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ABSTRACT

Local Optima Networks (LONs) have been proposed as a coarse-

grained model of discrete (combinatorial) itness landscapes, where

nodes are local optima and edges are search transitions based on

an exploration search operator. This paper presents one of the

irst complex network analysis of continuous itness landscapes.

We use benchmark functions with well-known global structure,

and an existing implementation of a Basin-Hopping algorithm to

extract the networks. We also explore the impact of varying the

Basin-Hopping perturbation step-size. Our results suggest that the

landscape’s connectivity pattern (global structure) strongly varies

with the perturbation step-size, with extreme values of this pa-

rameter being detrimental to search and fragmenting the global

structure. Our LON visualisations strikingly illustrate the land-

scape’s global (funnel) structure, indicating that LONs serve as a

tool for visualising high-dimensional functions.
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1 INTRODUCTION

Complex optimisation problems are generally non-convex and
multi-modal (i.e have multiple local optima and potentially multiple

global optima). Moreover, in real-world scenarios the multiple local
optima are likely to conform to some global structure, instead of
being distributed uniformly at random in the search space.

Local Optima Networks (LONs) [21] are a coarse-grained model

of itness landscapes inspired by work on energy surfaces in the-
oretical chemistry [5]. The idea is to compress the search space
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into a smaller mathematical object: a graph, where vertices are the

local optima in the underlying landscape and edges are the possi-

ble search transitions among optima. A conspicuous limitation of

heuristic optimisation is the danger of getting trapped at a local

optimum. LONs capture the number, distribution and connectiv-

ity pattern of local optima in the underlying landscape. They are,

therefore, a useful tool to study the global structure of itness land-

scapes. Once a LON has been constructed, a variety of metrics and

visualisation tools can be applied to enlighten our understanding

of its structure [19]. These features can then be used for perfor-

mance prediction and enhancing the selection and coniguration of

suitable optimisation methods to solve the problem at hand.

Despite their inspiration from the study of energy landscapes,

the LON model was deined and developed to deal with discrete

search spaces and combinatorial optimisation [21, 26], and has only

been applied, to the authors’ knowledge, to continuous spaces once

before [2]. In the discrete case, local minima can be located precisely

given suicient computation time. In the continuous domain this is

more diicult; concepts from diferential topology, the presence of

saddle points, and issues of precision and convergence come into

play.

The main contributions of this paper are to:

(1) Adapt the LON model to represent continuous itness land-

scapes.

(2) Propose a sampling methodology to extract and construct

the networks.

(3) Analyse the funnel structure of well-known benchmark func-

tions.

(4) Explore the efect of increasing the perturbation strength on

the global structure of the studied landscapes.

We start with an overview of the notion of a funnel. Section 3

presents relevant deinitions and algorithms to construct the LON

models. Section 4 describes the benchmark instances, sampling

procedure, and metrics computed, while 5 presents our results.

Finally, Sections 6 and 7 summarises our indings and suggests

directions of future work.

2 THE NOTION OF FUNNEL

Funnels can be loosely deined as groups of local optima which

are close in coniguration space within a group, but well-separated

between groups. Funnels also constitutes a coarse-grained gradient

towards a low cost optimum. The intuition is captured by Figure 1

where two funnels are depicted. A more formal deinition is given

in Section 3.3
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Figure 1: Depiction of two funnels.

2.1 Funnels in Energy Landscapes

In theoretical/computational chemistry, an energy landscape is a

mapping of all possible conformations of a molecular entity (clus-

ters, glasses and proteins) to their corresponding energy levels [27].

The structure and dynamics of these molecules are known to be re-

lated to the topographical features of their energy landscapes[6, 27].

