1 Global standardization and local complexity. A case study of an aquaculture system in 2 Pampanga delta, Philippines.

Mialhe, F.^a, Morales, E.^b, Dubuisson-Quellier, S.^c, Vagneron, I.^d, Dabbadie, L.^{e*}, Little, D.C.^f 4

^a Department of Geography, University of Lyon, Lumière Lyon 2, UMR CNRS EVS, Lyon, France. Phone: +334 78 77 43 44 email: Francois.Mialhe@univ-lyon2.fr 6 7

8 ^bSFP, 4348 Waialae Ave. #692, Honolulu, HI 96816 USA, email: jack.morales@sustainablefish.org ^c Centre de Sociologie des Organisations (Sciences Po/CNRS), 27 rue Saint-Guillaume 75337 Paris cedex 07 France. Phone: +33 1 45 49 76 93 email: sophie.dubuissonquellier@sciencespo.fr 9 10

11 ^dCIRAD, UMR MOISA, F-34398 Montpellier, France. Phone: +856 (021) 313 554 email: isabelle.vagneron@cirad.fr 12

13 ^e CIRAD, UMR 116, F-34398 Montpellier, France. Phone: +39 06 570 56259 email:

14 lionel.dabbadie@cirad.fr

15 ^f Institute of Aquaculture, University of Stirling, Stirling, Stirlingshire, FK9 4LA, UK. Phone: +44 1786 467923 email: dcl1@stir.ac.uk

16

17 Abstract

3

5

18 International standards result from global policies formulated primarily to address issues on food

- 19 safety, traceability, environmental impact as well as social accountability. As in other agro-food
- 20 industries, these rules increasingly regulate aquaculture, especially since it has started to be the object
- 21 of many criticisms. The standards are generally designed in a top-down way and do not always
- 22 consider the local specificities of production systems. Such implementation favors the emergence of
- 23 similar patterns of production and trade across different locations. Based on a case study, this paper
- 24 aims to highlight the gap between the vision conveyed by expert-based, simple and replicable policies
- 25 of standardization, versus the real complexity and uniqueness of local aquaculture systems. The
- 26 assumption is that the lack of recognition of this complexity leads *de facto* to the reproduction of
- 27 dominant modes of production based on standards, ignoring some local actors with a capacity for
- 28 innovation, while favoring a few larger stakeholders. To reveal the gap, the study looks at some agents
- 29 of an extensive aquaculture system in the Philippines and at their interaction, focusing on gleaning and
- 30 trading activities. It then reveals the changes that followed the local implementation of an International
- 31 food safety standard. It finally discusses (i) the links between the global and normative point of view,
- 32 and the local and unique dynamics and (ii) some bridges able to reconcile both.

33 **Keywords**

- 34 Aquaculture; International Food Standards; Pampanga (Philippines); social-ecological system;
- 35 commodity chain; livelihoods; gleaning.

Accepted refereed manuscript of: Mialhe F, Morales J, Dubuisson-Quellier S, Vagneron I, Dabbadie L & Little DC (2018) Global standardization and local complexity. A case study of an aquaculture system in Pampanga delta, Philippines, Aquaculture, 493, pp. 365-375. DOI: https://doi.org/10.1016/j.aquaculture.2017.09.043

© 2017, Elsevier. Licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International http://creativecommons.org/licenses/by-nc-nd/4.0/

^{*} Corresponding author

36 1 Introduction

- 37 Agricultural commodity chains have traditionally been monitored, regulated and controlled by states,
- 38 but since the 1980s and 1990s, in-depth changes have occurred, as a result of globalization and
- 39 liberalization of trade, leading in particular to the development of new market-led regulatory schemes
- 40 (Swinnen, 2007). The emergence of this process also coincided with the occurrence of several food
- 41 crises and fears about food quality in Europe, and growing concerns about the sustainability of
- 42 aquaculture (Bostock et al., 2010; Godfray et al., 2010; Grunert, 2005; Muir, 2012). Food safety and
- 43 environmental issues are now high on the agenda and many standards have been developed by
- 44 governments, private companies and non-government organizations (Bush et al., 2013; Cab
- 45 International, 2005; Jonell et al., 2013; Vos, 2000; Washington and Ababouch, 2011). With 37% of all
- 46 fish produced currently traded globally, and more than two thirds of developing countries' exports
- 47 delivered to developed countries (Asche et al., 2015; FAO, 2014), seafood value chains have been
- 48 particularly shaped by these approaches (Washington and Ababouch, 2011).
- However, because they are intended to mirror the expectations of remote consumers, remote in both
 geographical and cultural senses, the values conveyed by these standards may be different from the
 values that prevail at the local level. In this way, there is a risk that local practices and knowledge are
- 52 neglected and marginalized. Local regulatory schemes dedicated to govern the use and management of
- 53 natural resources are sometimes simply not considered (Kusumawati et al., 2013).
- 54 In parallel to their wide diffusion during the last decade in trade between North America and Europe
- 55 (Bush et al., 2013), a growing concern has emerged that they had the potential to negatively impact
- 56 local producers and local production, distribution or sharing of resources (Unnevehr and Ronchi,
- 57 2014; Vandergeest, 2007; Holzapfel and Wollni, 2014; Rueda and Lambin, 2013). This is particularly
- 58 true in the case of export chains, as it is becoming increasingly clear that the socioeconomic benefits
- are not distributed equally among the different strata of the society, and often result in stronger
- 60 negative impacts on the poorest (Belton et al., 2011a; Bush et al., 2013; Haque, 2003).
- 61 Nevertheless, empirical-data based studies dealing with these issues are not yet sufficiently numerous
- 62 to develop robust conclusions. The goals of this paper are thus (i) to detail the social complexity
- 63 within an aquaculture system in two particular activities, gleaning and trading, (ii) to describe a
- 64 process of compliance with a European food safety standard, and (iii) to discuss ways to reconcile or
- bridge the multi-dimensional and multi-scale processes at stake. The study aims to fill a gap in the
- 66 literature regarding the dynamics occurring around local aquaculture systems (e.g., Kusumawati et al.,
- 67 2013), as well as to highlight the (dis)connection between the global and the local processes
- 68 constituting the aquaculture system. It was conducted in a coastal area located in the north of Manila
- 69 Bay (Philippines) where aquaculture has been practiced for more than a century and where today
- 70 extensive polyculture production systems dominate. Such extensive production systems have been

71 little studied the Philippines, despite their importance and roles in reducing risk and vulnerability (Irz

and Stevenson, 2012).

73 2 Study area

74 2.1 The social and natural environment

75 Fieldwork was conducted in the municipalities of Sasmuan (Pampanga province) and Hagonoy 76 (Bulacan province) (Figure 1), both entirely located in the deltaic complex of the Pampanga River 77 Basin, the fourth largest in the country (~10,000 km²). Topography is flat and elevations are close to 78 sea level. A remarkable geological feature is the presence of the Pinatubo volcano. Its eruption in June 79 1991 had tremendous global and local impacts. Locally, lahars (mudflows made of pyroclastic 80 elements) buried hectares of aquaculture ponds and increased production costs by modifying the 81 physical environment (e.g., changes in depth of waterways). The tropical monsoon climate (Am in 82 Köppen classification) is characterized by most of the annual rains falling during the monsoons and 83 typhoons period, *i.e.* between June and December (2,300 mm in average at Masantol weather station). 84 Another hazard is the anthropogenic-accelerated deltaic subsidence (Gaillard et al., 2008; Rodolfo and 85 Siringan, 2006), which induced a rise in salinity that stimulated the conversion of paddy fields to 86 aquaculture ponds (Mialhe et al., 2015). Natural deltaic vegetation is now restricted to small patches 87 of mangrove, stretches of Nypa fructicans ('nypa') along the canals and scattered acacia trees on pond 88 dikes (Mialhe et al., 2015).

89

[Placeholder for Figure 1]

90 In 2010, the population of Sasmuan and Hagonov reached 27,254 and 125,689 respectively (Census of 91 Population and Housing, 2010). Four *barangays* (the smallest administrative unit in the Philippines) of 92 Sasmuan were investigated: Malusac, Sebitanan, Mabuanbuan and Batang Dos. Their populations are 93 concentrated on small islands surrounded almost exclusively by ponds (Table 1). At the municipality 94 level, the share of land-use dedicated to aquaculture reached 98 % (Hejdova, 2006). These four 95 barangays have very high population densities, *i.e.* between 734 and 1166 inhabitants per hectare of 96 residential area (Coloma, 2008) and are located 10-15 km from the town center of Sasmuan. They are 97 islet-villages accessible only through waterways. Aquaculture and fisheries constitute the bulk of the 98 local livelihoods options and aquatic gleaning is a particularly important activity for the poor, although 99 it has not really been considered by studies so far (Irz and Stevenson, 2012). In fact, formal salaried 100 employment is more visible locally, possibly as a consequence of the remoteness of the area that 101 creates a high level of absentee ownership in the aquaculture system.

