is expected to be 

system/problem dependent and should normally be tested, by comparison with the full-

coupled calculations, at least for the low values of 𝐽, when the full-coupled calculations 

are possible. This is what we do next. 

8.2. Test of Partially-Coupled Method 

In this section we test our PC-method by comparing it with the full-coupled 

calculations (that are considered to be exact) and with the symmetric top rotor (a widely 

used approximation), using the case of 𝐽 = 4 and positive parity 𝑝 = 0, when all these 

calculations are numerically affordable. In this test, and in this chapter overall, we are not 

particularly interested in spectroscopic characteristics of the individual quantum states. 

Instead, we are looking at scattering resonances above the dissociation threshold that play 

the role of metastable states (reaction intermediates) in the process of ozone formation. 

To compare these three methods, we want to compute the corresponding 

dynamical partition functions 𝑄, similarly to what we did in Chapter 7. However, one 

caveat of the partially-coupled approach is that each sub-Hamiltonian includes a range of 

Λ-values, but only the “central” value of Λ has its direct couplings included, so we need 

to filter out contributions from the states localized near the ends of the range, where 

further rovibrational coupling is missing. We cannot assign a definite value of Λ to a 
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state, since Λ is not a good quantum number, but we can add a weight factor to 𝑄, equal 

to the probability in the central Λ for each state. With this in mind, the new definition of 

the dynamical partition function for this chapter is: 

𝑄(Λ) =∑𝑝𝑖
Λ𝑝𝑖

mol𝑤𝑖  exp (−
𝐸𝑖
𝑘𝑇

)

𝑖

 (153) 

where 𝑝𝑖
Λ is the state’s localization probability in a given value of Λ (see Eq. (121)) and 

the meaning of the remaining factors is the same as in Eq. (141). The value of 𝑝𝑖
mol in 

this chapter is defined to include contributions from both covalent and Van der Waals 

regions, as in Table 37. Pressure and temperature are set to the same values as in Chapter 

7 at 𝑃 = 267 hPa (≈ 0.3 Bar) and 𝑇 = 298 K. 
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The partition functions of Eq. (151), computed with the three methods are shown 

in Figure 59. We see that all three partition functions decrease as a function of Λ, which 

is partially due to the Boltzmann factor (energy of states 𝐸𝑖 grows quickly when Λ is 

raised) and partially due to the weight 𝑤𝑖 (higher centrifugal barrier hinders the 

population of resonances), same as what we saw in section 7.5 with respect to 𝐽. 

Next we see that inclusion of the rotation-vibration coupling (red vs. blue 

symbols) leads to increase of the dynamical partition function 𝑄 for all values of Λ, in 

this case by about 5% on average, which is a non-negligible effect. 

Finally, we see that the results obtained with the partially coupled method (green) 

are much closer to the results of exact full-coupled method, compared to the data 

obtained within the symmetric top approximation. For Λ = 2 the result of partially 

 
Figure 59. Dynamical partition functions computed for symmetric ozone 16O18O16O at J 

= 4 and p = 0. Calculations with no coupling (symmetric top) are shown in blue, partial 

coupling in red, and the full coupling (exact) in green. The black arrow shows the point 

(Λ = 2), where the partial coupling approach coincides with the exact method. 
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coupled calculations coincides with the exact result (marked with an arrow), since in this 

case the “five-block window” of the partially coupled approach happens to cover the 

whole Hamiltonian matrix. As we move away from Λ = 2, the fully and partially coupled 

approaches start to diverge, but still stay close to each other and away from the data of 

the decoupled symmetric top rotor approximation. The difference is largest for the 

terminal Λ-values (Λ = 0 and Λ = 4). Generally, one should expect that the deviation 

from the full-coupled method is proportional to the number of missing Λ-blocks in a 

reduced sub-matrix. 

From Figure 59 we conclude that the partially coupled approach behaves as 

expected and can be used as an approximation for calculation of the coupled rotational-

vibrational resonance spectra for large values of 𝐽. 

8.3. Calculations with Large Total Angular Momentum 

In this section we apply the partially coupled method, described in the previous 

section, to carry out calculation of the resonance spectra in singly substituted ozone 

isotopomers 16O18O16O and 16O16O18O and use it to evaluate the corresponding 𝑄(Λ) 

dependencies for 𝐽 = 24 and 28, typical to ozone formation at room temperature,51 for 

several representative values of Λ. Since the full-coupled calculations are unaffordable in 

these cases, only the results for the uncoupled (symmetric top) and for our partially 

coupled method are presented and discussed. The convergence parameters of these 

calculations are identical to those reported in section 7.2. The complete dataset, 

calculated for this chapter, will be made available in a future publication. 

The results are presented in Figures 60 and 61. For Λ ≥ 1 the results were 

averaged over two parities (for Λ = 0 only positive parity is possible). We see again that, 
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as Λ is raised, the values of 𝑄(Λ) decrease rather monotonically and are expected to 

vanish around Λ = 20. One clear trend observed in all these data is that the values of 

partition function 𝑄 are systematically higher in the calculations where the rotation-

vibration coupling is included (using our PT-method), compared to the uncoupled 

(symmetric top rotor) calculations, by up to 17% for 𝐽 = 28, and up to 20% in case of 

𝐽 = 24. This is expected since the density of states generally increases with additional 

couplings. 

The solid lines in all frames of Figures 60 and 61 are calculated using the states of 

allowed symmetry only (see Table 15). As a computational experiment, we also tried to 

include the states with forbidden symmetry. The dashed lines correspond to the 𝑄(Λ) 

averaged over both allowed and forbidden symmetries. One can see that the inclusion of 

forbidden symmetry does not significantly alter the results, which tells us that the two ro-

vibrational symmetries behave similarly and there are no unexpected/unusual isotope 

effects associated with the forbidden symmetry. 
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Figure 60. Parity-averaged dynamical partition functions for symmetric (16O18O16O, top 

frame) and asymmetric (16O16O18O, middle frame) ozone molecules at 𝐽 = 24, and the 

resultant 휂-effect (bottom frame). The blue and red lines correspond to the uncoupled 

(symmetric top) and partially coupled calculations, respectively. The solid lines are 

computed using the states of allowed ro-vibrational symmetry only. The dashed lines 

represent the symmetry-averaged case, when both allowed and forbidden symmetries are 

included. 
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Figure 61. Same as Figure 60, but for 𝐽 = 28. 
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Recall from Chapter 4, that the only Λ-block non-trivially affected by parity is 

(Λ, Λ′) = (1,1) (see Figure 58), where the effect is coming from �̃�asym term or, more 

specifically, from matrix 𝑈ΛΛ′ of Eq. (78). Therefore in the case of uncoupled 

calculations, where �̂�asym term is neglected, the value of parity has no effect on the 

Hamiltonian matrix and any properties of its eigenstates. In particular, for Λ ≥ 1 the 

states of the two parities are degenerate and, although only one vibrational symmetry is 

allowed for each parity, both vibrational symmetries show up in the spectrum, because 

they come from different parities (see Table 15). The only exception is Λ = 0, when only 

one (positive) parity is possible, and thus only one vibrational symmetry is allowed. 

Therefore, inclusion of forbidden symmetry only makes difference in the case of Λ = 0 

for uncoupled calculations. 