The term ‘funnel’ was introduced in the protein folding com-

munity to describe ła region of coniguration space that can be

described in terms of a set of downhill pathways that converge on

a single low-energy structure or a set of closely-related low-energy

structures.ž [6]. The energy landscape of proteins is believed to be

characterised by a single deep funnel, a feature that underpins their

ability to fold to their native state. In contrast, some shorter poly-

mer chains (polypeptides) that misfold, are expected to have other

funnels that can act as traps. Funnels have been widely studied on

the so called atomic clusters (spatial arrangements of atoms), as they

represent a convenient benchmark of controllable complexity for

which excellent putative global minima have been tabulated [6].

2.2 Funnels in Continuous Fitness Landscapes

Energy landscapes in computational chemistry and itness land-

scapes in optimisation are analogous. This is particularly true for

continuous optimisation. Locatelli [12] found that search diiculty

in continuous optimisation does not relate strictly to the number of

local optima, but to how chaotic their positions are. He suggests that

problems are structured in multiple levels; at each level, diferent

‘objects’ are observed, but all levels display a similar structure. This

hints towards a fractal structure of itness landscapes [25].

Lunacek and Whitley [14] propose a dispersion metric to quan-

tify the proximity of the best regions in the search space. A high

dispersion metric indicates the presence of multiple funnels. In a

follow up work [15], the authors studied abstract landscapes with

two funnels and ind that evolutionary algorithms mostly fail when

the global optimum is located in a proportionally smaller funnel.

Work on exploratory landscape analysis of continuous land-

scapes suggests that multimodality and global structure are key

high-level features help to diferentiate between problem classes

[3, 9]. The presence of funnels, captured with the dispersion metric,

was also found to correlate with and explain the performance of

Particle Swarm Optimisation algorithms [16].

2.3 Funnels and Local Optima Networks

Recent studies have used LONs to characterise the global structure

of combinatorial itness landscapes revealing in many cases a multi-

funnel structure [7, 22, 23]. The presence of sub-optimal funnels

hinders the optimisation success, as the algorithms can become

trapped, and thus fail to locate the funnel containing the global

optimum.

3 ALGORITHMS AND DEFINITIONS

A full enumeration of the local optima for continuous spaces and

benchmark instances of non-trivial size is unmanageable. Therefore,

LONs are constructed from a sample of high-quality local minima

in the search space. To construct the networks we need to deine

their nodes and edges. These deinitions are closely related to the

methodology for extracting the network data, which is based on a

number of runs of a Basin-Hopping algorithm [11, 28]. The idea is

to record and aggregate the local optima visited by several trajecto-

ries of the algorithm. Our local minima sample is, therefore, biased

towards regions of high-itness and is not algorithm-agnostic. We

argue that this approach is relevant to analyse the global structure

of the benchmark itness landscapes studied. Moreover, we con-

trasted several perturbation step sizes to deine the local optima

connectivity. This section describes the Basin-Hopping algorithm

and deines the LON models used.

3.1 Basin-Hopping

In computational chemistry, global optimisation algorithms are re-

quired to minimise the energy function of molecular conformation

problems. A successful algorithm for these problem was termed

Basin-Hopping by Wales and Doye [28], which is essentially the

same as the previous Monte Carlo-minimisation algorithm of Li and

Scheraga [11]. Interestingly, Basin-Hopping is analogous to the

class of algorithms known as Iterated Local Search (ILS) in combi-

natorial optimisation [13].

Both Basin-Hopping and ILS are iterative methods with each

cycle composed of the following steps: (i) random perturbation of

the incumbent solution (ii) local minimisation, and (iii) acceptance

criterion, which accepts or rejects the new solution based on the

objective function value. The original Basin-Hopping algorithm

depends on the Metropolis acceptance criterion of occasionally

accepting uphill moves. A simple yet powerful variant is obtained

if the Metropolis acceptance criterion is abandoned in favour of

only accepting downhill (or non-deteriorating) steps [10]. Note that

this corresponds to setting the Metropolis temperature parameter

T = 0. This algorithm will follow a descending sequence of local

minima until a funnel bottom is reached. Funnel bottoms can be

empirically recognised (estimated) by the lack of improvement after

a large number of move attempts. We used thisMonotonic Sequence

Basin-Hopping variant [10] (Algorithm 1) in our study in order to

extract the LON models and study the landscapes funnel structure.

