
Marquette University Marquette University

e-Publications@Marquette e-Publications@Marquette

Dissertations (1934 -) Dissertations, Theses, and Professional
Projects

Hierarchical and Adaptive Filter and Refinement Algorithms for Hierarchical and Adaptive Filter and Refinement Algorithms for

Geometric Intersection Computations on GPU Geometric Intersection Computations on GPU

Yiming Liu
Marquette University

Follow this and additional works at: https://epublications.marquette.edu/dissertations_mu

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation
Liu, Yiming, "Hierarchical and Adaptive Filter and Refinement Algorithms for Geometric Intersection
Computations on GPU" (2021). Dissertations (1934 -). 1064.
https://epublications.marquette.edu/dissertations_mu/1064

https://epublications.marquette.edu/
https://epublications.marquette.edu/dissertations_mu
https://epublications.marquette.edu/diss_theses
https://epublications.marquette.edu/diss_theses
https://epublications.marquette.edu/dissertations_mu?utm_source=epublications.marquette.edu%2Fdissertations_mu%2F1064&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=epublications.marquette.edu%2Fdissertations_mu%2F1064&utm_medium=PDF&utm_campaign=PDFCoverPages
https://epublications.marquette.edu/dissertations_mu/1064?utm_source=epublications.marquette.edu%2Fdissertations_mu%2F1064&utm_medium=PDF&utm_campaign=PDFCoverPages

HIERARCHICAL AND ADAPTIVE FILTER AND REFINEMENT
ALGORITHMS FOR GEOMETRIC INTERSECTION

COMPUTATIONS ON GPU

by

Yiming Liu, B.Eng., M.S.

A Dissertation submitted to the Faculty of the Graduate School,
Marquette University,

in Partial Fulfillment of the Requirements for
the Degree of Doctor of Philosophy

Milwaukee, Wisconsin

May 2021

ABSTRACT
HIERARCHICAL AND ADAPTIVE FILTER AND REFINEMENT

ALGORITHMS FOR GEOMETRIC INTERSECTION
COMPUTATIONS ON GPU

Yiming Liu

Department of Computer Science
Marquette University, 2021

Geometric intersection algorithms are fundamental in spatial analysis in Geo-
graphic Information System (GIS). This dissertation explores high performance com-
puting solution for geometric intersection on a huge amount of spatial data using
Graphics Processing Unit (GPU). We have developed a hierarchical filter and refine-
ment system for parallel geometric intersection operations involving large polygons
and polylines by extending the classical filter and refine algorithm using efficient filters
that leverage GPU computing.

The inputs are two layers of large polygonal datasets and the computations
are spatial intersection on pairs of cross-layer polygons. These intersections are the
compute-intensive spatial data analytic kernels in spatial join and map overlay opera-
tions in spatial databases and GIS. Efficient filters, such as PolySketch, PolySketch++
and Point-in-polygon filters have been developed to reduce refinement workload on
GPUs. We also showed the application of such filters in speeding-up line segment
intersections and point-in-polygon tests. Programming models like CUDA and Ope-
nACC have been used to implement the different versions of the Hierarchical Filter
and Refine (HiFiRe) system.

Experimental results show good performance of our filter and refinement algo-
rithms. Compared to standard R-tree filter, on average, our filter technique can still
discard 76% of polygon pairs which do not have segment intersection points. PolySk-
etch filter reduces on average 99.77% of the workload of finding line segment inter-
sections. Compared to existing Common Minimum Bounding Rectangle (CMBR)
filter that is applied on each cross-layer candidate pair, the workload after using
PolySketch-based CMBR filter is on average 98% smaller. The execution time of our
HiFiRe system on two shapefiles, namely USA Water Bodies (contains 464K poly-
gons) and USA Block Group Boundaries (contains 220K polygons), is about 3.38
seconds using NVidia Titan V GPU.

[i]

ACKNOWLEDGEMENTS

Yiming Liu

I would like to express my gratitude to my advisor Dr. Satish Puri for his
invaluable guidance and encouragement throughout my graduate study. His insightful
feedback brought my work to a higher level. I would also like to thank the other
members of my thesis committee, Dr. Praveen Madiraju and Dr. Debbie Perouli
for their valuable time and great comments. In addition, I would like to thank all
members of the parallel computing lab for the support and advice.

I would like to express my deep appreciation to my parents who always love
and support me. I would also like to thank my friends who always encourage me.

[ii]

TABLE OF CONTENTS

ACKNOWLEDGEMENT . i

LIST OF TABLES . vi

LIST OF FIGURES . viii

1 INTRODUCTION . 1

1.1 Introduction . 1

1.2 Motivation . 2

2 LITERATURE REVIEW . 5

2.1 Introduction . 5

2.2 Minimum Bounding Box and Related Algorithms 7

2.2.1 Clipped Bounding Box 7

2.2.2 Common Minimum Bounding Rectangle 9

2.3 Polygon Intersection Related Algorithms 10

2.3.1 Traditional Algorithms for Polygon Intersection 10

2.3.2 GPU-based Algorithms for Spatial Aggregation 12

2.4 Spatial Analytics System and Hybrid Platform 16

2.4.1 CPU-GPU Hybrid Platform 16

2.4.2 Parallel Implementation on CPU-GPU 18

2.4.3 Modern Spatial Analytics Systems 19

3 POLYSKETCH: AN EFFICIENT FILTER FOR GEOMETRIC INTER-
SECTION COMPUTATIONS USING GPU 22

3.1 Introduction . 22

3.2 Related Work . 23

[iii]

3.3 Geometric Intersection Computations 24

3.3.1 Problem Description . 24

3.3.2 PolySketch Algorithm 25

3.4 Experimental Setup and Results 28

3.4.1 Datasets . 28

3.4.2 Hardware Description . 30

3.4.3 Performance of PolySketch Compared to CMBR 30

3.4.4 Performance of Using Different PolySketch Sizes 36

3.5 Conclusion . 37

4 HIERARCHICAL FILTER AND REFINEMENT SYSTEM OVER LARGE
POLYGONAL DATASETS ON CPU-GPU 38

4.1 Introduction . 38

4.2 Motivation . 39

4.3 Hierarchical Filter and Refinement System 40

4.3.1 System Design Overview 40

4.3.2 CMBR Filter Based Task Reduction 42

4.3.3 Workload Reduction by PolySketch Filter 43

4.3.4 PNP Based Task Reduction Algorithm 43

4.3.5 Striping Algorithm and Stripe-based PNP Function . . . 47

4.4 Performance Evaluation . 48

4.4.1 Performance of PNP Filters 48

4.4.2 Execution Time Results 51

4.4.3 CUDA information . 52

[iv]

4.5 Conclusion . 53

5 EFFICIENT FILTERS FOR GEOMETRIC INTERSECTION COMPUTA-
TIONS USING GPU . 54

5.1 Introduction . 54

5.2 Related Work . 55

5.3 PSCMBR Algorithm . 58

5.3.1 Overview of PSCMBR Filter 58

5.3.2 Advantages of PSCMBR Filter 62

5.3.3 The Implementation of PSCMBR Filter 63

5.3.4 Optimization: Mapping Tiles to Threads 66

5.4 Performance Evaluation . 66

5.4.1 PSCMBR Filter Performance 66

5.4.2 Performance of Using Different PSCMBR Tile-sizes . . . 69

5.5 Point-in-Polygon Filter Using PolySketch 70

5.5.1 Algorithm Overview . 72

5.5.2 Comparison of PNP Workload Reduction 73

5.5.3 The Implementation of PNP Filters 75

5.6 Performance Evaluation . 75

5.6.1 System Performance with PNP Filters 75

5.6.2 Filters with PNP Test Workload 76

5.6.3 New Hierarchical Filter and Refine System 78

5.7 Conclusion . 79

6 ADAPTIVE FILTER FOR GEOMETRIC INTERSECTION WITH RECT-
ANGLE INTERSECTION COMPUTATIONS USING GPU 80

[v]

6.1 Introduction . 80

6.2 Related work . 81

6.3 PolySketch++ Algorithm . 82

6.3.1 Overview of Adaptive PolySketch 82

6.3.2 Advantages of Adaptive PolySketch 87

6.3.3 The Implementation of Adaptive PolySketch and CUDA
Dynamic Parallelism . 88

6.4 Experimental Setup and Results 90

6.4.1 Data Sets . 90

6.4.2 Adaptive PolySketch Run-Time 91

6.4.3 Effect of Varying Tile Sizes and Threads 92

6.4.4 Adaptive PolySketch Workload 94

6.4.5 Execution Time Comparison Using Different GPUs . . . 96

6.5 Rectangle Intersection Filter on GPU 96

6.5.1 Overview of LMBR Filter 96

6.5.2 The Implementation of LMBR Filter 98

6.6 LMBR Filter Performance . 100

6.7 Conclusion . 101

7 CONCLUSION AND FUTURE WORK 102

7.1 Conclusion . 102

7.2 Future Work . 102

BIBLIOGRAPHY . 104

[vi]

LIST OF TABLES

3.1 Three real datasets used in our experiments 29

3.2 Sketch and CMBR effect on the LSI function for Water dataset . . . 31

3.3 Sketch and CMBR effect on the LSI function for Urban dataset . . . 32

3.4 Sketch and CMBR effect on the LSI function for Lakes dataset 32

3.5 Sketch and CMBR effect on reducing tasks of the LSI function for
different datasets . 33

3.6 Sketch effect on reducing workload and line segments by the LSI func-
tion for three datasets using percentage. 34

3.7 CMBR effect on reducing workload and line segments by the LSI func-
tion for three datasets using percentage. 34

3.8 The performance of using different tile-size for Water dataset 36

4.1 Run-times by using different GPUs without filters 39

4.2 Candidate pairs before hierarchical filtering 41

4.3 Eliminating line segments by hierarchical filtering 41

4.4 PNP based task reduction algorithm and striping effect on reducing
workload of the PNP function for both the datasets and the reduction
percentage . 48

4.5 Striping effect on reducing workload for the Stripe-based PNP function
for both the datasets . 50

4.6 PNP based Task Reduction Algorithm effect on reducing workload
when a polygon MBR is inside another polygon MBR 50

4.7 Execution time in seconds . 51

4.8 Execution time breakdown details for Water dataset. (NA means it is
not applicable.) . 52

4.9 Execution time breakdown details for Urban dataset. (NA means it is
not applicable.) . 52

[vii]

5.1 Symbol Table . 60

5.2 An example of input polygon pair in Figure 5.4 62

5.3 Effect of different filters on the LSI function for Water dataset 67

5.4 Effect of different filters on the LSI function for Urban dataset 67

5.5 Effect of different filters on the LSI function for Lake dataset 68

5.6 Performance variation while using different tile-sizes for Water dataset 70

5.7 System run-time (does not include R-tree time) 75

5.8 Workload using different methods in tasks where two polygons have
line segment intersections. 76

5.9 The workload in PNP test for the tasks where one polygon may be
totally inside another polygon . 78

6.1 Symbol Table . 85

6.2 Three real data sets used in our experiments for PolySketch++ . . . 90

6.3 The run-time using static and adaptive tile size. 91

6.4 The LSI function workload and tile workload 94

6.5 The run-time of PolySketch (P) and PolySketch++ (P++) using large
polygons (around 25000 vertices) . 95

6.6 The run-time of PolySketch and PolySketch++ with LSI function using
Titan V and Titan Xp . 96

6.7 The execution time of using R-tree, all-to-all method or LMBR filter 100

6.8 Time performance of LMBR by partitioning both layers and using
different LMBR sizes . 100

6.9 Time performance of LMBR by partitioning 1 layer and using different
LMBR sizes . 100

[viii]

LIST OF FIGURES

2.1 Filter and refine technique for one polygon pair 5

2.2 Common minimum bounding rectangle examples (Red rectangle is
CMBR.) . 10

2.3 An example of raster join approach; (a) input data, (b) all points are
rendered onto an FBO, (c) the pixel values are aggregated correspond-
ing to fragments of a polygon [1] . 13

2.4 Accurate raster join: (a) forming boundaries of polygons, and (b)
‘draw’ polygons [1] . 15

3.1 (a) Line segment intersection vertices, (b) Vertices inside another poly-
gon, and (c) Output polygon (Best Viewed in Color) 24

3.2 PolySketch of polyline data composed of tiling at three different levels. 26

3.3 Improve approximation using PolySketch 27

3.4 Polygon intersection using PolySketch. Tiles for each polygon is shown
in different colors. 27

3.5 The workload in LSI function after using CMBR or Sketch. 35

4.1 Classifying PNP tasks after CMBR Filter 44

4.2 PNP cases: (a) Two polygons have line segment intersections, (b) and
(c) Two polygons touch each other, (d) Two polygons’ MBRs overlap
but there is no actual intersection, (e) One polygon is inside another
polygon but there is no line segment intersection, (f) The smaller poly-
gon is not inside another polygon but the smaller MBR is inside another
MBR. 45

4.3 An example of striping for Stripe-based PNP function 47

4.4 The percentage of different types of tasks after using PNP based task
reduction algorithm . 49

5.1 Two input polygons with (a) CMBR (green rectangle), (b) PolySketch
showing the tiles and (c) only overlapping tiles after applying PolySk-
etch filter. 56

[ix]

5.2 PSCMBR filter with four tile-CMBRs. Only the common area of over-
lap between the candidate tile pairs are retained (see Figure 5.1(c)). . 59

5.3 PSCMBR filter for reporting line segment intersections (LSI). Two
polygons A1 and B1 are the input and the output is list of intersections. 60

5.4 Effect of tile-size on the number of candidate tile-pairs. Input Tile-
pairs%=Tp∗Tq

P∗Q *100. Candidate tile-pairs% = C
Tp∗Tq

*100. Each line de-

notes the output candidate tile-pairs% for a given input polygon-pair. 61

5.5 CUDA Implementation of PSCMBR Filter 65

5.6 An example of intersection tile (red rectangle) and no-intersection tile
(yellow rectangle) . 71

5.7 Illustration of PNP functions. Two polygonal chains extracted from
input polygons is highlighted by red and blue colored tiles. The space
is divided into two stripes S1 and S2. Dotted line is an imaginary ray
parallel to X-axis and passing through the test point shown as yellow
point. 74

5.8 Percentage of Intersection tile and no intersection tile for tasks where
two polygons have line segment intersections 77

6.1 PolySketch++ filter example (a) Overlapping tiles highlighted by a
circle. It shows a red tile overlapping with two green tiles, and (b)
The overlapping tiles are further subdivided. Further refinement is not
required. 82

6.2 Static filter shown in (a). Two-step adaptive filter shown in (b) and
(c). (b) shows filter using coarse-grained tile size and (c) shows fine-
grained tile size for overlapping tiles only; (d) An example where two
polygons have large difference in sizes. 84

6.3 PolySketch++ filter for speeding up line segment intersections (LSI).
The filter is dynamic and recursive. The Divide component produces
more tiles (by factor of a and b) by subdivision of input tiles. 86

6.4 CUDA Implementation of PolySketch++ Filter 89

6.5 Execution-time variation using different parent tile-sizes (128 to 3072).
Number of threads are adjusted based on tile-sizes (maximum number
of threads are assigned to parent and child kernels based on the work-
load). 92

[x]

6.6 Effect of using different parent tile sizes and different number of threads
assigned to the parent and child kernels 93

6.7 An example of LMBR . 97

6.8 CUDA Implementation of LMBR Filter 99

[1]

Chapter 1
Introduction

1.1 Introduction

We are living in the era of Spatial Big Data. Spatial data is pervasive and growing

rapidly. They are coming from billions of phones, cars, satellites, webs, and many

different sources [2]. Location-based services are also increasing, such as Uber, Lyft,

Twitter, location-tagged posts on Instagram, and so on [3]. In addition, with the

development of data acquisition techniques, GPS-enabled devices, and their

corresponding applications, spatial data are increasing at an unprecedented scale.

Efficiently querying and analyzing such a huge volume of spatial data is

challenging [4]. Spatial proximity queries between objects, spatial cross-matching

queries, nearest neighbor queries, and window-based queries are general geospatial

analyses. Combinations of these queries can be used in many cases, such as traffic

analysis, travel patterns from massive GPS collections in transportation,

post-processing large-scale climate model outputs, and so on [5]. Geometric

intersection algorithms are also fundamental in spatial analysis [6, 7]. Computing

the polygon intersection area [8, 9] is also significant to the fields of computer

graphics, image processing, computer vision, and Geographic Information Systems

(GIS). Since spatial data are increasing at an unprecedented scale, it is necessary to

apply high-performance computing to spatial analysis.

In Geographic Information Systems (GIS) and spatial databases, vector

geometries like polygons and polylines are used to represent real-world objects. The

input to map overlay and spatial join queries are two layers of geo-spatial data.

Spatial query operations often require expensive computational geometry

algorithms. For computational efficiency, query operations are carried out in two

phases. The first phase is a filter phase where complex geometries are approximated

[2]

by their minimum bounding rectangle (MBR). The filter phase employs spatial data

structures like R-tree built using MBRs of geometries. Working with MBR

representation is faster compared to actual geometries that may contain thousands

of vertices. Geometries that could not possibly satisfy the query condition are

removed. The output of the filter phase consists of candidate pairs that may or may

not be part of the final output. The drawback of filtering using MBR is that it

produces many false hits because of MBR approximation. As such, in the second

phase of refinement, actual geometries are used to produce correct results by

detecting and removing false hits.

Line Segment Intersection (LSI) and Point-in-Polygon (PNP) tests are

invoked by geometric intersection algorithms. Given two layers R and S as inputs,

spatial join returns the set of all pairs (r, s) where r ∈ R, s ∈ S, and their intersect

predicates (such as, overlap, contain). Intersect predicate returns true if one

polygon is inside another polygon or two polygons have line segment intersection(s).

An example of a spatial join query is “Find all the places where roads cross rivers”.

Overlap is one of the spatial relations between r and s. Other spatial relations are

Intersects, Touches, Contains, etc. Spatial databases and GIS support such

topological relations on two layers of geometries. The output polygon produced by

polygon intersection is not required. Polygon overlay should also calculate the

output polygons, which requires finding all line segment intersections (by LSI test)

and the vertices of a polygon that are inside another polygon (by PNP test).

Compare to spatial join, the computation of polygon overlay is more complex and

expensive.

1.2 Motivation

Spatial data is generated from a lot of real-world applications currently and the

volume of them becomes much larger [2]. Efficiently querying and analyzing such a

[3]

huge volume of spatial data is time-consuming. Geometric intersection algorithms

(such as spatial join and polygon overlay) are essential in spatial analysis in

Geographic Information System. The goal of this dissertation is to study the

current challenges of algorithms used in the filter and refine technique of geometric

intersection computation and develop algorithms (mainly on GPU) to address some

of them.

We also explore the filter and refine technique based on the CPU-GPU

platform, which is robust to a variety of inputs. For example, the new filters will

speedup “Jaccard Similarity” computation on GPU, which is used in solar flare

prediction where polygonal data extracted from NASA’s Solar Dynamics

Observatory are used for polygon intersection and union to detect significant solar

events [10]. In the biomedical domain, geometric intersection is used to analyze

spatial features in digital pathology images containing millions of cells and terabytes

in size. In both use cases, Jaccard similarity computation using such filters will

make the cross-comparison computations fast and near-realtime. For disease

diagnosis, cross-comparison of millions of such polygons will be undertaken. There

are also spatial query cases in analytical medical imaging. COVID-19 has become a

pandemic and affecting a lot of people worldwide. Johns Hopkins University has

created a COVID map to show near real-time information of confirmed cases by

country, state, or county [11]. In hotspot detection, spatial join and map overlay

operation is required between polygonal layer (county boundaries) and Covid-19

disease occurrences (points). Our filters can be used here. In addition, the cellphone

can be tracked to know the scope of people’s activity [12]. The activity route of a

cellphone can be considered as a polyline and the different areas can be considered

as polygons.

It is necessary to apply high-performance computing to perform geometric

intersection for a huge amount of spatial data. CPU-based geometric intersection

[4]

algorithms have been studied in many papers [8, 9, 13]. Since GPU is suited to

process compute-intensive work, one objective of this dissertation is to develop and

improve GPU-based geometric intersection algorithms. Compiler directives have

been used to GPU-based parallelization of computational geometry algorithms

earlier [14]. In the OpenACC-based spatial join implementation, it used classical

filter and refine technique where filter phase was done on a CPU using R-tree query

and refinement phase was done on a GPU. The performance for large data was

unsatisfactory when compared to the sequential implementation of spatial join on a

CPU. This also motivates the present work.

[5]

Chapter 2
Literature Review

2.1 Introduction

Figure 2.1: Filter and refine technique for one polygon pair

Filter and refine strategy is used in many spatial computing algorithms for

spatial query, spatial join, and overlay in geographic information system [15]. It

takes a two-step approach of first filtering the geometries that can potentially

become part of the output using rectangular approximations (MBR). Given a

collection of geometries in an input dataset (layer), each geometry is represented as

one rectangle that encloses it completely in the filter phase. It has been shown that

approximations excluding MBR are costly to construct [16]. After the filter phase,

refinement is done using actual line segments of the input. This idea has been

shown to be effective on a GPU which is massively parallel hardware that

accelerates the filter and refine computations. Figure 2.1 shows an example of the

filter and refine technique. Two polygons are represented by two rectangles. The

filter phase will check if these two rectangles overlap or not. If they do, the refine

phase will check if these two geometry overlap or not by using their actual line

segments. Typically, the filter step is lightweight and the refinement step is

compute-intensive because of complex computational geometry algorithms. The

[6]

filter step produces candidate pairs which may result in false hits. The refinement

step further examines the candidates sequentially to eliminate false hits by using

computational geometry algorithms on each candidate. Geometric intersection

algorithms are fundamental in spatial computing [17, 18, 8, 19, 9, 20].