102 In Hagonoy, the economy is more diversified than in Sasmuan due to closer proximity to Manila,

103 making it a convenient location for trading shrimp intended for the export market. It was selected

104 because not less than thirteen shrimp-specialized auction houses are located in the town, in the

105 *barangay* of Santo Niño investigated during this study (Chaigne, 2009; Talbot, 2008). Like in

106 Sasmuan, riceland is another important local feature and the majority of the population is working in

107 fisheries and aquaculture (Chaigne, 2009).

108

[Placeholder for Table 1]

109 The four *barangays* of Sasmuan were selected by considering the following criteria: total number of 110 households, presence of gleaners, and importance of aquaculture and fishery in the community, based 111 on (i) the Municipal Comprehensive Land Use Plan that is an official document including local 112 statistics, and (ii) local key informant peoples. The *barangay* of Hagonoy was selected because it hosts 113 all the shrimp-export-grade auction markets.

114 2.2 The aquaculture system

115 Understanding the current patterns of ponds distribution and land ownership requires an historical 116 examination of past events. The enclosure of water bodies, which paved the way to aquaculture, began 117 in the late 19th century (Mialhe et al., 2015). Enclosures were developed by building barriers across the 118 water flow and by building small side-dykes around *nypa* swamps in order to retain fish, a process that 119 required hiring local labor and that marked the beginning of the privatization of a common-pool 120 natural resource. Many legal conflicts ensued to determine ownership status of these new landscape 121 entities. The development of aquaculture came with several tradeoffs, due to the new forms of 122 interaction between society and nature triggered by these legal changes. Mialhe et al. (2015) outlined the following chronology of farming systems in the Pampanga delta from the late 19th century to the 123 124 late 20th century: (i) until the 1970s, aquaforestry systems combined *nypa* (used for alcohol, vinegar, 125 and roofing), milkfish (recruited first from natural environment and then from nurseries) and 126 secondary products; (ii) in the early 1980s, the shrimp boom driven by high revenue expectations 127 (some producers stated that they obtained ten times more revenues with shrimp than with rice) and 128 supported by the Bureau of Fisheries and Aquatic Resources (BFAR), the government agency in 129 charge of the fisheries and aquatic resources in the Philippines (Talbot, 2008); (iii) from the 1990s, a 130 return to more diversified systems (monoculture of milkfish or tilapia, extensive polyculture, 131 agriculture-aquaculture rotation, etc.), driven by environmental changes following the Pinatubo 132 eruption, deltaic subsidence, and shrimp disease outbreaks. Between the 1970s and the early 2010s, 133 the area devoted to aquaculture expanded five-to-six-fold, moving landward to include former rice 134 field areas (Mialhe et al., 2015). Today, a majority of the small-scale producers (from less than one hectare to a few hectares) are found in these areas formerly devoted to rice production. 135

136 As in other countries, recurring disease outbreaks severely affected shrimp farming in the Philippines,

137 but the extensive mode of production practiced in Pampanga seems to have afforded some level of

138 resilience (Figure 2) as compared to the other two main shrimp producing areas of the country, the

139 Southern part of Luzon (Southern Tagalog) and the Visayas region (Negros Island). As a result,

- 140 Pampanga became the main black tiger shrimp production area for both the domestic and export
- 141 markets, accounting for 43 % of the national production in 2005, at the time of the study (Figure 2).
- 142

[Placeholder for Figure 2]

- 143 The most common farming system across the study area is the extensive polyculture of black tiger
- 144 shrimp (Penaeus monodon), tilapia (mostly Oreochromis niloticus but also Oreochromis
- 145 *mossambicus*), milkfish (*Chanos chanos*) and crabs (*Scylla serrata* and *Scylla paramamosain*). O.
- 146 *mossambicus* was introduced before *O. niloticus* but is less popular among the producers because of
- 147 its slower growth (Diener, 2000), its darker coloration and poorer marketability. *O. niloticus* is also
- 148 particularly appreciated for its beneficial impact on invasive plants (*e.g.*, *Hydrilla verticillata*). Mud
- 149 crab was introduced into the polyculture because its production is reliable and the demand is high.
- 150 2.3 The European market and standards

151 The European Food Law (EFL) developed in the aftermath of recent European food crises, particularly

- 152 the Bovine Spongiform Encephalopathy (BSE) crisis and was applied to all food and feed products
- 153 marketed in the EU to ensure a higher food safety. At the time of the research, it consisted mainly of
- EU regulations setting the new principles and responsibilities for food safety (178/2002), and setting
- the hygiene requirements of foodstuffs (852/2002) and food of animal origin (853/2002). The EU
- regulation 854/2002 and Council Directive 96/23 on their side respectively regulated the Official
- 157 Control and the residue-monitoring program. Among the major changes from previous regulations was
- the move for primary responsibility for food safety to the Food Business Operators (Article 17 of
- regulation 178/2002), the obligation of results, not of means (Art. 14 "Food shall not be placed on the
- 160 market if it is unsafe"), the adoption of the Precautionary and Transparency principles (Art. 7, 9, 10),
- 161 the traceability (Art. 18) and the generalized use of risk analysis (Art. 6). For the operators, those
- 162 requirements generally implied training on Hazard Analysis and Critical Control Point (HACCP)
- 163 method and traceability, changes in the work processes, additional tasks (traceability, documentation,
- 164 hygiene) and for some, investments (new equipment, new staff).
- 165 Implementation was under the remit of the inspectors of the EU-Food and Veterinary Office (FVO)
- 166 charged with verifying the compliancy of producing countries. In countries exporting to the EU, FVO
- 167 worked with the local Competent Authorities (CA), which, in the case of the Philippines, is the Bureau
- 168 of Fisheries and Aquatic Resources (BFAR). Following serious deficiencies being identified during an
- 169 inspection in 2004 (FVO, 2004), the local authorities initiated strong procedures to meet compliancy
- 170 with EFL within a few months (Dabbadie, 2009; Dabbadie et al., 2007).
- 171 In 2005, following the national-level restrictions to export seafood products to the EU, the European
- 172 market absorbed only 1% of the national shrimp production, while Japan absorbed 52%, South Korea
- 173 20% and the US 15% (Regidor and Dabbadie, 2007). In 2003, prior to the ban, the EU market share
- 174 was 15% (Regidor and Dabbadie, 2007) but this market has never been as important as the more

175 traditional East Asian markets. Indeed, Japan has always been the top destination, with a market share

that reached 75% to 85% of the total volume of shrimp production before the 1997 Asian financialcrisis (BFAR, 2000, 1997, 1994).

178 **3 Method**

179 The findings presented in this paper are based on intensive field investigations conducted between 180 2007 and 2009 by an interdisciplinary research team (agronomy, economics, sociology, and 181 geography). Through a sequence of individual research studies, the team was able to generate broader 182 information regarding the geographical and social setting in the research area. The goal was to 183 generate and collect data about the socioeconomic dimension of the aquaculture system and the 184 compliance process to hygiene standards for export. Data was collected through semi-directive and 185 open interviews, participatory appraisals (Dabbadie and Mikolasek, 2015; FAO, 1999), as well as 186 participatory observations. Interviews concerned a wide range of stakeholders (Table 2). Participatory 187 activities were implemented with focus groups of all local key stakeholders (usually five participants 188 per group and two to four groups per community). During the implementation of the research, the 189 local language (Kapampangan) as well as English and Tagalog were used.

190

[Placeholder for Table 2]

4 Results

192 4.1 The social complexity of trading and gleaning

193 Field investigations revealed the presence of very specific agents and activities in the shrimp industry 194 and the complex supply chain of Pampanga: the various auction markets and the gleaning activities in 195 shrimp farms that make the system unique. Gleaning occurs when local people are given access to the ponds after the main harvest for the purpose of removing hitherto unharvested aquaculture products on 196 197 an informal basis. Those products are then locally consumed or are sold through established market 198 channels. By focusing on these two sectors of the shrimp farming industry, and also identifying the main livelihoods issues connected with aquaculture, this section attempts to understand the local social 199 200 complexity of aquaculture.