3.2 Model Description

A itness landscape is deined as a triplet (X ,N , f ), where X is

the set of conigurations or candidate solutions; N is a notion of

neighbourhood, distance or accessibility on X ; and f : X → R is

the itness function.

In the context of continuous optimisation, X is the set Rn of

all possible real-valued solutions to the problem of n dimensions,

f : Rn → R, and we denote a candidate solution as the vector

x = (x1,x2, . . . ,xn ). A common way of deining neighbourhood
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Algorithm 1Monotonic Sequence Basin-Hopping

Require: Search space X , Fitness function f (X ),
Perturbation step size p , Stopping threshold R

1: Choose initial random solution x0 ∈ X
2: l ← LocalMinimisation(x0)

3: r ← 0

4: repeat

5: x ′← Perturbation(l , p)

6: l ′← LocalMinimisation(x ′)
7: if f (l ′) ≤ f (l ) then
8: l ← l ′

9: r ← 0

10: else

11: r ← r + 1

12: end if

13: until r ≥ R

14: return l

of a solution x in continuous spaces is the set of points within

the hypersphere with some small radius and centre x [24]. How-

ever, this deinition of neighbourhood requires Euclidean distance

calculations to test for neighbourhood. In this paper we deine

neighbourhood based on orthotopes (or hyperrectangles).

Formally, the neighbourhood set N (xk ) of an n-dimensional

point xk is an n-orthotope deined as follows:

xj ∈ N (xk ) ⇐⇒ |xki − x ji | < si , ∀i ∈ [1, . . . ,n]

where s = (s1, s2, . . . , sn ) is a vector deining the size of the neigh-

bourhood in all dimensions.

In order to study the multi-funnel structure of continuous itness

landscapes, we considered and adapted the Monotonic (MLON) and

Compressed Monotonic (CMLON) models introduced in [23].

Monotonic LON. Is the directed graphMLON = (L,E), where
nodes are the local optima L, and edges E are the monotonic per-

turbation edges.

Local optima. We assume a search spaceRn with a itness func-

tion f (x) and a neighbourhood function N (x). A local optimum,

which in the studied benchmark functions is a minimum, is a solu-

tion l such that ∀x ∈ N (l), f (l) ≤ f (x). Notice that the inequality is
not strict, in order to allow the treatment of neutrality (local optima

of equal itness), which is generally present in complex real-world

problems. The set of local optima, which corresponds to the set of

nodes in the network model, is denoted by L.

Monotonic perturbation edges. Edges are directed and based

on the perturbation operator (adding a stepsize). There is an edge

from local optimum l1 to local optimum l2, if l2 can be obtained

after applying a random perturbation to l1 followed by local minimi-

sation, and f (l2) ≤ f (l1). These edges are called monotonic as they

record only non-deteriorating transitions between local optima.

Edges are weighted with estimated frequencies of transition. The

edge weights are estimated after the sampling process. The weight

is the number of times a transition between two local optima basins

occurred with a given perturbation. The set of edges is denoted by

E.

3.3 Compressed Monotonic LON Model

This is a coarser LON model compressing connected local optima

at the same itness level (according to a given accuracy) into single

nodes. The instances studied in this paper only show a small amount

of neutrality. We consider this model, however, for the sake of

generality, and because it allows a crisper characterisation of the

funnel bottoms or sinks.

Compressed Monotonic LON. Is the directed graph CMLON

= (CL,CE), where nodes are compressed local optimaCL, as deined

below, and the edges CE are aggregated from the monotonic edge

set E by summing up the edge weights.

Compressed local optima. A compressed local optimum is a

set of connected nodes in the MLON with the same itness value.

Two nodes in the MLON are connected if there is a perturbation

edge between them. The set of connected MLON optima with the

same itness, denoted by CL, corresponds to the set of nodes in the

Compressed Monotonic LON model.