In this dissertation, we mainly study GPU-based implementation of the filter

and refine strategy which is relevant to spatial join and polygon overlay algorithms.

Geometric intersection algorithms for polygons use line segment intersection (LSI)

and point-in-polygon (PNP) operations as building blocks. Here, we are interested

in the LSI reporting problem which means that all the points of intersection

between two polygons should be reported. Moreover, for all the points of two

polygons corresponding to a candidate, the inside/outside status needs to be

determined. LSI and PNP operations are useful for implementing boolean set

operations like union, intersection, and difference for a pair of polygons. Polygon

intersection and polygon clipping algorithms internally invoke LSI and PNP

tests [21, 8, 22, 7, 9]. Depending on the variation in size of line segments and its

spatial distribution, planesweep [23] and grid-based algorithms on CPU [24] and

GPU [25, 1] have been reported in the literature. In addition, there are data

structures like segment tree and R-tree that have been used to speedup LSI

problems [26]. Different methods employed in filter and refine based spatial query

processing have been discussed in [15]. R-tree is used for building a spatial index

and MBR query [27]. Partitioning a polygon by decomposing its area into smaller

and simpler geometries has been studied earlier [28]. Existing tools in GIS invoke

computational geometry algorithms on shapes made of 2D co-ordinate data. In

computer graphics, a complicated shape is often decomposed by triangulation. For

efficiency, triangulations are used instead of actual geometry.

Plane-sweep is a fundamental technique in computational geometry and it

has been parallelized on multi-core and manycore architectures [23, 29, 14]. Boolean

[7]

set operations like union and intersection on polygons require line segment

intersections and point-in-polygon test [30]. GPU-based acceleration of segment

intersections and point-in-polygon test have been studied in the domain of GIS and

spatial databases [21, 31, 32, 4, 6]. GPU-based similarity searches was studied in

the paper [33].

Given two input layers of geometries, the filter step uses MBR approximation

of a geometry and the refine step uses the actual vertices that represent it. In

addition to MBR, other approximations which are used as filters are rotated

minimum bounding box, convex hull, minimum bounding circle and ellipse,

n-cornered bounding polygon, etc [34, 35, 36, 16]. Convex hull can be used as a

replacement for MBR in spatial queries. Douglas-Peucker line simplification

algorithm and its variants reduce the number of points to represent a curve [37].

Line simplification is primarily used for visualization on a map. In case of

geometries like polygons, using the simplified version may not yield correct results

for spatial queries.Recent approaches for implementing spatial computations using

GPU, include a variety of filters, for instance, Common MBR Filter (CMF) [38],

two-level uniform grid [24], Grid-CMF [39].

2.2 Minimum Bounding Box and Related Algorithms

2.2.1 Clipped Bounding Box

Minimum bounding box (MBB) is the smallest axis-aligned rectangle that encloses

the spatial object, such as a polyline or polygon. Generally, it only requires two

multi-dimensional points to store MBB and computing the MBB is also simple. It

can be applied to the filters of basic spatial operations (such as, the intersection

test) because comparing an MBB with other MBBs is cheap. In addition, MBB is

the main component of R-tree [40] and its variants [41]. Many filters are also based

on MBB [42, 43, 44].

[8]

However, a spatial object’s MBB may include ‘dead space’ that does not

contain any real objects so it could decrease the filter’s efficacy and precision.

Therefore, the paper [45] introduces the clipped bounding box (CBB) and proposes

to clip away empty corners of MBBs by clip points. The method can prune more

area with low overhead and can be plugged into any R-tree variants because the

clipped corners are just supplemental to the original MBBs. The method is also

general since it can be also applied to more than 2 dimensions and there is no

restriction on the data. For example, the data can be lines, planes, and volumetric

spatial objects. Since they reduce the coverage by not representing the dead space

in the corners, they also reduce the MBBs overlap potentially.

One main component of CBB is the clip point with its bitmask which means

the orientation. The bitmask can be 00(left bottom), 01(left top), 10(right top) and

11(right bottom). For example, a point with R11 represents an area that is at the

top right of the MBB and contains no object. One important property of the clip

point is that no object overlaps with the space between the clip point and its

relevant corner Rb based on bitmask. In other words, the area should be totally

dead space. If we want to test a query region Q with CBB (if it only has one clip

point c), we only need to compare Q to the original MBB and then to the clip point

c. The calculation is cheap but the improvement should be profound.

Deciding clip points is an important step. There are two approaches: the

skyline-only approach and the point-splicing approach. The skyline-only approach is

the basic method. The oriented skyline of a set of points with the orientation mask

b is the subset of points that are not dominated by other points. (For example, if

point p dominates point q and the orientation mask is b, p is closer to Rb on each

dimension than q.)

The point-splicing approach can be considered an improvement of the

skyline-only approach. To clip away more dead space, they splice the skyline points

[9]

and the new points are called stairline points. Splicing points means that it takes

the max or min coordinate values of two given points based on the opposite

orientation of mask b. For example, a stairline point should clip away more dead

space than the skyline points P or Q since the stairline point takes coordinates from

P and Q that are farthest from the corner Rb.

Eliminating dead space is only helpful if that is where query rectangle

intersect. Therefore, how to apply these ideas to R-tree and its variants is also

studied in the paper [45]. The intention of CBB is to make such applications more

efficient and precise.

2.2.2 Common Minimum Bounding Rectangle

An algorithm for polygon intersection with N and M line segments requires

O(N ·M) line segment intersection tests. This quadratic time complexity makes it

an expensive operation. In GIS, millions of polygon intersections are common. As

such, filters are designed which acts as proxy for polygons. One such filter is an

MBR filter. Minimum bounding rectangle is the smallest axis-aligned rectangle that

encloses a spatial object, such as a polygon. Computing an MBR and checking an

MBR with other MBRs are much cheaper than checking the intersection points

between line segments so MBR is widely used in the filters of basic spatial

operations, such as the intersection test.

Common Minimum Bounding Rectangle (CMBR) is a method that is based

on Minimum Bounding Rectangle of a polygon. For a pair of polygons, the CMBR

is an area where the two MBRs overlap. Figure 2.2 shows two examples of CMBR.

Black rectangles are two polygons’ MBRs and the red rectangle is their CMBR.

When two MBRs overlap as shown in Figure 2.2(b), it is possible that these two

polygons do not overlap. Such cases can be safely ignored in the refinement phase as

described in Chapter 4. This particular case can be detected in the filter phase itself

[10]

(a) (b)

Figure 2.2: Common minimum bounding rectangle examples (Red rectangle is
CMBR.)

by checking if the vertices of a polygon lie in the CMBR area or not. Line segments

that do not occupy the CMBR area can be safely ignored for LSI function. CMBR

of a polygon has been used in earlier work [38] to improve the performance of

spatial join on GPU.

In some cases, the common MBR area may contain most of the vertices of the

overlapping polygons. This particular case is shown in Figure 2.2(a). This limitation

of the CMBR approach makes it less effective [39]. A filter based on PolySketch

provides an alternative way of reducing the workload in the LSI function.

2.3 Polygon Intersection Related Algorithms

2.3.1 Traditional Algorithms for Polygon Intersection

There are two categories of existing approaches to calculating the intersection of

polygons: numerical algorithms and deterministic algorithms. Generally, numerical

algorithms use the Monte Carlo to calculate a definite integral based on the

probability theory and create two random numbers for random point’s coordinates

and check whether the random point not only falls a polygon but also falls into

[11]

another polygon. We can get accurate results but the performance is limited by the

number of polygons because we need to conduct point inclusion tests for a lot of

random points [46]. A deterministic algorithm checks whether each side of a polygon

intersects with another polygon. If is true, we check the relationship between the

line segments. The relationship can be one endpoint overlap and collinear, parts

overlap, completely overlap, intersect with two endpoints, intersection with line,

orthogonal or no intersection. Then, we need to check whether the vertex of any

polygon is inside another polygon. The paper [46] says it is difficult to apply this

method to very large polygons’ intersection because of heavy computational load.

Polygon clipping can be a part of polygon intersection. There are many

algorithms in computer graphics were designed for 2-dimensional polygon clipping.

For example, Greiner-Hormann (GH) algorithm [8] and Vatti [13] algorithm are

famous and they can clip arbitrary polygons in a reasonable time. Recently, the

paper [9] improves the original GH clipping algorithm by handling the degenerate

intersections.

GH polygon clipping algorithm is famous but it can not handle the

degenerate intersection cases. Degenerate is that a vertex of a polygon lies on an

edge or coincides with a vertex of another polygon or vice versa. This is an

important problem so the paper [9] proposes a method to solve it based on the

original GH algorithm.

There are three components of the original GH algorithm: Intersection

phase, Labelling phase, and Tracing phase. The intersection phase is to get all

intersection points firstly and merge them into the data structure. They present all

polygons (input as well as output) as doubly linked lists and the intersection point

inserted into the subject polygon’s data structure is connected to the point inserted

into the clip polygon’s data structure. For the labeling phase, they trace each

polygon once and mark entry and exit points to the other polygon’s interior. For

[12]

the tracing phase, they start at one of the intersection points, move along based on

the rules and get the final output.

The main difference between the new algorithm and the original GH

algorithm is that a more refined analysis of the intersection points in the labeling

phase. They find the degenerate intersections and handle them correctly by using

local orientation tests to mark some intersection vertices as crossing intersections.

These points were labeled entry or exit points directly as the GH algorithm.

According to the different types, the algorithm has corresponding methods to

insert and link the intersection points. Then, the labeling phase marks the

intersection points as crossing or bouncing. In addition, all intersection vertices with

adjacent overlapping edges form polygonal intersection chains which will be marked

as delayed crossing or delayed bouncing. The tracing phase will generate the output

polygons based on the information.

2.3.2 GPU-based Algorithms for Spatial Aggregation

Visual exploration of spatial data is another intersecting topic. It requires spatial

aggregation queries which can summarize the data from different areas. Urbane [47]

is a visualization framework to explore the real data sets and visualize them

according to different resolutions. Urbane can also update the results by changing

different parameters dynamically, which becomes challenging when the data set is

huge and should be done within a limited time. Such visualizations are helpful for

analyzing multivariate data.

An example of spatial data visualization that is the heat map of taxi

pick-ups by using neighborhoods and census tracts with Urbane. Spatial

aggregation queries are defined as: given two data sets points P and regions R, the

result of the query is an aggregation (AGG) over the results of the join between P

and R [1]. Sometimes, policy makers are interested in the city to vary with new

[13]

zoning or changing the zonal boundaries or construction rules. Such new

summarizations should be executed in real-time after changing the configurations.

(a) (b)

(c)

Figure 2.3: An example of raster join approach; (a) input data, (b) all points are
rendered onto an FBO, (c) the pixel values are aggregated corresponding to
fragments of a polygon [1]

In the paper [1], they use GPU to perform spatial aggregation queries that

are the foundation of exploring and visualizing spatio-temporal data. Two new

methods were introduced to accelerate the execution of the previous operation. One

method is bounded raster join that can get approximate results by drawing

[14]

operations. Another one is accurate raster join that can get exact results. There are

some challenges of enabling quick response time to the spatial aggregation: (1)

Point-in-polygon (PIP) test that requires intensive computation takes linear time

according to the sizes of the polygons. (2) GPU memory is limited so the join may

be performed in batches, which means that there is a lot of additional data transfer

between CPU and GPU. In addition, users may dynamically change filtering

conditions, aggregation operations, polygonal regions used in the query, or such

operations when they use interactive visual analytics tools.

Since this paper focuses on analytical queries instead of explicit

materialization of the join result, they apply the rasterization method to spatial

aggregation. Drawing points and polygons are two important steps in their method.

They draw the points on a canvas and maintain ‘partial aggregates’ in the cells to

keep track of the intersections. Then, they draw the polygons on the same canvas

and calculate the final aggregate result with the partial aggregates of the cells that

intersect polygon(s).

Figure 2.3(a) is an example of input data that will be used to raster join

approach. It contains three polygons and 33 points. Firstly, all points are rendered

onto an FBO (Frame buffer objects) that OpenGL uses to output results into a

‘virtual’ screen. It stores the count of points in each pixel as shown in Figure 2.3(b).

Then, they render all polygons triangulated [48] and update the query results

according to the requirements. The polygons are converted into discrete fragments

by using rasterization [49]. Figure 2.3(c) shows that the pixel values are aggregated

according to the fragments of one of the polygons. As the author introduced, their

bounded raster join is an approximate method that may cause some false results. A

pixel will be part of a triangle only when the pixel’s center falls in the triangle. As

shown in Figure 2.3(c), the false positive counts are marked in white. One way to

solve it is to decrease the pixel size so the pixels can better approximate the object.

[15]

According to their result, there is no big difference between the bounded raster join

result and the accurate result but bounded raster join took less time.

(a) (b)

Figure 2.4: Accurate raster join: (a) forming boundaries of polygons, and (b) ‘draw’
polygons [1]

To make the method can be applied to any application which may require

accurate results, they improve the core raster approach by calculating completely

accurate results and call it ‘accurate raster join’. As shown in Figure 2.4(a), the

fragments (pixels) with green or white means they are completely inside or outside a

polygon. Grid cells with violet mean that they are on the boundary of the

polygon(s). Since the wrong result only may occur within ‘violet grid cells’, they

propose to perform Point-in-polygon (PIP) test for the points only within these cells

to make sure all results correct. Before drawing points and polygons, the accurate

raster join draws the outline of all the polygons. It renders the boundaries of the

polygons onto an FBO. Then, they draw points and perform a PIP test for every

candidate polygon if the fragment corresponding to the point is a boundary pixel. If

the fragment is not a boundary pixel, the process is the same as the core approach.

After this, they render polygons and the only difference is that they discard the

[16]

fragment which is on a boundary pixel during this step. By using OpenGL, their

methods are portable and easy to be applied to existing database systems.

According to the results, the bounded raster join can get much better performance

and accurate raster join is also good. Since the GPU memory is different from CPU

memory, their method performs the spatial aggregation in a smart way by drawing

operations to decrease data movement. It also reduces the workload in the PIP test.

In real applications, it is possible to perform multiple aggregates so their current

work should be extended to handle this.

2.4 Spatial Analytics System and Hybrid Platform

2.4.1 CPU-GPU Hybrid Platform

Since the development of data acquisition techniques, the size of spatial data is

increasing on a huge scale. Many different real world applications are generating

and collecting a lot of spatial data, such as in-vehicle GPS navigation systems or

location-based services [50]. It becomes more challenging to query or analyze such a

massive amount of spatial data in an efficient way. Spatial proximity queries,

window-based queries, spatial cross-matching queries, nearest neighbor queries are

some basic geospatial analysis [51]. The combinations of such queries can be used in

real world use cases, such as traffic analysis. PostGIS, ArcGIS, and other traditional

spatial database management systems support spatial queries but the performance

is affected by the lack of an effective spatial partitioning mechanism that can

balance the workload and manage compute-intensive operations [52]. MapReduce is

able to partition data and distribute them to multiple workers. According to their

observations [52], General Purpose Graphical Processing Unit (GPGPU) is suited to

handle compute-intensive challenges so they explore the GPU-based spatial

crossing-matching operation. Then, a hybrid CPU-GPU approach was developed to

speedup spatial cross-matching queries over geospatial datasets. One challenge of

[17]

high performance computing is to construct an efficient mechanism to schedule the

tasks between GPU and CPU to make the best use of all devices. In addition, there

are some challenges of using GPU compared to CPU: slower memory access, data

movement cost, lower clock speed, and so on [53].

Generally, there are three phases in a geospatial query: (1) parsing, (2)

indexing/filtering, and (3) refining. This is also the filter-refine technique. Parsing is

to convert the input data to in-memory spatial data structures that will be used to

build a spatial index. Using the indexes can filter the spatial data objects and only

keep the operation relevant objects for the later operations. Refining is used to get

final results.

In their platform, there are three major components: (1) query tasks, (2)

scheduler, and (3) execution engine. The cross-matching workflow was divided into

the pipeline of tasks after reading the input data, which makes different query

operations can be executed on different processing units. According to their hybrid

CPU-GPU framework, GPU and multi-core CPU are the processing units and they

assign the tasks to process units according to the tasks’ characteristics. Based on

their analysis [52], parsing, indexing and filtering are not suitable to be executed on

GPU because of their processing dependencies. Therefore, for the previous phases,

they execute them on CPU. For indexing/filtering, they use MBBs of polygons to

create a Hilbert R-tree index that checks polygons whose MBBs overlap with others.

In addition, refining is easier to be parallelized on GPU so the multi-core CPU and

GPU can be used to this phase at the same time.

The scheduler that contains task and thread queues is another important

component in their system. The function of it is to assign new tasks to available

processing workers according to first come first serve (FCFS) or priority queue

(PQ). FCFS is simpler because the refiner task will be executed on CPU or GPU

according to the availability of the processing worker and the task position. For PQ,

[18]

the refiner task will be executed based on their potential speedup gain, which means

that it is higher to be executed on GPU when the priority is higher. The execution

engine is the last important component of the system. It includes different libraries

for actual spatial computation on CPU and GPU.

According to their experiments, for the refinement phase, hybrid

(1CPU-GPU) works better than one single thread CPU and the speedup varied

between 10x to 11x according to the different number of overlapping polygons. In

addition, they also conclude that the data copying overhead is high for GPU

computation, which means that users should consider carefully whether to

accelerate jobs on GPU according to the potential speedup or when the dataset is

large. For the hybrid framework, using more CPUs can lead to better performance,

which can reach 17x speedup at most.

2.4.2 Parallel Implementation on CPU-GPU

The paper [52] shows that Graphical Processing Unit (GPU) is suited to handle

compute-intensive work so they propose a hybrid CPU-GPU approach to accelerate

spatial cross-matching queries. The paper [1] proposes to use GPU to perform

spatial aggregation query by the drawing operations. Other papers also implement

their algorithms on GPU to handle computing challenges [54, 55, 46]. The scale of

polygon data has been increasing tremendously and the rapid growth in the spatial

data also increases the requirements of efficiency for spatial analysis. Based on the

structure and strong capability of GPU, it is worth performing such operations by

using GPU(s). However, there are still some challenges: 1) the cost of copying data

between GPU and CPU, 2) reading and writing data in global memory are

expensive, 3) race condition, 4) limited GPU memory, and so on. GPU is generally

used to provide the images in computer games so it emphasizes high throughput

instead of low latency compared to CPU. It has more ALU units and is faster than

[19]

CPU. The complex problems should be divided into a lot of separate tasks and

GPU gets them done at once, which is similar to process graphics that require to be

done at once. Compared to CPU that includes a few cores with a lot of cache

memory, GPU contains hundreds or thousands of cores that can deal with a great

number of threads simultaneously. Since the structure is different from CPU,

programming on GPU is very different. For example, complicated code with lots of

if-else branches and irregular program flow (such as, the plane sweep algorithm and

R-tree) are harder to be parallelized and get good performance.

Parallelism in multi-core and manycore hardware can be exploited using

compiler-based approaches like OpenMP and OpenACC. OpenMP includes a

collection of compiler directives (pragma) and library routines used for

parallelization of existing C, C++, or Fortran code. OpenACC is a programming

standard for parallel computing. It is easier to be learned since the users just need

to add some compile directives to the original code (such as, C++). It is also easy

to maintain the code. OpenACC is based on CUDA. CUDA is a parallel computing

platform and API model for GPU.

2.4.3 Modern Spatial Analytics Systems

With the development of GPS-enabled devices and their applications, spatial data is

pervasive. This attracts more research communities to develop related algorithms or

systems to process and analyze spatial data efficiently [56, 57, 58, 59, 60]. The

paper [2] explores and compares the available modern spatial analytics systems

based on their features and queries over real world datasets. It mainly compares five

Spark-based systems: SpatialSpark, GeoSpark, Simba, Magellan, and

LocationSpark. It also introduces SpatialHadoop and HadoopGIS but does not

evaluate them because Hadoop based systems usually perform poorly compared to

Spark based systems. In addition, four dada types (points, linestrings, rectangles,

[20]

and polygons) and five spatial queries (range query, kNN query, spatial joins,

distance join, and kNN join) are used for the evaluation. Range query and kNN

query are single relation operations. Spatial join, distance join and kNN join are

join operations. There are some other spatial queries: spatial data mining

operations, raster operations, and computational geometry operations [61].

However, the evaluated systems do not support them.

A two-level indexing scheme (multiple local indices in the slave nodes and a

global index in the master node) is used in distributed systems. Generally, the input

data is partitioned and every partition will be indexed based on the spatial index,

such as R-tree, Quadtree, and so on. The details of partitioning are introduced in

the paper [61].

Hadoop-GIS was the first system to support spatial queries based on

Hadoop. The objects are mapped to the tiles after the space is partitioned by

‘uniform grid’. The high density tiles would be broken down into smaller tiles.

SATO [62] is a partitioning technique used to Hadoop-GIS and it has four steps

that are Sample, Analyze, Tear and Optimize. They sample 1-3% of the data and

compute the density distribution of the data set. Then, the Analyzer decides the

global partitioning scheme for the global partitions and every global partition will

be partitioned to create local partitions. SpatialHadoop is also based on Hadoop

and native to support spatial data. It partitions datasets based on fitting one HDFS

block and the close objects should be assigned to the same partition. It also uses

the Sort-Tile-Recursive (SRT) algorithm that computes the number of partitions

according to the size of the input data and fills the R-tree.