201 4.1.1 The consignacions

Auction houses, which are specialized in consolidating and trading aquatic products, are known by their Spanish term, *consignacion*. Until 2005, auction houses were the only areas where exporters sourced the product destined for foreign markets. Most aquaculture producers and middlemen sell their products to auction houses due to limited access to, or information about, alternative markets and their strategic locations. Located along major river channels, several auction houses are scattered throughout the delta. Some auction houses trade specific species while others are non-selective; for example, milkfish and tilapia are not traded in the same places as export-grade shrimps. The different species are sorted out on the farms during the harvest and then transferred to their respective markets. Shrimps are generally the first to be moved, as they are intended for the export market, unlike tilapia and milkfish that are exclusively intended for the domestic market. Species like mud crab that can

212 easily be kept alive, are the last to be transferred.

213 Auction houses that regularly supply exporters usually source directly from farms with large volumes 214 of production whereas middlemen dominate the flows of products to auction houses that cater to the 215 local market. During the survey, there were thirteen auction houses dealing with shrimps, all located in 216 the barangay of Santo Niño (Hagonoy, Bulacan). The first shrimp-specialized auction houses were 217 established during the peak of the shrimp production in the region in the early 1980's by a few 218 wealthy families that also operated shrimp farms. These well-off families tend to vertically-integrate 219 their operation to secure their business. The same families still manage the largest enterprises in the 220 area (Chaigne, 2009; Talbot, 2008). The success of the first auction houses influenced a few more 221 local individuals, that were attracted by the 5% commission retained on every transaction and 222 established their own auction houses by investing capital generated from sources such as shrimp 223 farming or processing plants. In the year 2000, following the sudden decline in production in other 224 shrimp-producing areas of the Philippines, non-local investors started to enter the sector, as the 225 demand for large volumes of export-grade shrimps had locally increased to balance the deficit of other

regions.

227 The role of auction houses in the supply chain is central, for both producers and exporters, functioning

228 as intermediaries or facilitators of transactions. Exporters have specific requirements regarding the

size of the animals, demanding shrimp that are both large (between 8 and 25 pieces per kilo) and

230 homogeneous in size. However, extensive systems generally produce shrimp with heterogeneous sizes

and the auction houses therefore provide an essential role for both buyers and producers to ensure

access to large volumes graded to meet these requirements (Chaigne, 2009; Talbot, 2008).

All auction houses work in much the same way. The producers (farmers) deliver the shrimps (goods)
by boat. The shrimp are then sorted according to size and displayed to the buyers. Buyers will then

235 successively whisper their bids to a broker, so that other buyers can't hear, until the broker stops the

process and the product is sold to the winning bidder. The transaction turns out to be beneficial for

suppliers, auction house and even the municipality as they have their respective share on the

profit/sales. The producers/sellers pay a 5-6% fee to the auction house and 1% to the municipality for

every transaction. All local actors therefore share a common interest, to achieve the highest price

240 (Chaigne, 2009; Talbot, 2008). Operators of auction houses compete to attract producers/sellers as this

241 will optimize the volume of products auctioned. Auction houses build trust and loyalty with their

suppliers, through provision of other services such as informal loans through cash advances before or

243 during the culture period. These were critical to enable cushioning of seasonality in income. Efforts 244 were also made to provide services to farmers delivering the products like seating areas, drinks, food 245 and polite staff). Loans of up to USD 4,000 were largely based on verbal agreement rather than written 246 contracts. In exchange for loans, shrimp farmers were required to deliver subsequent harvests to the 247 auction house and pay an additional commission (1% of the amount of sales). Our investigations 248 revealed that 94% of the interviewed farmers visited the same auction house regularly to sell their 249 products. This loyalty is undoubtedly linked to market assurance as well as these credit arrangements, 250 which are more favorable than loans from other informal lending institutions that offer rates of 251 interests up to 15% and beyond. There is no clear time limit for repayment and producers are not obliged to repay the loan in full at the next transaction. However, they have a moral obligation to 252 253 deliver all future goods to the auction house until the total amount has been settled. In case of unpaid 254 loans, the auction house has no legal recourse beyond informal blacklisting of the producers whereby 255 access to a new loan with another auction house is also compromised. This type of interaction is the 256 norm in the Philippines' markets particularly in farming (both agriculture and aquaculture). This norm 257 is characterized by the high degree of reciprocal and conscious social obligation that is carried forward 258 into the marketplace (Davis, 1973). Such traditional patron-client relationships (Wolf, 1966) are 259 known locally as *suki*, reflecting the way an economic transaction is part of a relationship of loyalty or 260 that of *utang na loob* that reflects an asymmetrical situation in which an individual has a moral and/or 261 economic debt to another person, placing an obligation in relation. All auction houses are locally 262 influent and as such benefit from various benefits, whether in terms of markets, taxes or regulations 263 (Chaigne, 2009). Such arrangements also benefited from institutional reforms (the Local Government Unit code in 1991) that gave enhanced powers at lower levels. 264

265

4.1.2 Livelihoods in aquaculture producer communities

The study identified the different stakeholders involved in the local aquaculture system. A simple and 266 267 synthetic classification scheme obtained by combining several variables (e.g., time, ownership, areas 268 of production) enabled categorization of aquaculture farmers into three groups: (i) traditional local 269 landowners from the wealthy and influential families holding vast area of lands (over 50 ha). They are 270 generally absentee farmers and their group is the one to which the first auction houses belong; (ii) the 271 local renters, a fairly broad class that includes individuals who have large rented areas (over 50 ha) 272 and others, with smaller holdings (less than an hectare), and (iii) the former rice-sharecroppers who 273 managed to obtain land through agrarian reforms in the 1970's and the 1980's and who have limited (less than 7 hectares) landholdings (Levy, 2009; Mialhe, 2010). Location also distinguished the larger 274 275 ponds and farms in the southern part of the study area near Manila Bay, and the smaller ponds usually 276 located farther north where former rice paddies were converted to aquaculture ponds due to the 277 increasing salinity of the surrounding water resulting from subsidence (Mialhe et al., 2015). While

large land owners established their aquaculture farms before or during the 1980s, surveys showed that
many current farmers started their activity recently, 10.5 years ago on average for the producers
surveyed during the study (Mialhe, 2010; Talbot, 2008).

281 Another occupation in connection with aquaculture is the caretaker. Caretakers, locally known as 282 "bantay", mainly guard the farms against threats, either human or otherwise (e.g. natural calamity, 283 poaching) and conduct daily farming operations such as feeding and water management. The caretaker 284 is also responsible in providing updates to the farm owner on whether the stocks are good for harvest 285 already. They tend to have kinship links with the owners and usually live on-farm with their family. In 286 some cases, the caretakers' family members also work in the farm. Their remuneration typically 287 includes an incentive package (commission after harvest) depending on the final harvest, which can be substantial, several times the annual salary: 40,000-60,000 PHP on average, up to 90,000-100,000 288 289 PHP (Mialhe, 2010). They are also generally allowed to fish from time to time for self-recruiting 290 species (SRS) such as tilapia in the ponds and other native species (snakehead, catfish, crabs and other 291 small indigenous species). Furthermore, the farm operators, apart from providing housing within the 292 vicinity of the farm, generally support part of current expenditures of caretakers, such as food and 293 sometimes education of their children. Despite some constraints as caretakers, such as limited social 294 relations with the nearby community, the occupation is one of the most favored job as it brings 295 positive social capital, being the most trusted by the landowner. The community often believe that 296 caretakers can influence the farm owner on who to hire or even whom to sell the product.

297 Laborers are those that are paid on a daily basis and are responsible for all day-to-day pond 298 management activities that include direct management task (e.g., feeding, stocking) or indirect 299 (improving or repairing dikes) linked with production. Generally, laborers were only employed 300 seasonally during the peaks in labor/activity in the farm. The caretakers usually take care of the 301 remaining minimal operations in the farm. Such job insecurity and the lack of continuous work led the 302 majority of such labourers to diversify their livelihood strategies by having several sources of income. 303 As a result, such labor linked to aquaculture farms is usually not the main source of income, but rather 304 tends to contribute to a more diversified livelihood portfolio in combination with other activities 305 (fishing for snails used as shrimp postlarvae feed, dike improvement, gleaning, construction work, 306 transportation, local trading, etc.). Categorizing such individuals based on their main sources of 307 income may prove to be difficult as these changes can also be seasonal as the main livelihood 308 activities vary over time.

