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A Host-Host-Pathogen Model with Vaccination and its Application 

to Target and Reservoir Hosts. 
 
 
 
Abstract 

In this paper we present a simple theoretical framework which allows us to study 

the impact of constant vaccination rates in a system in which two species interact through 

a shared pathogen. We look at this firstly in purely theoretical terms to determine which 

equilibria will be stable for which parameter combinations. We then consider two special 

cases and determine the long term population dynamical consequences of differing 

vaccination strategies. In particular we describe systems for which there is a wildlife host 

reservoir and a domestic (target) host. We find that when the target host cannot maintain 

the disease alone, and the presence of the reservoir causes the target host to be eradicated 

by the disease, vaccinating the target species allows coexistence of the two species with 

the pathogen, but will not allow disease eradication. It is then shown that this result holds 

both when vaccination occurs at a fixed rate and when a proportion of the population is 

vaccinated at birth. 
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1. Introduction 
 

Mathematical models have been used extensively to study the effects of 

vaccination on the dynamics of an infection within a host population. Initially, this work 

has concentrated on human disease due to both the public health implications of such 

studies and the data available in this area. Recently, however, similar modelling 

techniques have been applied to the vaccination of both domestic and wild animals. This 

is particularly important in the context of emerging diseases of domestic hosts or humans, 

which often have a known or suspected wildlife reservoir. It has been shown recently that 

62% of all human pathogens also infect animals and 77% of livestock pathogens and 91% 

of domestic carnivore pathogens infect multiple hosts (Cleaveland et al 2001).  Examples 

include tick borne encephalitis in humans and rodents, rabies in dogs and foxes (Europe) 

or in wild dogs (Africa) and bovine tuberculosis in cattle and badgers.  

However just because two hosts can both be infected by a pathogen does not 

necessarily mean that there is transmission between these species. There has been recent 

discussion about the identification of reservoirs of infection (Haydon et al 2002). In this 

paper we will only consider pathogens that can be transmitted between species. Indeed 

the model we will present here assumes that the only contact between the species is via 

infection i.e. the species are not in competition for resources. In order to control the 

disease in this case, we will determine which species should be the aim of our control 

strategy or whether we need to treat both species. In this paper we will only consider 

control through vaccination.  

Whilst previous models have studied the effect of vaccinating one species, there 

have been few studies of host- host pathogen models which include vaccination (except 

see Kribs-Zaleta and Velasco-Hernandez 2000). However, host-host pathogen models 

have been used to study other aspects of species interactions (e.g. Holt and Pickering 

1985, Begon and Bowers 1994 Bowers and Turner 1997). The aim of this paper is to 

build a theoretical framework that will allow us to study the impact of vaccination, at a 

fixed rate, on a system in which two species interact through a shared pathogen where the 

transmission is density dependent. We will then go on to look at two case studies in 
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which one host is the target, i.e. the host in which we wish to control the disease and the 

other host is a reservoir for the disease. In this case our definitions of target and reservoir 

are as taken from Haydon et al 2002. Finally, we will consider vaccinating a proportion 

of one of the species at birth and use a technique developed by Roberts and Heesterbeek 

(2003) to determine the threshold level of vaccination required to control the disease. 

 

2. The model and results: 
In this case we are considering two hosts which have density dependent growth 

rates and a disease which is directly transmitted. The model is represented in a flow 

diagram in figure 1 and described by the following equations: 
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Here iH  is the total host population density for species i, and iY  and iZ  are the 

densities of infected and immune hosts of species i respectively. The density of 

susceptible hosts of species i is given by iiii ZYHX −−= . It should be noted that 

transmission of the disease is assumed to be density dependent. The reason for this is 

twofold, firstly this is consistent with other two host models that have been analysed (eg. 