SpatialSpark, GeoSpark, Magellan, SIMBA, and LocationSpark are based on

Apache Spark. SpatialSpark relies on in-memory processing and is simpler than the

other 4 systems. GeoSpark is an in-memory cluster computing framework and

includes three layers: (1) Apache Spark Layer that supports native functions

[21]

supported by Spark (such as, load data to storage); (2) Spatial RDD Layer that

efficiently partitions SRDD elements across machines by extending spatial RDDs

(SRDDs); and (3) Spatial Query Processing Layer. In addition, GeoSpark provides

a geometrical operations library that supports basic geometrical operations, such as

find overlapping objects. Magellan is the distributed execution system for spatial

data. It also supports geometric predicates, such as within, intersect and contain.

Simba that means Spatial In-Memory Big Data Analytics is distributed analytics

engine. It also extends Spark SQL to accommodate spatial operations. A spatial

RDD layer called Location-RDD that can be cached in memory is introduced by

LocationSpark. In addition, there is a query scheduler used in LocationSpark.

To evaluate these Spark-based systems, they deploy variable sized clusters on

Amazon AWS and use different types of real data sets to evaluate the systems.

According to their analysis, GeoSpark is a more complete spatial analytics system.

Compared to other systems, it supports more data types and queries at the same

time and has more partitioning techniques. Their results also prove that GeoSpark

works better than other systems in most cases. However, it takes more memory to

store and partition input datasets and does not support kNN joins. Magellan is

another good system that works well for some spatial join compared to other

systems but it does not optimize range queries. In addition, it does not support

kNN queries, distance joins and kNN joins. LocationSpark includes good query

scheduler and optimizer. The spatial bloom filter (sFilter) is used to it and other

systems can also incorporate such filters. SpatialSpark takes high execution

memory. Furthermore, GeoSpark and Magellan are still actively under development.

[22]

Chapter 3
PolySketch: An Efficient Filter for Geometric Intersection Computations
using GPU

3.1 Introduction

It has been shown that as geometries are getting larger in size, the refinement phase

is taking most of the time [31]. Decreasing the number of candidates produced in

the filter phase also reduces the workload in the refinement phase. Therefore, we

propose applying a hierarchy of MBR and PolySketch filter to improve the filter

efficiency. Not all segments of a polygon will intersect with the segments of another

polygon. Expensive polygon intersections in the refinement phase can be possibly

eliminated by using the sketch of a polygon. Further improvement is possible by the

GPU-acceleration of computational geometry algorithms in the refinement phase.

We have extended the classical filter and refine algorithms using PolySketch

Filter to improve the performance of geospatial computations. In addition to

filtering polygons by their Minimum Bounding Rectangle (MBR), our hierarchical

approach explores further filtering using tiles (smaller MBRs) to increase the

effectiveness of filtering and decrease the computational workload in the refinement

phase. The basic idea is to represent a large geometry using its sketch that is made

up of a collection of tiles. Each tile is a subset of contiguous vertices with the

corresponding MBR induced by the subset. Our PolySketch filter not only reduces

the candidate pairs but also reduces the workload in the refinement phase.

PolySketch filter reduces on average 99.77% of the workload of finding line segment

intersections.

[23]

3.2 Related Work

Theoretical PRAM algorithms and multi-threaded implementations for polygon

clipping have been designed [22, 7]. The intersection of two cross-layer polygonal

MBRs (CMBR) was used earlier in the GPU-based spatial join system called

GCMF [38] to filter out candidate pairs that do not need further refinement. CMBR

is effective in cases where it can filter out the majority of the line segments. This

leads to a reduction in workload. It was observed that in some cases CMBR was not

effective in workload reduction. So, the CMBR technique was further improved by

creating grid inside the area of CMBR for further filtering [39]. As opposed to

CMBR, PolySketch is a hierarchical technique. Other approaches used in literature

include PixelBox where geometries represented as co-ordinates are converted to a

raster format (pixels) to leverage image processing using a GPU [52]. CGAI

package [63, 64] provides an algorithm called ‘Intersecting Sequences of dD

Iso-oriented Boxes’, which can detect all intersections for polyhedral surfaces by

using iso-oriented boxes. Our PolySketch system can employ the CMBR technique

in a hierarchical manner to weed out the pairs of cross-layer tiles that do not need

further refinement as described in Chapter 4.

Spatial partitioning of geometries using techniques like uniform grid [6, 65],

quadtree, and binary space partitioning has been studied in literature. In our

system, we do not explicitly do spatial partitioning. Instead, we use data

partitioning by tiling. Tiling induces spatial partitioning. We do not use uniform or

adaptive grid partitioning of input layers of spatial data.

[24]

3.3 Geometric Intersection Computations

3.3.1 Problem Description

With two layers R and S as inputs, the output of spatial join is a collection of pairs

(r, s) such that r ∈ R, s ∈ S, and r and s overlap spatially. Overlap is one of the

spatial relations between r and s. Other spatial relations are Intersects, Touches,

Contains, etc. Spatial databases and GIS support such topological relations on two

layers of geometries.

(a) (b) (c)

Figure 3.1: (a) Line segment intersection vertices, (b) Vertices inside another
polygon, and (c) Output polygon (Best Viewed in Color)

The refinement phase involves computational geometry algorithms on a

variety of shapes. Computing the topological relations and geographic map overlay

requires two kernels namely, line segment intersection (LSI) and Point-in-Polygon

(PNP). An example of polygon intersection is shown in Figure 3.1. There are two

overlapping polygons P1 and Q1. The first step is to find line segment intersection

vertices (black) among line segments from the two polygons as shown in

Figure 3.1(a). The second step requires the PNP function to find polygon vertices

that are inside another polygon e.g., one vertex (red) of Q1 is inside P1 and two

vertices (blue) of P1 are inside Q1 as shown in Figure 3.1(b). Finally, output

polygon(s) are produced by combining the output of LSI and PNP functions. An

[25]

output polygon is shown in Figure 3.1(c).

In spatial join, the output polygon produced by polygon intersection is not

required. Spatial join is based on a boolean predicate, e.g., Intersects. Intersects

predicate returns true if two polygons have line segment intersection or a polygon is

inside another polygon. In polygon overlay, output polygon needs to be computed

as well. This requires finding all line segment intersections as well as vertices of the

polygon that are inside another polygon. Because of this difference, polygon overlay

is computationally more expensive than spatial join. In our work, we compute all

the segment intersections and the vertices of a polygon that are inside another one.

The number of segment intersections (can be quadratic in the worst case) is variable

for each candidate pair, so handling it on GPU either requires redundant

computation because of counting the number of intersections a priori or using

atomic locks while storing them.

3.3.2 PolySketch Algorithm

Listing 3.1: Tile Data Structure

s t r u c t T i l e {

i n t s t a r t , end ;

ver tex ∗v ; // ver tex array

MBR mbr ; //MBR of v [s t a r t] to v [end]

} ;

Sketch of a polygon/polyline is made by tiling its boundary in such a way

that one tile represents an MBR of the vertices in that tile. These tiles are

contiguous and two adjacent tiles share a vertex. A sketch is designed as a

lightweight representation to be used in the filter phase of a filter-and-refine

algorithm in a spatial computation, e.g., join, overlays. Figure 3.2 shows the

[26]

hierarchical tiling approach. A tile is defined as a C structure. When compared to

MBR of a geometry, a sketch of a geometry has less dead-space. As such, better

filter efficiency is possible at the cost of additional space requirements.

Figure 3.2: PolySketch of polyline data composed of tiling at three different levels.

A PolySketch for a geometry with n vertices and tile length set as b consists

of
⌈
n
b

⌉
tiles. Since, in each tile, an MBR for the vertices in that tile needs to be

computed, building a sketch of a polygon is O(n) operation. An MBR of an entire

geometry is also O(n) operation. As will see later in the experimental results,

sketching provides a space-time tradeoff because of its hierarchical nature.

A tree can be constructed to represent a hierarchy of PolySketches at

different levels. Using the leaf-level tiles, internal nodes of the tree can be

constructed using union of two successive tiles. An MBR of a polygon can be

thought of as its level 0 sketch with its start index as 0 and end index as the

number of vertices in the polygon. For a polygon with N vertices, there are O(log

N) sketches possible in a tree-based representation. However, it suffices to use a few

levels only as shown in Figure 3.2 for space-efficiency.

[27]

(a) (b) (c)

Figure 3.3: Improve approximation using PolySketch

As shown in Figure 3.3(a), the black line is from one layer and two red

polygons are from another layer. We will get two candidate tasks by using their

MBRs. Using PolySketch and a small tile size as shown in Figure 3.3(c), there is no

overlap and we do not need to perform the refine step for them. Therefore,

PolySketch can minimize dead space and discard more candidate tasks compared

with using the standard R-tree.

Figure 3.4: Polygon intersection using PolySketch. Tiles for each polygon is shown
in different colors.

As shown in Figure 3.4, there are two polygons P1 from layer1 and Q1 from

[28]

layer 2. The tile-size is set as five line segments. Q1 consists of twenty-one line

segments, so it is divided into five tiles. For polygon intersection between P1 and

Q1, we first check if their corresponding tile-MBRs overlap or not. If some

tile-MBRs from P1 and Q1 overlap, we record those tile pairs and use the LSI

function for those pairs. If there is no tile-MBR overlap, we discard this task for the

LSI function. In Figure 3.4, we can see that there are three pairs of tiles that have

overlap. A tile located in the lower left corner of Q1 overlaps with two tiles located

in the right-side corner of P1. Similarly, another tile located in the upper left corner

of Q1 overlaps with one tile located in the upper right corner of P1. Other tiles and

their corresponding vertices can be safely ignored in the LSI function.

Checking if two tile-MBRs overlap is computationally cheaper than finding

the segment intersection between two line segments. In one of the datasets that we

have used, about 13% of polygons have more than 500 vertices. Since, a tile’s MBR

contains a fraction of the vertices of a polygon, using it in place of actual vertices in

the filter phase is a cost-effective strategy. Algorithm 1 shows how to apply

PolySketch Filter and Refine for polygon intersection tasks using compiler

directives supported by OpenACC.

3.4 Experimental Setup and Results

3.4.1 Datasets

We have used three datasets to evaluate our system: (1) Urban, (2) Water, and (3)

Lakes. The details are shown in Table 3.1. Urban and Water are from

http://www.naturalearthdata.com and http://resources.arcgis.com. The third

dataset (Lakes) is from http://spatialhadoop.cs.umn.edu/datas ets.html.

[29]

Algorithm 1 Segment Intersections using PolySketch Filter

1: #pragma acc data copyin(layer1Polygons, layer2Polygons) copyout(line segment
intersections)

2: #pragma acc parallel
3: #pragma acc loop
4: for each taskID ∈ taskArray do
5: get polygon pair (p,q) using taskID
6: #pragma acc loop
7: for each tile tp ∈ p.tiles do
8: Calculate tp.MBR
9: end for
10: #pragma acc loop
11: for each tile tq∈ q.tiles do
12: Calculate tq.MBR
13: end for
14: #pragma acc loop reduction (numSegIntersections)
15: for each tile tp ∈ p.tiles do
16: #pragma acc loop
17: for each tile tq ∈ q.tiles do
18: if (tp.MBR overlaps tq.MBR) then
19: Call LSI(tp.segments, tq.segments)
20: #pragma acc atomic
21: store segment intersections
22: end if
23: end for
24: end for
25: end for

Table 3.1: Three real datasets used in our experiments

Label Dataset Polygons Segments Size

Urban
ne 10m urban areas
ne 10m states provinces

11,878
4,647

1.1M
1.3M

20MB
50MB

Water
USA Water Bodies
USA Block Boundaries

463,591
219,831

24M
60M

520MB
1300MB

Lakes
Lakes
Sports

7.5M
1.8M

277M
20M

9GB
590MB

[30]

3.4.2 Hardware Description

We have used Intel Xeon E5-2695 multi-core CPU with 45MB cache and base

frequency of 2.10GHz. We have used two different kinds of GPU to run the

experiments, namely, Titan V and Titan Xp. Titan V is a more powerful GPU and

its architecture is NVidia Volta. It has 640 Tensor Cores, 12 GB HBM2 memory,

5120 CUDA Cores, and its memory bandwidth is 652.8GB/s. The architecture of

Titan Xp is Pascal. It has 12 GB GDDR5X memory, 3840 CUDA Cores, and its

memory bandwidth is 547.7GB/s. For experiments on a single GPU, we have used

Titan V. When using multi-GPUs, we used one Titan V and three Titan Xp. The

PGI compiler version is 18.10.

3.4.3 Performance of PolySketch Compared to CMBR

For analysis, let us consider that each task has two polygons; P from layer 1 and Q

from layer 2. For one task, P has m line segments and Q has n line segments. For

the LSI function, every line segment from P should be compared with all line

segments from Q. The workload is m ∗ n for every task. Therefore, the total

workload for the LSI function is the summation of the workload of individual tasks.

The Application of CMBR or PolySketch filter decreases the line segments in each

task. This leads to workload reduction.

Tables 3.2, 3.3, and 3.4 show PolySketch and CMBR’s effect on reducing the

workload and the number of line segments for the LSI function for different

datasets. (In the tables, Sketch means PolySketch) We can see that both CMBR

and PolySketch can reduce a lot of line segments and the workload. PolySketch

works better than CMBR overall to reduce the total workload which is directly

related to the run-time. Therefore, we can get better execution time results by using

PolySketch.

[31]

Another advantage of PolySketch is that it is easier to implement using

compiler directives. We only need to record overlapping tiles. Therefore, we

implemented both PolySketch and LSI function together using OpenACC. For

implementing CMBR, we need to calculate their CMBRs, test and store the line

segments that overlap with the CMBRs. We implemented CMBR to preprocess

data on CPU and run the LSI function on GPU.

To be fair, we show CMBR time and its LSI function time separately for

CMBR Filter so that we can see how much time the LSI function took. We show

execution time for PolySketch construction and LSI function together for

PolySketch Filter. For the bigger data, PolySketch method’s time which includes

PolySketch time and its LSI function time is better than the CMBR method’s LSI

function time which does not include CMBR time. For other data sets, PolySketch

method’s times are similar to the CMBR method’s LSI function times which do not

include CMBR time.

Table 3.2: Sketch and CMBR effect on the LSI function for Water dataset

Water No filters With CMBR With Sketch
Time(s) 10.47 10.36 + 4.53 1.39
workload 411,876,982,358 16,327,012,938 1,789,226,826
of segments (L1) 1,036,879,194 26,844,066 242,685,263
of segments (L2) 1,996,217,931 30,765,554 145,134,707
of tasks 1,020,458 274,283 321,658

Table 3.2 shows the result for the Water dataset. We can see that

PolySketch is more effective in reducing the workload compared to CMBR. As we

mentioned before, for some polygon pairs, their CMBRs can be very large. This

leads to less effective filtering of line segments in those CMBRs, which in turn

increases the workload in the refinement phase.

If we only consider the number of line segments present in each individual

layer after the application of the CMBR filter, we can see that CMBR is quite

[32]

effective in this scenario. This is due to the fact that when the overlap area between

two polygons is small, their CMBR will have fewer line segments.

When we consider line segment reduction in a single layer case, PolySketch

is less effective, even though it is quite effective in workload reduction compared to

CMBR. This discrepancy can be explained by the way we count the number of line

segments in a tile after the filter phase. For PolySketch, since one tile of a polygon

may overlap with more than one tile of another polygon. Therefore, when counting

the number of line segments in a tile after using PolySketch filter, we count those

line segments more than once. However, to calculate the workload, we need to

consider the line segments in all the candidate pairs from both layers. The workload

in the LSI function directly affects the execution time. Table 3.2 also shows that the

execution time of using PolySketch + LSI function is even shorter than the

execution time of the CMBR + LSI function.

Table 3.3: Sketch and CMBR effect on the LSI function for Urban dataset

Urban No filters With CMBR With Sketch
Time(s) 0.4 0.23 + 0.03 0.06
workload 6,453,160,088 25,737,640 7,489,801
of segments (L1) 3,497,270 914,074 834,146
of segments (L2) 65,476,891 78,492 847,581
of tasks 28,687 8,166 9,729

Table 3.4: Sketch and CMBR effect on the LSI function for Lakes dataset

Lakes No filters With CMBR With Sketch
Time(s) 2.20 9.4 + 0.51 1.17
workload 29,289,344,523 260,210,378 37,464,000
of segments (L1) 1,932,905,302 4,061,067 7,716,460
of segments (L2) 76,801,765 1,763,838 6,143,938
of tasks 692,435 132,888 201,107

Table 3.3 shows the results for the Urban dataset. We can see that

[33]

PolySketch works better than CMBR in reducing the total workload. For

PolySketch method, the run-time which includes PolySketch time and LSI time is

similar to the time of the LSI function after using CMBR Filter. Table 3.4 shows

the results for the Lakes dataset. For Lakes dataset as well, PolySketch reduces a

considerable amount of workload compared to CMBR.

One of the intentions of these two filters is to discard the invalid tasks for the

LSI function so we can use GPU efficiently only for the valid tasks where two

polygons may have line segment intersection(s). To see our filter’s efficiency in

discarding invalid tasks for the LSI function, we define its efficiency as

DTask =
The number of tasks discarded

The original number of tasks
(3.1)

Table 3.5: Sketch and CMBR effect on reducing tasks of the LSI function for
different datasets

Water Urban Lakes
CMBR 73.13% 71.53% 80.81%
Sketch 68.48% 66.09% 70.96%

Table 3.5 shows CMBR and PolySketch efficiency percentage for discarding

invalid tasks. We can see that both CMBR and PolySketch can discard most of the

tasks for the LSI function and CMBR is more effective in comparison. However, we

use PolySketch to reduce tasks as well as workload. This is due to the fact that our

compiler directive based CMBR filter implementation is slower compared to

PolySketch filter implementation.

For quantitative evaluation, here we describe the equations for workload and

line segment reduction. In the equations below, C is the candidate set (task), for a

candidate pair (i,j), Ei and Ej are the number of the line segments in ith and jth

polygons. The symbols with hat notation show the reduced number of line segments

[34]

due to hierarchical filtering. Using these symbols, we define the workload reduction

percentage and line segment reduction percentage as

RPWorkload =

1−

∑
(i,j)∈C

∣∣∣Êi

∣∣∣ ∗ ∣∣∣Êj

∣∣∣∑
(i,j)∈C |Ei| ∗ |Ej|

 ∗ 100% (3.2)

and

RPLine-Segment =

1−

∑
i∈C

∣∣∣Êi

∣∣∣∑
i∈C |Ei|

 ∗ 100% (3.3)

Table 3.6: Sketch effect on reducing workload and line segments by the LSI function
for three datasets using percentage.

Sketch for
LSI
Function

The workload
reduction
percentage

The segments
reduction
percentage for L1

The segments
reduction
percentage for L2

Water 99.57% 76.59% 92.73%
Urban 99.88% 76.15% 98.7%
Lakes 99.87% 99.6% 92%

Table 3.7: CMBR effect on reducing workload and line segments by the LSI
function for three datasets using percentage.

CMBR
for LSI
Function

The workload
reduction
percentage

The segments
reduction
percentage for L1

The segments
reduction
percentage for L2

Water 96.04% 97.41% 98.46%
Urban 99.6% 73.86% 99.88%
Lakes 99.11% 99.79% 97.7%

Tables 3.6 and 3.7 show the effect of PolySketch and CMBR Filter in

reducing workload and line segments of each layer for the LSI function for three

datasets. PolySketch Filter also reduces the number of line segments from both

layers. In some cases, it can discard more line segments from a layer where CMBR

[35]

Filter is not so effective. In addition, PolySketch Filter can also reduce more

workload compared to CMBR which is more related to the execution time.

Figure 3.5: The workload in LSI function after using CMBR or Sketch.

Figure 3.5 shows the workload for the LSI function after using CMBR or

PolySketch Filter. As we can see that PolySketch Filter works well in reducing

more workload compared with CMBR Filter. For the Water dataset, we can see

that the workload after using PolySketch is 11% of the workload after using

CMBR. For the Urban dataset, the workload after using PolySketch is 29% of the

workload after using CMBR. For the Lake dataset, the workload after using

PolySketch is 14% of the workload after using CMBR.

For the Water dataset, the number of thread blocks chosen by PGI compiler

was 65535 and the number of threads in a block was 128 for PolySketch with the

LSI function. Even when the number of tasks was greater than 65535, PGI compiler

generated the grid with 65535 thread blocks.

[36]

3.4.4 Performance of Using Different PolySketch Sizes

The real-world datasets include small as well as large polygons. Finding an ideal

tile-size for a PolySketch Filter is difficult. Tile-size of a sketch means the number

of line segments in a tile for PolySketch Filter algorithm.

Table 3.8: The performance of using different tile-size for Water dataset

Water Current workload Current tasks Time(s)
15 (5) 1,789,226,826 321,658 1.39
15 (10) 1,875,845,026 340,303 1.49
15 1,970,120,151 355,172 1.55
20 (10) 2,554,936,706 356,818 1.62
20 2,772,593,129 385,327 1.82
30 4,460,548,392 442,279 2.29

Table 3.8 shows the performance of using different tile-size for the Water

dataset. We can either use the same tile-size for both polygons or use different

tile-size. Based on our experience, we recommend different tile-size for small and

large polygons in a task. For example, in our experiments, we set tile-size as 15 for

large polygons and 5 for small polygons. In our experiment, we found that if the

number of line segments of a polygon is smaller than 400, the tile-size of 5 worked

well. For larger polygons, the tile-size of 15 worked well in reducing the workload

and execution time. As shown in Table 3.8, in the first column, the first number is a

tile-size. If there is a bracket, it means we used two tile-sizes and the number in the

bracket is the tile-size used for the small polygon. The second column shows the

current workload for the LSI function after using PolySketch Filter. The third

column shows the number of valid tasks for the LSI function after using

PolySketch. The fourth column is the execution time of running PolySketch and

LSI function together. We can see that a smaller tile-size works better. It can

reduce more workload and discard more invalid tasks. The execution time is also

[37]

less. In general, if the tile-size is small enough, we can discard more tile overlap

pairs and only use the LSI function for the overlapping tile pairs. Finally, for Water

and Lakes, we set tile-size as 15 for large polygons and 5 for small polygons. For the

Urban dataset, we set the tile-size as 10.