309 4.1.3 The gleaning system

Another important activity that was identified during the fieldwork was the gleaning sector. As the
name implies, this group manually harvest aquatic products along the rivers' banks and in the drained
aquaculture ponds, just after the commercial harvest has taken place (Irz et al., 2007; Parker, 2008).

313 They are locally called *mangangapa*, which literally means 'pick up, caught with their bare hands'.

- 314 This denomination is explicit on how these individuals collect aquatic organisms in the production
- 315 pond after harvest, whether inside the ponds or in the adjacent channels and streams or even in the
- 316 supply and drainage canal inside the farm. These people generally have limited capital to invest on
- 317 their fishing equipment, hence they generally do not use nets, which they often cannot afford, except
- to store collected aquatic animals. Moreover, farm owners and caretakers discourage the gleaning
- 319 sector to bring harvesting equipment when entering the farm to avoid conflict.

320 It is not clear either how to group individuals who practice this activity in a category with well-defined 321 limits. Indeed, gleaners also practice a variety of activities, including fishing, throughout the year. 322 However, during the research, participants readily identified this category of individuals, underlining 323 the singularity of their livelihood. During the wealth ranking exercise, participants ranked gleaners 324 among the poorest members of the community and used it as main indicator to identify poorer member 325 of the community. Gleaners were considered even poorer than snail collectors (who collect small gastropods and bivalves used to feed shrimps), and fishermen. Gleaners are differentiated from fishers 326 327 by the fact that the latter are fishing throughout the year, whereas gleaners fish only seasonally. 328 Moreover, local community defined fishermen as those having fishing boats or having fishing traps in 329 the main channel whereas gleaners most commonly fish in farmer's managed areas like ponds or water 330 canals. This link between poverty and gleaning finds an explanation in the fact that almost no financial 331 capital is needed to start this livelihood activity. Only a minimum of social capital, which all locals 332 have, is required to start the activity that is practiced in groups (Parker, 2008). The limited livelihood 333 alternatives in coastal communities also explains why a significant part of the population is drawn to 334 this activity. The study found that gleaners were in fact the main population in some communities, 335 such as in Batang Dos where 195 households (49.8% of all the households) mainly relied on gleaning

activities for both money and food.

337 The gleaning system appears to be a complex sector in the shrimp farming industry in the Philippines. 338 Gleaners are often organized through a third party (a middlemen, the *degaton*) who represent the 339 group and negotiates with the pond owners or caretakers the permission to glean, and who mobilizes 340 the gleaners and supports the operation by providing transportation. In return, the gleaners commit to 341 selling the gleaned products to their *degaton*, who will then sell them to a specific auction house. 342 Degaton are specialized in the organization of gleaning, and are often better-off people that own boats 343 and transport equipment. Although they are mobile, they still live in the community (Parker, 2008). 344 Degaton and gleaners depend one upon each other because a degaton needs as many gleaners as 345 possible to be able to meet the volume required by the auction houses or markets while gleaners need 346 someone to purchase their meager harvests locally and to provide assistance (transport, food and 347 containers). Not all gleaned products are sold, some are kept for household consumption particularly 348 the lower valued species (e.g., goby, tilapia, and other small indigenous species) while some are also

- being used in exchange for necessities (barter). To ensure the loyalty of the gleaners (eventually
- 350 through *utang na loob* which means debt of gratitude see above –), the *degaton* often provides
- 351 various services to gleaners, including financial loans, which are critical to enable cushioning of
- 352 seasonality in income resulting from the seasonal limitation in opportunities to glean. About 76 % of
- the gleaners in Batang Dos and 50 % in Malusac have a bondage debt toward their *degaton*, and 60%
- 354 of the *degaton* are in debt to their auction house (Parker, 2008). Such dependency on a debt provider
- 355 reflects the lack of alternative livelihood opportunities and the seasonality of pond harvest, and thus
- 356 opportunities to glean after these harvests.
- The seasonality of production affects the gleaners' livelihood in general. Harvest intensity tends to peak at times of high consumption of aquaculture products (*e.g.*, Christmas, community events like festival and church-related celebration) and to decline during periods of low consumption (*e.g.*, school enrollment when fees are high) (Figure 3). Average incomes are minimal during the rainy season (May to October) when pond harvests are minimal and highest during the dry season (November to April). This is reflected in the average number of gleaning trips: in Batang Dos, only five trips per
- 363 month are possible in August, but more than fifteen/month between December and April.
- 364

[Placeholder for Figure 3]

365 Although interviews also revealed that gleaners received higher prices for products harvested in

- 366 aquaculture ponds, river collection is considered as more reliable since they can go anytime, stay as
- 367 long as they want and do not require permission from the pond owner (Parker, 2008). The number of
- 368 gleaners using the *degaton*'s services varies seasonally and depends on how the number of boats the
- 369 middleman owns. Typically, a *degaton* can organize up to forty gleaners in one day. After the harvest,
- 370 the gleaned products are sorted by species (high values species shrimps and crabs and self-
- 371 recruiting species) and by size. Provision of ice and containers for transport is the responsibility of the
- 372 *degaton* as the products need to reach the auction house in good condition. The *degaton* pays the
- 373 gleaners based on the weight or number of catch.
- 374 The relationships between the pond operators and the middlemen/gleaners are complex. Accepting
- 375 gleaning activities supports good relations between the aquaculture producers and local communities,
- 376 while a refusal could be accompanied by threats to the farming activity through forced harvests or
- 377 payments, particularly for the medium and small-scale operators who cannot afford to pay for private
- 378 security like the wealthiest and most influent farmers. Organized or casual theft has been a major
- 379 constraint to aquaculture in many contexts (Little and Bunting, 2005). One positive reason for farmers
- 380 to accept gleaners is that they help in collecting unwanted fish, *i.e.* the ones that survive in the mud
- 381 between two crops and become predators in the following cropping season. By removing the
- 382 unwanted species, the need and cost of using piscicide, generally tea seed, is reduced.

383 On the other side, the main difficulties perceived by the gleaners is the need to constantly negotiate 384 access to the pond whereas the number of refusals is increasing. The decreasing quantity of leftovers 385 in pond, as farmers have improved their harvest efficiency by using more effective nets and by 386 employing more manpower during the harvest, is also a concern as well as the increasing number of 387 gleaners that result in reduced individual shares. The obligation to work in groups, the dependence on

388 the middlemen and the lack of alternative livelihoods were also identified as problematic.

The activity, which has probably existed since the onset of aquaculture, is likely to have expanded with the reduction of capture fisheries and the extension of aquaculture ponds at the expense of natural resources. The lack of alternatives and the growth of the population are also likely to have played a role. Gleaning occupies a large part of the population, mainly composed of young men with few resources. The activity seems essential for a large number of households in these communities but the growing difficulties faced by many gleaners may become exacerbated by the transformation of the

aquaculture system in general.

396 4.2 The compliance process

The need to comply with EU food law came following a temporary exclusion from the European market, but the process remained relatively unnoticed over the short-term by most stakeholders due to the low market share of the European market. However, over the medium-term, it also induced changes for other stakeholders as, for example, after one out of the thirteen Hagonoy's auction houses supplying the shrimp export market committed to reach compliance, others followed. According to their operators, the reason is that this compliance improved their market position in East Asia, by giving them an image of quality and performance.

404 In accordance with the EU regulations, compliance is required to focus on the whole production chain 405 supplying the European market, but the regulation was only considering a simplified supply chain, 406 mostly made of approved producers supplying approved exporters. The complexity of the local 407 aquaculture system and the specific stakeholders such as the small-scale producers, the small traders 408 (or consolidators), the gleaners or the middlemen (like the *degaton*) were not considered and 409 consequently, the compliance process initially induced changes to a very limited number of large 410 stakeholders involved in the EU-export chain: exporters, the large auction houses and very few large-411 scale pond operators (Fig. 4). As the Competent Authority, BFAR handled the whole compliance 412 process, and also had to undergo major changes. It modernized its official control units, by putting 413 them directly under the authority of the Director General and conducted intensive training of its own 414 staff on risk analysis, traceability, hygienic practices etc. Procedures for risk-based inspection and a 415 national residue-monitoring plan were introduced and the official control laboratories underwent an 416 ISO 17025 certification (Dabbadie et al., 2007).