Monotonic Sequence. A monotonic sequence is a path of con-

nected nodesMS = {cl1, cl2, . . . , cls } where cli ∈ CL. By deinition
of the edges, f (cli ) ≤ f (cli−1). There is a natural end to everymono-

tonic sequence, cls , when no improving transitions can be found.

This corresponds to the funnel ‘bottom’. In the directed CMLON

network, cls will be a node without outgoing edges (or ‘sink’)1.

Funnel. We characterise funnels in the CMLON as the aggrega-

tion of all monotonic sequences ending at the same point (funnel

bottom or sink). Funnels can be seen as basins of attraction at the

level of local optima.

4 EMPIRICAL METHODOLOGY

4.1 Benchmark Functions

Our experiments used three well-known benchmark functions: Ack-

ley’s, Rastrigin, and Birastrigin (also known as the Double Rastrigin

or Lunacek’s function). These are detailed below, and visualised for

two variables in Figure 3.

Ackley’s Function. This function was initially deined in two

dimensions, but the extended form [1] has been used for our ex-

perimentation in order to investigate multiple dimensions. It is

expressed as

f (x) = f (x1, ...,xn ) = −20 exp
©«
−0.2

√√
1

n

n∑
i=1

x2i
ª®¬
−

exp

(
1

n

n∑
i=1

cos(2πxi )
)
+ 20 + e

This function has one global minimum at [0, 0, . . . , 0] with a it-

ness of 0.0, and typically evaluatedwithin the range [−32.768, 32.768]
for all xi .

Ackley’s function centres around a single funnel with a high

number of local minima. While it appears to be relatively simple,

1In directed graphs, a node without outgoing edges is called a sink.
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it is an important benchmark as it is reminiscent of the free en-

ergy landscape of proteins, and therefore has potential real-world

application [4].

Rastrigin Function. Like Ackley’s function, Rastrigin has a

single funnel landscape, but with considerably fewer local min-

ima. The diiculty of this search space is in the increased distance

between those local minima, and lattened search space. These prop-

erties mean that local searches tend to become trapped, whereas

global searches must possess an adequate step-size. It is expressed

as

f (x) = f (x1, ...,xn ) = 10n +

n∑
i=1

(
x2i − 10cos(2πxi )

)

This function has one global minimum at [0, 0, . . . , 0] with a it-

ness of 0.0, and is typically evaluated within the range [−5.12, 5.12]
for all xi .

Birastrigin Function. The Birastrigin (or Lunacek’s function

[15]) is the resulting hybrid of the double-sphere and Rastrigin

functions; efectively creating a double-funnel problem with local

optima. This function is intended to create a more diicult bench-

mark for global optimisation methods that closely resembles those

found in real world problems ś speciically those in computational

chemistry, such as Lennard-Jones clusters [5]. This double-funnel

landscape is particularly challenging for population based methods.

It is expressed as

f (x) = f (x1, ...,xn ) = 10

n∑
i

(1 − cos2π (xi − µ1))

+min

(
n∑
i

(xi − µ1)2, d · n + s ·
n∑
i

(xi − µ2)2
)

and is typically evaluated within the same domain as the Rast-

rigin function: [−5.12, 5.12] for all xi . In this study, the parameter

settings used were d = 1, s = 1 −
(
1/(2
√
n + 20 − 8.2)

)
, µ1 = 2.5,

and µ2 =
√
|(µ21 − d)/s |.

4.2 Sampling Method

The sampling procedure consists of aggregating the local minima

and transition edges obtained by 100 runs of basin-hopping (Algo-

rithm 1). The stopping condition was set to 1000 iterations without

an improvement. We used the basin-hopping implementation pro-

vided in Scipy[8], with the following coniguration and parameter

values:

Initialisation. The initial solution is a random n-dimensional

coordinate vector x0 with independent identically distributed com-

ponents generated from a uniform distribution within the given

problem bounds.