In the full-coupled calculations, the effect of the parity-affected block spreads to 

all states of the system via chain coupling of consecutive Λ-blocks, but its influence, and 

the role of parity, becomes weaker for the states dominated by large values of Λ (recall 

from Figures 46 and 47 that the value of parity splitting drops exponentially as a function 

of Λ). 

In the partially coupled method this chain-coupling is restricted to act within five 

blocks, Λ′ = Λ ± 2. Therefore, the calculations for Λ ≥ 4 are decoupled from Λ = 0 and 

Λ = 1 and the states of two parities become degenerate again, just as in the uncoupled 

case. Thus, solid and dashed red lines in Figures 60 and 61 deviate one from another only 

at Λ ≤ 3. 

Looking at the data in Table 15, one can see that the effects of parity of the 

rotational functions and the symmetry of vibrational functions are closely related and 
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should be considered together. Our data here indicate that they both are relatively small 

in the rotationally excited ozone molecules (dashed vs. solid lines of the same color in 

Figures 60 and 61), compared to the overall effect of the ro-vibrational coupling (red vs. 

blue lines). 

8.4. Implications for Symmetry-Driven Isotope Effect 

The bottom frame of Figures 60 and 61 reports the ratio of dynamical partition 

functions in symmetric and asymmetric ozone molecules, defined as: 

휂 =
𝑄asym

2𝑄sym
 (154) 

This definition is identical to Eq. (151), except the factor of 2 there was 

incorporated into 𝑄asym directly. The value of 휂-effect on the order of 휂 = 1.16 (green in 

Figures 60 and 61) would permit to interpret mass-independent fractionation as a 

symmetry-driven isotope effect,38,163 with asymmetric ozone molecules formed 16% 

faster than the symmetric ones. 

However, the data presented in Figures 60 and 61 for all values of Λ, both 

uncoupled (blue) and partially coupled (red), exhibit the values of 휂 less than one (with 

the exception of one blue point where 휂 is just slightly larger than one). We can also see 

that the addition of partial ro-vibrational coupling (red) did not introduce any systematic 

bias in the favor of asymmetric isotopomer. On average, the value of 휂-effect remained 

similar to the uncoupled case (blue). The same conclusion was made in Chapter 7 with 

exact calculations of low values of 𝐽. 
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Finally, let us compare the average values of resonance width in symmetric and 

asymmetric ozone isotopomers (computed with Eq. (147), as before). The results are 

shown in Figures 62 and 63. From these data one can conclude that, on average, the 

inclusion of ro-vibrational coupling has little effect on resonance widths, and therefore is 

not expected to affect the lifetimes of the metastable ozone states. The inclusion of 

forbidden symmetry, related to the effect of parity, makes even less difference (dashed 

lines). Resonance widths appear to be more sensitive to the value of Λ, but this effect is 

 

 
Figure 62. Average values of resonance widths in symmetric (16O18O16O, top frame) 

and asymmetric (16O16O18O, middle frame) ozone molecules for 𝐽 = 24. The meaning 

of lines and colors is the same as in Figure 60. 
   



213 
 

about the same in symmetric and asymmetric ozone molecules. Also, comparison of 

average resonance widths computed here for 𝐽 = 24 and 𝐽 = 28 with those considered in 

Figure 56 for 𝐽 ≤ 4 shows that they are less sensitive to 𝐽 and more sensitive to Λ, but 

again, these dependencies are very similar in symmetric and asymmetric ozone 

molecules, which does not help us to explain why the asymmetric ozone molecules are 

formed faster. 

 

 
Figure 63. Same as Figure 62, but for 𝐽 = 28. 
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8.5. Summary 

In this chapter we explored the effect of rotation-vibration coupling on resonance 

spectra of ozone isotopomers with large values of 𝐽. In particular, our goal was to 

determine whether rotation-vibration coupling (Coriolis effect) could introduce a 

systematic bias in favor of isotopically substituted asymmetric isotopomers of ozone, 

such as 16O16O18O. This could help to explain the origin of the mysterious 휂-effect, 

responsible for mass-independent fractionation of oxygen isotopes in the atmosphere. 

Based on the results presented here, we conclude that while the addition of rovibrational 

coupling appreciably increases the average number of metastable ozone states (given by 

the dynamical partition function), the changes are rather uniform for both symmetric and 

asymmetric isotopomers of ozone. The average lifetimes of ozone molecules do not seem 

to be appreciably affected by the rovibrational coupling and remain similar in both 

symmetric and asymmetric ozone isotopomers, therefore we cannot conclude that the 휂-

effect is associated with differences in lifetimes. 

In order to make the calculations in this chapter numerically feasible, we 

developed a partially coupled method that permits to capture the major contribution of ro-

vibrational coupling terms without diagonalization of the entire Hamiltonian matrix. This 

method is approximate, but it is general and applicable to many other molecules and 

processes in the spectroscopic and dynamic context. The number of coupled Λ-blocks 

does not have to be equal to five, as in this manuscript (Λ′ = Λ ± 2). Instead it can be 

viewed as a convergence parameter, varied to achieve desired level of accuracy. 

As indicated in Ref. 107, if the z-axis is chosen perpendicular to the molecular 

plain, then both �̂�asym and �̂�cor terms contribute to the same Λ-blocks and the resulting 
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Hamiltonian matrix becomes block two diagonal. In this case the effect of direct 

coupling, studied here could be achieved using just 3 blocks. This can make the method 

even more affordable, enabling the coupled rotation-vibration calculations for more 

complicated systems and processes. 
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CHAPTER 9. SPECTRUMSDT: A GENERAL PROGRAM FOR 

CALCULATION OF ROVIBRATIONAL ENERGIES AND LIFETIMES 

IN TRIATOMIC SYSTEMS 

In Chapter 4 we considered a general theory of rotational-vibrational coupling in 

APH coordinates, and derived necessary equations for the matrix elements. This theory 

was then implemented in a computer program (SpectrumSDT), which was used to 

compute the spectra of several ozone isotopomers and analyze them, especially in 

relation to the isotope effects, in Chapters 5-8. The developed theory is general and can 

be applied to other three-atomic systems. The program, however, was written specifically 

for ozone, and lacked the flexibility to handle other systems. 

In this chapter we made the program more flexible, and present the first general 

and user-ready version of SpectrumSDT (v1.0) that can be applied to the triatomic 

systems other than ozone. Several programs for the rovibrational calculations exist, such 

as ScalIT,164,165 Geniush,111,166,167 DVR3D,168 BOUND169 and MOLSCAT,170 but our 

code offers unique features. 

In particular, SpectrumSDT can find states both below and above the dissociation 

threshold, with or without ro-vibrational coupling, with or without lifetime information. 

Moreover, it carries out integration of computed wave functions over user-defined 

regions of the PES, in order to automatically assign isomers (or isotopomers) and 

compute channel-specific decay rates of scattering resonances (spontaneous first order 

process determined by resonance widths). This information is essential for the description 

of reactions characterized by complicated potential energy landscape with multiple 

reaction channels, as demonstrated in Chapters 5-8. 
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Finally, our code offers three options for the treatment of rotation-vibration 

coupling. In addition to the standard symmetric-top rotor approximation (when the 

coupling is neglected) and the exact full-coupled calculations (which is numerically 

demanding), we provide an affordable partially coupled approach (see Chapter 8). In this 

first release, SpectrumSDT is limited to ABA-type molecules (where two atoms are the 

same, and one is different, including the AAB and BAA isomers) and is applicable to 

wave functions that do not extend into the regions of Eckart singularities (equilateral and 

linear shapes). These limitations will be lifted in future releases. 