417

[Placeholder for Figure 4]

- 418 The registration of farms with BFAR was also introduced, requiring their enrollment in a residue-
- 419 monitoring program by submitting samples to the official laboratory. They also had to have
- 420 traceability in place. Ragasa et al. (2011) reported that some farmers were requested to comply with
- 421 commercial aquaculture standards (Best Aquaculture Practices/BAP of the Global Aquaculture
- 422 Alliance); however, no such case was found in Pampanga during our study. Nonetheless, at the
- 423 beginning of the process, only a minority of producers were registered by BFAR: 10% of the 110
- 424 farmers surveyed (Talbot, 2008). On the other side, the establishment of traceability was not overly
- 425 restrictive for most producers initially involved, as they already used to record the financial documents
- 426 and invoices that are often sufficient for being compliant with this requirement.
- 427 On their side, the auction houses and exporters had to comply with traceability requirements, risk
- 428 analysis and hygienic practices to retain access to the EU market chain. For the auction markets, even
- 429 the most recent and modern establishments were not meeting the requirements set in the EU
- 430 regulations. Some of the major issues included the sorting of shrimp on the floor as well as the source
- 431 of water being used in washing the shrimp during and after the sorting. The compliance process
- 432 involved significant investment from BFAR to conduct trainings of auction house staff on traceability
- 433 procedures and HACCP standards. Another key innovation in meeting the compliance requirements
- 434 was the use of sorting tables for sorting shrimps. These were initially subsidized by BFAR to induce
- the change, as initially, the staff in charge of shrimp sorting did not want to change their traditional
- 436 practices; this strategy proved to be successful as within a few months, the sorting tables were being
- 437 purchased and installed by the auction houses themselves (Figure 5).
- 438

[Placeholder for Figure 5]

Regarding the processing plants, only two of the seven enterprises that had earlier been allowed to export to EU were able to keep their approval status (FVO, 2006, 2004). At the national level, only 38% of processing plants dedicated to aquaculture and fisheries products remained certified, but twothirds of the firms that lost their agreement were already not exporting to the EU prior to their decertification (Ragasa et al., 2011). For these, the change may have affected their quality image, but not their export capacity.

To be approved, the processing plants had to comply with the same requirements as auction houses but since many already had HACCP plans and hygienic practices in place, this was not a major constraint. Their main difficulty laid in their ability to ensure a sufficient volume of direct supply with full traceability from the few BFAR-registered farms. Indeed, given that at this point no auction house had yet been approved, export plants had to establish direct contracts with farmers to comply with EU requirements. As they needed large volumes of shrimps to be profitable, their strategy was to establish

451 direct contracts with the largest registered producers in the region, *i.e.* those with productive areas of

- 452 50 hectares and above. In total, only six producers were contracted leaving hundreds without access to453 EU market (Talbot, 2008).
- 454 At the national level, it was showed that establishments certified for the EU markets more easily
- 455 gained access to US markets, that they were able to capture new EU buyers, and consequently had
- 456 reduced product wastage (Ragasa et al., 2011). However, questions about the impacts of these changes
- 457 for the operators in upstream chain remain unanswered.

458 **5 Discussion**

459 5.1 Links between local specificities and global standardization

460 An underlying principle of certification schemes is that innovation is stimulated by demand. Indeed, 461 compliance to standards is usually a top down process, largely driven by downstream actors (Gereffi 462 et al., 2005). However, the Philippines' extensively-farmed-shrimp market is clearly supply-driven 463 and this has had consequences for the compliance process (Gereffi and Christian, 2009). In this 464 particular case, the auction houses and processing plants played a pivotal role in the process. In theory, 465 auction houses could be in a weak position towards the producers, if the latter do not supply sufficient 466 volumes to allow *consignacion* to be profitable. Producers could then be tempted to introduce 467 competition between auction houses by selling their shrimp to those offering the highest price but this 468 did not develop because local trading is embedded in a complex social matrix (Granovetter, 1985). 469 This social embeddedness also allowed auction houses to be able to meet demand for large volumes of 470 large-size shrimp, while minimizing risks of producers shift (*i.e.* producers selling their products to 471 another *consignacion*). The local market relations are rigid, making any shift a costly decision for the 472 producers. As a result, the market loyalty of suppliers to their auction houses is rooted in a vast 473 network of social and political ties that create obligations for producers (Granovetter, 1985). The 474 producers' autonomy and capacity to organize are seriously restrained. This makes auction houses 475 strong prescribers of compliance to standards. This embeddedness of the market, organized by auction 476 houses, makes them strategic actors within the supply chain and front-line players in the standard 477 compliance policy.

478 Another local specificity not considered by the standard is the inseparable character of aquaculture 479 production and gleaning. The long-term privatization of common natural resources for pond building 480 was a typical case of accumulation through dispossession (Harvey, 2003). In this context, gleaning can 481 be perceived as a means to maintain access to resources that were formerly under a common property 482 regime. In spite of some mutual benefits (e.g., ponds cleaning, improved social position), this form of 483 social justice appears to occur at the expense of private operators and for the benefit of the local poor. 484 The standardization process appears to works in the opposite direction by not acknowledging the 485 uniqueness of the system. Indeed, the process of compliance only considered a simplified vertically

- 486 integrated supply chain, with a limited number of EU-approved operators that could be easily traced
- 487 and controlled. The persistence of gleaning as an integral feature of extensive shrimp farming
- 488 therefore creates risks for compliance to current standards given the uncertainties it creates. The
- 489 potential impact, whether positive or negative, on the food safety and production process (e.g. reduced
- 490 use of piscicide, risk of contamination etc.) of gleaners is yet to be documented. Their role in complex
- 491 systems that ensure the supply of both exported and local food has been poorly understood, compared
- 492 to the simplified supply from a very limited number of large stakeholders. In this context, the 'safest'
- 493 option to remain compliant is to discontinue gleaning, but which would clearly disadvantage poorest
- 494 people in aquaculture communities through reductions of food and cash.
- 495 This also raises question about the long-term durability of the changes induced. A recent literature
- 496 review suggests that successful adaptation to external constraints is in part a function of the flow of
- 497 knowledge between various stakeholders, and the effective capacity for collective action (Amaru and
- 498 Chhetri, 2013). Nowadays, the need for widespread participation of stakeholders, flexibility,
- 499 integrated, place-based and interdisciplinary approaches is increasingly recognized as a requirement
- 500 for the emergence of effective policies (Amaru and Chhetri, 2013; Gilman et al., 2008; Turner, 2014).
- 501 Moreover, the consequences of locally-made decisions can also be uncertain, because they developed
- 502 on many scales and may be undertaken by a variety of stakeholders (Amaru and Chhetri, 2013;
- 503 Polasky et al., 2011) which may trigger non-linear and hardly predictable dynamics (Hall et al., 2010).
- 504 Who takes part in the decision process, and who does not, are also tough questions in open,
- 505 participatory processes (Cooke and Kothari, 2001). By ignoring the local complexity, the standard
- 506 could result in outcomes in contradiction with its own objectives as was already observed in other
- 507 areas, following the promotion of a techno-centric development of aquaculture with little
- 508 understanding of the social processes (Belton, 2010; Belton et al., 2011b). Unfortunately, simple
- 509 solutions are frequently favored over approaches that try to cope with the local socio-ecological
- 510 complexity. Many policies and international standards that convey normative values tend to seek
- 511 common solutions across a wide range of social-ecological contexts, although such one-size-fits-all
- 512 approaches also frequently fail (Ostrom, 2009, 2007; Turner, 2014).
- 513 This is not specific to aquaculture: for example, agro-food firms tend to favor sourcing from larger
- 514 farmers and eschew smaller farmers in scale-dualistic contexts (Reardon et al., 2009). Here, auction
- 515 houses sourced their products from a range of producers (in terms of scale and practices), in a
- 516 mutually beneficial commercial relationship. How the requirements for farms in terms of registration
- 517 will affect this situation and, incidentally, what will be the consequences on the decisions made by
- 518 farmers regarding the gleaning remain critical questions. Although it was temporary, the direct supply
- 519 of shrimp by larger pond operators to processing plants to ensure compliance with EU regulations has
- 520 distorted the more balanced traditional arrangements and eschewed small-scale farmers. Ultimately,
- 521 what is at stake is the exclusion from the market of the smallest producers and from the access to

aquaculture resources for the poor, dependent gleaners (Hansen and Trifković, 2014; Khiem et al.,
2010; Reardon et al., 2009; Trifković, 2014).