Begon and Bowers  1995) and secondly it is likely to be biologically realistic for wildlife 

disease systems where contact saturation has probably not occurred. The vaccination rate 

of species i is given by iν  and the other parameters are defined in Table 1. This is a 

simple method of including vaccination which does not allow for vaccine efficacy or 

waning- except implicitly in the loss of immunity - which have been shown to have a 

potentially disruptive effect on vaccination programmes (e.g  Arino et al 2004). However 

this is a baseline model which will give us results on which to build more complex 

vaccine mechanisms later (see discussion).  
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Asymptotic analysis of this model shows that there are 7 possible equilibria 

labelled ),,,,,( 222111 HZYHZY  in this case (although we have no proof that the last is 

unique- see discussion below). See appendix A for the full details of the analysis. 

There are three trivial equilibria, one where no individuals of either species are 

present (E1= ( )0,0,0,0,0,0 ) and two where either species is alone and uninfected at its 
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never stable unless one, or both, of the species has negative growth rate, 0<ir , i.e., they 

have disease free death rates that are higher than their birth rates ( ii ab > ) and we shall 

ignore this possibility. In other words we assume that all populations are viable in the 

absence of the disease (see Appendix A for all of the mathematical detail underlying our 

arguments.) 

 

The equilibrium where both species are present at their carrying capacities 
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Here, iR is one of two effective reproduction numbers, it is made up of two 

factors, the basic reproductive number of the infection within species i multiplied by the 

factor by which vaccination reduces the reproduction number. The cross species 

reproduction number is given by ijR  and is made up of two similar factors. The first is the 

number of new infections that would occur if we added on infected individual of species j 
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into a totally susceptible population of species i ⎟
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. This is then multiplied by the 

factor by which vaccination reduces the reproductive rate. 

Therefore 1<iR  is the condition for the disease to die out if species i was alone 

with the disease. The presence of two species together gives us the second, more 

complicated condition for the disease to die out. For both of these inequalities their 

biological interpretation is that there are not enough individuals present in the population 

for the disease to persist, either for each species alone, or both for species in combination. 

The equilibrium where species 1 is present alone with the disease 
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(with similar definitions for species 2). Biologically these four conditions have different 

interpretations. The first two conditions mean, as discussed earlier, that population 1 must 

be able to persist in the absence of the disease and that the disease must be able to persist 

in species one in the absence of species 2 respectively. If the final condition ( 111 CBA > ) is 

not satisfied then we have stable limit cycles about this equilibrium rather than a stable 

equilibrium. The third condition is more difficult to interpret biologically but represents 

the interaction between the two species. Effectively it says that if the transmission from 

species 1 to species 2 is high then it can overpower the growth rate of species 2 and cause 

it to die out.  
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If we replace 1s with 2s and vice versa we get the conditions for stability of the 

equilibrium with species 2 alone with the disease (E6).  

             If the conditions described above hold for both species 1 and species 2 

simultaneously then both equilibria where one species is present alone with the pathogen 

(E5 and E6) are stable and the long term outcome is determined by the initial conditions 

(contingency).  

When we consider the existence and stability of the infected coexistence 

equilibrium (E7) when the disease is endemic in both species, it should be noted that, 

with appropriate modifications, the results presented here are entirely consistent with that 

of the model without immunity or vaccination presented by Greenman and Hudson 

(2000). In that paper they have shown that it is possible under some parameter regimes to 

have more than one biologically relevant coexistence equilibrium, and even more than 

one stable coexistence equilibrium. In which case the initial conditions determine which 

equilibrium is stable. Whilst the existence of these complexities is interesting, we shall 

ignore the detail of them for the purposes of this paper since it turns out that they are not 

relevant in the context of our (numerical) examples. We therefore make the simplifying 

assumption that when none of the other equilibria are stable then either the equilibrium 

with both species coexisting with the disease is stable or we have stable limit cycles in 

the area of parameter space in which we are interested. 

These results are summarised in terms of the different regions of parameter space 

in table 2. 

 

We can represent all of the inequalities described in table 2- or rather the 

corresponding equalities-  by curves in parameter space and we are interested in how they 

relate to one another and how they are affected by changes in the parameters, in particular 

the vaccination parameters. We will study these curves from two different points of view, 

that is, in K1-K2 space and in 21 νν − space. In each case we keep the values of all other 

parameters fixed. 