The program, building instructions and examples of running are available in a 

GitHub repository.119 

9.1. Theoretical Considerations 

In this section we provide a concise summary of the most relevant theoretical 

aspects of SpectrumSDT for a lay user. Refer to Chapters 4-8 for more detailed 

description. 

9.1.1. Basis Sets and Sequential Diagonalization Truncation (SDT) Procedure 

On the lowest level, SpectrumSDT uses discrete variable representation (DVR) 

for 𝜌 and 휃 coordinates (basically, a grid of points) and variational basis representation 

(VBR) of cosines or sines functions for 𝜑 (Eqs. (104)-(105)), which enforces either 

symmetric or antisymmetric property of wave functions with respect to 𝜑 = 0 and 𝜑 =

𝜋, required for ABA-molecules in the APH coordinates. The two symmetries are 

independent, so the calculations are split into two separate runs for each symmetry. 

SpectrumSDT constructs a hierarchy of progressively more optimal basis sets 

through the procedure known as Sequential Diagonalization Truncation (SDT).109,110 In 
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short, SDT starts with solving a one-dimensional Schrodinger equation, where all 

couplings with other coordinates are neglected, in each of the 1D-slices along 𝜑 at every 

combination of grid points in 𝜌 and 휃. The obtained 1D-solutions are used as a locally 

optimal basis set to solve 2D problem in 𝜑 and 휃, where the some of the previously 

neglected couplings are taken into account, and the basis set is further optimized 

(sequential diagonalization). Finally, the 2D solutions are used as a basis set for the 

overall 3D problem, with all couplings taken into account. Of course keeping all the 

solutions from 1D and 2D levels would result in unnecessarily large basis, so only the 

solutions with energies less than a specified convergence parameter 𝐸cut are retained in 

the basis set (truncation). 

9.1.2. Eckart Singularities 

As stated above, one of the limitations of the current version is its inability to 

handle wave functions in the regions of Eckart singularities. As one can see from section 

4.2, �̂�𝜑 → −∞ as 휃 → 0 in Eq. (35) and 𝑉ext → −∞ as 휃 → 0 or 𝜋/2 in Eq. (36). These 

are Eckart singularities, corresponding to the equilateral configuration at 휃 = 0 and the 

linear configuration at 휃 = 𝜋/2 (see Figure 22). While this problem is in principle 

solvable within existing framework by using a special basis set,104 the current release of 

SpectrumSDT does not implement this feature yet, therefore if a wave function for a 

particular molecule is allowed to have a significant probability near 휃 = 0 or 𝜋/2, the 

solution is not reliable. 

Fortunately, in many cases this issue is naturally avoided. First, many covalently 

bound triatomic molecules with sp2 hybridization, such as O3, naturally have a highly 

repulsive PES in the regions of Eckart singularities, which prevents the vibrational wave 
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function from reaching there. Second, the rotational potential term �̂�sym, given by Eq. 

(38), approaches +∞ in the same regions due to the 𝐵 and 𝐶 terms in Eqs. (42) and (43). 

This extra potential “shields” Eckart singularities at sufficiently high values of rotational 

excitation (𝐽, Λ), even if the PES does not. For both of these cases our code is able to give 

accurate results. 

9.1.3. Hamiltonian Matrix Structure 

The rotational state of the basis functions used to build the Hamiltonian matrix 

can be either fixed or adiabatic (see section 7.1).153 In the adiabatic case, a separate basis 

set is used for each value of the symmetric top quantum number Λ (projection of total 

angular momentum onto z-axis) that is going to be included in the Hamiltonian matrix for 

a given value of total angular momentum quantum number J. This creates a better suited 

basis set, since it experiences the same rotational potential as a target wave function. This 

approach is relatively standard and often found in the literature,39,51,122 but it requires 

computing many different basis sets and, most importantly, the corresponding overlaps 

for all values of J and Λ, which can be numerically demanding. 

In the alternative fixed option, the basis set with one (representative) combination 

of J and Λ is used to describe wave functions with arbitrary values of J and Λ. This 

reduces the computational cost of both basis and overlaps calculation stages, but creates a 

less efficient basis set, therefore a higher value of the cut-off energy (𝐸𝑐𝑢𝑡) may be 

needed. In Chapter 7 we demonstrated that this approach is more efficient. However, one 

has to be careful when handling a molecule with wave functions reaching the ends of 휃-

grid. In this case, using a basis set with high values of J and Λ relative to a target wave 

function, will exclude basis functions near the ends of the 휃-grid (due to the effect of 
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rotational potential), which may result in less accurate representation of the target wave 

function in that area. 

The rotational terms in Eqs. (38)-(40) translate to the Hamiltonian matrix 

structure shown in Figure 23. In the cases when couplings between different Λ blocks can 

be neglected, the overall matrix can be split into the diagonal Λ blocks, which 

significantly simplifies the process of solving the eigenvalue problem. This is known as 

symmetric-top rotor approximation. As a compromise between speed and accuracy, when 

the effects of ro-vibrational coupling cannot be neglected, it is also possible to partially 

take it into account, by including only a certain number of adjacent blocks for each value 

of Λ. For example, including up to five blocks, within the Λ ± 2 range, permits to capture 

most of the rotational-vibrational interaction, as demonstrated in Chapter 8. 

9.1.4. Optimized 𝝆-Grid (Optional) 

One practically relevant aspect of SpectrumSDT that we have not considered so 

far is the existence of an option to generate an optimized grid of DVR functions for 𝜌 

coordinate, which can take into account shape of potential energy surface and place more 

points in the covalent wells region (where higher accuracy is desired) and less points in 

the dissociation region, where wave function is smooth and the same amount of points as 

in covalent wells would be an overkill. Such grid is built as follows: 

Suppose we have a 1D potential 𝑉(𝜌) and we want to place points along 𝜌-

coordinate in an optimal way to represent wave functions. The idea is to make grid 

spacing in 𝜌 proportional to the local de Broglie wavelength 𝜆(𝑉(𝜌)). This way one can 

accurately capture wave function oscillations, without placing too many points in the 

regions where wave periods are large. To achieve this, one can define an auxiliary grid x, 
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where the distance is unitless and a given point 𝑥 = 𝑡 corresponds to 𝑡 oscillations of a 

wave with total energy 𝐸𝑚𝑎𝑥 in the original space (𝜌), as measured from a starting point 

𝜌0. 

The points in x can be mapped to 𝜌 and vice versa, therefore if one has an 

equidistant grid in x, its mapping onto 𝜌 would be an optimal grid with a fixed number of 

points per oscillation of the wave. Assuming the step size in x is 𝛼/2, one can derive the 

following differential equation that relates the two grids:93,96 

𝑑𝜌

𝑑𝑥
=
𝛼

2
𝜆(𝑉(𝜌)) =

𝛼

2

ℎ

√2𝜇(𝐸𝑚𝑎𝑥 − 𝑉(𝜌))
 (155) 

where factor of 2 in the denominator is chosen to make 𝛼 = 1 correspond to 2 points per 

period – the smallest meaningful number. This way the values of 𝛼 range from 0 to 1 and 

control the density of the resulting optimal grid (smaller values of 𝛼 generate denser 

grids). The exact value of 𝛼 for a given problem is a convergence parameter. The 

derivative 𝑑𝜌/𝑑𝑥 in Eq. (155) is further referred to as Jacobian of the grid 𝜌. 