524 5.2 Roads toward a better compatibility between local specificities and international standards

525 This case study gives the opportunity to enunciate some recommendations to reconcile or bridge local 526 and global processes. A first is the need is to initiate open, place-based and interdisciplinary research. 527 As this study show, the critical elements about the complexity of an aquaculture system are not limited 528 to its agronomic components. While not exclusive, social networks, embeddedness, informal 529 activities, history are all important aspects of an aquaculture system that need to be considered. An 530 open assessment of the system may also help to identify local actors with the potential to participate 531 and continuously influence the certification process. Thus, wide involvement and communication at 532 the local level appear to be important drivers of success, especially to avoid the knowledge 533 asymmetries that might tend to favor some players against others. In this case, the large-scale farmers 534 were indeed the main beneficiaries because they were the only ones who could supply the large 535 volumes of shrimps needed for registered exporters to be profitable. The process was not introduced 536 outside the established social networks that already tended to exclude smaller farmers and players of 537 the informal sector for various reasons, e.g., access to information, transaction costs, or economy of 538 scale. If not considered, the process would therefore tend to reinforce insidious previous inequalities. 539 The inclusion of all the actors, especially those outside the radar, is clearly necessary and underpins 540 the rationale for field investigations.

541 The compliance process did not take into consideration farmers' expectations and values, and in this 542 sense is a typical example of a top-down technocratic process. Reconnecting producers with consumers is a not new process (Kirwan, 2006; Padel and Gössinger, 2008) but to do so on a global 543 544 chain remains a challenge. It also appears important to identify social values involved in the 545 productive system. Much local production are geographically embedded in settings where social 546 values play a significant role in how individuals interact and make decisions. Recognition rather than 547 avoidance of such factors may contribute to their conservation. In this case study, the values 548 associated with gleaning could be put forward in a process of transparency and communication about 549 the production conditions but this remains a complex task with uncertain consequences. At the other 550 end of the chain, consumers could consider these values through their consumption decisions. The 551 implementation of such a framework remains a problem to solve. Alongside these values, efforts could 552 be made to share expectations of both producers and consumers.

553 6 Conclusion

554 This paper focused on two components of an aquaculture system, i.e. the global process of

555 standardization, and the local complexity of social interactions in relation to the historical

- development of aquaculture and its resource base. Based on a case study, the main objective was to
- 557 understand how the two components functioned and then to show that they have remained
- 558 independent and disconnected during process of meeting new standards. The *a priori* assumption was
- that the implementation of international standards does not consider local practices and social norms
- that govern production locally. The case study focused on a territory on the north shore of Manila Bay,
- dominated by extensive polyculture of shrimp, milkfish, crabs and tilapia. The local social complexity
- 562 was interpreted on the basis of an analysis of auction houses and the gleaning system revealing (i)
- 563 previously unidentified actors, (ii) numerous original interactions between agents (producers, gleaners,
- 564 auction houses, etc.) and (iii) more generally the embeddedness of trading. It was also showed
- 565 precisely what were the changes made following the compliance with food standards of the European
- 566 Union. Two points were finally discussed: (i) the links between local specificities and international
- 567 standards, and some (ii) roads to improve compatibility between standardization with the local. This
- 568 paper is therefore a contribution in the scientific field of study that focuses on the regulation of agri-
- 569 food commodity chains and their interaction with the local social-environmental context.

570 Acknowledgments

- 571 The authors are grateful to the M.Sc. candidates who contributed in the collection and analysis of data:
- 572 Sarah-Jane Parker from the University of Stirling, Gonzalo 'Jun' Coloma from BFAR, Anne-Laure
- 573 Chaigne from Montpellier SupAgro, Anne-Charlotte Talbot from the University of Clermont-Ferrand,
- 574 Pascal Levy from ISTOM, Damien Ollivry and Bertha Iris Argueta from Science-Po Paris. They are
- also grateful to the staff of the Sasmuan Municipal Office and the staff of the BFAR Central & Region
- 576 3 Offices for their continual support and help in the collection of the data and in particular, Marita
- 577 Ocampo, Amor Diaz, Jun Coloma, Lilia Pelayo, Simeona Regidor, Sonia Somga and Malcolm I.
- 578 Sarmiento (Director of BFAR during the investigations).
- 579 Finally, the authors are grateful to Cirad that funded this research.

580 References

- Amaru, S., Chhetri, N.B., 2013. Climate adaptation: Institutional response to environmental constraints, and the
 need for increased flexibility, participation, and integration of approaches. Appl. Geogr. 39, 128–139.
 doi:10.1016/j.apgeog.2012.12.006
- Asche, F., Bellemare, M.F., Roheim, C., 2015. Fair Enough ? Food Security and the International Trade of
 Seafood. World Dev. 67, 151–160. doi:10.1016/j.worlddev.2014.10.013
- 586 Bailey, F.G., 1963. Politics and social change: Orissa in 1959. University of California Press, Berkeley, USA.
- 587 Belton, B., 2010. The Social Relations of Aquaculture Development in South and Southeast Asia. University of
 588 Stirling.
- Belton, B., Haque, M.M., Little, D.C., Sinh, L.X., 2011a. Certifying catfish in Vietnam and Bangladesh: Who
 will make the grade and will it matter? Food Policy 36, 289–299. doi:10.1016/j.foodpol.2010.11.027
- Belton, B., Little, D.C., Sinh, L.X., 2011b. The social relations of catfish production in Vietnam. Geoforum 42,

- 592 567–577. doi:10.1016/j.geoforum.2011.02.008
- 593 BFAR, 1994. Philippines fisheries profile 1993. BFAR, Quezon City, Philippines.
- 594 BFAR, 1997. Philippines fisheries profile 1996. BFAR, Quezon City, Philippines.
- 595 BFAR, 2000. Philippines fisheries profile 1999. BFAR, Quezon City, Philippines.
- 596 BFAR, 2006. Philippines fisheries profile 2005. BFAR, Quezon City, Philippines.
- Bostock, J., McAndrew, B., Richards, R., Jauncey, K., Telfer, T., Lorenzen, K., Little, D., Ross, L., Handisyde,
 N., Gatward, I., Corner, R., 2010. Aquaculture: global status and trends. Philos. Trans. R. Soc. B Biol. Sci.
 365, 2897–2912. doi:10.1098/rstb.2010.0170
- Bush, S.R., Belton, B., Hall, D., Vandergeest, P., Murray, F.J., Ponte, S., Oosterveer, P., Islam, M.S., Mol,
 A.P.J., Hatanaka, M., Kruijssen, F., Ha, T.T.T., Little, D.C., Kusumawati, R., 2013. Certify Sustainable
 Aquaculture? Science (80-.). 341, 1067–1068. doi:10.1126/science.1237314
- Cab International, 2005. Quality Certification [original text by L. Dabbadie], in: Aquaculture Compendium.
 CAB International, Wallingford, UK.
- 605 Campbell, J.K., 1964. Honour, Family and Patronage. A study of institution and Moral Values in a Greek
 606 Mountain Community. Oxford University Press, London, UK.
- 607 Census of Population and Housing, 2010. Population counts, Central Luzon [WWW Document]. Philipp. Stat.
 608 Authority, Quezon. URL http://psa.gov.ph/sites/default/files/attachments/hsd/pressrelease/Central
 609 Luzon.pdf
- 610 Chaigne, A., 2009. Les consignacions d'Hagonoy : des crevettes et des hommes. Etude socio-économique des
 611 systèmes de ventes aux enchères des crevettes d'exportation, Hagonoy, province de Bulacan, Philippines.
 612 Montpellier SupAgro.
- Coloma, G.D.J., 2008. A participatory assessment on the role of aquatic resources on rural livelihoods of
 selected villages in Sasmuan, Pampanga, Philippines. Faculty of the PSU Open University Systems
 Binmaley Learning Center Binmaley, Pangasinan.
- 616 Dabbadie, L., 2009. Cooperative Compliance E.U. Standards Contribute To Modernization Of Philippines
 617 Aquaculture. Glob. Aquac. Advocate Sep/Oct, 56–57.
- 618 Dabbadie, L., Mikolasek, O., 2015. Aquaculture systems & farming systems: inside, outside or side-by-side?, in:
 619 The 5th International Symposium for Farming Systems Design "Multi-Functional Farming Systems in a
 620 Changing World", 7 10 September 2015, Le Corum Conference Center, Montpellier, France.
 621 Montpellier, France, p. 2.
- Dabbadie, L., Regidor, S., Pelayo, L., Diaz, A., Lazard, J., 2007. The requirements of the new EU food law:
 Impact for the aquaculture production chain, in: Camus, E., Cardinale, E., Dalibard, C., Martinez, D.,
 Renard, J.-F., Roger, F. (Eds.), Does Control of Animal Infectious Risks Offer a New International
 Perspective? Proceedings of the 12th International Conference of the Association of Institutions of
 Tropical Veterinary Medicine, 2007-08-20/2007-08-22. Cirad, Montpellier, France, pp. 295–299.
- Davis, W.G., 1973. Social Relations in a Philippine Market: Self-interest and Subjectivity. University of
 California Press, Berkeley, USA.
- Diener, J.-C., 2000. Production de crevettes (P. monodon) et association tilapia-crevette Philippines (Pampanga & Negros). Ecole Nationale Vétérinaire d'Alfort, INA-PG, Muséum National d'Histoire Naturelle, Cirad.
- 631 FAO, 1999. Guidelines for Agrarian Systems Diagnosis. FAO, Rome, Italy.
- 632 FAO, 2014. The State of World Fisheries and Aquaculture 2014. FAO, Rome, Italy.
- FVO, 2004. Final report of a mission carried out in The Philippines from 11 to 22 October 2004. Assessing the
 public health conditions of production of fishery and aquaculture products intended for export to the
 European Union. DG (SANCO) 7355/2004, Dublin, Irland.
- FVO, 2006. Final report of a follow-up mission carried out in the Philippines from 16 to 27 October 2006
 assessing the public health controls and conditions of production of fishery products intended for export to
 the European Union, DG(SANCO)/8312/2006 MR Final. European Commission Health & Consumer
 Protection Directorate-General, Directorate F Food and Veterinary Office, Dublin, Irland.