3.5 Conclusion

We have introduced a new filtering technique based on PolySketch concept which

can speedup the LSI function used by spatial join and map overlay computations

involving large polygons and polylines. PolySketch is a recursive tiling of polygon

boundary only; the interior of a polygon is disregarded altogether. As such, the

sketch of a polygon does not work in the same way as a polygonal MBR or classical

polygon partitioning because PolySketch approximates the boundary only. In

short, PolySketch is not a replacement for MBR in classical filter and refine

scenario. It must be used in conjunction with the point-in-polygon test (PNP) to

implement standard intersects predicate in spatial join.

Creating a PolySketch is a linear time operation, on the other hand, convex

hull algorithms require O(nlogn) time. In addition to representing geometries using

MBRs, convex and concave hull can also be used. PolySketch is similar to the

hierarchical bounding technique used for line-curve intersection and curve-curve

intersection [66]. We have implemented this filter and refine technique by using

OpenACC. PolySketch can be constructed in a hierarchical manner efficiently on

GPU.

[38]

Chapter 4
Hierarchical Filter and Refinement System over Large Polygonal Datasets
on CPU-GPU

4.1 Introduction

In this chapter, we introduce our hierarchical filter and refinement technique that

we have developed for parallel geometric intersection operations involving large

polygons and polylines. The inputs are two layers of large polygonal datasets and

the computations are spatial intersection on a pair of cross-layer polygons. These

intersections are the compute-intensive spatial data analytic kernels in spatial join

and map overlay computations. Spatial join processing was also studied in the

paper [67].

When two layers of geometries are overlaid or superimposed in a geographic

map, there can be millions of candidate pairs whose MBRs have overlap and need

further refinement using computational geometry algorithms. Even though there are

PRAM based parallel algorithms available in literature [22, 7], optimal O(nlogn)

algorithms for geometric intersection are not available on GPUs. On CPUs,

sequential plane-sweep based algorithms are used. For practical parallel

implementations, naive O(n2) algorithms or grid partitioning are used [6, 52]. Even

on massively parallel hardware, the quadratic runtime of the naive algorithms

results in unacceptable high latency [14]. Grid partitioning may not handle skewed

data efficiently. Moreover, partitioning polygons in a uniform or adaptive grid has

the disadvantage of a polygon spanning multiple grid cells, thereby increasing

redundancy due to duplication of geometries across grid lines.

For the original data, we do not use spatial partitioning using grids. Our

approach is to use a combination of filter techniques to reduce the workload in the

refinement phase. The input to CMBR and PolySketch Filters is the list of

[39]

candidate pairs produced by querying R-tree data structure built using the MBRs of

the input geometries. We refer to these candidate pairs as tasks because we process

them concurrently on a GPU.

A collection of filters applied in a hierarchical manner for speeding up

geometric intersection on GPUs was called as Hierarchical Filter and Refine

(HiFiRe) technique. The filters are designed to exploit the parallel GPU

architecture and minimize the workload inherent in the refinement step of spatial

computations by improving the filter efficiency.

We have implemented this filter and refine technique by using OpenMP and

OpenACC. After using R-tree, on average, our filter technique can still discard 69%

of polygon pairs that do not have segment intersection points. PolySketch filter

reduces on average 99.77% of the workload of finding line segment intersections.

PNP based task reduction and Striping algorithms filter out on average 95.84% of

the workload of Point-in-Polygon tests. Our CPU-GPU system performs spatial join

on two shapefiles, namely USA Water Bodies and USA Block Group Boundaries

with 683K polygons in about 10 seconds using NVidia Titan V and Titan Xp GPU.

Table 4.1: Run-times by using different GPUs without filters

Water Urban

Titan V
LSI function (s) 10.47 0.4
PNP function (s) 33.44 0.99
Total time (s) 43.91 1.39

Titan XP
LSI function (s) 22.16 0.82
PNP function (s) 92.99 2.51
Total time (s) 115.15 3.33

4.2 Motivation

First, we used classical filter and refine technique using a CPU-GPU system for LSI

and PNP functions accelerated by OpenACC pragmas. R-tree is used for filtering

[40]

on a CPU. Table 4.1 shows the results. Even with a powerful GPU, it takes about

44 seconds in total for the larger dataset. This is the motivation behind developing

a hierarchical filter and refinement system.

4.3 Hierarchical Filter and Refinement System

4.3.1 System Design Overview

Algorithm 2 Hierarchical Filter-based Segment Intersection

1: Input: Two polygon layers L1 and L2
2: Build R-tree using MBRs of polygons from L1
3: tasks ← Rtree Query using MBRs of polygons from L2
4: newTasks ← Apply CMBR Filter on tasks
5: Apply PolySketch Filter for each newTask
6: Refine: Line Segment Intersection Function

In this section, we present how our hierarchical filter and refinement system

works. Given two layers of polygons, Algorithm 2 shows the order of application of

different filters to find cross-layer line segment intersections in the refine phase. At

first, we check which polygon’s MBR overlaps with others by using R-tree. If some

MBRs overlap, we store these polygon pairs as tasks (T) and every task has two

polygons. Then we use CMBR Based Task Reduction Algorithm to check which

tasks are valid tasks (T1) or invalid tasks (T2) for the LSI function. After this, we

fix the tile-size for creating tiles for the valid tasks (T1) and use PolySketch Filter

to reduce the number of line segments and workload. In the last step, we use the LSI

function to detect the tasks where two polygons have line segment intersection(s).

We illustrate the benefit of our new approach using an example that shows

how hierarchical filtering reduces the overall workload. Let us consider we have two

layers of polygons L1 and L2. L1 and L2 consist of 310 and 500 polygons

respectively. Table 4.2 shows nine candidate pairs and each pair has two polygons

[41]

Table 4.2: Candidate pairs before hierarchical filtering

1 2 3 4 5 6 7 8 9

L1
P3 P3 P21 P24 P88 P88 P99 P236 P300
35 35 199 652 998 998 152 4652 52

L2
Q5 Q7 Q56 Q3 Q5 Q12 Q5 Q5 Q457
65 22 659 832 65 529 65 65 1526

Table 4.3: Eliminating line segments by hierarchical filtering

1 2 3 4 5 6 7 8 9

L1
P3 P3 P21 P24 P88 P88 P93 P236 P427
35 0 156 0 0 451 112 324 52

L2
Q5 Q7 Q56 Q3 Q5 Q12 Q5 Q5 Q637

0 0 34 0 65 256 32 30 0

(P and Q) from L1 and L2 whose MBRs overlap with each other. The number of

vertices in a polygon is also shown below the polygon ID. As shown in Table 4.3,

the application of PolySketch Filter eliminates some line segments that can be

safely ignored from further refinement. Moreover, in case of polygons from a few of

the candidates, MBR-based Filter eliminates all the line segments. As a result, we

can discard the pairs that have zero line segments after applying hierarchical

filtering. Since, polygon intersection with n and m line segments is an O(n ∗m)

time algorithm, reducing the line segments by filtering is beneficial.

PNP operation for Polygon: There are some cases when a polygon is

contained inside another polygon completely. In spatial database, these cases belong

to the within or contains spatial relations. Finding if a point is inside another

polygon is O(n) operation because all the n segments of the polygon need to be

examined. As such, a brute-force check for an entire polygon is quadratic in the

number of vertices of a polygon. When a polygon A is contained inside another

polygon B, then MBR of A is also contained inside MBR of B. However, the reverse

is not always true. Our algorithm for PNP can detect these contains relation

without resorting to a quadratic algorithm. Our algorithm can also detect those

[42]

cases where MBR of A is contained inside MBR of B, but A and B are disjoint

polygons. As a result, our system can safely ignore these tasks from the expensive

refinement operation later. Identifying these cases correctly is possible because we

take advantage of the CMBR filter for optimizing PNP operations as well. More

details for the PNP-based Task Reduction Algorithm are in Subsection 4.3.4.

Now we will discuss the hierarchy of filters that our system employs to

reduce the number of tasks and overall workload.

4.3.2 CMBR Filter Based Task Reduction

The input to this filter is the list of candidate pairs generated by R-tree queries.

Each candidate consists of a pair of MBR-overlapping geometries. However, by

virtue of CMBR Filter [38], those cross-layer pairs of polygons whose Minimum

Bounding Rectangles (MBRs) intersect but their rectangular intersection does not

contain line segments from both layers can be safely ignored because those pairs will

not have segment intersections. We call such tasks invalid tasks and save

computation time by discarding them from further processing in the LSI function.

An example of an invalid task is shown in Figure 2.2(b).

Our system classifies the pairs that have line segments inside or across

CMBR from two cross-layer polygons as valid tasks; both polygons have segments

that are contained inside or across the CMBR boundary. We store this task because

the polygons can potentially intersect and need further refinement. An example of a

valid task is shown in Figure 2.2(a).

CMBR Filter works well in eliminating some tasks from further refinement.

In Subsection 3.4.3, we compare the execution time performance and filter efficiency

of using PolySketch vs CMBR w.r.t. LSI function.

[43]

4.3.3 Workload Reduction by PolySketch Filter

As shown in Figure 3.4, a polygon can be represented as a collection of tiles. The

tile-size is user-defined. Intersection of two polygons can be expressed as

intersection of their PolySketches. Since, tile-MBR in a PolySketch captures the

actual area covered by line segments in that tile, line segment intersection can be

carried out in two phases: 1) filter phase where tile-MBRs are used for intersection

test and 2) refine phase where we only consider the line segments from those tiles

that have overlap in LSI function. This is the essence of PolySketch Filter.

In CMBR Filter, we need to compare all segments inside the CMBR of one

polygon with all segments inside the CMBR of another polygon. If CMBR is large

as shown in Figure 2.2(a), we cannot decrease a lot of segments from both polygons,

which affects workload in LSI function. However, by using PolySketch, a line

segment in tile A needs to be compared against the segments of only those tiles

which overlap with tile A.

There are certain scenarios where two polygons overlap but it is not detected

by the LSI function. Therefore, we use the PNP function for further filtering of

tasks.

4.3.4 PNP Based Task Reduction Algorithm

In this algorithm, we find out the vertices of a polygon that are contained inside

another polygon. This is required to construct the output polygon for each task.

We also find out those tasks where one polygon is entirely inside another polygon in

an optimized way. These tasks result in valid output pairs for spatial join or

polygon overlay operation. We also want to discard those tasks where polygons are

disjoint so that we do not have to invoke quadratic PNP tests for an entire polygon.

Figure 4.1 shows the flow chart of this algorithm.

[44]

PNP based algorithm is used after the LSI Function. The intention of this

algorithm is to discard invalid tasks for the PNP function, divide valid tasks into

two different types, do some pre-processing steps and use appropriate PNP functions

for them. Before we use LSI Function, we use CMBR Filter to preprocess data to

discard some invalid tasks for the LSI function. However, we cannot discard these

tasks for the PNP function. We need to check all tasks (T) for the PNP function.

Figure 4.1: Classifying PNP tasks after CMBR Filter

Based on the output of CMBR Filter results, we classify the overall tasks so

that we can treat them differently in order to reduce the PNP computation time.

[45]

We divide all tasks (T) into three different types of tasks (S1, S2, and S3). S1

includes the tasks where two polygons have line segment intersections. S2 includes

the tasks where two polygons do not have line segment intersection and guaranteed

not to intersect.

(a) (b)

(c) (d)

(e) (f)

Figure 4.2: PNP cases: (a) Two polygons have line segment intersections, (b) and
(c) Two polygons touch each other, (d) Two polygons’ MBRs overlap but there is
no actual intersection, (e) One polygon is inside another polygon but there is no line
segment intersection, (f) The smaller polygon is not inside another polygon but the
smaller MBR is inside another MBR.

S3 includes the tasks where two polygons do not have line segment

intersection but one polygon may be inside another polygon. Then, we use the

Striping Algorithm to preprocess data for the tasks in S1 which will be used in the

[46]

Stripe-based PNP function. Furthermore, we use the constant vertex PNP function

only for the tasks in the S3 category. We discard the tasks in the S2 category. This

helps in reducing a lot of PNP workload. For implementing filter and refinement

steps, we use OpenMP and OpenACC to parallelize them on the CPU-GPU system.

Valid tasks for Stripe-based PNP function: If two polygons have line

segment intersection(s) (e.g. Figure 4.2(a)), we store the pair for Striping algorithm

and Stripe-based PNP Function. Moreover, we also store special cases as shown in

Figure 4.2(b) and Figure 4.2(c) for further processing.

Valid tasks for constant vertex PNP function: If two polygons do not

have any line segment intersection, we check their MBRs. If one MBR of a polygon

is inside another MBR, we store this task for constant vertex PNP function. The

reason is that the smaller polygon may be totally inside the larger polygon when

they do not have a line segment intersection. In other words, all vertices of the

smaller polygon may be inside the larger polygon. We also store which MBR

includes another MBR because we only need to check whether the smaller polygon

is inside the larger polygon. In addition, we do not need to check all vertices of the

smaller polygon. It suffices to check a few vertices of smaller polygon whether they

are inside or outside the larger polygon. Then, we know the smaller polygon is

inside or outside the polygon. For illustration, Figure 4.2(e) and Figure 4.2(f) are

two examples where we invoke the PNP function for only a few vertices. In the

experiments, we consider the output of the PNP test for any five contiguous vertices

to handle this special case.

Invalid tasks for PNP function: If two polygons intersect, there are two

cases - a) there are line segment intersection(s) and b) there is no line segment

intersection but one polygon is totally inside another polygon. Therefore, if two

polygons do not have a line segment intersection and no polygon’s MBR is inside

another polygon’s MBR, they do not intersect. As such, we will discard this task.

[47]

The reason is that if one polygon is inside another polygon, its MBR should be also

inside another polygon’s MBR. As shown in Figure 4.2(d), two polygons do not

have any line segment intersection and no MBR of a polygon is inside another

MBR, so they cannot intersect.

4.3.5 Striping Algorithm and Stripe-based PNP Function

We have used striping to speedup PNP tasks. Striping is a filter technique used to

optimize the PNP function. Once the segments of the polygon are partitioned into

stripes, the PNP test for a vertex needs to consider only the line segments contained

in or crossing a stripe. This reduces the workload for PNP function.

Figure 4.3: An example of striping for Stripe-based PNP function

The area divided into stripes is the red rectangle as shown in Figure 4.3. We

divide the area occupied by the red rectangle into 8 cells. The Striping algorithm

considers all the line segments belonging to a task and maps a line segment to the

cells where there is an overlap. In case a line segment overlaps with two or more

cells, the segment is replicated in those cells. This is carried out by comparing y

co-ordinates of vertices of a line segment with the cell boundaries. For the

Stripe-based PNP function, we need to check the vertices inside a cell only with

[48]

another polygon’s line segments inside or across the same cell. Therefore, the

vertices need to be compared only with those line segments which overlap with the

same cell. For GIS datasets with large polygons, this can potentially reduce a lot of

workload.

Multi-GPUs: After the geometries have been partitioned into multiple

cells, parallel processing of PNP tests can be carried out over multiple GPUs. As

shown in Figure 4.3, there is no dependency among those eight cells. In order to

utilize four GPUs, we can assign two cells to each GPU in a round-robin fashion. In

our experiments, we have leveraged multiple GPUs to distribute PNP-based

computations.

4.4 Performance Evaluation

4.4.1 Performance of PNP Filters

Table 4.4: PNP based task reduction algorithm and striping effect on reducing
workload of the PNP function for both the datasets and the reduction percentage

Original workload Current workload Reduction percentage
Water 411,876,982,358 15,653,774,431 96.2%
Urban 6,453,160,088 291,816,678 95.48%

Table 4.4 shows PNP based task reduction algorithm and striping effect on

reducing the workload of the PNP function for both the datasets and the reduction

percentage. We can see that it reduced most of the workload. One reason is that we

can discard some tasks where two polygons do not have any line segment

intersection and the larger MBR does not contain the smaller MBR. Otherwise,

there are only two types of tasks where we need to use the PNP function. One case

is two polygons have line segment intersection(s) so there should be some vertices

that are inside another polygon. Another case is when two polygons do not have

[49]

any line segment intersection but the larger MBR contains the smaller MBR so one

polygon may be totally inside another polygon. Although we need to use the PNP

function for these tasks, we have appropriate filters and refinement steps for them.

For the first case, we use the Striping method to reduce the vertices, line segments,

and workload. Striping can be effective when the CMBR of two polygons is large.

For the second case, we check only a few vertices of two polygons to see which

polygon is inside or outside another polygon based on our analysis. We only need to

check a few vertices of only one polygon for the PNP function because the larger

polygon cannot be inside the smaller polygon.

(a) (b)

Figure 4.4: The percentage of different types of tasks after using PNP based task
reduction algorithm

Figure 4.4 shows the percentage of different types of tasks after using PNP

based task reduction algorithm. We can see that PNP based task reduction

algorithm is very efficient. For the Water dataset, we need to check all vertices of

polygons only for 12% of the tasks because the polygons of these tasks have line

segment intersection(s). However, we can use the Striping method which is very

helpful to reduce the workload of these tasks and discard some vertices which

cannot be inside another polygon. Then, we use the Stripe-based PNP function. In

addition, for 75% of the tasks, we can only use the constant vertex PNP function (5

[50]

vertices) of a polygon to determine whether they are inside or outside another

polygon and then we know whether this polygon is inside or outside of another

polygon according to our analysis. We can also discard 13% of the tasks and do not

need to do PNP tests for these tasks. The PNP based task reduction algorithm also

works well for the Urban dataset. We can discard 11% of the tasks and perform

constant vertex PNP function for 72% of the tasks. Then, we use the Stripe-based

PNP function for the remaining 17% of the tasks.

Table 4.5: Striping effect on reducing workload for the Stripe-based PNP function
for both the datasets

Original workload Current workload Reduction percentage
Water 156,443,271,335 5,301,138,126 96.61%
Urban 1,254,513,546 14,321,168 98.86%

Table 4.5 shows the Striping algorithm effect on reducing the workload of the

Stripe-based PNP function for both the datasets. Stripe-based PNP function is

applied to the tasks where two polygons have line segment intersection(s). We can

see that it can reduce most of the workload for both datasets. The vertices inside a

stripe need to be tested against the line segments only within the same stripe and

crossing the stripe boundary, instead of all the line segments of a polygon. This

leads to workload reduction. Even the area where we want to do striping is very

large, we can still get benefits.

Table 4.6: PNP based Task Reduction Algorithm effect on reducing workload when
a polygon MBR is inside another polygon MBR

Original workload Current workload Reduction percentage
Water 152,287,577,854 10,352,636,305 93.2%
Urban 4,788,726,632 277,495,510 94.2%

In case when a polygon is inside another polygon, the MBR of a small

[51]

polygon is inside the MBR of a larger polygon. Our PNP-based task reduction

algorithm detects these cases. So, we do not apply the quadratic time PNP tests in

these cases. This results in workload reduction compared to the naive cases.

Table 4.6 shows PNP based task reduction algorithm’s effect on reducing workload

of these cases. We only check five vertices of the smaller polygon to see whether

these vertices are inside or outside of another polygon. Then, we determine whether

the smaller polygon is inside or outside of the larger polygon.

4.4.2 Execution Time Results

Table 4.7: Execution time in seconds

Dataset
1 CPU
thread and
1 GPU

32 CPU threads,
1 GPU for
LSI and PNP

32 CPU threads,
1 GPU for LSI,
multi-GPUs for PNP

Urban 1.39 0.35 0.30
Water 43.92 10.63 7.71

Table 4.7 shows the total run-times for two datasets. The first column’s

result is using 1 thread on CPU and 1 GPU without using our hierarchical filtering.

For testing our system, we used one or more threads on CPU and one or multiple

GPUs to see the difference. The second column’s result is using 32 threads on CPU

to preprocess data and 1 GPU for LSI and PNP function. The third column’s result

is using 32 threads on CPU to preprocess data, 1 GPU for LSI function, and

multi-GPUs for PNP function. We can see that our system works well using

multi-core CPU and multiple GPUs. Although we only use multi-GPUs for the

PNP function, we can still get benefits, especially for the larger dataset.

Tables 4.8 and 4.9 show the details of execution time breakdown for the two

datasets. We can see that our filters are very efficient and we can get benefit by

using multi-GPUs. If the dataset is larger, we can get more benefit by using

[52]

multi-GPUs. For the Water dataset, the time taken by the R-tree filter on CPU is

2.27s. Therefore, the end-to-end time of the system is 9.98s.

Table 4.8: Execution time breakdown details for Water dataset. (NA means it is not
applicable.)

Water
Sketch and
LSI Function
on GPU (s)

Pre-process
for PNP
on CPU(s)

PNP Function
on GPU (s)

Final
Time
(s)

No filters 8.82 NA 35.1 43.92
One GPU
for LSI
and PNP

1.39 4.56 4.68 10.63

One GPU
for LSI,
multi-GPUs
for PNP

1.39 4.55 1.77 7.71

Table 4.9: Execution time breakdown details for Urban dataset. (NA means it is
not applicable.)