In general, any function smaller than the actual potential can be used as 𝑉(𝜌) in 

Eq. (155). Using such potential “envelopes” can be helpful to increase density of points 

in selected regions or improve integration accuracy if the envelope function is analytical. 

9.2. Practical Considerations 

9.2.1. General 

The workflow of the program is separated into the following stages (runs): 

grids, potential, basis, overlaps, eigensolve and properties. Using 

multiple stages allows to utilize processors efficiently by separating computationally 

expensive sections with different degree of parallelizability. The stages have to be 

launched sequentially one after another from their respective folders. 
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The folder structure for each calculation may consist of up to 4 levels (see Figure 

64). On the first level, there are subfolders for each value of Λ (referred to as more 

traditional “K” in the code, parameters, file names and further in this chapter), as well as 

separate folders for each range of K that a user wants to consider for calculation of 

eigenpairs. The range that includes all values of K for a given J is referred to with a 

keyword all. The next two levels in a K range folder identify the values of parity and 

vibrational symmetry of the basis set corresponding to the calculation within. The folders 

corresponding to a scalar value of K skip the level corresponding to parity since parity 

only has the effect on calculations involving more than one value of K.140 The last level is 

divided into folders corresponding to stages from basis to properties. Grids and 

potential stages do not have a folder within a particular calculation folder since they 

can be shared across multiple calculations. The output files from each stage are stored 

either in the stage folder itself, or in out_stagename subfolder within the stage folder. 

 
Figure 64. An example of root folder structure for J = 1. Inner structure of the folders 

marked by “+” is not shown for clarity. All folders on the same level of hierarchy have 

identical inner structures, except K-folders corresponding to a singular value of K skip 

the parity level. 
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The stage folders all need to have a copy of a configuration file with the values of 

K, parity, symmetry, and stage corresponding to a given subfolder. A python script 

init_spectrumsdt_folders.py in scripts folder is available to generate the 

correct folder structure, copy a given template configuration file to all target subfolders 

and fill out placeholder values corresponding to each folder for a given value of K. Run 

init_spectrumsdt_folders.py --help for more details. To keep the 

parameters consistent between stages, we do not recommend manually changing the 

configuration files generated by init_spectrumsdt_folders.py in the stage 

subfolders. 

The configuration file has to be named spectrumsdt.config and has to be 

present in every stage folder. Each parameter is assigned in the format key = value. Both 

keys and values are case-sensitive, and each assignment has to start on a new line and 

finish on the same line, except for parameter groups. The order of parameters, number of 

spaces, empty lines, or characters after the comment mark “!” do not matter. In the case 

of parameter groups, the open parenthesis “(” has to be present on the same line after the 

assignment character “=”, followed by assignment of individual parameters of the group 

on the following lines and ending with the close parenthesis “)” on a separate line. Some 

examples of input files can be found in config_examples folder. 

All stages except grids support parallel execution with an arbitrary number of 

processes, implemented via message passing interface (MPI). 

9.2.2. Grids 

The purpose of this first stage is to generate grids for all APH coordinates. Even 

though the basis set for 𝜑 is not a DVR, a 𝜑-grid is still generated for numerical 
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integration of the basis functions in 𝜑. The grids for 𝜌 and 휃 are described with the 

parameter groups grid_rho and grid_theta, which include at least the following 

parameters (determined by convergence studies): 

• from – the left border of the grid, 

• to – the right border of the grid, 

• step – grid step, 

• num_points – the total number of points in the specified interval. 

Specifying step automatically defines num_points and vice versa, so these 

parameters cannot be specified together. All parameters with units are specified in Bohr 

for grid_rho and in degrees for grid_theta. The 𝜑-grid is always defined in the 

range from 0 to 2𝜋, so only the number of points is specified via num_points_phi 

key. 

After this stage is completed, the three grid files corresponding to each coordinate 

are generated. The grid files are written in the following format: the first line specifies the 

values of from, to, step and num_points that were used to generate this grid. The 

next num_points lines specify the coordinate of each point and, in case of 𝜌-grid, 

Jacobian value at that point. Jacobians are meaningful only for optimized grids and are 

always equal to 1 for equidistant grids. All grid points are placed in the centers of their 

respective intervals. All values with units in the grid files are specified in Bohr for 𝜌-grid 

and radians for 휃- and 𝜑-grids. 

Advanced parameters. 

In the calculations of scattering resonances one typically needs to set up a long-

range grid in 𝜌 to describe the dissociation region. In these cases, using an equidistant 
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grid leads to unnecessarily dense points in the dissociative region. One can reduce the 

cost of such calculations by optimizing the grid step as described in section 9.1.4. 

Enabling optimization procedure for 𝜌-grid requires specifying grid parameter 

optimal = 1, alongside with the necessary information to define Eq. (155), which 

includes the following grid parameters: 

• envelope_path – the path to the file defining the envelope function 𝑉(𝜌). The 

function is defined by specifying its values at the grid points. Each row contains 2 

numbers: 𝜌 in Bohr and 𝑉(𝜌) in Hartree. The grid on which 𝑉(𝜌) is defined does not 

have to be the same as the 𝜌-grid for the eigenvalue problem, which allows to re-use the 

same envelope function for any 𝜌-grid. As a rule of thumb, it is recommended to use 

minimum energy path (MEP) along 𝜌 in a given PES as the envelope function 𝑉(𝜌). 

A python script extract_MEP.py is available in the scripts folder to 

automatically generate minimum energy path along 𝜌. The script takes no arguments and 

has to be invoked in the folder with calculated pes.out and grid files. The extracted 

MEP is written to a file named MEP_rho.dat. Note that the MEP does not have to be 

calculated precisely, since precision of MEP does not affect the precision of subsequent 

calculations. A rough MEP may generate slightly suboptimal grid spacing, but the final 

grid density is a convergence parameter, controlled by step. 

In the program, the points specified in the MEP file are used to build a cubic 

spline for the right branch (𝜌 > 𝜌0) of 𝑉(𝜌), and fit analytical Eckart potential for the left 

branch (𝜌 < 𝜌0). 

• max_energy – the value of 𝐸𝑚𝑎𝑥 in Eq. (155) in wave numbers. This specifies 

the maximum total energy considered for a particle moving in the specified envelope 
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potential 𝑉(𝜌). 𝐸𝑚𝑎𝑥 has to be larger than 𝑉(𝜌) for any value of 𝜌. Local density of grid 

points is proportional to 𝐸𝑚𝑎𝑥 − 𝑉(𝜌), therefore 𝐸𝑚𝑎𝑥 can be considered as a tool to 

control balance of points between the covalent well and the dissociation region. In the 

limiting case when 𝐸𝑚𝑎𝑥 is equal to the asymptotic value of 𝑉(𝜌) in the dissociation 

region, all the grid points would be placed in the covalent well region and little or none in 

the dissociation region. For larger values of 𝐸𝑚𝑎𝑥, the difference between 𝐸𝑚𝑎𝑥 − 𝑉(𝜌) 

in the well and dissociation regions becomes less pronounced and points are generated in 

a more uniform fashion. 

