1	
2	Testate amoeba communities of the drained Hula wetland (Israel): implications
3	for ecosystem development and conservation management.
4	
5	Richard J. Payne ^{1,2*} , Peter A. Ryan ¹ , Aminadav Nishri ³ and Moshe Gophen ⁴
6	
7	¹ Geography, School of Environment and Development, University of Manchester,
8	Oxford Road, Manchester M13 9PL, UK
9	² The Kenyon Institute, 15 Mount of Olives Road, Sheikh Jarrah, PO Box 19283,
10	Jerusalem 91192
11	³ Kinneret Limnological Laboratory, Israel Oceanographic and Limnological
12	Research, POB 447, Migdal 14950, Israel
13	⁴ Migal - Galilee Technology Center, Southern Industrial Zone, P.O. Box 831, Kiryat-
14	Shmona 11016, Israel
15	
16	* To whom correspondence should be addressed. E-mail: <u>r.j.payne@manchester.ac.uk</u>
17	

2 ABSTRACT

3

4 This study investigates the testate amoeba communities of semi-aquatic environments 5 in two anthropogenic wetland ecosystems within an extensive drained wetland 6 complex in northern Israel. Aims are to add to the species record for the region, test 7 the similarity in amoeba communities and ecology to more studied sites and regions 8 and investigate processes of wetland development and the implications of this for 9 conservation management. The testate amoeba community is predominantly 10 composed of cosmopolitan taxa but the community composition is distinct from that 11 of previous studies. Redundancy analyses show that much the strongest environmental 12 control is hydrology (depth to water table). Surprisingly, strontium (Sr) is an 13 important secondary control, probably representing the trophic gradient. With a few 14 exceptions the autecology of taxa identified here agrees with their preferences 15 indicated by previous studies. There are significant differences in species richness and 16 community structure between the amoeba communities of the two sites. Partly the 17 difference may be due to differences in nutrient state, although some of the difference 18 is independent of all environmental variables tested here. The lower species richness 19 of the more recently created site suggests the testate amoeba community may be at an 20 earlier successional stage.

21

KEYWORDS: Protists; Peatlands; Wetlands; Restoration; Management; Conservation
Running title: Testate amoebae in the Hula wetland

24

2 INTRODUCTION

3

4 Testate amoebae are a polyphyletic group of microorganisms (protists) which 5 are abundant in wetlands around the world. Testate amoebae are good indicators of a 6 variety of environmental variables including hydrology, pH and nutrient status 7 (Mitchell et al. 2008). As testate amoebae respond rapidly to environmental change, 8 can be readily extracted, and can often be identified to species level, they are 9 increasingly used in biomonitoring, with applications as diverse as investigating the 10 impact of lead pollution (Nguyen-Viet et al. 2008) and chemical weapon disposal 11 (Stoiko et al. 2006). Testate amoebae constitute a large proportion of microbial 12 biomass in wetlands and lie at the top of the microbial foodweb, therefore changes in 13 testate amoeba communities may be indicative of changes throughout the microbial 14 community. Testate amoebae are abundant in both human-impacted as well as natural 15 wetland sites and have been used in studies of peatland restoration, in particular to 16 assess the impacts of peat-cutting using the palaeoecological record to track 17 regeneration processes and set targets for restoration (Buttler et al. 1996; Jauhiainen 18 2002; Davis and Wilkinson 2004). The method has also been used to investigate the 19 affects of peatland management regime, forestry (Hendon and Charman 2004; 20 Vickery and Charman 2004) and inundation (Lamentowicz and Obremska, 21 submitted). Most recently, Laggoun-Défarge et al. (2008) used testate amoebae to 22 reveal differences among regenerating stages and uncut areas of a cut-over peatland, 23 even where there was little difference in vegetation. In this study we investigate the 24 testate amoeba communities of drained, restored and re-created environments of the

Hula Wetland, Israel with the aims of adding to our knowledge of testate amoeba
 ecology and wetland development processes.