 

K1-K2 space:  
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which separate species i alone with the disease from infected coexistence need not appear 

on the diagram at all, since they can be negative (they can also be very large). However, 

they are always straight lines with equations 
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rearranging in terms of K1. 

 

Effect of vaccination: 

If we wish to consider the effects of vaccination on these boundaries then we see 

that as we change iν  they will move; however their shape will not change. If we firstly 

look at the 1=iR  boundaries we see that they increase with increasing vi and do not 

depend on vj,; therefore increasing the level of vaccination increases the region in which 

uninfected coexistence occurs. However, the effect of vaccination on the Si lines is not so 

straightforward. In fact it is possible to either increase or decrease Si whilst increasing 

either vi or vj. This depends on the relative sizes of the other parameter values. 
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It is therefore sensible to redraw these curves using different axes which allow the 

direct study of vaccination. We consider all other parameter values to be fixed, including 

the Kis, and see what these boundaries look like in 21 νν −  space. 

 

 

21 νν −  space. 

In this case, the curves are more complicated because they change according to 

what happens when there is no vaccination, i.e., at the origin.  

The simplest lines to draw are those which are equivalent to the threshold host density 

lines ( 1=iR ). These can be rewritten in terms of a threshold vaccination rate ( iTv ) given 

by 
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There are five possible scenarios 

1. Uninfected coexistence (E4) at the origin. 

Here ( )( ) 21122121 11 and  1    , 1 RRRRRR >−−<< . 
This is the trivial example. In this case the disease would not persist in the absence of 

vaccination and so vaccinating has no effect. 

 

2. Infected coexistence (E7) at the origin 

Here 11 >R , 12 >R ,
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( )( ) 211221 11 RRRR <−− . 
If we have infected coexistence at the origin then the boundaries are given in 

figure 3. We can see that this is a simple picture. The only possible types of long term 

behaviour are infected or uninfected coexistence separated by a hyperbola in 21 νν − space. 

This curve always has negative gradient. The only possible effect of vaccinating or 

increasing vaccination rates is to cause the pathogen to die out in a system in which, 

without vaccination, the disease would have persisted in the presence of both hosts. In the 

case of figure 3 the shape of the curve implies that we would have to vaccinate both 
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species in order to eradicate the disease. However it would be possible to choose 

parameters for which the threshold in vi is zero (or negative) and so we would only have 

to vaccinate one species in order to eradicate the disease (see Figure 4). 

 

3. Species 1 alone with the pathogen (E5) at the origin 
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If we have species 1 alone with the pathogen at the origin then the boundaries are 

shown in figure 5. In this case we can see that the shapes of the curve are more 

complicated. At the origin there is apparent competition between the two species 

mediated by the pathogen and species 2 is eradicated due to the disease being maintained 

in species 1.  In this case vaccination of either species can cause the two species to 

coexist with the disease. If we vaccinate species 2, this protects the species directly and 

allows the population of species 2 to persist. If however we vaccinate species 1, we will 

be lowering the incidence of the disease in species 1 and will eventually reduce it to a 

level which is tolerable to species 2. Infected coexistence could be reached by 

vaccinating either species alone or by vaccinating both species. It is possible in this case 

that infected coexistence is a sufficiently good outcome and we simply wish to use 

vaccination to help species 2 re-establish itself (or invade). However, if we wish to 

eradicate the disease and allow both species to persist at their carrying capacities we must 

vaccinate both species in order to get the populations into the uninfected coexistence 

regions. 