• solver_steps – optional, specifies number of steps in Runge-Kutta algorithm 

used to solve Eq. (155). Typically, does not need to be set explicitly. The default value of 

2048 is expected to work well for majority of applications. 

Note that when optimized grid is requested, step grid parameter controls the 

step size in the auxiliary equidistant x-grid, i.e. step sets the value of 𝛼 in Eq. (155). 

In addition to these parameters, the following config parameter has to be specified 

to calculate the reduced particle mass 𝜇: 

• mass – the description of masses of atoms in the system under consideration. The 

masses have to be listed as 3 comma-separated numbers corresponding to masses given 

in atomic unit of mass (i.e., in masses of an electron, 𝑚𝑒) of atoms in ABA order. Instead 

of providing an explicit value of mass, it is possible to use a shortcut consisting of an 

element symbol and its mass number. For example, H1 will be replaced with the mass of 

hydrogen-1 and O18 will be replaced with the mass of oxygen-18. These shortcuts exist 

for all stable isotopes of the elements in the first three periods. The exact values of 
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isotopic masses are taken from Ref. 139 and can be found in 

src/base/constants.f90 file. 

Note that mass is a config parameter, and not a grid parameter, therefore it is not 

a part of a grid parameter group and should be specified as a top-level parameter. An 

example of a config file that generates optimized grid for ozone can be found in 

config_examples folder. 

9.2.3. Potential 

Majority of PESs do not operate in APH coordinates directly, therefore a 

conversion from APH to a more common coordinate system is likely required. 

SpectrumSDT offers two ways to alleviate this procedure. One way is to use 

output_coordinate_system key to carry out coordinate conversion at grids 

stage. If used with valid values other than aph, pes.in file will be created in addition 

to the grid files, where each row after the header row specifies molecular geometry 

converted to the chosen coordinate system. In response, user needs to provide a file 

named pes.out, with the values of the PES in Hartree at geometries in pes.in. Note 

that pes.out is not expected to have a header line, therefore row numbering is shifted 

by 1 relative to pes.in. 

The following values of output_coordinate_system are supported: 

• aph – the default value. pes.in file is not generated since it is trivial to simply 

iterate the values in the grid files. 

• mass jacobi – mass-scaled version of Jacobi coordinates. See Eqs. (52a)-

(52c) in Ref. 100. 
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• jacobi – regular Jacobi coordinates, where r (Bohr) is the distance between the 

terminal A-atoms (in ABA notation); R (Bohr) is the distance from the center of mass 

between the two A atoms (midpoint) to the B atom; and Θ (in radians) is the angle 

between these two vectors. 

• cartesian – molecular geometry is described with x- and y- coordinates of 

atom B and x-coordinate of an atom A. The remaining 6 Cartesian coordinates are fixed 

to 0. All values are given in Bohr. 

• all bonds – three pair-wise distances in Bohr between the atoms. Indexes 1 

and 3 are assigned to the A atoms and index 2 is assigned to B. 

• internal – two A-B bond lengths in Bohr and A-B-A angle in radians. 

Note that mass has to be specified if a value other than aph or mass jacobi 

is given to output_coordinate_system, since coordinate conversion is mass-

dependent. This makes it necessary to re-calculate potential values for different 

isotopomers even if underlying PES program is the same. 

Another way is to directly use src/base/coordinate_conversion.f90 

module in user’s PES program to convert coordinates dynamically. In this case the user 

can set output_coordinate_system to aph to avoid generating pes.in and read 

the APH-grids directly. The combinations of APH points should be iterated in order 𝜌, 휃, 

𝜑 (i.e., 𝜌 changes least frequently, 𝜑 changes most frequently). An example of a Fortran 

program that reads the grids and writes ozone potential of Dawes et al.112 in this way can 

be found in PES_examples/ozone/ozone_pes.f90. 
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9.2.4. Basis 

This stage uses the grids and potential from the previous two stages to solve 1D 

and 2D problems in the given potential (see section 4.5). The following parameters have 

to be specified: 

• J – total angular momentum quantum number for basis functions. 

• K – projection of total angular momentum onto z-axis quantum number for basis 

functions. 

• basis – parameter group that includes the following parameters: 

o num_functions_phi – number of VBR basis functions to include in the 

primitive basis set for 1D problem (convergence parameter, see Eqs. (104)-(105)). 

o symmetry – “0” for symmetric basis functions (cosines); “1” for 

antisymmetric functions (sines). 

o cutoff_energy – maximum energy of a solution in 1D or 2D problem 

(convergence parameter, in wavenumbers). Solutions with energies above this are not 

included in the basis set. 

o min_solutions – minimum number of solutions retained in each 1D and 

2D problem, even when energies exceed cutoff_energy. Typically does not need 

to be set. The default value of 3 is expected to work well for majority of applications. 

• grid_path – full path to a folder with APH-grids and pes.out files. 

• root_path – full path to the top-level folder of the current calculation (from 

where init_spectrumsdt_folders.py was executed). 

In addition, stage has to be set to basis, and mass has to be specified. The 

number of 2D solutions kept in basis for each value of 𝜌 is written to 
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num_vectors_2d.dat file. The binary files storing 1D and 2D basis functions are 

written to out_basis folder. 

Note that multiple basis calculations with different values of K and symmetry 

are required for a single problem in cases when the Hamiltonian matrix consists of 

multiple K-blocks and the adiabatic basis set is employed. 

The basis set is calculated independently for each value of 𝜌, which are 

distributed among the available processors. Therefore the number of points in 𝜌-grid 

limits the maximum number of processors that can do useful work at this stage. 

9.2.5. Overlaps 

This stage uses basis functions from the previous stage (basis) to calculate the 

Hamiltonian matrix elements for the row of blocks with the given value of K. In addition 

to the parameters specified at basis stage, the following parameters are required: 

• fixed_basis – at this stage specifying this parameter group instructs the 

program to compute additional overlaps necessary for the fixed basis mode (see section 

9.1.3). 

• use_rovib_coupling – “0” is for uncoupled symmetric top; specifying “1” 

instructs the program to compute additional overlaps for the off-diagonal K-blocks 

necessary to build the Hamiltonian matrix with rotational-vibrational coupling terms (see 

Figure 23). 

All output files from this stage are binary and are stored in the out_overlaps 

folder. Calculation of individual matrix elements is independent and distributed among 

available processors, therefore this stage is expected to scale efficiently with the number 

of processors. 
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9.2.6. Eigensolve 

This stage uses the matrix elements computed at the previous stage (overlaps) 

to build the Hamiltonian matrix and find its eigenpairs (energies and wave functions). In 

addition to parameters specified at the overlaps stage, the following parameter are 

required: 

• J – total angular momentum quantum number for the current problem. Note that 

this can be different from the value of J at the basis stage if fixed basis mode is 

employed. 

• parity – the value of inversion parity of the wave functions, “0” or “1” (see Eq. 

(50)). Only matters if rotational-vibrational coupling is enabled 

(use_rovib_coupling = 1), J > 0 and the block corresponding to K = 0 or 1 is 

included in the Hamiltonian matrix. 