Local minimisation. The local minimisation step used the

limited-memory variant of the Broyden-Fletcher-Goldfarb-Shanno

algorithm [20] (L-BFGS-B). This version of BFGS uses less memory

by storing only a few vectors instead of the estimation of the entire

inverse Hessian matrix, ensuring the scalability of this sampling

technique to much larger search-spaces. As this variant is also

Table 1: Base perturbation step sizes (β).

Functions

Dimensions (n) Ackley Rastrigin Birastrigin

3 0.4546 0.4746 0.5156

5 0.4646 0.4749 0.4946

bounded, the search can be constrained to the speciied domain.

The local search was terminated when the change in value of the

solution between iterations was less than 10−7, or 15,000 iterations
occurred.

At the end of each local optimisation step, the solution found is

stored as a local optimum to form the nodes of the LON. In continu-

ous spaces, there is the issue of deciding when two solutions found

through diferent local search runs are close enough in solution

space to be regarded as the same local optimum. In this study, we

set the local optimum position threshold to 10−5 in all dimensions.

Perturbation. The perturbation strength is an essential param-

eter in deining the search-landscape as it has been shown to have

dramatic efects on the shape of said landscape [18]. If it is inade-

quate, the search will not be able to escape the basin in which the

solution originates, but if it is too strong, it will move through the

search-space, randomly sampling diferent regions without learning

from the landscape. This is especially problematic when the search

has progressed to a region with relatively high itness, where large

perturbations are likely to be deteriorating.

We determined the base perturbation step (β) for each function

in 3D and 5D spaces by randomly sampling the space, performing a

local search, and perturbating that solution based on a β value. This

β was then varied until approximately 50% of the steps resulted in

escaping the original local optimum. This method for selecting per-

turbation strength via a sampling technique was adopted from that

used by Leary [10]. The resulting step sizes are detailed in Table 1.

For each function and dimension combination, four perturbation

step-sizes were used: p ∈ {0.5β , β , 2β ,nβ} (where n is the dimen-

sion). The perturbation was performed by applying a displacement

to each coordinate of the vector sampled from a uniform distribu-

tion within the perturbation step-size, x ′ = x +Uni f orm(−p,p).

4.3 Metrics

For each instance, problem dimension, and perturbation step size,

we extracted the LON models and computed the measurements

described in Table 2. Metrics are reported as aggregations over 100

runs.

Table 2: Metrics.

Performance Metrics

success Proportion of runs that reached the global optimum.

deviation Mean deviation from the global optimum value.

Network Metrics

noptima Number of optima (including local and global).

neutral Proportion of neutral to total number of optima (reciprocal).

nfunnels Number of funnels (including local and global).

strength Normalised incoming strength of the global funnel.
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5 RESULTS

5.1 Structural and Performance Metrics
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Figure 2: Structural and performance metrics (as deined in

Table 2) for four perturbation step sizes, which aremultiples

of the base (β as deined in Table 1).

As seen in Figure 2, the perturbation strength (pstep) has sub-

stantive efects on the structural metrics derived from LONs. The

total number of optima found over the course of the basin-hopping

experiments generally increased as more suitable pstep values were

used, before decreasing as it became excessive. In regards to Ack-

ley’s function, 0.5β best explored the search space, increasing to

β in 5 dimensions, with a similar efect seen with the Rastrigin

peaking at β in 3 dimensions and 2β in 5. This increase in pertur-

bation strength was not required for the Birastrigin function, as 2β

was favoured in both investigated dimensions, there was, however,

a much more stark increase in discovered optima in the higher

dimensional space.

The number of discovered optima correlates well with the num-

ber of funnels detected, and the strength of their basins. With 0.5β ,

we can see that a low number of optima were discovered, but a

large number of funnels, indicating that the basin-hopping algo-

rithm rarely escaped the nearest local optima to its origin point.

This is most pronounced in the Rastrigin and Birastrigin 5D func-

tions showing a stark decrease in the number of funnels between

pstep = β and pstep = 2β , where we were able to uncover the

underlying single and double funnel landscapes. This suggests that,

the right perturbation step size better exploits the underlying global

structure.