 

4. Species 2 alone with the pathogen (E6) at the origin 
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If we have species 2 alone with the pathogen at the origin then the boundaries are 

shown in figure 6. In this case the dynamics parallel those discussed above. 
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5. Contingency at the origin 
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If we have contingency at the origin then the boundaries are shown in figures 7a 

and 7b. In this case we start off in a situation where either species could persist alone 

with the disease, in the absence of vaccination and the species that ‘wins’ is determined 

by the initial conditions. If we consider vaccinating only species i (i=1,2) then we give 

species i the advantage and that species can persist in the absence of species j under 

certain sufficiently high vaccination rates. However, when the vaccination rate of species 

i is increased further then the two species can persist together for the reasons discussed 

above. If we vaccinate both species it is again possible to achieve uninfected coexistence. 

 

3. The case studies: A target-reservoir system. 
We will now apply these results to a general system of biological interest. In line 

with the paper by Haydon et al 2002 a target population is defined as the population of 

concern or interest to us. Pathogens will persist in populations larger than the critical 

community size and these populations will be termed maintenance populations. All other 

potentially susceptible host populations that are epidemiologically connected to the target 

population are non-target populations and constitute the reservoir. A reservoir is one or 

more epidemiologically connected populations or environments in which the pathogen 

can be permanently maintained and from which infection is transmitted to the defined 

target population (Haydon et al 2002). In practical terms reservoirs will generally become 

important either when the target population cannot maintain the disease alone or when 

control in the target population means that the amount of between species infection is 

large compared to the within species infection . In terms of the model presented here, we 

will consider two particular scenarios. (i) A system in which, in the absence of 

vaccination, neither species alone would allow the disease to persist but when the two 

species are present together they allow coexistence of the pathogen with both hosts. (ii) A 

system in which in the absence of vaccination, the target host alone would not permit the 

disease to persist but the presence of the second reservoir host causes the target species to 

die out. We will look at each of these cases separately.  
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Case 1: The disease cannot persist with either species alone. 

This is a special case of scenario 2. It is not a true target- reservoir system as 

defined above because the pathogen could not persist with either species alone but their 

combined presence allows persistence. However, it is a simple example and will be 

useful for the case which follows. 

In this system since the disease cannot persist with either species alone then we 

know that  

    1<iR   i=1,2 with ( )iiii

iiiii
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bK
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γβ
++Γ
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=
)(  

This implies that 0<iTν and we have eradication of the disease even when there is no 

vaccination. We will assume that we are starting with no vaccination in either species. 

This is not essential, but facilitates the description of what happens when we increase the 

vaccination rates. 

In addition to the above conditions, we know that the disease can persist when 

both species are present together which means that we have 

    211221 )1)(1( RRRR <−−   (8) 

Note that this is the opposite of the condition for stability of equilibrium E4 (equation 4). 

Here all of the effective reproductive numbers depend inversely on iν . In order to 

eradicate the disease we must reverse inequality (8) so that the coexistence equilibrium is 

no longer stable and the equilibrium in which both species coexist at their carrying 

capacities becomes stable. Increasing iν  causes both ijR  and iR  to decrease, this means 

that ( )iR−1  increases and so the inequality will eventually be reversed. However, we can 

see that it does not matter which species we vaccinate, we can vaccinate one, or the other, 

or both and we will eventually be able to eradicate the disease. This is illustrated in figure 

4. 

 

Case 2: Species one eradicated 

This is a special case of scenario 5. In this example, the disease could not persist 

in species one alone but the presence of species 2 allows it to persist and the consequence 

is that species 1 dies out. This is an extreme case of the target- reservoir system. 
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Again ,we will assume that there is no vaccination initially. We can see from this 

that iφ increases as we vaccinate species i and again, the iR  terms depend inversely on 

vaccination of species i. This means that there is an increase in *
2H  with an increase in 2ν  

and then, ultimately a decrease in *
2Y  (see Appendix B for full details). If we rearrange 

inequality (9) 
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we can see that there is a threshold value for *
2Y . Eventually increasing the 

vaccination rate (from our initial rate of zero) for species 2 reduces *
2Y  below this 

threshold and so the ( )*
2

*
2

*
2 ,,,0,0,0 HZY  equilibrium is no longer stable. We then get 

coexistence of both species with the pathogen. At this point we still have 12 >R . However 

if we then continue to increase  2ν  then we can decrease 2R  sufficiently until this 

threshold is also reversed. We are then back in case 1 and if we continue to increase the 

vaccination rate of species 2 then we can reverse inequality (8) and eradicate the disease. 