Urban
Sketch and
LSI Function
on GPU (s)

Pre-process
for PNP
on CPU(s)

PNP Function
on GPU (s)

Final
Time
(s)

no filters 0.4 NA 0.99 1.39
One GPU
for LSI
and PNP

0.08 0.19 0.08 0.35

One GPU
for LSI,
multi-GPUs
for PNP

0.07 0.19 0.04 0.30

4.4.3 CUDA information

For the Water dataset, the number of grids is 65535 and the number of blocks is 128

for PolySketch with the LSI function. We use multi-GPUs for the PNP function, so

[53]

we run PNP function A and B more times. However, the numbers of grids are still

65535 and the numbers of blocks are still 128.

For the Urban dataset, the number of grids is 28687 and the number of

blocks is 128 for PolySketch with LSI function. As we mentioned before, we run

PNP function A and PNP function B more times because of using multi-GPUs for

the PNP function. For the PNP function B, the numbers of grids are 20629 and 58.

The numbers of blocks are 128. For the PNP function A, the numbers of grids are

4956 and the numbers of blocks are 128.

4.5 Conclusion

We have developed a hierarchical PolySketch-based filter and refine system for

GPUs and evaluated its performance using real-world datasets. Even though the

system was implemented using compiler directives, the performance is very good.

Spatial join on two large datasets can be performed in about 10 seconds. This is an

order of magnitude better performance than the previous work where we did not

leverage hierarchical filtering [14].

[54]

Chapter 5
Efficient Filters for Geometric Intersection Computations using GPU

5.1 Introduction

Geometric intersection algorithms are fundamental in spatial analysis in Geographic

Information System (GIS). Applying high performance computing to perform

geometric intersection on a huge amount of spatial data to get real-time results is

necessary. Given two input geometries (polygon or polyline) of a candidate pair, we

introduce a new two-step geospatial filter that first creates sketches of the

geometries and uses it to detect workload and then refines the sketches by the

common areas of sketches to decrease the overall computations in the refine phase.

We call this filter PolySketch-based CMBR (PSCMBR) filter. We show the

application of this filter in speeding-up line segment intersections (LSI) reporting

task that is a basic computation in a variety of geospatial applications like polygon

overlay and spatial join.

We also developed a parallel PolySketch-based PNP filter to perform PNP

tests on GPU which reduces computational workload in PNP tests. Finally, we

integrated these new filters into the hierarchical filter and refinement (HiFiRe)

system to solve the geometric intersection problem. We have implemented the new

filter and refine system on GPU using CUDA. The new filters introduced in this

paper reduce more computational workload when compared to existing filters. As a

result, we get on average 7.96X speedup compared to our prior version of the

HiFiRe system.

Using PolySketch as one of the filters, a hierarchical filter and refinement

system (HiFiRe) was implemented which is essentially a collection of filters to

speedup geospatial intersection algorithms on a GPU. As shown in HiFiRe, the filter

step is the key to improve the performance.

[55]

PolySketch filter uses sketch of a geometry represented by a set of contiguous

MBRs (tiles) that approximate the geometry [68] instead of a single MBR. Common

MBR filter is based on the common area of overlap between MBRs of the two input

polygons of a candidate. The first new filter proposed here combines the strengths

of PolySketch and CMBR filters and thus we refer to it by PolySketch-based CMBR

(PSCMBR) filter. The second new filter is a PNP filter that uses PolySketch

representation of the geometries to quickly find whether the points of a geometry

are inside or outside of a given polygon. The contributions of this Chapter are as

follows:

• PSCMBR Filter: Compared to the standard R-tree filter, the PSCMBR filter

discards on average 76% of candidate pairs that do not have line segment

intersection points. The workload after using it is on average 98% and 90%

smaller than using CMF and PolySketch filter respectively.

• PolySketch-based PNP filter: The workload after using it is on average 60%

smaller than using Stripe-based PNP filter [68]. The workload after using

tile-based PNP filter is on average 98% smaller than using constant vertex

PNP filter [68].

• With the improved HiFiRe system equipped with new filters, we get on

average 7.96X speedup compared to our prior version of the HiFiRe system.

The processing rate of this new filter and refine system on GPU for reporting

line segment intersection is 61 million segments/sec on average for real

datasets.

5.2 Related Work

Common Minimum Bounding Rectangle: As shown in Figure 5.1(a), the blue

and red rectangles are MBRs that each encloses a polygon and the green rectangle

[56]

is their CMBR.

(a) (b)

(c)

Figure 5.1: Two input polygons with (a) CMBR (green rectangle), (b) PolySketch
showing the tiles and (c) only overlapping tiles after applying PolySketch filter.

Common MBR filter (CMF) is an efficient filter based on the idea of

CMBR for line segment intersection because it can ignore the line segments that do

not overlap with the CMBR, which can reduce the computational workload in LSI

refinement. In addition, it is possible that two polygons do not overlap but their

MBRs overlap. CMF can identify this scenario and avoid expensive polygon

intersection. This is the rationale for using a filter. However, the feature of CMBR

makes it less effective if the CMBR is large as shown in Figure 5.1(a). Most line

[57]

segments are still in CMBR and cannot be ignored. In addition to the CMF

method, to improve the efficiency of MBR, the paper [45] introduces the clipped

bounding box (CBB) that includes a set of clip points that clip away empty corners

of MBRs. Danial et al. presented two spatial filters, namely, CMF and

Grid-CMF [38, 39]. CMF is based on the common MBR area between two

cross-layer polygonal MBRs. Grid-CMF further partitions the Common MBR area.

Both filters have been used in spatial join using GPU to filter out candidate pairs

that do not need further refinement.

PolySketch: Figure 5.1(b) shows an example of PolySketch. We can see

that each polygon contains some tiles which contain different line segments. The

performance of PolySketch is affected by the tile-size. Using different tile-sizes, we

can get more or fewer tiles. Generally, by using smaller tiles, we may discard more

parts of polygons. We can discard the tiles whose MBRs do not overlap with others.

Figure 5.1(c) shows the candidate tiles. The line segments within one tile should be

compared with the line segments of other overlapping tiles.

CMF vs PolySketch: CMF is different from the PolySketch filter because

all line segments overlapping the CMBR of two polygons should be compared

against each other in CMF. PolySketch can better handle the case where CMBR is

large [68]. PolySketch filter checks every tile of a polygon with all tiles of another

polygon. By using smaller tiles, the line segments within a tile are only compared

with the line segments of the overlapping tiles. Most parts of polygons that cannot

have intersection points can be safely ignored. However, the line segments within a

tile cannot be discarded if a tile overlaps with others. All line segments within this

tile should be tested. In short, there is room for further improvement in the

PolySketch filter when the number of candidate tile pairs is high and each tile

contains a large number of line segments. In contrast to PolySketch, CMBR can

contain any number of line segments. All line segments which do not overlap with

[58]

the CMBR will be discarded. PolySketch has been compared to CMF in [68].

Another prior work in this area uses PixelBox technique which is pixel

approximation of polygons for computation [25]. Geometries represented as 2D

co-ordinates are converted to the raster format (pixels) to leverage image processing

using a GPU [52]. Another work by Audet et al. [6] uses uniform grid for polygon

overlay. Space division techniques like gridding can potentially increase the problem

size by replicating the line segments crossing the grid boundaries. In a filter and

refine algorithm, planesweep technique is used in the refine phase when the dataset

fits in the memory. Geometric intersection using GPU has been studied earlier for

planesweep algorithm [14].

5.3 PSCMBR Algorithm

5.3.1 Overview of PSCMBR Filter

As we discussed before, CMF and the PolySketch filter were used in the geometric

intersection computations. These filters have their advantages and drawbacks. Our

new PSCMBR filter is a more efficient filter that can handle various types of

polygons with varying degrees of overlaps. It combines the strength of CMF and

PolySketch Filter. PSCMBR first creates sketches of the geometries. Then, it checks

which tiles of a polygon overlap with tiles of another polygon and the overlapping

tiles are candidate tile pairs. The tiles that do not overlap with other tiles are

discarded. After this, we calculate the common area of overlap for every candidate

tile pairs and check whether both tiles have line segments overlapping with the

CMBR. Those candidate tile pairs that do not have any line segments in the CMBR

are discarded. If they do, we will perform the LSI function only for the line

segments overlapping with the CMBR instead of all line segments within the tiles.

So, in essence, CMBR filtering is used at the granularity of tiles instead of polygonal

MBRs.

[59]

Figure 5.2: PSCMBR filter with four tile-CMBRs. Only the common area of
overlap between the candidate tile pairs are retained (see Figure 5.1(c)).

We illustrate the PSCMBR filter in Figure 5.1. Figure 5.1(b) is the first step

in using PSCMBR where we create sketches of polygons. There are four candidate

tile pairs shown in Figure 5.1(c), where one tile of a polygon overlaps with four tiles

of another polygon. Then, the PSCMBR filter calculates the CMBRs of a pair of

tiles corresponding to the four candidate pairs. The four rectangles in Figure 5.2 are

their CMBRs. The two candidate tile pairs whose CMBRs are yellow do not need

further refinement because only one tile has line segments overlapping the CMBR.

Since another polygon does not have any line segment overlapping the CMBR, there

cannot be any line segment intersection. Therefore, we do not need to perform the

refinement phase. Another two candidate tile pairs whose CMBRs are purple need

further refinement because both polygons have line segments overlapping their

CMBRs. In addition, only line segments overlapping the purple rectangles need to

be checked instead of all line segments within the tiles. This leads to a reduction in

workload in the refinement phase.

Execution time model of intersection of two geometries using

PSCMBR: We describe the workload in terms of tile-MBR intersections (two

filters) and refinement using LSI. Table 5.1 defines the symbols used in modeling the

[60]

Table 5.1: Symbol Table

Symbol Definition
TMBR Time for checking if two MBRs overlap
TCMBR Time for checking if a line segment overlaps CMBR
TLSI Time to find intersection point of two line segments
P,Q Number of line segments in two input geometries
TP , TQ Number of tiles in the two input geometries
C Number of candidate tile pairs after PolySketch

Ĉ Number of candidate tile pairs after CMBR

P̂ , Q̂ Number of line segments in CMBR

run-time of intersection of two geometries (polygons). TP and TQ are tile-counts for

two polygons with P and Q numbers of line segments respectively. P
TP

and Q
TQ

are

number of line segments in a tile (tile-size) of the respective geometries.

Figure 5.3: PSCMBR filter for reporting line segment intersections (LSI). Two
polygons A1 and B1 are the input and the output is list of intersections.

Figure 5.3 shows the data-flow and control-flow in the PSCMBR filter and

refine system. The input of PSCMBR is the candidate tasks. As shown in

Figure 5.3, A1 and B1 are two polygons of a task. Output of the ‘check tiles’ step is

a collection of candidate tile-pairs of size C. Output of the ‘check CMBR’ step is a

collection of candidate tile-pairs of size Ĉ. Because of CMBR filtering on candidate

tile pairs, we have Ĉ <= C. Moreover, P̂ <= P and Q̂ <= Q. Using PolySketch,

the run-time is given by the following equation:

[61]

T = TP · TQ · TMBR + C · P
TP

· Q
TQ

· TLSI (5.1)

0.008
0.015

0.029
0.057

0.12
0.26 0.7

10

20

30

Input Tile-pairs%

O
u
tp

u
t

C
an

d
id

at
e

ti
le

-p
ai

rs
%

Figure 5.4: Effect of tile-size on the number of candidate tile-pairs. Input
Tile-pairs%=Tp∗Tq

P∗Q *100. Candidate tile-pairs% = C
Tp∗Tq

*100. Each line denotes the

output candidate tile-pairs% for a given input polygon-pair.

In Figure 5.4, we show the relationship between tile-size and the effectiveness

of the PolySketch filter. The maximum number of tiles in a polygon is bounded by

the number of line segments in the polygon because we do not split a line segment.

Therefore, for calculating the input tile percentage, we use the product of P and Q.

Tile-size determines the number of tiles used in the filter. Large (small) tile-sizes

correspond to a very small (large) number of input tiles. In general, small tile sizes

lead to better filter efficiency. However, a small tile size means a larger number of

tiles which increases the overhead of the filter. So, there is a tradeoff between filter

efficiency and run-time performance of the filter. Table 5.2 shows an example of the

input polygon pair of Figure 5.4. For spatial join and polygon overlay workloads, it

is difficult to estimate good tile size because as we can see the output-size varies

[62]

from one candidate pair to another.

Table 5.2: An example of input polygon pair in Figure 5.4

P Q Tile-size for A1 Tile-size for B1 Input tile-pairs %
72997 101242 128 128 0.006%
72997 101242 15 15 0.44%

We assume that the MBR overlap test is computationally cheaper than the

line segment intersection for a pair of line segments, TMBR <TLSI . In addition,

TCMBR <TLSI . From Equation 1, the LSI workload depends on the candidate

tile-pairs. Overall performance depends on the delicate balance between the

tile-MBR intersections and line segment intersections as shown in Equation 1.

Using PSCMBR, the run-time is given by the following equation:

T = TP · TQ · TMBR + C · P
TP

· Q
TQ

· TCMBR + Ĉ · P̂ · Q̂ · TLSI (5.2)

5.3.2 Advantages of PSCMBR Filter

As we discussed before, the existing CMF is not efficient if the CMBR of two

polygons is very large. In contrast to CMF, PolySketch can handle this case well by

using small tiles. In addition, using CMF also requires calculation and storage of

the line segments overlapping the CMBR, which also takes more time if the CMBR

is large. However, if the CMBR of two polygons is small, CMF works better than

PolySketch because the tiles of PolySketch contain a fixed number of line segments

and we can only ignore or keep all line segments within the same tile. CMBR can

contain any number of line segments.

PSCMBR can solve the previous problems. Since it creates the sketches of

polygons, it can discard most parts of polygons, which do not overlap with another

polygon. Then, checking whether both tiles have line segments overlapping with

[63]

their CMBR can reduce the number of candidate tile pairs. The new filter can

potentially reduce the number of false hits compared to the classical filter and refine

strategy, CMF and PolySketch filter. Moreover, if both tiles still have line segments

overlapping with their CMBR, we only need to perform the refinement phase for the

line segments overlapping the CMBR, instead of all line segments in a tile.

Therefore, the refinement phase has fewer line segments to handle.

For CMF, storing all line segments overlapping with the CMBR of two

polygons for all tasks has significant memory overhead, especially on GPU. There

are variations in vertex count and degree of overlap in real-world datasets. For

example, some polygons are huge (about 50,000 vertices) and some polygons are

small (about 50 vertices). The CMBR of two huge polygons can be also huge. The

global memory in a GPU is limited. PSCMBR can handle this scenario because it

calculates the CMBR of only candidate tiles which leads to better space utilization.

In addition, different GPU threads can be assigned to process different tiles of the

same polygon, which increases the parallelization.

5.3.3 The Implementation of PSCMBR Filter

In CUDA programming model, the threads are organized as blocks of threads. A

thread block may include up to 1024 threads. threadIdx variable stores a unique

thread ID assigned by CUDA to each GPU thread. It is the index of the current

thread within its block. blockIdx variable is a unique block ID assigned by CUDA to

each GPU thread block. A CUDA kernel is a function that runs on a GPU. It is

executed in parallel by different threads. Threads in the same block can

communicate by shared memory or global memory.

Figure 5.5 shows the pseudo-code of the PSCMBR filter applied to the LSI

function using CUDA. Each candidate polygon pair (task) will be assigned a thread

block. Here we are showing how the filter is implemented for a single task that uses

[64]

a single GPU thread block for simplicity. Our actual kernel applies the same filter

on thousands of such tasks by mapping one thread block to one candidate pair. For

parallelization, we define a task as a pair of polygons whose MBRs overlap.

In the CUDA pseudo-code, the number of tiles for the two polygons are

stored in arrays numTileL1 and numTileL2, and the number of line segments in a

tile are stored in tileSize1 and tileSize2. Given the line segments of the two input

polygons denoted by arrays segment1 and segment2, a tile needs two offsets to mark

the starting and ending points in the arrays. We can find the corresponding line

segments within the tiles by using them. These offsets are stored in the arrays

prefixSum1 and prefixSum2. The MBRs of tiles are stored in tileMBR1 and

tileMBR2 arrays.

For simplicity, given a candidate pair, let us assume that the 1st polygon in

the algorithm is the one that has more tiles as described in Subsection 5.3.4. When

we use CUDA, the first step is to create different thread blocks for different tasks.

Then, we assign the threads to the polygon which has more tiles and every tile will

be compared with all tiles of another polygon. If two tile-MBRs overlap, we will

calculate their CMBR and check if both tiles have line segments overlapping with

the CMBR. The implementation follows the algorithm that we discussed earlier.

SIZE1 and SIZE2 in Figure 5.5 are always larger than the tile-size to prevent buffer

overflow.

In the CUDA algorithm, it is possible to increase the number of threads to

avoid the k loop which is sequential. However, the kernel handles a large number of

tasks with different polygon sizes and we assign one thread block to one task. In the

real-world datasets, candidate polygon-pairs (tasks) have different vertex counts

(e.g., 50K or 100), so it is difficult to decide how many threads to be used in each

block for a huge number of tasks. While mapping tiles to threads, we make sure

that the inner k loop goes over a fewer number of tiles from the smaller polygon.

[65]

Figure 5.5: CUDA Implementation of PSCMBR Filter

[66]

5.3.4 Optimization: Mapping Tiles to Threads

In the implementation, given a candidate pair, a thread picks a tile of a polygon and

compares it with all tiles of another polygon. When mapping computations

associated with tiles to GPU threads, we assign threads to the tiles of the larger

polygon. Our implementation dynamically swaps the order of polygons in a

candidate pair based on the number of tiles in a polygon. This leads to a better

division of work among threads and it leads to better mapping of the computations

to different levels of GPU parallelism. For example, to illustrate this optimization,

let us assume that we have a thread block with 128 threads and we have two

polygons A with 256 tiles and B with 16 tiles. If we assign 128 threads to A, a tile

of A should be compared with only 16 tiles of B by each thread. However, if we

assign 128 threads to B, we cannot make full use of the threads and a tile of B

should be compared with 256 tiles of A by each thread. This increases the workload

for all threads. Therefore, we compare the number of tiles of two polygons from

layer 1 and layer 2. Then, we assign threads to the polygon which has more tiles.

This helps us in making better use of the GPU resources and implement the

algorithm efficiently. In addition, the workload in every thread is more balanced.

5.4 Performance Evaluation

5.4.1 PSCMBR Filter Performance

Given two layers of polygons, the input to all the filters is the set of candidate

polygon pairs obtained from R-tree query using a standard MBR filter. To compare

the performance of filters, let us consider that we have t tasks and each task has two

cross-layer polygons. A task refers to a candidate polygon pair. In this paper, we

compare the new filter PSCMBR with PolySketch (PS) filter and Common MBR

filter (CMF).

[67]

First, we show the results of the workload in the refinement phase after the

application of a filter. We calculate the refinement workload for each task first and

then add the workload for all tasks to get the total workload which is shown in the

tables. For CMF, refinement workload for one task is the number of line segments

overlapping the CMBR of a polygon multiplied by the number of line segments

overlapping the CMBR of another polygon. For the definition of the workload, we

used the symbols as described in Table 5.1.

After using PolySketch: WPS = C · P
TP
· Q
TQ

After using PSCMBR: WPSCMBR = Ĉ · P̂ · Q̂

To illustrate the workload calculation, suppose we have two tiles of a

polygon, where one tile overlaps with three tiles and another tile overlaps with 10

tiles of another polygon. Assuming the tile sizes for both polygons are 5, the

refinement workload for this task is 1 · 3 · 5 + 1 · 10 · 5 = 65.

Table 5.3: Effect of different filters on the LSI function for Water dataset

Water Workload
Candidate Tasks

Discarded
Candidate

tile pairs
Run-time(s)

CMF 16,327,012,938 73.13% NA
10.36+

4.53
PS 1,789,226,826 68.48% 18,792,164 1.39

PSC-
MBR

154,187,055 75.46% 17,417,707 0.62

Table 5.4: Effect of different filters on the LSI function for Urban dataset

Urban Workload
Candidate Tasks

Discarded
Candidate

tile pairs
Run-time(s)

CMF 25,737,640 71.53% NA
0.23+

0.03
PS 7,489,801 66.09% 152,219 0.06

PSC-
MBR

540,240 72.83% 100,052 0.02

[68]

Table 5.3, 5.4 and 5.5 show the performance of PSCMBR for three real

datasets. Workload means the actual computational workload in the LSI function.

To show the filter efficiency on top of standard filtering using R-tree, the percentage

of candidate tasks discarded is calculated using candidates produced by R-tree as a

baseline. We subtract the number of candidates produced by R-tree with the

remaining number of candidates after using a given filter and then divide the

difference by the baseline. We do not need to perform further refinement on the

discarded tasks. Candidate tile pairs need further refinement using the LSI function.

Run-time is expressed in seconds and it includes execution time for the filter and

refine phases for the real datasets. For the run-time of CMF, we show two execution

time results. The first number is the time of checking and storing line segments

overlapping CMBR on CPU. The second number is the time of only refinement

phase using LSI function on GPU after applying CMF.