This is further reinforced in the success rate, that is, the percent-

age of runs inding the global optimum. With 0.5β , only the simpler

Ackley’s function showed any signs of success, with higher dimen-

sionality requiring β , much in line with the number of observed

optima and funnels. Most notably, the success rates on the 5D Rast-

rigin and Birastrigin functions share a very a similar behaviour to

the strength, number of optima, and number of funnels. We can also

see a similar detrimental behaviour to increased βs, suggesting that

higher dimensional functions may be more sensitive to excessive

perturbation sizes than those with lower dimensions.

The mean distance of the inal solutions found from the global

optimum (deviation) clearly displays a decrease in accordance with

the strength of the perturbation parameter. When considering this

with the success rates, we can suggest that larger step sizes in basin

hopping may decrease the likelihood of inding the global optimum,

but increases the chances of achieving, on average, a good solution.

5.2 Visualisation

Figure 3 provides a 3D representation of the three benchmark in-

stances selected. For practical purposes, we can only visualise func-

tions with two variables in this way as there is no clear way of

visually conveying itness landscapes for functions with many vari-

ables.

One of the advantages of modelling itness landscapes with LONs

is the possibility of visualising these higher dimensional functions.

To illustrate this point, Figure 4 visualises the compressed mono-

tonic LONs for the three benchmark functions with ive variables,

n = 5. In these plots, the nodes are local minima, and edges are

perturbation transitions with step size p = 2β (the values of β , for

each function and dimension can be found in Table 1). The size

of nodes is proportional to their incoming weighted degree (also

called strength), which indicates how much a node ‘attracts’ the

search process. Node colours indicate funnel membership, with

pink highlighting the funnel containing the global optimum, and

light blue demonstrating the sub-optimal funnels. The red node

identiies the global optimum, while the dark blue nodes represent

the bottom of sub-optimal funnels (which we also call sinks).

By contrasting the images in Figures 3 and 4, we can appreciate

the overall resemblance of the respective functions. In both cases,

Ackley and Rastrigin have a single funnel structure, while Biras-

trigin has a double funnel structure. The smoother shape of the

Rastrigin funnels can also appreciated.

In order to illustrate the efect of the perturbation step-size in

the LONs connectivity pattern, Figure 5 shows 2D LON visualisa-

tions for the three benchmark functions with 5 variables n = 5 and

three increasing perturbation step-sizes, pstep, as indicated in the

sub-igures captions. It is worth noting that the sampling process ag-

gregates local optima and transition edges from 100 Basin-Hopping

independent runs, so the maximum possible number of estimated

funnels is 100. The success rate achieved by these 100 independent

runs is also shown in the sub-igures caption.

In the images, the size of nodes is proportional to their incoming

strength, and the colours indicate funnel membership. The pink

nodes belong to the funnel containing the global optimum, while

light blue nodes belong to sub-optimal funnels. The red node (when

visible) is the global optimum, while dark blue nodes indicate the

sub-optima funnel bottoms or sinks.



GECCO ’19 Companion, July 13–17, 2019, Prague, Czech Republic Adair, Ochoa, Malan

(a) Ackley (b) Rastrigin (c) Birastrigin

Figure 3: 3D visualisations for the three benchmark functions with two variables n = 2

(a) Ackley, pstep = 2β (b) Rastrigin, pstep = 2β (c) Birastrigin, pstep = 2β

Figure 4: 3D LON visualisations for the three benchmark functions with ive variables n = 5 and perturbation step-size p = 2β .

The z coordinate represents itness. The size of nodes is proportional to their incoming strength. Red highlights the global

optimal funnels, while blue suboptimal funnels. Funnel bottoms (sinks) are indicated in more intense colours.