Alternatively, if we vaccinate species 1 then the only effect on inequality (9) is to 

increase 1φ . However, if we increase 1ν sufficiently then we can reverse inequality (9). We 

then get both species coexisting with the pathogen. In this case, however, it is not 

possible to increase 1ν  enough to eradicate the disease since species 2 can maintain the 

disease alone. 

This means that in a system which fits this description, vaccinating the target 

species will have some benefit, allowing it to persist where it would not without 
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vaccination, but will not ultimately eradicate the disease. However, vaccinating the 

reservoir species makes it possible to eradicate the disease. This is illustrated in figure 8. 

It is likely to be more practical to vaccinate species 1 at least initially to get to 

coexistence but we then have to vaccinate species 2 if we wish to eradicate the disease. 

 

 

 

4. Proportional vaccination: 
Thus far we have modelled vaccination as a continuous fixed rate. An alternative 

is to use proportional vaccination; this will also allow us to use the method of Roberts 

and Heesterbeek (2003) to determine the proportion of a species which we need to 

vaccinate in order to eradicate the disease. The simplest approach in this case is to 

assume that we vaccinate at birth (Anderson and May 1991) and therefore a proportion of 

those born are born into the immune class. It should be noted that this assumes that there 

is no waning of immunity and that vaccinated individuals are immunologically the same 

as those which have recovered from the disease, again this is done for simplicity and 

more complex mechanisms will be added to the model in later papers. Equation 2 now 

becomes 
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Where ia is the per capita birth rate for species i and ip is the proportion of 

species i which is vaccinated at birth. The remaining equations are unchanged. 

Regardless of our method of analysis we find that with one species we need 
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If we have two species interacting via a pathogen and we are going to treat one of 

them, Roberts and Heesterbeek (2003) have developed a method of analysis to determine 

what proportion of the host to be treated, we need to vaccinate to eradicate the disease. It 

should be noted that we have to modify their results slightly by including the factor 
b

b γ+ , 

in order to take into account the fact that there is loss of immunity (see below). 

Firstly we form the next generation matrix for our particular system ,following the 

method of Diekmann and Heesterbeek (2000) 
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Then, the modified version of Roberts and Heesterbeek’s method states that if we 

are vaccinating species 2, for example, then we need  
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This formula can also be derived by rearranging the equivalent of inequality (4) with 

proportional vaccination in one species. For a parameterised system we can therefore 

estimate the proportion of species 2 which would have to be vaccinated for the pathogen 

to be eradicated. However, it can be shown that 1p does not lie between 0 and 1, when we 

are in case 2. These results confirm that we cannot eradicate the pathogen by vaccinating 

species 1 alone under those circumstances (appendix C). It should be noted that this 

approach is limited in that it does not allow vaccination of both species. 
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5. Discussion 
In this paper we have looked at the effect of vaccination on a host-host pathogen 

system. We made some deliberately simplifying assumptions in this model so that the 

effect of vaccination is the same as that of natural immunity through exposure, also the 

vaccination strategy was either to vaccinate at a fixed rate, or to vaccinate a fixed 

proportion of individuals at birth. More complicated vaccination strategies or 

mechanisms which can now be added to this baseline model include waning of immunity 

or imperfect vaccines (e.g. Moghadas 2004), pulse vaccination (e.g. Zhou and Liu 2003, 

D’Onofrio 2002) and ring vaccination (e.g. Del Valle et al 2005). 

In our analysis we determined the different possible types of long term behaviour 

and the conditions, in terms of the parameters which allow each possibility to occur. 

These were then presented as joint threshold curves in 21 νν − space, which allow us to 

determine the long term effects of vaccinating each of the two species individually, or 

both species together. Vaccination can have two effects. The first is to protect a species 

directly and hence allow it to increase in density. The second is to reduce the disease in 

the second species and hence reduce the amount of apparent competition that the original 

species is subject to, again allowing it to increase in density. 