• symmetry – the symmetry of the vibrational basis set in K = 0 block, “0” for 

symmetric or “1” for antisymmetric basis. The subsequent values of K have to have 

alternating symmetry, therefore this choice defines symmetry for all values of K included 

in the Hamiltonian. Note that the symmetry is always defined with respect to 𝐾 = 0 even 

in cases when there is no block corresponding to 𝐾 = 0 in the Hamiltonian matrix. 

• K – the values of K to include in the Hamiltonian matrix. Can either be a scalar 

number for a symmetric top rotor calculation; “all” for a fully coupled rotational-

vibrational calculation with all valid values of K for given J and parity, from 

mod(J+parity, 2) to J; or a custom K-range in the form 𝐾1. . 𝐾2 to include only values of 

𝐾1 ≤ 𝐾 ≤ 𝐾2 for a partially coupled calculation. In the case of adiabatic basis, the 
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basis and overlaps stages of appropriate symmetry have to be finished and available 

for all values of K specified in this parameter. 

• eigensolve – parameter group with the options for an eigenvalue solver 

(SLEPc). The options include the following: 

o num_states – number of eigenpairs to converge. 

o ncv – largest dimension of the working subspace, optional. Typically does 

not need to be set explicitly, set mpd instead. Determined automatically by SLEPc if 

left unset. 

o mpd – maximum projected dimension, optional, used to further restrict the 

size of projected eigenproblem on certain steps of the algorithm. Determined 

automatically by SLEPc if left unset. Refer to SLEPc manual for more details on ncv 

and mpd parameters.171 For small number of eigenvalues (< 300) we recommend 

leaving mpd unset. For larger number of eigenvalues one can improve performance 

by setting mpd manually. Too small values of mpd lead to quickly increasing solution 

time, while too large values require too much memory and also worsen running time, 

although not as quickly as too small values. The optimal value of mpd is problem-

dependent, but in our experience the values around 0.2*num_states is a good 

starting guess. 

o max_iterations – maximum number of iterations the solver is allowed to 

perform, optional. Typically does not need to be set explicitly. The default value of 

10000 is expected to work well for majority of applications. 
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For calculations in the fixed basis mode, one has to describe what rotational state 

should be used for the basis set. This is done through the fixed_basis parameter 

group, which includes the following parameters: 

• J – total angular momentum of the basis set functions. 

• K – projection of the total angular momentum onto z-axis of the basis set 

functions. 

• root_path – full path to the top-level folder with the basis and overlaps 

calculations for the values of J and K specified in this parameter group. 

The lifetimes of the states are computed by adding a complex absorbing potential 

(CAP) in the form suggested by Manolopoulos.152 By default CAP is not added. One can 

choose to add it by specifying parameter group cap, which consists of only one 

parameter: 

• min_absorbed_energy – minimum energy at which absorption is required, 

specified in wavenumbers relative to energy of the dissociated molecule in the lowest 

dissociation channel (i.e. electronic dissociation energy plus zero-point energy). Note that 

enabling CAP is only meaningful for calculation of scattering resonances above the 

dissociation threshold. 

The computed energies and widths of resonances are printed to file 

states.fwc. The wave functions are saved in binary form in out_eigensolve 

folder. This stage is parallelizable to some extent, but parallelization efficiency is 

decreasing with the number of processors, therefore a relatively low number of 

processors (around 32) is advised for efficient utilization, but higher number of 

processors can also be used if efficiency is not a concern. 
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9.2.7. Properties (Optional) 

At this stage one can characterize the wave functions calculated at the previous 

stage by analyzing their properties, such as probability distributions over specified 

sections of the overall space and splitting of resonance width between the existing 

dissociation channels. The boundaries of these sections typically correspond to the edges 

of covalent or Van der Waals wells, or other objects of interest, which are PES-

dependent, therefore it is up to the user to define them for a particular problem. Each 

section is defined as a new subgroup of a parameter group wf_sections, specified by 

an arbitrary unique key and may include the following parameters: 

• name – specifies section name for the header row in the output file. Optional, the 

value of the key, specifying this section, will be used as name if this parameter is not 

explicitly given. 

• K – specifies the range of the values of K for the current section, optional. 

• rho – specifies the range of 𝜌-values for the current section (in Bohr), optional. 

• theta – specifies the range of 휃-values for the current section (in degrees), 

optional. 

• phi – specifies the range of 𝜑-values for the current section (in degrees), 

optional. 

• stat – determines which statistic is to be calculated for the current section, 

optional. The possible values are probability (default) or gamma (resonance width). 

Specifying gamma instructs the program to integrate the wave function probability in a 

given section, multiplied by CAP, to get a portion of the overall width associated with 
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this section. This can be useful to calculate channel-specific decay rates of the metastable 

states. 

All ranges are specified in the form A..B to include the values from A to B 

inclusively. The final shape of the section in the 4D (K,𝜌,휃,𝜑) space is the intersection of 

the ranges specified for each individual coordinate. Omitting all range parameters defines 

a trivial section that spans the whole space and has to evaluate to 1 if stat = 

probability, or total resonance width if stat = gamma. 

The method of section definition implemented here limits their shapes to hyper-

rectangles, but hyper-rectangles in the APH coordinates are often what one is looking for 

and more complicated shapes can be approximated by adding up multiple hyper-

rectangles. 

The results of this stage are written to states.fwc file, where the first two 

columns duplicate the results of the previous stage, and the next n (number of sections) 

columns add the statistics corresponding to the specified sections. Each processor 

computes its fraction of the wave functions independently from the other processors 

(except for the final merge of data for printing to a file), therefore high parallelization 

efficiency is expected for this stage. 

9.3. Application to SO2 

Numerous applications of SpectrumSDT to ozone isotopomers (especially in 

relation to the isotope effects) were considered in Chapters 5-8, which includes examples 

of symmetric top rotor calculations, partially coupled and fully coupled rotation-vibration 

calculations, both for bound states and scattering resonances with their lifetimes. Various 

checks and comparisons proving the validity of the computed results have been 
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presented. For example, Figures 33 and 34 provide comparison of computed energies and 

splittings for J = 0 (no rotation) with the previously reported results of Ndengué et al.115 

and Petty et al.,117 demonstrating an excellent agreement in all cases. Figures 37 and 39 

include comparison of fully coupled rotation-vibration energies for the values of J up to 5 

with the results of Petty et al.117 and APH3D program of Kendrick et al.,104 once again 

showing an excellent agreement. Spectroscopical constants fitted to the computed 

spectrum in Tables 25, 26, 29 and 33 show a precise agreement with experimental results 

as well.143,144 

In addition to plain energies and lifetimes of scattering resonances, SpectrumSDT 

can compute localization properties of the wave functions and channel-specific decay 

rates, which can be used as input for theoretical prediction of reaction rates, as it has been 

demonstrated in the recent study of ozone recombination reaction O2 + O → O3 and 

related isotope effects.39,51,122 The theoretical framework presented there is 

straightforward to generalize for application to other three-atom systems. 