- Gaillard, J.-C., Pangilinan, M.R.M., Cadag, J.R., Masson, V. Le, 2008. Living with increasing floods: insights
 from a rural Philippine community. Disaster Prev. Manag. 17, 383–395. doi:10.1108/09653560810887301
- 642 Gereffi, G., Christian, M., 2009. The Impacts of Wal-Mart: The Rise and Consequences of the World's
 643 Dominant Retailer. Annu. Rev. Sociol. 35, 573–591.
- 644 Gereffi, G., Humphrey, J., Sturgeon, T., 2005. The governance of global value chains. Rev. Int. Polit. Econ. 12,
 645 78–104.
- 646 Gilman, E.L., Ellison, J., Duke, N.C., Field, C., 2008. Threats to mangroves from climate change and adaptation
 647 options: A review. Aquat. Bot. 89, 237–250. doi:10.1016/j.aquabot.2007.12.009
- 648 Godfray, H.C.J., Beddington, J.R., Crute, I.R., Haddad, L., Lawrence, D., Muir, J.F., Pretty, J., Robinson, S.,
 649 Thomas, S.M., Toulmin, C., 2010. Food security: the challenge of feeding 9 billion people. Science 327,
 650 812–8. doi:10.1126/science.1185383
- Granovetter, M., 1985. Economic action and social structure: the problem of embeddedness. Am. J. Sociol. 91.
- Grunert, K.G., 2005. Food quality and safety: consumer perception and demand. Eur. Rev. Agric. Econ. 32, 369–391. doi:10.1093/eurrag/jbi011
- Hall, A., Dijkman, J., Sulaiman, R. V, 2010. Research Into Use: Investigating the relationship between
 agricultural research and innovation. RIU Discuss. Pap. Ser. July, 1–46.
- Hansen, H., Trifković, N., 2014. Food Standards are Good For Middle-Class Farmers. World Dev. 56, 226–
 242. doi:10.1016/j.worlddev.2013.10.027
- Haque, A.K.E., 2003. Sanitary and phyto-sanitary barriers to trade and its impact on the environment: The case
 of shrimp farming in Bangladesh. International Institute for Sustainable Development, Winnipeg,
 Manitoba, Canada.
- 661 Harvey, D., 2003. The "new" imperialism. Oxford University Press, Oxford, UK.
- Hejdova, E., 2006. L'enchâssement social de l'accès à la terre et au financement : l'exemple des entreprises
 aquacoles aux Philippines, in: Colloque International "Les Frontières de La Question Foncière At the
 Frontier of Land Issues", Montpellier, 2006. Montpellier, pp. 1–26.
- Holzapfel, S., Wollni, M., 2014. Is GlobalGAP Certification of Small-Scale Farmers Sustainable? Evidence
 from Thailand. J. Dev. Stud. 50, 731–747. doi:10.1080/00220388.2013.874558
- Irz, X., Stevenson, J.R., 2012. Efficiency and Farm Size in Philippine Aquaculture. Analysis in a Ray Production
 Frontier Framework. Bio-based Appl. Econ. 1, 175–198.
- Irz, X., Stevenson, J.R., Tanoy, A., Villarante, P., Morissens, P., 2007. The Equity and Poverty Impacts of
 Aquaculture: Insights from the Philippines. Dev. Policy Rev. 25, 495–516. doi:10.1111/j.1467 7679.2007.00382.x
- Jonell, M., Phillips, M., Rönnbäck, P., Troell, M., 2013. Eco-certification of Farmed Seafood: Will it Make a
 Difference? Ambio 42, 659–674. doi:10.1007/s13280-013-0409-3
- Khiem, N.T., Bush, S.R., Nguyen, M.C., Loc, V.T.T., 2010. Upgrading small-holders in the Vietnamese
 Pangasius value chain: Final Report. Final Report, ODI grant number RO334 158.
- Kirwan, J., 2006. The interpersonal world of direct marketing: Examining conventions of quality at UK farmers'
 markets. J. Rural Stud. 22, 301–312. doi:10.1016/j.jrurstud.2005.09.001
- Kusumawati, R., Bush, S.R., Visser, L.E., 2013. Can Patrons Be Bypassed? Frictions between Local and Global
 Regulatory Networks over Shrimp Aquaculture in East Kalimantan. Soc. Nat. Resour. 26, 898–911.
 doi:http://dx.doi.org/10.1080/08941920.2012.723305
- Levy, P., 2009. Impacts des réglementations sanitaires européennes sur les producteurs de crevette Penaeus
 monodon du delta de Pampanga-Central Luzon-Philippines. ISTOM.
- Mialhe, F., 2010. Le développement de l'aquaculture saumâtre dans l'Aire Pacifique. Université Paris Diderot
 (Paris 7), Paris.
- Mialhe, F., Gunnell, Y., Mering, C., Gaillard, J.-C., Coloma, J.G., Dabbadie, L., 2015. The development of
 aquaculture on the northern coast of Manila Bay (Philippines): an analysis of long-term land-use changes
 and their causes. J. Land Use Sci. 11, 236–256. doi:10.1080/1747423X.2015.1057245