We then looked at two case studies to help us to determine the effect of 

vaccination in the case when we have a target – reservoir system. It was found that in the 

case where the target cannot sustain the disease alone and the reservoir can, if when we 

put the two species together and the target species is eradicated, then it is possible to 

allow the two species to coexist with the disease by vaccinating the target species, but it 

is not possible to eradicate the disease unless we also vaccinate the reservoir species. 

However, we could both allow coexistence of both species with the pathogen and then, 

for high enough vaccination rate, eradicate the disease if we only vaccinate the reservoir 

species. This result also holds if the vaccination is added to the model as proportional 

vaccination at birth. 

 Unfortunately, since for these types of systems, the target host is most likely to be 

a domestic species and the reservoir host is most likely to be a wild species then it may 

not be practical to vaccinate the reservoir and so, the best case may be to achieve 
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coexistence of the two species with the pathogen. On the other hand, if we were 

considering, for example, red and grey squirrels with a parapoxvirus (Tompkins et al 

2003), then red squirrels could be considered the target and grey squirrels the reservoir. 

In this case vaccinating either species would be difficult since they are both wild, but in 

fact, because they are initially more abundant, then vaccinating the reservoir species 

might be easier, at least in the first instance. 

It is also clear that vaccination campaigns may have to change over time in 

response to the consequent changes in abundance of each species. This has not yet been 

addressed with this model. 

The model and results presented here are general and could be applied to any 

directly transmitted pathogen which infects two hosts, or indeed could be applied to a 

pathogen which infects two related species of the same host, e.g. a susceptible and 

resistant species of host. We have presented an analysis of the model that could then be 

used as a baseline to answer specific questions about what the best vaccination approach 

is for any particular system for which parameter estimates are available. 
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Appendix A: 
In order to look at the long-term behaviour of this system (equations 1-3) we need 

to calculate the possible equilibria. These are calculate by setting the derivatives of 

equations (1)-(3) with i,j=1,2 equal to zero. This gives us the following equations: 
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Solving these equations gives us 7 biologically relevant (i.e. positive) solutions, 

each of which will be discussed below. Once we have determined formulae for each 

equilibrium we look at when it is stable. In order to determine this we study the 

eigenvalues of the Jacobian evaluated at the equilibrium in question. If these eigenvalues 

have negative real parts then the equilibrium is stable. 

The general form of the Jacobian for equations (1)-(3) is as follows: 
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We will now consider each equilibrium and its stability, as discussed in the text, in turn. 

 

1) (0,0,0,0,0,0) is the simplest possible equilibrium, to see when this is stable we use the 

following Jacobian: 
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It can be seen that, given all other parameters positive for biological realism, the  

eigenvalues of this Jacobian would only be negative when 1,2i with  ,0 =<ir  in other 

words when the net growth rate of both of the host species is negative.  

2) The equilibrium where species 1 is alone at its carrying capacity is given 
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This equilibrium is stable if 11 <R and 02 <r that is, if species 2 has negative net growth 

rate. 

 

3) Similarly, the equilibrium where species 2 is alone at its carrying capacity is given by 
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4) The equilibrium where both species are present at their carrying capacity is given by 
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which has eigenvalues 21222111 -  ,  ,  , rrbb −−−−−−− γνγν  and the eigenvalues of 
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. Clearly the first four solutions are negative 

so we only need to consider the eigenvalues of the remaining 2x2 matrix. In that case we 

find that if we write ( )iiii
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When we consider stability, the Jacobian is as follows: 
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When we calculate the eigenvalues of this matrix we can split it into two 3x3 matrices. 

After some simplification we get the following: 
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If we first consider the eigenvalues of A2 we find that this is the Jacobian we would have 

if we simply considered the single host system. The eigenvalues therefore have negative 

real parts if and only if 11 >R . 