In this section we present a benchmark calculation to demonstrate 

SpectrumSDT’s applicability to molecules other than ozone, on the example of sulfur 

dioxide (SO2). SO2 is an ABA-molecule, whose PES prevents its wave functions from 

reaching Eckart singularities at the edges of 휃-coordinate, therefore it is suitable for 

calculations with SpectrumSDT. The calculations in this manuscript use KAKPJG 

MRCI-F12 PES for the singlet ground �̃�1𝐴1 state of SO2.
172 In contrast to ozone, which 

has three covalent wells, SO2 has only one well, therefore its PES is qualitatively 

different from ozone. 
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A comparison of results obtained with SpectrumSDT in this manuscript and those 

obtained in Klos et al.172 with ScalIT164,165 is presented in Figure 65. As one can see, the 

difference is on the order of 10-3 cm-1, same as what we observed for the case of ozone. 

Therefore, we conclude that the results of SpectrumSDT are accurate and the benchmark 

test is successful. The exact parameters used for this calculation can be found in 

config_examples/so2 folder. 

9.4. Summary 

In this chapter we presented a first public version of SpectrumSDT: an open-

source program for calculation of energies and lifetimes of bound states and scattering 

resonances of ABA-molecules in APH coordinates. An extensive description of available 

options and practical recommendations have been provided. The accuracy of the program 

has been tested and verified on the examples of ozone and sulfur dioxide. 

 
Figure 65. Comparison between the vibrational energies of SO2 (J = 0), calculated in this 

manuscript and those reported in Klos et al.172 The horizontal axis shows energies of 

states relative to the ground vibrational state. The vertical axis shows the absolute value 

of difference between the corresponding energy levels in the two sets of data. 
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The program, building instructions and examples of running are available in a 

GitHub repository.119 

Libraries Credit 

SpectrumSDT uses the following libraries: 

• LAPACK for diagonalization of 1D and 2D Hamiltonians.95 

• fdict for an implementation of dictionaries in Fortran.173 

• SLEPc for an implementation of an iterative eigensolver.174–176 

• PETSc as an underlying library for SLEPc.177 
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CHAPTER 10. OVERALL SUMMARY AND FUTURE WORK 

In the Introduction we defined the most important fundamental concepts, such as 

the isotope effect, isotope fractionation, ζ-effect, and η-effect, explained the difference 

between mass-dependent and mass-independent fractionations and formulated the goals 

of this work. 

We conducted electronic structure calculations (Chapter 2) for the tetrasulfur 

molecule to obtain two potential energy surfaces. Our first surface describes the double-

well region around the isomerization pathway and is computed at the CCSD(T)-

F12a/VTZ-F12 level of theory. The surface includes two degrees of freedom: the dimer-

dimer distance R, and the gearing motion angle α. The global surface is computed at 

MRCI/aug-pV(T+d)Z level of theory and features an additional degree of freedom – the 

second bending angle. This 3D surface can be used to model the recombination reaction 

of tetrasulfur S2 + S2 → S4 and obtain vibrational states up to the dissociation threshold. 

These surfaces are the first ever built for the tetrasulfur molecule. 

The 2D PES was used to perform calculations of the vibrational states of 

tetrasulfur using the custom code I developed from scratch (Chapter 3). The code uses 

SDT to reduce the size of the Hamiltonian matrix, as well as FFT and mixed VBR/DVR 

basis set. The normal mode analysis reveals strong mixing of the bending and stretching 

motions. Despite the simplicity of our model, the obtained results are in qualitative 

agreement with the experiments and lay the groundwork for future improvements. 

However, to describe the recombination reaction one needs vibrational energies 

up to the dissociation threshold and above it (and lifetimes for scattering resonances), so 

for the next step in this direction we plan to finalize the 3D MRCI surface, which has a 
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correct dissociation limit, and carry out calculations of rovibrational spectra. The 

remaining three degrees of freedom in S4 (the two double bonds and the torsional motion) 

are fairly independent and harmonic, therefore they can be taken into account in a 

statistical fashion. 

The vibrational energies and lifetimes computed on such surface can be used as 

input data to predict the recombination reaction rate constant of tetrasulfur recombination 

reaction (S2 + S2 → S4). Note that to estimate the magnitude of the isotope effects (Eqs. 

(7) and (10) in Introduction) one needs the reaction rate constants not only for the 

unsubstituted case (all 32S), but also for every isotopic combination under consideration. 

Three stable rare isotopes of sulfur (33S, 34S, 36S) together with different places for 

substitutions constitute 6 options for single substitution and 18 options for double 

substitution (even more for triple and quadruple substitutions, but those cases are rare). 

Neither of these options has ever been considered by anyone, so they all require 

calculations, and these opportunities are still open. 

Moreover, there are several other recombination reactions in the sulfur 

polymerization chain (for example, S4 + S4 → S8) relevant to the atmosphere of the 

ancient Earth, as it was discussed in the Introduction. Other reactions can contribute to 

the isotope effects as well, so they have to be taken into account and the same analysis as 

for the tetrasulfur (including calculation of a PES) needs to be repeated. 

Tetrasulfur is not the only species where unusual mass-independent isotope 

effects are observed. Similar effects have also been observed, for example, in ozone. 

Considering similarity in the observed effects, it is likely that both tetrasulfur and ozone 

have a common origin of the isotope effects. However, in contrast to tetrasulfur, ozone is 
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a much better studied molecule with multiple well-tested potential energy surfaces, 

several calculations of vibrational and rovibrational spectra, and more available 

experimental data to compare with. This makes ozone molecule a good candidate for 

theoretical modelling and initial checking of the properties and hypotheses related to the 

isotope effects. 

One of such hypotheses has been recently proposed by the group of Marcus.41,123 

According to their hypothesis, the coupling between rotational and vibrational degrees of 

freedom, neglected in the previous work of Teplukhin,94 might be the reason behind the 

isotope effects in ozone. Therefore, we decided to check this hypothesis and perform 

such coupled rovibrational calculations. 

However, the previously existing version of theory and code were not suitable to 

perform such calculations, so we started with derivation of necessary equations for the 

matrix elements (Chapter 4). The final formulas, expressed directly in terms of the basis 

expansion coefficients (which is most useful for practical implementations), were derived 

for the efficient calculations of matrix elements, for construction of the Hamiltonian 

matrix, for expressing the total ro-vibrational wavefunction, for the assignment of 

quantum numbers to the computed eigenstates, and finally for the identification of 

possible isotopomers of the molecule on the global PES (i.e. symmetric vs. asymmetric 

ozone). The developed theoretical framework was implemented in SpectrumSDT and 

used to study the effects of rotational-vibrational coupling on spectra of ozone and related 

isotope effects on multiple levels. 

First, we considered the simplest case of calculation of bound vibrational states 

without overall rotation (𝐽 = 0, Chapter 5) to check whether the ratio between the 
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number of bound states in asymmetric and symmetric ozone molecules could by itself 

introduce a bias in favor of asymmetric molecules (i.e. contribute to 휂-effect in Eq. (18) 

in Introduction). Statistically, such ratio is expected to be equal to 2, but the actual 

accurately computed ratio might be different. The calculations that we carried out here 

show non-negligible deviations of this ratio from the statistically expected factor of 2. In 

the upper part of the spectrum, where the stabilization process of the metastable ozone 

species is the most sensitive, both singly- and doubly-substituted ozone molecules deviate 

in the same direction as observed in the experiments. This property is likely to contribute 

to the η-effect. 