- 688 Muir, J.F., 2012. Fish, feeds, and food security. Anim. Front. 3, 28–34. doi:10.2527/af.2013-0005
- 689 Ostrom, E., 2007. A diagnostic approach for going beyond panaceas. Proc. Natl. Acad. Sci. U. S. A. 104, 15181–
 690 7. doi:10.1073/pnas.0702288104
- 691 Ostrom, E., 2009. A General Framework for Analyzing Sustainability of Social-Ecological Systems. Science
 692 (80-.). 325, 419–422. doi:10.1126/science.1172133
- Padel, S., Gössinger, K., 2008. Farmer Consumer Partnerships Communicating Ethical Values: a conceptual
 framework. International Centre for Research in Organic Food Systems (ICROFS), Blichers, Denmark.
- Parker, S.-J., 2008. Extensive shrimp farming provides an important livelihood for poor rural communities in the
 Philippines: the Mangangapa and Degaton system described. University of Stirling, Stirling UK.
- 697 Pitt-Rivers, J., 1954. The People of the Sierra. Weidenfeld and Nicholson, London, UK.
- Polasky, S., Carpenter, S.R., Folke, C., Keeler, B., 2011. Decision-making under great uncertainty:
 environmental management in an era of global change. Trends Ecol. Evol. 1–7.
 doi:10.1016/j.tree.2011.04.007
- Ragasa, C., Thornsbury, S., Bernsten, R., 2011. Delisting from EU HACCP certification: Analysis of the
 Philippine seafood processing industry. Food Policy 36, 694–704. doi:10.1016/j.foodpol.2011.06.009
- Reardon, T., Barrett, C.B., Berdegué, J.A., Swinnen, J.F.M., 2009. Agrifood Industry Transformation and Small
 Farmers in Developing Countries. World Dev. 37, 1717–1727. doi:10.1016/j.worlddev.2008.08.023
- Regidor, S., Dabbadie, L., 2007. Philippine country statement on quality certification, in: APFIC Regional
 Workshop on Certification Schemes for Capture Fisheries and Aquaculture, 2007/9/18-20. Saigon,
 Vietnam, p. 7.
- Rodolfo, K.S., Siringan, F.P., 2006. Global sea-level rise is recognised, but flooding from anthropogenic land
 subsidence is ignored around northern Manila Bay, Philippines. Disasters 30, 118–139.
 doi:10.1111/disa.2006.30.issue-1
- Rueda, X., Lambin, E.F., 2013. Linking Globalization to Local Land Uses: How Eco-Consumers and
 Gourmands are Changing the Colombian Coffee Landscapes. World Dev. 41, 286–301.
 doi:10.1016/j.worlddev.2012.05.018
- Swinnen, J.F.M., 2007. Global Supply Chains, Standards and the Poor: Some Empirical and Theoretical
 Insights.
- Talbot, A.-C., 2008. Contrat lié et intégration verticale: deux mécanismes alternatifs de gestion de la rareté. Le cas de l'élevage de crevettes dans la région du delta de Pampanga (Philippines). Université d'Auvergne.
- Trifković, N., 2014. Food standards and vertical coordination in aquaculture: The case of pangasius from
 Vietnam, IFRO Working Paper 2. University of Copenhagen, Copenhagen, Denmark.
- Turner, M.D., 2014. Political Ecology and its Engagements with Conservation and Development. ACME An Int.
 E-Journal Crit. Geogr. 13, 478–488.
- Unnevehr, L., Ronchi, L., 2014. Food Safety and Developing Markets Research Findings and Research Gaps
 28.
- Vandergeest, P., 2007. Certification and Communities: Alternatives for Regulating the Environmental and Social Impacts of Shrimp Farming. World Dev. 35, 1152–1171. doi:10.1016/j.worlddev.2006.12.002
- Vos, E., 2000. EU Food Safety Regulation in the Aftermath of the BSE Crisis. J. Consum. Policy 23, 227–255.
 doi:10.1023/A:1007123502914
- Washington, S., Ababouch, L., 2011. Private standards and certification in fisheries and aquaculture. Current
 practice and emerging issues, Fisheries. ed. FAO, Rome, Italy.
- Wolf, E.R., 1966. Kinship, friendship, and patron-client relations in complex societies, in: Banton, M. (Ed.), The
 Social Anthropology of Complex Societies. Tavistock, London, UK, pp. 1–22.

732 Abbreviations

733 FVO: Food and Veterinary Office

- 734 BFAR: Bureau of Fisheries and Aquatic Resources
- 735 EU: European Union
- 736 Figure captions
- 737 Figure 1 Study area
- 738 Figure 2 Production of black tiger shrimp in the Philippines at the national level and in the
- 739 Pampanga delta between 1993 and 2005 (BFAR, 2006, 2000, 1994)
- 740 Figure 3 Seasonality of activities and incomes of gleaners in Malusac and Batang Dos villages
- 741 (Parker, 2008)
- Figure 4 Actors of the studied aquaculture system and their relations during the process of
- 743 compliance
- Figure 5 Example of practices before and after the compliancy of auction houses
- 745 Table 1

Barangays	Land-use (ha)			Households	Population
	Total	Fishpond	Residential		
Batang Dos	232	231	1	356	1647
Mabuanbuan	328	327	1	135	919
Malusac	640	638	2	350	1956
Sebitanan	147	145.5	1.5	196	1149

746

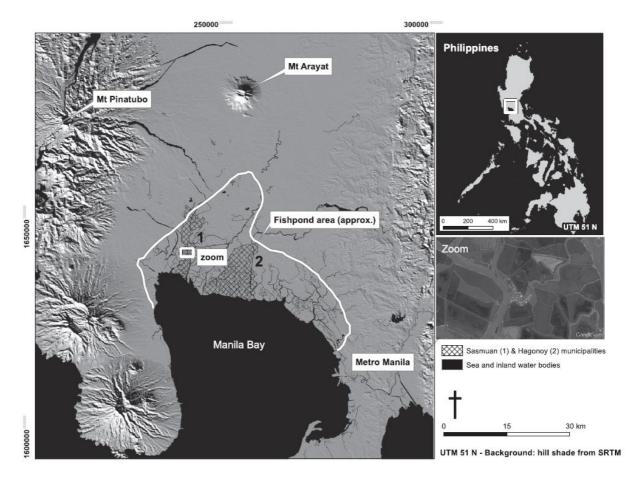
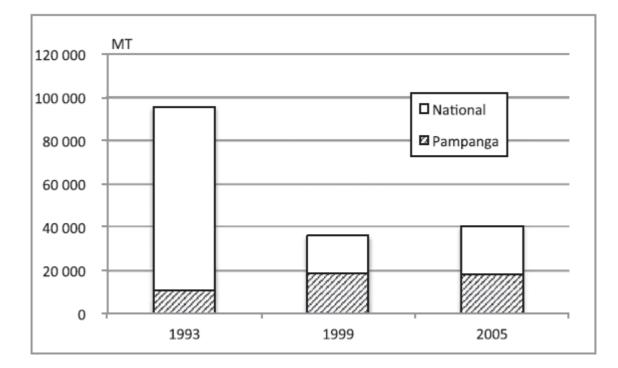
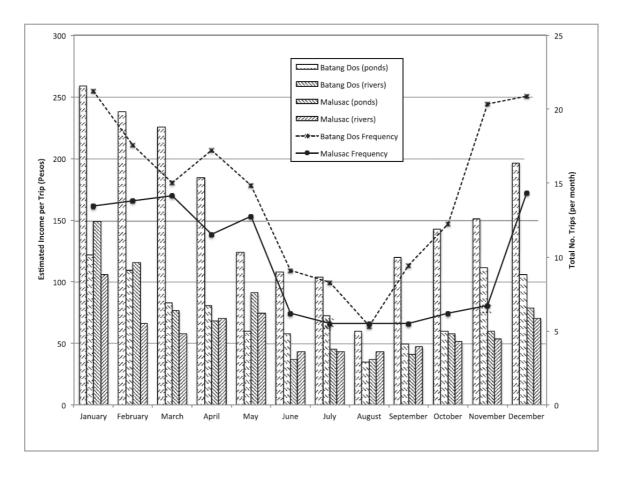

747

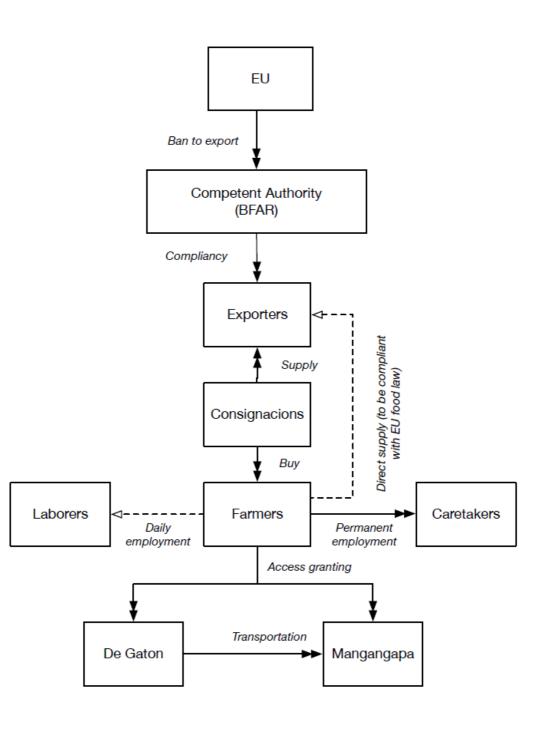
Table 2

Stakeholders	Number	
Stakeholders	Number	
Key informants persons (e.g., village Chairman, village health worker, village council member, youth leader and elderly villager)	9 to 12 per barangay	
Producers (Extensive systems farmers)	110	
Gleaners (mangangapa)	28	
Leader of gleaners (Degaton)	8	
Consignations (Operators and the employees)	13	
Processing plants (Operators of processing and export plants)	5 including 2 UE approved	
BFAR (The Competent Authority for compliance process)	Top management (Regional director, Head of Fish Plant Inspection Unit, Head of Fish Health Unit) and field staff	


- 748
- 749

750




755 Figure 2

757 Figure 3

759 Figure 4

767 Figure 5