If we consider A3 we get the following characteristic equation: 
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The Routh Hurwitz conditions say that the solutions of this cubic will have negative real 

parts if A,B,C>0 and AB>C. It can be shown that if 22222
*

1212
*

121 φβαβ rMrYY Γ+>  then A, 

B, C>0. It has not yet been possible to show that AB>C. This implies the possibility of 

limit cycles.  

6) The equilibrium with species 2 present alone with the disease will be stable under the 

same conditions as above, with the 1s and 2s in the subscripts interchanged. 

 

When the conditions shown in 5) and 6) are both satisfied at the same time then (modulo 

the possibility of cycles) both equilibria are stable and the outcome is contingent on the 

initial conditions. 

Due to the algebraic intractabilities involved in this analysis we assume that if none of the 

above equilibria are stable then either the coexistence equilibrium is stable or we have 
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stable limit cycles with both species present with the disease (but see main text for more 

detail). 
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Appendix B 

We are in a system in which 11 <R  and the ( )*
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We wish to determine what happens as we increase the rate at which we vaccinate 

species 2. i.e as 2ν  increases. We can see immediately that 2R decreases as we vaccinate 

species 2 and that this means an increase in *
2H . We must now determine what happens 

to *
2Y  as a consequence of this. From ⎟
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 (which comes from setting the 

derivative of equation 3 to zero) we can see that if *
2H =0 then *

2Y =0, as *
2H  increases 

then so does *
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2Y decreases with increasing *

2H . Therefore if 
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H >  then increasing 2ν will cause a decrease in *
2Y . However if 
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increasing 2ν  will cause an initial increase in *
2Y before a decrease occurs. This may seem 

counter intuitive since if we vaccinate a species we should expect a decrease in the 

density of infectious individuals. However if we look at the circumstances under which 
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One cause of this would be high 2K . If we increase the vaccination rate under these 

circumstances, then the total population increases rapidly and there is a consequent 

increase in the density of infecteds but the prevalence of infection decreases, so that 

overall, the result is what we expect intuitively. Eventually, if 2ν  is high enough then 
*
2Y will decrease. 
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If we then look at how this eventual decrease in *
2Y affects the stable equilibrium we need 

to consider inequality (5). For this inequality to hold in the first place we must have 

111 Mr>α , we can therefore rearrange it to get  
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and, as discussed in the main text, once *
2Y  drops below this threshold then the 

( )*
2

*
2

*
2 ,,,0,0,0 HZY  equilibrium becomes unstable and we get coexistence of both species 

with the pathogen. 
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Appendix C 
We wish to prove that when we are in case 2 then we cannot have 0< 1p <1 and 

therefore we cannot eradicate the disease by vaccinating species 1. Here 
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Now, in case 2 we have 11 <R  and 12 >R which means that, without vaccination we have 
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The denominator of this term can be either positive or negative. 

If ( ) 02222111212112 >−Γ+ KKKK ββββ  then we need to know if  
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and if ( )( ) 022221111212112 >−ΓΓ−+ KKKK ββββ  

The second inequality holds but the first does not since the ( )22221 Kβ−ΓΓ−  is positive 

and so increases the right hand side and  the 
11

1

γ+b
b  term decreases the left hand side. 

This means that when ( ) 02222111212112 >−Γ+ KKKK ββββ we cannot find a value of 1p  

which allows us to eradicate the pathogen. 

Similarly when ( ) 02222111212112 <−Γ+ KKKK ββββ  then we need to know if  
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and ( )( ) 022221111212112 <−ΓΓ−+ KKKK ββββ in this case it is clearly the second inequality 

which does not hold since both terms in the brackets are negative and so the whole of the 

left hand side is positive. 
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We therefore, cannot find a value of 10 1 << p  for which we can eradicate the disease for 

a system described by case 2, or indeed any system where species 1 could not maintain 

the disease alone and species 2 can.
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Table 1. Definition of parameters used in equations (1) – (3) 