After this, we considered the effects of rotation-vibration coupling on bound 

spectra of ozone molecules with 𝐽 ≤ 5 (Chapter 6). We studied the individual roles of the 

asymmetric-top rotor term and the Coriolis coupling term and found that both of them 

affect the parity splittings, introduced by rovibrational coupling, but in the opposite 

directions, therefore partially cancelling each other out. We checked whether it is 

reasonable to expect that the Coriolis effect (rovibrational coupling) behaves differently 

in asymmetric ozone molecules, compared to the symmetric ones (the hypothesis of 

Marcus), but we found no justification for this hypothesis. We found that for ozone the 

deviations of rotational constants from the standard symmetric-top-rotor behavior is 

affected by isotopic composition as much as it is affected by the symmetry of the 

molecule. 

Another relevant feature, that has never been discussed in the literature on ozone 

before, is the value of parity splitting (Λ-doubling) due to the Coriolis coupling effect. 

These splittings, accurately captured by our calculations, were determined and examined 
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here for 1 ≤ Λ ≤ 5, for the four ozone isotopomers considered here. We found that these 

splittings are also affected by isotopic substitutions as much as they are affected by 

molecular symmetry. Once again we cannot claim that symmetry plays a decisive role 

here. 

We checked how a “bulk” energy-averaged characteristic of the molecule, such as 

its rotational-vibrational partition function, is affected by the Coriolis coupling effect, and 

how much these partition functions are different in different isotopomers of ozone. We 

found, first of all, that for the temperatures below 500 K the effect of parity splittings on 

the ratio of dynamical partition functions is very small and thus the role of the Coriolis 

coupling is negligible. We also found that the accurately computed value of this ratio 

deviates from the expected statistical value of 2, but in opposite directions for the singly 

and doubly substituted molecules, whereas in the experiment both of these molecules 

behave in the same way. Although by itself this is an interesting isotope-related 

phenomenon, this effect is relatively small, and is driven by masses, not by the symmetry. 

The conclusion of Chapter 6 are based on properties of bound states only. 

However, for the recombination reaction of ozone, known to be responsible for the 

isotope effects, the scattering resonances above the dissociation threshold play much 

more significant role. Therefore, for the next step (Chapter 7), we considered the effect of 

rotation-vibration coupling on scattering resonances for 𝐽 ≤ 4. For this we developed a 

modification of theory presented in Chapter 4 that permits to decrease computational cost 

in the case of calculation of coupled scattering resonances with large vibrational basis set. 

We demonstrated here that it is possible to choose one vibrational basis set, optimized for 

a typical rotational excitation (𝐽, Λ) and employ it in the coupled rotation-vibration 
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calculations for many values of 𝐽, which provides substantial savings on basis overlap 

calculation. 

Analysis of the computed data indicates that the average properties of scattering 

resonances, such as their average lifetime Γ̃, the average number of such states �̃�, and 

their cumulative partition function 𝑄, are all affected by the rotation-vibration coupling, 

and this effect grows as the value of angular momentum 𝐽 is increased. However, we also 

found that various isotopomers and isotopologues of ozone (symmetric and asymmetric 

ozone molecules with single and double isotopic substitutions) are influenced by the 

Coriolis effect rather uniformly. When the ratio 휂 of partition functions for asymmetric 

vs. symmetric ozone molecules is computed, the Coriolis effect largely cancels, and this 

cancelation seems to occur for all values of 𝐽, similarly to what we observed before. 

One can still argue that all of these conclusions are made for relatively low values 

of total angular momentum (𝐽), whereas in an actual experiment at room temperature 

much higher rotational excitations are energetically accessible, and the effects of 

rovibrational coupling could be qualitatively different in this regime. Therefore, as a final 

step in checking the role of rotation-vibration coupling for isotope effects we considered 

calculations with large values of 𝐽 in Chapter 8. 

Such calculations are impossible to carry out in the exact, fully-coupled, way due 

to large size of the Hamiltonian matrix. Therefore, in order to make the calculations 

feasible we developed a partially coupled method that permits to capture the major 

contribution of ro-vibrational coupling terms without diagonalization of the entire 

Hamiltonian matrix. This method is approximate, but it is general and applicable to many 

other molecules and processes in the spectroscopic and dynamic context. 
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Based on the results of analysis of the resonance spectra and the dynamical 

partition functions that we computed here, we conclude that while the addition of 

rovibrational coupling appreciably increases the average number of metastable ozone 

states (given by the dynamical partition function), the changes are still rather uniform for 

both symmetric and asymmetric isotopomers of ozone. The average lifetimes of ozone 

molecules do not seem to be appreciably affected by the rovibrational coupling and 

remain similar in both symmetric and asymmetric ozone isotopomers, therefore we 

cannot conclude that the 휂-effect is associated with differences in lifetimes. 

All in all, based on the results presented in Chapters 6-8, we conclude that the 

hypothesis of Marcus about relevance of rotation-vibration coupling (Coriolis effect) for 

the isotope effects in ozone does not seem to hold out and other venues need to be 

explored. 

One particularly interesting direction is interaction between the vibrational 

symmetries in the covalent wells and the dissociation channels. Both even and odd 

symmetries and allowed in the covalent wells, but only odd symmetries are allowed in 

the homonuclear dissociation channel. However, in the present version of theory and 

program (SpectrumSDT), the computed states are required to maintain the same 

vibrational symmetry in both the covalent well and in the dissociation region, therefore 

even covalent states dissociate to even O2 states, which are forbidden. Such behavior is 

unphysical and can be fixed by taking into account the effect of geometric (Berry’s) 

phase, which makes the wave function to change sign for any closed trajectory around a 

conical intersection. 
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Another possible direction involves consideration of alternative potential energy 

surfaces for ozone. All calculations in this work have been performed on the surface of 

Dawes et al.112 However, another surface by Tyuterev et al.113 also exists. According to a 

recent study,146 calculations of the isotope exchange reaction on this surface are in 

slightly better agreement with the experimental data, therefore it would be interesting to 

see if differences in PES could translate into 휂-effect. 

Finally, in Chapter 9 we presented a first public version of SpectrumSDT 

program, which is able to carry out calculations of energies and lifetimes of bound states 

and scattering resonances of any ABA-molecules (not limited to ozone) and supports all 

options considered in other chapters for ozone. An extensive description of available 

options and practical recommendations have been provided. The accuracy of the program 

has been tested and verified on the examples of ozone and sulfur dioxide. 

In this release of the code, SpectrumSDT is limited to ABA/AAB-type molecules 

with wave functions that do not extend into the regions near Eckart singularities. Both of 

these limitations need to be lifted to increase the number of systems SpectrumSDT can be 

applied to. Extension to both AAA- and ABC-type systems can be implemented 

relatively easily by changing the symmetry of the basis set functions. As discussed in 

Ref. 104, the problem with Eckart singularities can be solved by using, for example, a 

special basis set, which analytically cancels out the singularities in the expressions for the 

Hamiltonian matrix elements. 

Another interesting direction for development is an implementation of a mixed 

coordinate system. The APH coordinates, considered in this work are well-suited for 

description of the covalent wells region, but are not optimal in the asymptotic 
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dissociation region due to poor coverage of relevant molecular configurations. One could 

take a coordinate system better suited for the dissociation region (say, Delves 

coordinates) and work out a switching strategy between the covalent well coordinates and 

dissociation coordinates in order to have a good description everywhere. 

Several of these ideas will be implemented during my postdoctoral project, 

supported by MolSSI.  
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