Table 5.5: Effect of different filters on the LSI function for Lake dataset

Lake Workload
Candidate Tasks

Discarded
Candidate

tile pairs
Run-time(s)

CMF 260,210,378 80.81% NA
9.4+
0.51

PS 37,464,000 70.96% 1,286,389 1.17
PSC-
MBR

4,972,603 82.21% 674,667 0.80

According to Table 5.3, 5.4 and 5.5, we can see PSCMBR can reduce much

more workload in LSI function for all three datasets when compared to the other

two filters. After using PSCMBR, the LSI workload is 99.1%, 97.9%, and 98.1%

smaller than using CMF for Water, Urban, and Lake datasets. The LSI function

workload is 91.4%, 92.8%, and 86.7% smaller than using PolySketch for the three

datasets. PSCMBR combines the strength of CMF and PolySketch so it can handle

more general cases. It can also discard the line segments which are inside the same

[69]

tile. PSCMBR can also discard more candidate tasks in total compared to other

filters so there are fewer candidate tasks that need the refinement phase. In

addition, the number of candidate tile pairs after using PSCMBR is on average

29.73% smaller than using PolySketch.

In the first step, PSCMBR discards more candidate tasks that do not need

further refinement. In the second step, it discards more candidate tile pairs and

reduces the false hits which do not need further refinement. According to Table 5.5,

it reduces up to 47.6% of candidate tile pairs by using PSCMBR instead of

PolySketch. For the run-time also, we can see PSCMBR works well. Compared to

PolySketch, the PSCMBR filter yielded 2.24X, 3X, and 1.46X speedup for Water,

Urban, and Lake datasets. Even if we only compare the refinement time of

PSCMBR with LSI function to the refinement time with LSI function after using

CMF, PSCMBR also works well. The size of the Lake dataset is huge which leads to

a higher overhead of copying the Lake data from CPU memory to the GPU memory

for the PSCMBR filter. However, the data copy overhead is lower for CMF because

we do pre-process on CPU, so the size of data copied to GPU is much smaller

because it only contains the line segments overlapping the CMBRs. This explains

why PSCMBR-based refinement with LSI function is a little slower than the

refinement time of LSI function after using CMF.

5.4.2 Performance of Using Different PSCMBR Tile-sizes

The real-world datasets are complicated since it contains different sizes of polygons.

Therefore, the tile-size used in the first step for filtering is a factor that affects the

performance. Table 5.6 shows the performance of using different tile-size for the

Water dataset. Similar to PolySketch, we can either use one tile-size for all polygons

or use two tile-sizes for different polygons. In Table 5.6, for some rows, there are

two numbers in ‘tile-size’ column. The first and second numbers are the tile sizes for

[70]

Table 5.6: Performance variation while using different tile-sizes for Water dataset

Tile-size Current Workload Candidate Tasks Run-time(s)
15-5 139,698,900 250,064 0.715
15 154,158,443 258,703 0.719
20 178,527,782 261,640 0.671
20-10 164,191,106 256,226 0.627
30 232,956,052 265,858 0.644
30-10 198,688,474 257,191 0.627
40 292,387,187 269,139 0.670
50 355,278,337 272,016 0.726

large and small polygons. In the experiments, if we use two tile-sizes for the

polygons, we use a larger tile-size for the large polygons (with more than 400

vertices) and a smaller tile-size for the small polygons (with less than 400 vertices).

We found that smaller tile-sizes perform better in our prior work [68]. We use

different tile-sizes for the Water dataset to test the performance of PSCMBR.

According to Table 5.6, we can see that the range of tile-sizes that can be

chosen is large since we can get similar run-time results by setting tile-size as 20, 30,

or 40. Although the current workload is increasing, the run-time results are similar.

Using two tile-sizes at the same time can reduce more workload compared to only

using one tile size. Run-time results are also better. In addition, using a smaller

tile-size can reduce more workload in the LSI function.

5.5 Point-in-Polygon Filter Using PolySketch

Point-in-Polygon (PNP) tests are necessary for polygon-polygon intersection

algorithms to create the output polygon. For instance, when a polygon is completely

inside another polygon, there are no intersection points. A brute-force algorithm

requires running a PNP test for every point, which is an expensive operation.

Therefore, we have designed a PNP filter based on PolySketch approximation. We

assume that the PNP filter is invoked after the LSI function as discussed earlier.

[71]

For a candidate polygon pair (A, B), the input to the algorithm are 1) two

list of vertices from each polygon and 2) information about intersecting points found

by the LSI function. The goal is to find which points of a polygon A fall

inside/outside of polygon B and vice versa. The classical point-in-polygon (PNP)

test for a point is O(N) where N is the number of points in a polygon. The basic

idea is to create a filter that minimizes the number of expensive PNP tests using

PolySketch.

Basic Idea: Using Jordan curve theorem, we can show that the

inside/outside status of points of a polygon A changes when its line segments

intersect with the line segments of polygon B. This idea is utilized in polygon

clipping algorithms [8, 7] to avoid expensive PNP tests by first inserting the

segment intersections into the original polygons to create a graph and then

traversing the graph to find the inside/outside status of the points of input

polygons. When polygons are represented as tiles (a subset of contiguous vertices),

this idea leads to a new PNP filter.

Figure 5.6: An example of intersection tile (red rectangle) and no-intersection tile
(yellow rectangle)

[72]

5.5.1 Algorithm Overview

There are three cases that need to be handled for a candidate pair.

Case I: If a tile’s MBR overlaps with another tile’s MBR and there are line

segment intersections, the vertices inside these two tiles need further processing.

This is the case where the filter does not help. So, PNP tests are required for all the

vertices in the tiles.

Case II: If a tile’s MBR overlaps with another tile’s MBR but there is no

line segment intersection, the inside/outside status of the vertices in a tile should be

the same.

Case III: If a tile’s MBR does not overlap with any other tiles, then the

inside/outside status of the vertices in a tile should also be the same.

In the second and the third cases, the filter works in reducing the number of

PNP tests because only one PNP test is required for an entire tile. The status of

the remaining vertices of a tile is the same. Therefore, PolySketch-based PNP

function divides the tiles into two types: intersection tile and no-intersection tile. If

a tile does not have any line segment intersection, we consider this tile as the

no-intersection tile. If a tile has at least one line segment intersection, we consider

this tile as the intersection tile. For no-intersection tile, we need a single PNP test

and then we know whether all vertices within this tile are inside another polygon or

not. For intersection tile, we test all vertices within a tile because there are line

segment intersections; so the status of the points before the intersection-point could

be different from the status of the points that are after it if we traverse the points in

clockwise order. We have observed that the number of intersection-points is far less

than the input size of the overlapping polygons. Therefore, this limitation has very

less impact on the performance.

As shown in Figure 5.6, there are two polygons C1 (black) from layer1 and

[73]

D1 (blue) from layer 2. The tile-size is set as 5 line segments. We can see there are

five tile-MBR overlap pairs. For two tile-MBR overlap pairs, they have line segment

intersections. For the other three tile-MBR overlap pairs, they do not have any line

segment intersection. Therefore, we should do the PNP test for all vertices of only

one tile of C1 and two tiles of D1. For other tiles, we run the PNP test for only a

few vertices within every tile.

Comparsion with our prior work: In our previous work [68], we had

used space division (striping) to decrease the PNP workload where we divided the

space occupied by the two overlapping polygons into horizontal stripes and mapped

the line segments of the polygons to the stripes based on overlap. This mapping

step used extra memory to store the line segments contained in the stripes and was

done on a multi-core CPU as a pre-processing step. In addition, if the area to be

divided is very large or the number of stripes is high, then the performance

degrades. For real datasets with a variety of candidate pairs, using a static number

of stripes limited the performance. Another idea that we utilized was to do only a

few PNP tests when it was determined that a polygon can be only contained

completely inside another polygon or not. Overall, the PNP part was the bottleneck

in earlier work [68, 6]. The for-loop in the ray-shooting algorithm was parallelized

in [38] to improve the performance. Therefore, we revisited the parallel PNP

algorithm in this paper. We do not use CPU-based preprocessing in this paper

using a novel approach. Our new algorithm reduces the workload considerably and

performs better than [68].

5.5.2 Comparison of PNP Workload Reduction

Stripe-based PNP function: Stripe-based PNP function was proposed in the

paper [68]. Using the ray casting algorithm for the PNP test, a point is tested

whether it is inside another polygon based on how many times an imaginary ray

[74]

Figure 5.7: Illustration of PNP functions. Two polygonal chains extracted from
input polygons is highlighted by red and blue colored tiles. The space is divided
into two stripes S1 and S2. Dotted line is an imaginary ray parallel to X-axis and
passing through the test point shown as yellow point.

from a test point crosses the polygon boundary. For a test point, we can reduce the

PNP test workload by discarding those line segments which the ray could not cross.

This is implemented by comparing the y-coordinates of line segments with the test

point. Figure 5.7 shows how the Stripe-based PNP function works. In this example,

the area is divided into two stripes S1 and S2 (the area between two green lines). In

short, we divide the area considering the y-coordinates of the polygonal vertices. For

both polygons, we check every vertex whether it is inside any stripe and every line

segment whether it crosses the stripe boundaries. Then, the vertex inside one stripe

is compared to another polygon’s line segments corresponding to the same stripe.

Tile-based PNP function: In our new approach, we compare the test

point only with the line segments within the tiles whose MBRs overlap with the

y-coordinate of the test vertex. If a tile’s MBR does not overlap with it, we can

discard the line segments within the tile for this vertex. If a tile’s MBR overlaps

with it, we compare the vertex with all line segments within this tile. The situation

is different for different tiles and different tasks according to the tile size and the

number of vertices of polygons. This technique can reduce a lot of line segments

even if the polygon is large or huge. For small polygons, it can also reduce a similar

number of line segments compared with using striping. Figure 5.7 shows a part of

[75]

two polygons. The areas between green lines are different stripes and there are two

stripes. If we use striping, the test vertex (yellow) should be compared with all line

segments of another polygon in S1. By using the tile-based PNP function, it should

be compared with the line segments within only two tiles (considering the y

coordinate of the test vertex).

5.5.3 The Implementation of PNP Filters

For our system, we have two different kernels to perform PNP tests. One kernel

(K1) is for the tasks where one polygon may be completely inside another polygon

since two polygons do not have any line segment intersection. Another kernel (K2)

is for the tasks where two polygons have intersection points. For K1, the tile-based

PNP function is used since two polygons do not have any line segment intersection.

PolySketch-based PNP function cannot be used here. For K2, the PolySketch-based

PNP function is used for tasks where two polygons have line segment intersection

points. In addition, the tile-based PNP function can be also used here to reduce the

workload. Therefore, we apply these two filters together in the same kernel.

5.6 Performance Evaluation

5.6.1 System Performance with PNP Filters

Table 5.7: System run-time (does not include R-tree time)

HiFiRe run-time(s) [68] New HiFiRe run-time(s)
Urban 0.35 0.055
Water 10.63 1.109

Table 5.7 shows the system run-time results. To be fair, we compare them

with the results of using one GPU. We can see the performance of the system is

much improved. The new system gets 6.36X and 9.56X speedup compared to the

[76]

HiFiRe system for the Urban and Water data sets. One reason is that we use GPU

to pre-process data for the PNP test instead of CPU. In our improved system

equipped with new PNP filters, we do not need to store the line segments and

vertices for the PNP test because we can make full use of the tiles used in the LSI

function and do more calculations within the PolySketch-LSI function to get the

information that will be used in PNP test. This also avoids using more memory and

data movement between CPU and GPU. Another reason is that the new algorithm

can handle different types of polygons, such as very small, medium, or huge

polygons.

5.6.2 Filters with PNP Test Workload

Table 5.8: Workload using different methods in tasks where two polygons have line
segment intersections.

Stripe-based
PNP workload

PolySketch-based
PNP workload

Urban 28,642,336 16,854,370
Water 10,602,276,252 2,200,221,374

To show the efficiency, we compare the PolySketch-based PNP function with

the Stripe-based PNP function (using 8 stripes). We also compare tile-based PNP

function with constant vertex PNP function. For the workload of the PNP test

using polygons of size P and Q, every vertex from A1 should be compared with all

line segments from B1 and every vertex from B1 should be compared with all line

segments from A1. Therefore, the workload is 2 · P ·Q for every task. In addition,

the total workload for the PNP test is the summation of the workload of individual

tasks. Table 5.8 is about the workload of the tasks where two polygons have line

segment intersections. Since the PolySketch-based PNP workload in each polygon of

the same task is different, we also update the workload of Stripe-based PNP [68].

[77]

We can see that the workload is still much reduced by using the PolySketch-based

PNP function even compared with the Stripe-based PNP test. For Urban and

Water, it reduces 41.2% and 79.2% of the workload of Stripe-based PNP function.

PolySketch-based PNP function classifies the tiles into two categories,

namely, intersection tile and no intersection tile. Figure 5.8 shows the percentage of

how many tiles are considered as the intersection tile and no-intersection tile. We

can see 96.8% and 97.7% tiles are considered as no intersection tile for Urban and

Water. This definitely reduces the workload and increases the efficiency of the PNP

filter.

(a) (b)

Figure 5.8: Percentage of Intersection tile and no intersection tile for tasks where
two polygons have line segment intersections

For the intersection tile, we can see the percentage is 3.2% and 2.3%.

Although we have to do the PNP test for all vertices within intersection tiles, the

total number of such tiles is not large. In addition, the PolySketch-based PNP

function can still reduce more workload for these tiles because we compare a test

vertex only with the line segments within the tiles whose MBR overlaps with the

horizontal ray passing through the test vertex by considering y-coordinate.

According to Table 5.9, we can see tile-based PNP function can also reduce

[78]

Table 5.9: The workload in PNP test for the tasks where one polygon may be
totally inside another polygon

Constant vertex PNP workload [68] Tile-based PNP workload
Urban 277,495,510 3,452,066
Water 10,352,636,305 145,693,382

the workload. For Urban and Water, it can reduce 98.8% and 98.6% of the workload

when compared to the constant vertex PNP workload. The advantage is that we can

keep the constant vertex PNP test’s strengths and discard the line segments within

the tiles which can not overlap with the test vertex by only considering y-coordinate.

5.6.3 New Hierarchical Filter and Refine System

For this new filter and refine system, since we also use R-tree to index input

datasets, the total overlay processing time should also include the time of using

R-tree. For Water and Urban datasets, the time taken by R-tree filter on CPU is

2.27s and 0.065s. Therefore, the end-to-end time of the new HiFiRe System is

3.379s and 0.12s.

To show the performance of the PSCMBR HiFiRe system, we define the

processing rate in terms of millions of input line segments/second:

Processing rate = Input line segments/Overlay processing time.

For the Water dataset, the number of line segments in layer 1 and layer 2 are

24,739,074 and 60,305,435. Therefore, the number of input line segments is

85,044,509. The processing rate on GPU is 77 million segments/sec. The processing

rate of the end-to-end system is 25 million segments/sec. For the Urban dataset, the

number of line segments in layer 1 and layer 2 are 1,153,348 and 1,332,830.

Therefore, the number of input line segments is 2,486,178. The processing rate on

GPU is 45 million segments/sec. The processing rate of the end-to-end system is 21

million segments/sec.

[79]

5.7 Conclusion

We have developed new filters used in the filter and refine technique and

demonstrated the benefits of our improved HiFiRe system. The new filters make

geometric intersection computations faster on a GPU. Compared to CMF, the new

PSCMBR filter can efficiently handle the case where the CMBR of two polygons is

large. Compared to PolySketch, the new filter is more efficient in minimizing the

false hits and decreases the workload in the refinement phase. For line segment

reporting and point-in-polygon tests inherent in spatial join and polygon overlay

algorithms, we have shown considerable workload reduction and better run-time

using a GPU accelerator. Moreover, our PNP filter leverages PolySketch and this

has resulted in significant end-to-end performance improvement in the HiFiRe

system.

[80]

Chapter 6
Adaptive Filter for Geometric Intersection with Rectangle Intersection
Computations using GPU

6.1 Introduction

In the previous chapters, we have introduced PolySketch filter which is a filter for

geometry-geometry intersection algorithms. In this chapter, we introduce a new

two-step geospatial filter called PolySketch++. It refines the sketch dynamically to

decrease the overall computations in the filter and refine phases. This improves the

basic PolySketch filter by making the tile size adaptive. The adaptive nature makes

the filter general and allows it to handle very large polygons efficiently as well. We

have implemented such filters on GPU by using CUDA instead of OpenACC.

CUDA dynamic parallelism was also applied to the new adaptive filter called

PolySketch++. With PolySketch++, we have demonstrated performance gain by

using GPU dynamic parallelism in geometry-geometry intersection operation.

Geospatial computations like spatial join and map overlay exhibit irregular

workload because of the non-uniform spatial distribution and variable size of

geometries [15]. The workload is not available statically which motivates dynamic

approaches. Workload calculation requires computations with approximate

representations called MBR. When the data is spatially partitioned among

grid-cells, the workload across individual cells varies. When the data is not

partitioned, then workload across candidate pairs varies.

Spatial hierarchical data structures like Quadtree adapt to the spatial

distribution of the 2D data; regions that are dense are subdivided into four regions

recursively. PolySketch filter represents the boundary of a geometry in terms of a

collection of contiguous tiles where each tile is a subset of the vertices and its

associated MBR. Our new adaptive filter is different because the filter adapts to the

[81]

workload in polygon/polyline intersection. As such our new filter is workload-aware

vs other spatial techniques that are density-aware. This adaptive technique is a

good fit for the output-sensitive geometric intersection computations because the

time complexity depends on the size of the output (number of segment

intersections) produced by the algorithm.

PolySketch uses fixed tile size which is determined a priori. In this chapter,

we present adaptive PolySketch which we refer to as PolySketch++.

PolySketch++ is an adaptive and dynamic filter where the tile size adapts to

workload distribution inherent in the intersection of two geometries. We use CUDA

dynamic parallelism for implementation where a kernel can launch another kernel

without CPU involvement.

The contribution is as follow

• PolySketch++: An adaptive spatial filter for polygon and polyline

intersection using CUDA dynamic parallelism. For huge polygons, we get on

average 4.23X speedup compared to PolySketch filter. It reduces on average

92.5% of workload in the filter phase compared to PolySketch and also

reduces workload in refine phase.

• LMBR: A spatial filter for rectangle intersection using CUDA. In the HiFiRe

system, it works better than using R-tree to create candidate tasks.

6.2 Related work

Adaptive space partitioning for load balancing in spatial join using two collections

of geometries has been studied in [69]. PolySketch++ can be leveraged for a pair of

geometries that is one of the candidates in spatial join.

From Kepler architecture, NVidia GPUs support dynamic parallelism that is

a CUDA technique where kernels can launch kernels. This allows a thread to launch

a new grid of threads to execute another kernel. It can be used for recursive

[82]

algorithms, irregular grid structures, and others. It can reduce the need to transfer

execution control and data between device and host. It can be useful for the

problems where need nested parallelism. For example, using recursion, hierarchical

data structures which can be adaptive grids, and others.

Dynamic parallelism can benefit CUDA kernels where the workload is

irregular across the tasks. However, to be practical the benefits must outweigh the

cost of launching additional child kernels from the parent kernel. The overhead

associated with kernel launch is significant because the state of thousands of threads

needs to be saved. Dynamic parallelism (DP) has been studied earlier on GPUs

using a compiler directive-based approach for irregular and nested loops [55, 70, 54].

The overheads associated with dynamic parallelism have been presented in [71, 72].

Spatial computations have not been studied earlier with DP.

6.3 PolySketch++ Algorithm

6.3.1 Overview of Adaptive PolySketch

(a) (b)

Figure 6.1: PolySketch++ filter example (a) Overlapping tiles highlighted by a
circle. It shows a red tile overlapping with two green tiles, and (b) The overlapping
tiles are further subdivided. Further refinement is not required.

PolySketch has been described in the previous chapters. The sketch is made

[83]

up of tiles. Once a tile-size is fixed, then an MBR is calculated which is known as

tile-MBR. The disadvantage in using PolySketch is that it is difficult to find an

optimal granularity for tile-size statically. As such, the performance of PolySketch

filter is dependent on the appropriate selection of tile-size which has to be manually

tuned.

The dynamic tiling approach that we introduce here subdivides only the

candidate tiles. The main idea in PolySketch++ is to perform filtering in two

phases using CUDA dynamic parallelism. In the first phase, we start with a

coarse-grained tile size in the parent kernel which discovers work and the child

kernel makes the tiling fine-grained. As opposed to the static approach, where only

a block of threads was assigned for a pair of geometries, in the dynamic approach,

the number of thread blocks is proportional to the workload in geometric

intersection. Moreover, compared to the static approach, we get better load

balancing at the cost of overhead for dynamic kernel launches.

Figure 6.1 shows how the adaptive PolySketch filter works. At first, we use

a large tile size called the parent tile size and check which tile’s MBR overlaps with

others. A pair of overlapping tiles is called a candidate tile-pair, e.g., a red and a

green tile. Going forward, we discard the tiles whose MBR does not overlap with

others. Then, for the candidate tile-pairs, we use a smaller tile-size called the child

tile size to divide the remaining tiles. We can repeat the filter using smaller tiles

and find the new candidate pairs. Finally, the refinement phase is carried out with

the remaining candidate pairs. This filter-and-refine approach potentially reduces

the number of expensive line segment intersection tests (LSI). As shown in

Figure 6.1(a), there are two polygons with their respective tiles. A red tile overlaps

with two green tiles. So, there are only two candidate tile-pairs that are used; the

rest of them are discarded going forward. The candidate tile-pairs are subdivided to

produce smaller tiles. The subdivision is implemented by reducing the tile-size by

[84]

half and recalculating the MBR for the line segments in the new tile. As shown in

Figure 6.1(b), there is no tile MBR overlap pair and we do not need to invoke the

LSI function. This is an example to show how adaptive PolySketch works.