 
Parameter Defnition 

iiβ  Within species transmission rate 

ijβ  Between species transmission rate (species 
j to species i) 

iα  Per capita disease induced death rate for 
species i 

ib  Disease free per capita death rate for 
species i 

iµ  Per capita rate of recovery to immunity 

iΓ  iii b µα ++  

iv  Per capita rate of vaccination of species i 

iγ  Per capita rate of loss of immunity 

iK  Carrying capacity of species i 

ia  Per capita birth rate 
iii bar −=  Intrinsic population growth rate of species i 
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Table 2 
Areas of parameter space and the stable equilibrium for that region: 
Area of parameter space Stable Equilibrium 

2211 a   bba <<  in other words 0   0 21 << rr  E1 
2211 a   bba <>  in other words 0   0 21 <> rr  E2 
2211 a   bba ><  in other words 0   0 21 >< rr  E3 

     0   0 21 >> rr  and … 
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conditions determine which one. 
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Coexistence equilibrium assumed to 
be stable, or cycles about a 
coexistence equilibrium. 
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Figure legends: 
Figure 1: Flow diagram to illustrate interactions in the model. 
 
Figure 2:  Graph to show the boundaries between different types of long term behaviour 
in 21 KK − space. The dotted lines represent the lines iTi HK = . The straight solid lines 
represent the lines given by equation (6) and the solid curve comes from making 
inequality (4) into an equality and rearranging to find 2K  in terms of 1K . For this graph 

we have 
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Figure 3:Graph to show the effect of changing vaccination rates on the long term 
behaviour of the system if we have infected coexistence when there is no vaccination in 
either species. In this case, the dotted lines represent the threshold vaccination rate for the 
two species when alone with the pathogen. The solid curve comes from making 
inequality (4) into an equality and rearranging to find 2ν  in terms of 1ν . In this case the 
parameters are: 
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Figure 4: Graph to show the effect of changing vaccination rates on the long term 
behaviour of the system if we have infected coexistence when there is no vaccination in 
either species if we have iiT KH >  for i=1,2. The solid curve comes from making 
inequality (4) into an equality and rearranging to find 2ν  in terms of 1ν . In this case the 
parameters are: 
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Figure 5:  Graph to show the effect of changing vaccination rates on the long term 
behaviour of the system if species 1 is alone with the pathogen when there is no 
vaccination in either species. In this case the dotted line represents the threshold 
vaccination rate for species 1 when alone with the disease. The solid straight line 
represents inequality (5), made into an equality and rearranged to give 2ν  in terms of 1ν . 
The solid curve comes from making inequality (4) into an equality and rearranging to 
find 2ν  in terms of 1ν . In this case the parameters are: 
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Figure 6:  Graph to show the effect of changing vaccination rates on the long term 
behaviour of the system if species 2 is alone with the pathogen when there is no 
vaccination in either species. This is found in the same way as figure 3. In this case the 
parameters are: 
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Figure 7a and b:  Graph to show the effect of changing vaccination rates on the long term 
behaviour of the system if there is contingency when there is no vaccination in either 
species. (b) is a close up a the region of parameter space close to the origin. In this case 
the dotted lines represent the threshold vaccination rates for each species when alone with 
the disease. The solid lines represent inequality (5), made into an equality for i,j =1,2 and 
rearranged to give 2ν  in terms of 1ν in each case. In this case the parameters are: 
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Figure 8: Graph to show the effect of changing vaccination rates on the long term 
behaviour of the system if species 2 is alone with the pathogen when there is no 
vaccination in either species if we have 11 KH T >  and 22 KH T < . This is derived in the 
same way as figure 3. In this case the parameters are: 

 ;2;0  ;500K ;1  ;2   ;5.0  
;02.0  ;03.0 ;75.0;0  ;150;1  ;1   ;7  ;01.0  ;05.0
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Figure 1 
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Figure 2 
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Figure 3 
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Figure 4 
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Figure 5 
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Figure 6 
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Figure 7a 

 
 
Figure 7b 
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Figure 8 
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