With the lowest perturbation step in the Ackley function (plot

(a)) only a portion of the runs (success = 0.26) reached the global

optimum. The successful trajectories are indicated by the pink

nodes ending at the global optimum (red node). The remaining

runs end up trapped in sub-optimal sinks, with trajectory lengths

of one or two hops. For the largest perturbation step (plots (b) and

(c)) a single funnel can now be appreciated, where all the search

trajectories converge to the global optimum.

For the Rastrigin function and a low perturbation step (plot

(d)), the global optimum cannot be reached; the 100 runs all end

up trapped in a sub-optimal funnel after a few search transitions.

For a perturbation step of 2β (plot (e)) a single funnel is observed,

with most trajectories converging to the global optimum (which is

hidden behind the pink nodes in this 2D projection). Increasing the

perturbation step to 5β (plot (f)) causes the landscape to fragment

again into multiple funnels, with several trajectories trapped in

sub-optimal sinks.

The Birastrigin function shows a similar trend to the Rastrigin

function, with the diferences being observed at the intermediate

perturbation step-size pstep = 2β (plot (h)), where two funnels

appear, with the sub-optimal funnel in blue attracting a larger

proportion (65%) of the search trajectories.

6 DISCUSSION

This proof-of-concept paper shows that it is possible to use LONs

to model and visualise the global structure of continuous search

spaces. There are, however, a number of limitations and challenges

regarding the sampling methodology that need to be addressed

before the approach can be applied more widely.

One challenge relates to the sampling of initial solutions to be

used as the starting points for local minimisation. The approach

used in this paper is to sample each component from a uniform

random distribution. A problem with this approach is that, as the

number of dimensions increase, the position of the full solution

vector is biased towards the centre of the search space. In addition,
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(a) Ackley, pstep = 0.5β , success = 0.26
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(b) Ackley, pstep = 2β , success = 1.0
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(c) Ackley, pstep = 5β , success = 1.0
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(d) Rastrigin, pstep = 1β , success = 0.0
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(e) Rastrigin, pstep = 2β , success = 0.8
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(f) Rastrigin, pstep = 5β , success = 0.03
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(g) Birastrigin, pstep = 1β , success = 0.0
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(i) Birastrigin, pstep = 5β , success = 0.04

Figure 5: Local optima networks for the three benchmark functions with ive variables n = 5 and three perturbation step-sizes,

p, as indicated in the captions. The size of nodes is proportional to their incoming strength. Red highlights the global optimal

funnels, while blue sub-optimal funnels. Funnel bottoms (sinks) are indicated in more intense colours.
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each initial solution is sampled independently and so there is no

guarantee that the diferent starting positions provide a good cover-

age of the search space. Latin hypercube sampling [17] is a random

approach that provides a better distribution in multidimensional

spaces than uniform random sampling. Future work could investi-

gate the efect of the sampling approach of initial solutions on the

LON models.

The choice of method for performing local optimisation is an

important consideration in the sampling for LON construction. In

this study we used a variant of the BFGS algorithm, which is a

quasi-Newton method that uses an approximation of the gradient

of the objective function to direct the search. An alternative local

search approach may need to be used for black-box optimisation

scenarios with expensive function evaluations. There are, however,

scenarios where the gradient information is available.

The approach used in this study is computationally expensive.

It may not be necessary to perform as many runs of the Basin-

Hopping algorithm or to perform as many iterations in the local

optimisation step. Further work could investigate cheaper ways to

sample continuous search spaces in order to construct LONs that

are less detailed, but still informative.

7 CONCLUSION

This paper detailed a methodology of extracting local optima net-

works from continuous functions. We demonstrated that the per-

turbation strength of the Basin-Hopping algorithm is an essential

parameter to tune in order to extract the underlying nature of the

function ś landscapes appear fractured at values without appropri-

ate strengths, coming together to form the single and double-funnel

structures known to exist in the problem domain when the pertur-

bation strength is better chosen. We show that LONs can be used

as a tool for visualising itness landscapes, displaying that we can

preserve the fundamental topology of the high-dimensional func-

tions. Future work will address the limitations discussed, aiming at

analysing larger dimensions and real-world problems.
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