(a) (b)

(c)
(d)

Figure 6.2: Static filter shown in (a). Two-step adaptive filter shown in (b) and (c).
(b) shows filter using coarse-grained tile size and (c) shows fine-grained tile size for
overlapping tiles only; (d) An example where two polygons have large difference in
sizes.

Now we want to show the main difference between static tiling vs dynamic

tiling for implementing a polygon intersection filter. We use Figure 6.2 for

illustration where the input is two polygons and the output requires finding all the

line segment intersections. The first three sub-figures are about two polygons of

[85]

similar size. The last sub-figure is for a large and a small polygon. As shown in

Figure 6.2(a), we create polysketch for the two polygons and use the sketches for

filtering out the tiles that have overlap. In the worst case scenario, if we have TP

and TQ number of tiles in the two polygons, then TP · TQ comparisons are required.

As we can see that very few tiles overlap from the two polygons.

Another approach is shown in the next two figures, namely, Figure 6.2(b)

and 6.2(c), where a larger tile-size is selected to create the sketch compared to

Figure 6.2(a). Then a smaller tile-size is selected for re-creating the sketch for the

candidate tile-pairs. The benefit of this approach is that we need fewer tile-MBR

comparisons in the filter phase in general. As shown in the illustration, even with

fewer tiles, many tiles that do not have overlap can be safely ignored. Moreover, the

refinement workload is same in both approaches. This approach is dynamic and

adaptive.

When we combine two real-world maps, we see that one polygon from Lakes

can overlap with many other smaller polygons from Counties. Figure 6.2(d) shows

such an example. We can see that setting the tile-size adaptively for the larger

polygon requires fewer MBR comparisons than using a static tile-size. The

performance of the filter is data-dependent. The number of tiles chosen in the first

and second filters affects the run-time of the algorithm. Next, we will show the

run-time formula of our filter and refine method.

Table 6.1: Symbol Table

Symbol Definition
TMBR Time for checking if two MBRs overlap
TLSI Time to find intersection point of two line segments
P,Q Number of line segments in two input geometries
TP , TQ Number of tiles in the two input geometries
C Number of candidate tile pairs after PolySketch

Ĉ Number of candidate tile pairs after PolySketch++

P̂ , Q̂ Number of line segments in new tiles

[86]

Execution time model of Intersection of two geometries using

PolySketch and PolySketch++: Table 6.1 shows the symbols used in deriving

the run-time formula of intersection of two geometries (polygons). TP and TQ are

numbers of tiles of two polygons with P and Q line segments respectively. P
TP

and

Q
TQ

are numbers of line segments in a tile (tile-size) of the respective geometries.

Figure 6.3: PolySketch++ filter for speeding up line segment intersections (LSI).
The filter is dynamic and recursive. The Divide component produces more tiles (by
factor of a and b) by subdivision of input tiles.

Figure 6.3 shows the data-flow and control-flow in our dynamic filter and

refine system. It also shows the difference between PolySketch and PolySketch++

filter by using different colors. The output of the first MBR filter is a collection of

candidate tile-pairs that is C. We have C <= TP · TQ since not all tiles have spatial

overlap.

We assume that the MBR overlap test is computationally cheaper than the

line segment intersection for a pair of line segments, TMBR <<TLSI . Using

PolySketch, the run-time is given by the following formula

T = TP · TQ · TMBR + C · P
TP

· Q
TQ

· TLSI (6.1)

Using adaptive PolySketch, the run-time is given by the following formula:

[87]

T = TP · TQ · TMBR + C · TMBR + Ĉ · P̂ · Q̂ · TLSI (6.2)

In the run-time formula, we have shown two filters and one refinement.

Conceptually, we can have more than two filters in a recursive fashion. This design

is shown in Figure 6.3 by connecting the output of the second filter to the Divide

component. Given a candidate tile pair, the Divide component can divide 1) tiles of

both geometries or 2) tiles of only one geometry (larger among the two geometry).

The goal of the Divide component is to stop the recursion by comparing the benefit

of the workload reduction in a step with the overhead of recursion. The workload is

captured by C, Ĉ, number of tiles and tile sizes. When Divide component returns

”No”, then the static workflow is followed by executing the final refinement step.

The number of recursive steps that can be efficiently executed is data

dependent. In multi-core CPU, the overhead of recursion is relatively lower than in

GPU. In GPU, the state of thousands of threads needs to be stored when a child

kernel is launched from the parent kernel, which makes the overhead of the child

kernel launch higher. For GPU algorithm implementation, we used only one child

kernel for each overlapping polygon pair.

6.3.2 Advantages of Adaptive PolySketch

As we showed in the figures earlier, using a two-step filter can be advantageous.

Compared to using a very small static tile size, using a coarse-grained tile size in the

first filter can decrease the number of tiles examined at the beginning. It means

that we get fewer tiles to be checked and still can discard the non-overlapping areas

of polygons. Then, for the areas where two polygons may intersect (overlap), using

the second filter with a smaller tile size can still discard some tiles and even reduce

workload in the refinement phase. Moreover, we do not need to run a number of

experiments to pick a good tile size. Even if the parent tile size is not optimal, the

[88]

child tile size can be chosen appropriately to balance the workload.

Another advantage of adaptive PolySketch is in the space utilization

because it makes good use of limited GPU memory. For huge polygons, if we use

static PolySketch, there can be potentially a huge number of tiles to get a good

filter efficiency to handle an arbitrary input. We need to store the information for

those tiles, such as tiles’ MBR. If we have a lot of tasks with huge polygons, the

memory requirement could become a limiting factor. The feature of the adaptive

tile size solves this problem.

6.3.3 The Implementation of Adaptive PolySketch and CUDA Dynamic

Parallelism

Implementing Adaptive PolySketch filter on GPU is not straightforward. There are

some factors that can affect its performance: how to make full use of the GPU

resource, how to store the results after using the parent tile size, how to assign

threads to the work, and so on. For different tasks, the numbers of tiles in the two

polygons are different. For different tiles of one polygon, the numbers of candidate

tile-pairs are also different. It is not space-efficient to store all these intermediate

results on GPU with limited global memory and use them effectively. Therefore, we

use CUDA dynamic parallelism which allows users to launch kernels from threads

running on the device. For example, we can call a ‘child’ kernel within a ‘parent’

kernel. This gives us more choices and flexibility to improve and implement an

algorithm. It can be used to process different levels of details for different inputs or

recursive algorithms. Typically, this can decrease the data movement, store fewer

data and make the algorithm more efficient. However, the kernel launch overhead,

race conditions, optimal selection of threads and blocks need to be considered.

Figure 6.4 shows the pseudo-code of PolySketch++ filter applied to LSI

function using CUDA dynamic parallelism. A task is a pair of overlapping polygons

[89]

where we apply the filter and the algorithm handles a large number of such tasks.

Although we have two polygons in a task, we only use the adaptive tile size for the

larger polygon to reduce the overhead of calling child kernels and we do only 2

kernels. The 1st polygon in the algorithm means the polygon that has more tiles in

a task.

Figure 6.4: CUDA Implementation of PolySketch++ Filter

Generally, grids launched within a thread block are executed sequentially. In

[90]

other words, a grid can start execution only after the previous grid finished

execution even if these grids are launched by different threads within the same

block. However, we prefer to let these grids launched by different threads start

executing at the same time. Therefore, we use CUDA streams to implement this.

Kernels launched in different streams will be executed concurrently. The streams are

created by cudaStreamCreateWithFlags() API with cudaStreamNonBlocking flag.

In CUDA, every kernel will be executed on Streaming Multiprocessors that

will try to divide the threads into Warps whose size is 32 threads. Since a ‘child

kernel’ will create a new grid, we should divide the filter computations into at least

32 threads to make full use of the resources. Therefore, if the child tile size is very

small (such as 4 line segments), the parent tile size should be at least 128 line

segments. It means the large tile can be divided into 32 small tiles and 32 threads

are used for calculations. If the parent tile size is below 128 line segments, we can

not make full use of the threads in a warp.

6.4 Experimental Setup and Results

6.4.1 Data Sets

Table 6.2: Three real data sets used in our experiments for PolySketch++

Label Dataset Polygons Segments

Classic Classic
1
1

101K
72K

Water2 The subsets of Water
1,172

1
88K
86K

Ocean
ne 10m ocean

continent
1
8

446K
181K

We have used three real data sets to evaluate PolySketch++: (1) Classic,

(2) Ocean, and (3) Water2. Water2 is a small subset of the Water dataset. Some

[91]

details are shown in Table 6.2. The Ocean dataset is from

http://www.naturalearthdata.com and http://resources.arcgis.com. The Classic

dataset is from https://rogue-modron.blogspot.com/2011/04/polygon-clipping-

wrapper-benchmark.html.

6.4.2 Adaptive PolySketch Run-Time

We apply PolySketch++ in the LSI function using Classic, Ocean, and Water2.

First, we calculate the total number of tiles in polygons, tiles’ MBR, and copy data

between CPU and GPU. For Classic, Ocean, and Water2, it takes 1ms, 7ms, and

250ms. While comparing the performance, we did not add these times to the tables

described next. We have implemented both PolySketch and PolySketch++ using

CUDA on GPU. The only player affecting performance is adaptive filtering.

Table 6.3 is about the performance of using PolySketch++ and PolySketch.

For PolySketch, we can directly get better performance by using more threads and

we put the best result after we tried different static tile sizes. We also put the best

result of PolySketch++. For Classic, the static tile size is 24 line segments and the

number of threads in one block is 512. The parent tile size is 512 and the child size

is 4. The number of threads is 256 in the parent kernel and 128 in the child kernel.

For Water2 and Ocean, the static tile size is 15 (for large polygons) and 5 (for small

polygons). The number of threads in one block is 512. For adaptive tile size, we

varied the tile sizes from 128 to 3072. We varied the threads from 32 to 512 as

shown in Figure 6.5.

Table 6.3: The run-time using static and adaptive tile size.

PolySketch (static) PolySketch++ (adaptive)
Classic(ms) 95.2 9.6
Water2(ms) 168.5 140.9
Ocean(ms) 593.4 373

[92]

Table 6.3 shows that PolySketch++ works better than PolySketch. For

Classic, Water2, and Ocean, we get 9.92X, 1.19X, and 1.59X speedup compared to

PolySketch. Compared with PolySketch, the main advantage of PolySketch++ is

that we can discard a similar number of tiles but checking the fewer number of tiles

and we can still reduce more LSI workload.

Ocean Water2

0.15

0.2

0.25

0.3

0.35

0.4

0.45 0.45

0.24

0.39

0.16

0.39

0.14

0.39

0.14

0.37

0.14

0.44

0.15

R
u
n
-t

im
e(

s)

128
256
512
1024
2048
3072

Figure 6.5: Execution-time variation using different parent tile-sizes (128 to 3072).
Number of threads are adjusted based on tile-sizes (maximum number of threads
are assigned to parent and child kernels based on the workload).

6.4.3 Effect of Varying Tile Sizes and Threads

Here, we want to study the performance of using different tile-sizes with different

numbers of threads assigned to parent and child kernels. Figure 6.5 shows the results

of setting the parent tile size as 256, 512, 1024 or 2048 are similar if we assign the

maximum number of threads to the parent and child kernels based on the workload.

For example, the maximum number of threads assigned to the child kernel is 64 if

the parent tile can be divided into only 64 tiles. Otherwise, there is not enough

[93]

work to be assigned if we use 256 threads, so 192 threads will not get enough work

to do. We have more flexibility in choosing a parent tile size because the child tile

size can still improve the performance even if the parent tile size is not the best one.

32 64 128 256 512

0.4

0.6

0.8

Number of threads assigned to the parent kernel

R
u
n
-t

im
e(

s)
32 threads, size=512
64 threads, size=512
128 threads, size=512
32 threads, size=256
64 threads, size=256

Figure 6.6: Effect of using different parent tile sizes and different number of threads
assigned to the parent and child kernels

Figure 6.6 shows the run-time using Ocean data. We can see that using more

threads in the parent or child kernel can directly improve the performance when we

use the same parent tile size. If we use the same number of threads in the parent

and child kernels and use different parent tile sizes, the difference in performance is

large when we use a small number of threads. The difference is small if we use a

large number of threads. Although we used two different parent tile sizes, the

results are similar when we use the maximum number of threads to the parent and

child kernels. Therefore, we should divide the polygon into some tiles which can use

more threads, such as 256 or more threads. Then, one large tile should be also

divided into more tiles to be assigned to threads, such as 64 or more threads.

Generally, we set the child tile size as 4 and do not change it. According to our

[94]

experiments, a larger parent tile size is recommended if we can use 256 threads or

more in the parent kernel. Based on the results, 512 and 1024 line segments are

good choices for the parent tile size.

6.4.4 Adaptive PolySketch Workload

The workload is divided between the filter phase and the refine phase. The filter

phase workload is referred to as tile workload and the refine phase workload is

referred to as LSI workload. By using the adaptive or static tile size, we can reduce

the number of line segments which should be compared with other line segments.

Therefore, we call the LSI function (refine) workload after the PolySketch or

PolySketch++ filter as ‘static LSI workload’ and ‘adaptive LSI workload’.

By using adaptive PolySketch, we can reduce the filter time. To show the

benefit, we calculate the workload which is the summation of how many times one

tile is compared with other tiles for every tile of every task. We call this total

workload as ‘Tile workload’. For example, A has g tiles and B has h tiles. The tile

workload is g · h for every task. The total tile workload is the summation of the

workload of every task. In addition, the results are different if we use different

adaptive tile sizes.

Table 6.4: The LSI function workload and tile workload

Static LSI
workload

Adaptive LSI
workload

Static tile
workload

Adaptive tile
workload

Classic 449,722 336,684 37,707,648 1,258,258
Water2 38,656,534 36,428,698 80,207,239 6,736,435
Ocean 69,560,256 33,643,788 140,513,568 14,987,132

Table 6.4 shows the LSI function workload and tile workload of different data

sets. We compare the results by using PolySketch or PolySketch++. We set the

parent tile size as 512 line segments and the child tile size as 4 line segments. We

[95]

can see that using PolySketch++ is better than using PolySketch. It can reduce

96.7%, 91.6% and 89.3% tile workload compared with using PolySketch. This

makes the algorithm more efficient. For example, if we use PolySketch in huge

polygons, we will get a huge number of tiles but most of them will be discarded

because they did not overlap with others. By using PolySketch++, we will get

fewer tiles at the beginning and discard most of them by checking very fewer tiles.

For the remaining tiles, we will divide them into smaller tiles and check them again

to reduce the LSI function. Therefore, we can use the hardware parallelism on the

tiles which has a higher potential to have intersection point(s) with others and use

less hardware resource to discard useless tiles. In addition, we can reduce more LSI

function workload even though PolySketch has already used a very small tile size

(such as 14 line segments). If the data sets are very large and we use a very small

tile size (such as 10 line segments), the GPU may be out of memory. By using

PolySketch++, we can divide the large tile into smaller tiles whose size is 4 line

segments and do not have memory problems.

Table 6.5: The run-time of PolySketch (P) and PolySketch++ (P++) using large
polygons (around 25000 vertices)

P
32

P
64

P
128

P
256

P++
128-4

P++
256-4

P++
256-8

Run-time(ms) 51 109 228 443 45 51 60

Table 6.5 shows that the performance of using random static size is not good.

By using PolySketch, we need to run some experiments to choose a good tile size

for the polygons. By using PolySketch++, we do not need to try different tile sizes

and it can handle the situation by using child tile size. For the experiments using

different tile sizes, we used the maximum threads possible based on the workload.

[96]

6.4.5 Execution Time Comparison Using Different GPUs

Table 6.6: The run-time of PolySketch and PolySketch++ with LSI function using
Titan V and Titan Xp

Ocean
Static

256

Ocean
Static

25

Ocean
Adaptive

512-4

Ocean
Adaptive

256-4
Titan V(s) 3.54 0.60 0.38 0.39

Titan Xp(s) 6.86 0.78 0.43 0.46

Table 6.6 is about the run-time of PolySketch and PolySketch++ for LSI

function using Titan V and Titan Xp. For the PolySketch++ columns, the first

number is the parent tile size and the second number (after the hyphen) is the child

tile size. Titan V is superior to Titan Xp which results in a difference in

performance.

6.5 Rectangle Intersection Filter on GPU

6.5.1 Overview of LMBR Filter

After reading the input data, the first step in our HiFiRe system is to create

candidate tasks. Each task includes two polygons whose MBRs overlap with each

other. Generally, we build R-tree for all MBRs of a layer and search MBRs of

another layer to create candidate tasks, which are sequential on CPU. In this

section, we will introduce how we parallelize this step and create candidate tasks on

GPU.

In the HiFiRe system, parallelizing the step of creating candidate tasks on

GPU should be efficient as well considering time performance, especially for large

data size. The naive method is the all-to-all method, which means each MBR of one

layer should be compared with all MBRs of another layer. However, there are some

[97]

methods to improve it, such as space partition. The paper [73] introduces the

PRI-GC algorithm to solve rectangle intersection problem by using GPU plus CPU.

Figure 6.7: An example of LMBR

There are some challenges of space partition: (1) If one MBR overlap with

more than one cell, this MBR should be stored in more than one cell, which is

duplication and may cause duplicate results. It may cause extra work to be

calculated. (2) Which data structure should be used to store different numbers of

MBRs overlapping with different cells? Managing GPU memory is different from

CPU. This challenge will affect GPU performance. (3) Some cells would not include

any MBR, which should be still checked. Therefore, we develop a new parallel

method of rectangle intersection on GPU based on the data partition. We call it

larger-MBR (LMBR).

The basic idea of LMBR is to partition data according to contiguous MBRs

considering the location stored in the array instead of space partition. We will get

some new MBRs and each new MBR will be calculated based on and contain some

contiguous MBRs. LMBR size means that how many MBRs the larger MBR

[98]

includes. However, in the real dataset, the location of a polygon stored in the array

can be very far from its contiguous polygon. This will cause the larger MBR to

contain a lot of dead space where does not contain any MBR. To solve this problem,

we will sort MBRs to make sure every contiguous MBR in the array is also close to

its adjacent MBR considering their locations.

Figures 6.7 shows an example of LMBR. Blue and black rectangles are

adjacent MBRs of different layers after sorting. P is the new larger MBR that

contains 4 real MBRs and Q contains 5 real MBRs. Since P and Q intersect, we will

check all 4 MBRs of P with all 5 MBRs of Q. If a new larger MBR does not overlap

with other larger MBRs, we can ignore all MBRs within this LMBR.

6.5.2 The Implementation of LMBR Filter

There are three steps of the LMBR method: (1) sort MBRs, (2) get new larger

MBRs of contiguous MBRs, and (3) check which larger MBRs overlap with others

and use real MBRs to get correct results. Each MBR has two points which are the

lower left point and upper right point to represent it. We sort all MBRs based on

the x coordinate of the lower left point of each MBR. Other values related to MBRs

should be reordered according to the sort. We use CUDA thrust library [74] to sort

the values. Figures 6.8 shows the pseudo-code of LMBR filter applied to rectangle

intersection function using CUDA.

One advantage of LMBR is there would not be any duplication because every

larger MBR is based on MBRs which it includes. Therefore, we do not need to deal

with how to handle duplicate results and extra calculation work on duplicate

polygons. This makes the algorithm on GPU more efficient. Another advantage is

that as much as calculation work can be parallelized, which takes advantage of the

powerful calculation capability of GPU.

[99]

Figure 6.8: CUDA Implementation of LMBR Filter

[100]

6.6 LMBR Filter Performance

Table 6.7: The execution time of using R-tree, all-to-all method or LMBR filter

R-tree All-to-all LMBR
Water(s) 2.27 0.315 0.029
Lakes(s) 40.38 130.93 0.281
Parks(s) 72.36 177.82 0.494

Table 6.7 shows the execution time of using R-tree, all-to-all method or

LMBR function. The Parks dataset means that Parks (includes around 9.7M

polygons) and Sports (includes around 1.8M polygons). We can see the LMBR

method works better than the general R-tree method or all-to-all method. For the

Water, Lakes and Parks datasets, we can reach 78x, 143x and 146x speedup

compared with using R-tree.

Table 6.8: Time performance of LMBR by partitioning both layers and using
different LMBR sizes

LMBR size 1024 512 256 128 64 32
Water(ms) 472 191 102 63 43 33
Lakes(ms) 2598 1308 736 449 321 281
Parks(ms) 3831 2125 1295 843 593 494

Table 6.9: Time performance of LMBR by partitioning 1 layer and using different
LMBR sizes

LMBR size 1024 512 256 128 64 32
Water(ms) 91 59 43 33 29 37
Lakes(ms) 1085 806 712 782 1376 2815
Parks(ms) 2020 1532 1467 1531 2643 5492

Table 6.8 and Table 6.9 show the performance of LMBR filter applied to

rectangle intersection by using different LMBR sizes and partitioning both layers or

[101]

only 1 layer. The execution time of LMBR function also includes the time of sorting

MBRs and storing candidate tasks. Table 6.8 is about partitioning both layers. We

can see that using a smaller LMBR size works better than a larger LMBR size.

Table 6.9 is about partitioning the first layer. We can see that 256 or 128 works

better than other LMBR sizes. In addition, considering the best time performance,

we can get more benefit from partitioning both layers for larger datasets. For the

Water dataset, the best performance of partitioning 1 layer is similar to the best

performance of partitioning both layers.

6.7 Conclusion

We have developed an adaptive filter for geometric intersection computations by

using CUDA dynamic parallelism. We have shown that a dynamic tiling based filter

performs better than a static tiling based filter for large and huge polygons. In

static tiling, it is difficult to choose an optimal tile-size to reduce workload and the

best performance depends on the manual tuning of the tile-size. This is not a

problem in PolySketch++ as we have demonstrated in the experiments. Using a

two-step filter, dynamic tiling adjusts the tile-size adaptively to minimize the

workload. To get the best performance, our Hierarchical Filter and Refine (HiFiRe)

system can now use a hybrid approach with static and dynamic tiling. We believe

other spatial computing workloads will benefit from leveraging GPU dynamic

parallelism by using our work as an exemplar. For rectangle intersection

computation, we also develop the LMBR method on GPU.

[102]

Chapter 7
Conclusion and Future Work

7.1 Conclusion

In this dissertation, we have developed a hierarchical filter and refinement system

for parallel geometric intersection operation, which can be used to spatial join or

polygon overlay. Efficient filters have been developed to reduce actual computation

in refinement, such as PolySketch, PolySketch++, PSCMBR, PNP related filters,

and so on.

PolySketch is a representation of a spatial object by a set of tiles and each

tile is a subset of consecutive vertices of a geometry. We extend the classical filter

and refine strategy by introducing PolySketch technique. In general, there are not

many segment intersections in polygon overlay [7], so even when the CMBR is less

effective, PolySketch can provide significant workload reduction. In addition, the

strengths of CMBR and PolySketch can be combined to get better performance so

we have developed the PSCMBR filter. PolySketch++ is an adaptive filter that

improves PolySketch by making the tile-size adaptive. PNP filter and refine

algorithms are also important in the HiFiRe system. We extend the filter and refine

technique by adding and using different efficient filters for speeding up LSI and PNP

operations.

7.2 Future Work

Although the capacity of a single GPU can be very powerful, it is also worth

exploring to improve and implement algorithms by using multi-GPUs over

large-scale datasets. According to the paper [75], a single GPU works well when the

graphs fit into GPU’s memory but it requires multi-GPUs while achieving higher

performance and/or scaling to larger graphs. In addition, we can integrate our

[103]

GPU-accelerated system to MPI-GIS and MapReduce implementations which we

have built as an HPC system for geospatial analytics [76, 7, 77, 19, 78].

Since the size of spatial data is increasing at a huge scale and many real

applications are still generating a huge amount of spatial data, analyzing and

querying spatial data require high-performance computing (HPC)

infrastructures [79]. The performance is mainly constrained in the computational

capacity in spatial analysis systems or infrastructures. Therefore, improving such

systems and infrastructures and developing HPC algorithms are helpful to big data

management and analysis that can be used to solve different real research problems.

For example, processing medical images, analyzing remote sensing data, spatial

econometrics analyses, GIS, and so on [4, 80].

[104]

BIBLIOGRAPHY

[1] E. T. Zacharatou, H. Doraiswamy, A. Ailamaki, C. T. Silva, and J. Freiref,
“GPU rasterization for real-time spatial aggregation over arbitrary polygons,”
Proceedings of the VLDB Endowment, vol. 11, no. 3, pp. 352–365, 2017.

[2] V. Pandey, A. Kipf, T. Neumann, and A. Kemper, “How good are modern
spatial analytics systems?” Proceedings of the VLDB Endowment, vol. 11,
no. 11, pp. 1661–1673, 2018.

[3] J. P. Singh, Y. K. Dwivedi, N. P. Rana, A. Kumar, and K. K. Kapoor, “Event
classification and location prediction from tweets during disasters,” Annals of
Operations Research, pp. 1–21, 2017.

[4] S. K. Prasad, D. Aghajarian, M. McDermott, D. Shah, M. Mokbel, S. Puri,
S. J. Rey, S. Shekhar, Y. Xe, R. R. Vatsavai et al., “Parallel processing over
spatial-temporal datasets from geo, bio, climate and social science
communities: A research roadmap,” in 2017 IEEE International Congress on
Big Data (BigData Congress). IEEE, 2017, pp. 232–250.

[5] J. Zhang, S. You, and L. Gruenwald, “Large-scale spatial data processing on
GPUs and GPU-accelerated clusters,” Sigspatial Special, vol. 6, no. 3, pp.
27–34, 2015.

[6] S. Audet, C. Albertsson, M. Murase, and A. Asahara, “Robust and efficient
polygon overlay on parallel stream processors,” in Proceedings of the 21st ACM
SIGSPATIAL International Conference on Advances in Geographic
Information Systems. ACM, 2013, pp. 304–313.

[7] S. Puri and S. K. Prasad, “A parallel algorithm for clipping polygons with
improved bounds and a distributed overlay processing system using mpi,” in
2015 15th IEEE/ACM International Symposium on Cluster, Cloud and Grid
Computing. IEEE, 2015, pp. 576–585.

[8] G. Greiner and K. Hormann, “Efficient clipping of arbitrary polygons,” ACM
Transactions on Graphics (TOG), vol. 17, no. 2, pp. 71–83, 1998.

[9] E. L. Foster, K. Hormann, and R. T. Popa, “Clipping simple polygons with
degenerate intersections,” Computers & Graphics: X, p. 100007, 2019.

[10] K. G. Pillai, R. A. Angryk, and B. Aydin, “A filter-and-refine approach to mine
spatiotemporal co-occurrences,” in Proceedings of the 21st ACM SIGSPATIAL
International Conference on Advances in Geographic Information Systems,
2013, pp. 104–113.

[11] J. H. University,
https://gisanddata.maps.arcgis.com/apps/opsdashboard/index.html#/bda75
94740fd40299423467b48e9ecf6.

[105]

[12] DailyMail, https://www.dailymail.co.uk/news/article-8164301/Government-
tracking-Americans-cell-phones-spread-coronavirus.html.

[13] B. R. Vati, “A generic solution to polygon clipping,” Communications of the
ACM, vol. 35, no. 7, pp. 56–64, 1992.

[14] A. Paudel and S. Puri, “OpenACC Based GPU Parallelization of Plane Sweep
Algorithm for Geometric Intersection,” in International Workshop on
Accelerator Programming Using Directives. Springer, 2018, pp. 114–135.

[15] E. H. Jacox and H. Samet, “Spatial join techniques,” ACM Transactions on
Database Systems (TODS), vol. 32, no. 1, p. 7, 2007.

[16] H. Veenhof, P. Apers, and M. Houtsma, “Optimisation of spatial joins using
filters,” in Advances in Databases, 13th British National Conference on
Databases, Manchester, United Kingdom. Springer, 1995, pp. 136–154.

[17] D. M. Mount, “Geometric intersection,” in Handbook of Discrete and
Computational Geometry, chapter 33. Citeseer, 1997.

[18] M. I. Shamos and D. Hoey, “Geometric intersection problems,” in 17th Annual
Symposium on Foundations of Computer Science (sfcs 1976). IEEE, 1976, pp.
208–215.

[19] S. Puri, D. Agarwal, X. He, and S. K. Prasad, “MapReduce algorithms for GIS
polygonal overlay processing,” in 2013 IEEE International Symposium on
Parallel & Distributed Processing, Workshops and Phd Forum. IEEE, 2013,
pp. 1009–1016.

[20] S. You, J. Zhang, and L. Gruenwald, “High-performance polyline intersection
based spatial join on GPU-accelerated clusters,” in Proceedings of the 5th ACM
SIGSPATIAL International Workshop on Analytics for Big Geospatial Data,
2016, pp. 42–49.

[21] J. Zhang and S. You, “Speeding up large-scale point-in-polygon test based
spatial join on GPUs,” in Proceedings of the 1st ACM SIGSPATIAL
International Workshop on Analytics for Big Geospatial Data, 2012, pp. 23–32.

[22] S. Puri and S. K. Prasad, “Output-sensitive parallel algorithm for polygon
clipping,” in 2014 43rd International Conference on Parallel Processing.
IEEE, 2014, pp. 241–250.

[23] J. Nievergelt and F. P. Preparata, “Plane-sweep algorithms for intersecting
geometric figures,” Communications of the ACM, vol. 25, no. 10, pp. 739–747,
1982.

[24] S. V. Magalhães, M. V. Andrade, W. R. Franklin, and W. Li, “Fast exact
parallel map overlay using a two-level uniform grid,” in Proceedings of the 4th
International ACM SIGSPATIAL Workshop on Analytics for Big Geospatial
Data, 2015, pp. 45–54.

[106]

[25] K. Wang, Y. Huai, R. Lee, F. Wang, X. Zhang, and J. H. Saltz, “Accelerating
pathology image data cross-comparison on cpu-gpu hybrid systems,” in
Proceedings of the VLDB Endowment International Conference on Very Large
Data Bases, vol. 5, no. 11. NIH Public Access, 2012, p. 1543.

[26] P. van Oosterom, “An R-tree based map-overlay algorithm,” in Proc. EGIS,
vol. 94, 1994, pp. 318–327.

[27] S. K. Prasad, M. McDermott, X. He, and S. Puri, “GPU-based Parallel R-tree
Construction and Querying,” in 2015 IEEE International Parallel and
Distributed Processing Symposium Workshop. IEEE, 2015, pp. 618–627.

[28] J. A. Orenstein, “Redundancy in spatial databases,” in ACM SIGMOD Record,
vol. 18, no. 2. ACM, 1989, pp. 295–305.

[29] M. McKenney and T. McGuire, “A parallel plane sweep algorithm for
multi-core systems.” in GIS, 2009, pp. 392–395.

[30] A. Margalit and G. D. Knott, “An algorithm for computing the union,
intersection or difference of two polygons,” Computers & Graphics, vol. 13,
no. 2, pp. 167–183, 1989.

[31] A. Aji, G. Teodoro, and F. Wang, “Haggis: turbocharge a MapReduce based
spatial data warehousing system with GPU engine,” in Proceedings of the 3rd
ACM SIGSPATIAL International Workshop on Analytics for Big Geospatial
Data. ACM, 2014, pp. 15–20.

[32] S. K. Prasad, S. Shekhar, M. McDermott, X. Zhou, M. Evans, and S. Puri,
“GPGPU-accelerated interesting interval discovery and other computations on
geospatial datasets: A summary of results,” in Proceedings of the 2nd ACM
SIGSPATIAL International Workshop on Analytics for Big Geospatial Data.
ACM, 2013, pp. 65–72.

[33] B. Donnelly and M. Gowanlock, “A coordinate-oblivious index for
high-dimensional distance similarity searches on the gpu,” in Proceedings of the
34th ACM International Conference on Supercomputing, 2020, pp. 1–12.

[34] W. M. Badawy and W. G. Aref, “On local heuristics to speed up
polygon-polygon intersection tests,” in Proceedings of the 7th ACM
international symposium on Advances in geographic information systems, 1999,
pp. 97–102.

[35] T. Brinkhoff, H.-P. Kriegel, and R. Schneider, “Comparison of approximations
of complex objects used for approximation-based query processing in spatial
database systems,” in Proceedings of IEEE 9th International Conference on
Data Engineering. IEEE, 1993, pp. 40–49.

[36] T. Brinkhoff, H.-P. Kriegel, R. Schneider, and B. Seeger, “Multi-step processing
of spatial joins,” Acm Sigmod Record, vol. 23, no. 2, pp. 197–208, 1994.

[107]

[37] D. H. Douglas and T. K. Peucker, “Algorithms for the reduction of the number
of points required to represent a digitized line or its caricature,” Cartographica:
the international journal for geographic information and geovisualization,
vol. 10, no. 2, pp. 112–122, 1973.

[38] D. Aghajarian, S. Puri, and S. Prasad, “GCMF: an efficient end-to-end spatial
join system over large polygonal datasets on GPGPU platform,” in Proceedings
of the 24th ACM SIGSPATIAL International Conference on Advances in
Geographic Information Systems. ACM, 2016, p. 18.

[39] D. Aghajarian and S. K. Prasad, “A spatial join algorithm based on a
non-uniform grid technique over GPGPU,” in Proceedings of the 25th ACM
SIGSPATIAL International Conference on Advances in Geographic
Information Systems. ACM, 2017, p. 56.

[40] A. Guttman, “R-trees: A dynamic index structure for spatial searching,” in
Proceedings of the 1984 ACM SIGMOD international conference on
Management of data, 1984, pp. 47–57.

[41] N. Beckmann and B. Seeger, “A revised r*-tree in comparison with related
index structures,” in Proceedings of the 2009 ACM SIGMOD International
Conference on Management of data, 2009, pp. 799–812.

[42] H. Samet, “The quadtree and related hierarchical data structures,” ACM
Computing Surveys (CSUR), vol. 16, no. 2, pp. 187–260, 1984.

[43] T. Brinkhoff, H.-P. Kriegel, and B. Seeger, “Efficient processing of spatial joins
using R-trees,” ACM SIGMOD Record, vol. 22, no. 2, pp. 237–246, 1993.

[44] J. M. Patel and D. J. DeWitt, “Partition based spatial-merge join,” ACM
Sigmod Record, vol. 25, no. 2, pp. 259–270, 1996.

[45] D. Sidlauskas, S. Chester, E. T. Zacharatou, and A. Ailamaki, “Improving
spatial data processing by clipping minimum bounding boxes,” in 2018 IEEE
34th International Conference on Data Engineering (ICDE). IEEE, 2018, pp.
425–436.

[46] Y. Gao, B. Wu, J. Luo, and H. Qiu, “GPU-based arbitrary polygon intersection
area algorithm,” DEStech Transactions on Engineering and Technology
Research, no. ismii, 2017.

[47] N. Ferreira, M. Lage, H. Doraiswamy, H. Vo, L. Wilson, H. Werner, M. Park,
and C. Silva, “Urbane: A 3d framework to support data driven decision making
in urban development,” in 2015 IEEE conference on visual analytics science
and technology (VAST). IEEE, 2015, pp. 97–104.

[48] J. R. Shewchuk, “Delaunay refinement algorithms for triangular mesh
generation,” Computational geometry, vol. 22, no. 1-3, pp. 21–74, 2002.

[108]

[49] G. Zimbrao and J. M. De Souza, “A raster approximation for processing of
spatial joins,” in VLDB, 1998, pp. 558–569.

[50] B. Simion, S. Ray, and A. D. Brown, “Surveying the landscape: An in-depth
analysis of spatial database workloads,” in Proceedings of the 20th International
Conference on Advances in Geographic Information Systems, 2012, pp. 376–385.

[51] F. Wang, A. Aji, and H. Vo, “High performance spatial queries for spatial big
data: from medical imaging to GIS,” Sigspatial Special, vol. 6, no. 3, pp. 11–18,
2015.

[52] C. Gao, F. Baig, H. Vo, Y. Zhu, and F. Wang, “Accelerating Cross-Matching
Operation of Geospatial Datasets using a CPU-GPU Hybrid Platform,” in 2018
IEEE International Conference on Big Data (Big Data). IEEE, 2018, pp.
3402–3411.

[53] M. Bauer, H. Cook, and B. Khailany, “CudaDMA: optimizing GPU memory
bandwidth via warp specialization,” in Proceedings of 2011 international
conference for high performance computing, networking, storage and analysis,
2011, pp. 1–11.

[54] D. Li, H. Wu, and M. Becchi, “Exploiting dynamic parallelism to efficiently
support irregular nested loops on GPUS,” in Proceedings of the 2015
International Workshop on Code Optimisation for Multi and Many Cores,
2015, pp. 1–1.

[55] H. Wu, D. Li, and M. Becchi, “Compiler-assisted workload consolidation for
efficient dynamic parallelism on GPU,” in 2016 IEEE International Parallel
and Distributed Processing Symposium (IPDPS). IEEE, 2016, pp. 534–543.

[56] A. Eldawy and M. F. Mokbel, “Spatialhadoop: A mapreduce framework for
spatial data,” in 2015 IEEE 31st international conference on Data Engineering.
IEEE, 2015, pp. 1352–1363.

[57] A. Aji, F. Wang, H. Vo, R. Lee, Q. Liu, X. Zhang, and J. Saltz, “Hadoop-gis:
A high performance spatial data warehousing system over mapreduce,” in
Proceedings of the VLDB Endowment International Conference on Very Large
Data Bases, vol. 6, no. 11. NIH Public Access, 2013.

[58] S. Shekhar, S. Ravada, V. Kumar, D. Chubb, and G. Turner, “Parallelizing a
gis on a shared address space architecture,” Computer, vol. 29, no. 12, pp.
42–48, 1996.

[59] F. Baig, H. Vo, T. Kurc, J. Saltz, and F. Wang, “Sparkgis: Resource aware
efficient in-memory spatial query processing,” in Proceedings of the 25th ACM
SIGSPATIAL international conference on advances in geographic information
systems, 2017, pp. 1–10.

[109]

[60] J. Yu, J. Wu, and M. Sarwat, “Geospark: A cluster computing framework for
processing large-scale spatial data,” in Proceedings of the 23rd SIGSPATIAL
international conference on advances in geographic information systems, 2015,
pp. 1–4.

[61] A. Eldawy, M. F. Mokbel et al., “The era of big spatial data: A survey,”
Foundations and Trends® in Databases, vol. 6, no. 3-4, pp. 163–273, 2016.

[62] H. Vo, A. Aji, and F. Wang, “Sato: a spatial data partitioning framework for
scalable query processing,” in Proceedings of the 22nd ACM SIGSPATIAL
International Conference on Advances in Geographic Information Systems,
2014, pp. 545–548.

[63] “CGAL - Intersecting Sequences of dD Iso-oriented Boxes,”
https://doc.cgal.org/latest/Box intersection d/index.html.

[64] A. Zomorodian and H. Edelsbrunner, “Fast software for box intersections,” in
Proceedings of the sixteenth annual symposium on Computational geometry,
2000, pp. 129–138.

[65] W. R. Franklin, C. Narayanaswaml, M. Kankanhalll, D. Sun, M.-C. Zhou, and
P. Y. Wu, “Uniform grids: A technique for intersection detection on serial and
parallel machines,” in Proceedings of Auto-Carto 9. Citeseer, 1989.

[66] P. Schneider and D. H. Eberly, Geometric tools for computer graphics.
Elsevier, 2002.

[67] S. Ray, C. Higgins, V. Anupindi, and S. Gautam, “Enabling numa-aware main
memory spatial join processing: An experimental study,” ADMS@ VLDB, 2020.

[68] Y. Liu, J. Yang, and S. Puri, “Hierarchical Filter and Refinement System Over
Large Polygonal Datasets on CPU-GPU,” in 2019 IEEE 26th International
Conference on High Performance Computing, Data, and Analytics (HiPC).
IEEE, 2019, pp. 141–151.

[69] J. Yang and S. Puri, “Efficient parallel and adaptive partitioning for
load-balancing in spatial join,” in 2020 IEEE International Parallel and
Distributed Processing Symposium (IPDPS). IEEE, 2020, pp. 810–820.

[70] D. Li, H. Wu, and M. Becchi, “Nested parallelism on GPU: Exploring
parallelization templates for irregular loops and recursive computations,” in
2015 44th International Conference on Parallel Processing. IEEE, 2015, pp.
979–988.

[71] X. Tang, A. Pattnaik, H. Jiang, O. Kayiran, A. Jog, S. Pai, M. Ibrahim, M. T.
Kandemir, and C. R. Das, “Controlled kernel launch for dynamic parallelism in
GPUs,” in 2017 IEEE International Symposium on High Performance
Computer Architecture (HPCA). IEEE, 2017, pp. 649–660.

[110]

[72] J. Zhang, A. M. Aji, M. L. Chu, H. Wang, and W.-c. Feng, “Taming irregular
applications via advanced dynamic parallelism on GPUs,” in Proceedings of the
15th ACM International Conference on Computing Frontiers, 2018, pp.
146–154.

[73] S.-H. Lo, C.-R. Lee, Y.-C. Chung, and I.-H. Chung, “A parallel rectangle
intersection algorithm on gpu+ cpu,” in 2011 11th IEEE/ACM International
Symposium on Cluster, Cloud and Grid Computing. IEEE, 2011, pp. 43–52.

[74] “CUDA Thrust,” https://docs.nvidia.com/cuda/thrust/index.html.

[75] Y. Pan, Y. Wang, Y. Wu, C. Yang, and J. D. Owens, “Multi-GPU graph
analytics,” in 2017 IEEE International Parallel and Distributed Processing
Symposium (IPDPS). IEEE, 2017, pp. 479–490.

[76] D. Agarwal, S. Puri, X. He, and S. K. Prasad, “A system for GIS polygonal
overlay computation on linux cluster-an experience and performance report,” in
2012 IEEE 26th International Parallel and Distributed Processing Symposium
Workshops & PhD Forum. IEEE, 2012, pp. 1433–1439.

[77] S. Puri, A. Paudel, and S. K. Prasad, “MPI-Vector-IO: Parallel I/O and
partitioning for geospatial vector data,” in Proceedings of the 47th International
Conference on Parallel Processing, ICPP, 2018, p. 13.

[78] S. Puri, D. Agarwal, and S. K. Prasad, “Polygonal overlay computation on
Cloud, Hadoop, and MPI,” Encyclopedia of GIS, pp. 1–9, 2015.

[79] S. K. Prasad, M. McDermott, S. Puri, D. Shah, D. Aghajarian, S. Shekhar, and
X. Zhou, “A vision for GPU-accelerated parallel computation on geo-spatial
datasets,” SIGSPATIAL Special, vol. 6, no. 3, pp. 19–26, 2015.

[80] X. He, Y. Tao, Q. Wang, and H. Lin, “Multivariate spatial data visualization:
a survey,” Journal of Visualization, vol. 22, no. 5, pp. 897–912, 2019.

	Hierarchical and Adaptive Filter and Refinement Algorithms for Geometric Intersection Computations on GPU
	Recommended Citation

	tmp.1619797985.pdf.nYdNc