3

4 SITE and METHODS

5

6 The Hula (in Hebrew, also variously transliterated as Hulah, Houla, 7 Huli, Hooleh and Huleh) was a large wetland complex in the Afro-Syrian rift valley of 8 northern Israel (33°04' N, 35°35' E, approximately 70 m asl). Peat deposits started 9 accumulating around 20,000 BP and reached a depth of 8-9 m (Hambright and Zohary 1998). The wetland complex consisted of a lake (Lake Hula: c.13 km²) and up to 60 10 11 km² (seasonally variable) of Papyrus-dominated marshes, mostly to the north of the 12 lake (Fig. 1, Jones 1940; Hambright and Zohary 1998; 1999; Gophen 2004; 2008). 13 In 1951-58 the marshes were drained by digging canals in order to provide 14 economically valuable arable land, reduce the malaria risk and increase water supply 15 by reducing evapotranspiration (Hambright and Zohary 1999). A small area of the lake and marshes (3.5 km^2) was enclosed prior to drainage, being designated Israel's 16 17 first nature reserve in 1964. Following construction of canals the water table of the 18 drained area dropped considerably and was subject to greater seasonal variability, peat 19 was oxidised and removed by wind erosion (Hambright and Zohary 1998; Atzmon 20 and Henkin 1998; Gophen 2004; 2008; 2007). In around 8% of the area agriculture 21 lost its economic viability and the land remained uncultivated, increasing the threat of 22 nutrient fluxes to water quality in Lake Kinneret ('Sea of Galilee'), Israel's largest 23 freshwater lake. About 120 animal species have not been recorded in the Hula since

24 drainage (Dimentman et al. 1992). Faced with these problems a limited rehabilitation

25 programme was instigated from 1993-1997 with the pragmatic aims of reducing

1	nutrier	nt output, limiting soil loss and subsidence and promoting tourism. A new lake
2	(Lake	Agmon) was dug within the drained marsh area and a network of barriers and
3	canals	constructed to raise the water table of the area.
4		In this study we investigate the testate amoeba communities of three
5	ecosys	atems of the Hula Valley:
6	1.	The drained marshes; the extensive area of marsh which was drained in the
7		1950s but has not been re-flooded and continues to be used for arable
8		agriculture.
9	2.	The Hula Nature Reserve; the small area enclosed by dams during the
10		drainage programme. Although the area has never been intentionally drained it
11		is in a far from natural condition. The dams built to maintain the water level
12		leaked extensively, the water table dropped considerably and the site has been
13		subject to nitrate pollution. New marshes of Cyperus papyrus and Phragmites
14		australis have developed on the bed of the former lake (Dimentman et al.
15		1992). These problems have been addressed through rehabilitation projects
16		since the early 1970s. Although the reserve is currently in an improved state it
17		cannot be considered a true relic of the previous Lake Hula and wetlands.
18	3.	The area of drained marshes which was the focus of the 1990s restoration
19		programme, the Hula Project and Lake Agmon. A large, shallow, new lake
20		and a network of canals were constructed and marshes spontaneously
21		developed around the water bodies. Since the intervention more than 70 plant
22		species have established themselves in the new wetland and increasing
23		numbers of bird (presently about 300 species: Gophen 2007) and mammal
24		species are using the site. Although viewed as broadly successful the new lake

1	ecosystem is eutrophic and has faced some problems with cyanobacteria
2	blooms (Kaplan et al. 1998).
3	
4	Our study is confined to the semi-aquatic habitats of the Hula Nature Reserve marshes
5	and marshes fringing Lake Agmon where testate amoebae are comparatively
6	numerous.
7	The study has three primary aims.
8	1. Firstly to simply add species data for the site. A comprehensive attempt to
9	reconstruct the past and present flora and fauna of the Hula has been
10	undertaken (Dimentman et al. 1992) but this does not include any information
11	on testate amoebae.
12	2. To investigate the ecology of testate amoebae. This is, to the best of our
13	knowledge, the first study of testate amoebae in a Middle Eastern wetland. We
14	attempt to determine if the community composition and ecological controls on
15	amoeba communities are the same as in more studied ecosystem types (such as
16	ombrotrophic peatlands) and more studied regions (such as northern Europe)
17	3. To use testate amoebae to investigate the development of the two rehabilitated
18	wetlands. Are the testate amoeba communities of the two sites the same and if
19	not why are they different?
20	
21	Initial fieldwork was carried out in September 2007. Forty four samples were
22	extracted from a cross section of the Hula Nature Reserve marshes and 11 samples
23	from around Lake Agmon (Fig. 1). Wetter locations are relatively under-represented
24	in the Lake Agmon data as accessing the areas closest to the water body was
25	extremely difficult. A further seven samples were extracted from an area of the

drained marshes, now used for arable agriculture, to the south of Lake Agmon in

2 December 2008 but no tests were found in these samples (Fig. 1).

3 To investigate the environmental controls on amoeba communities, 4 environmental data was collected at each sampling point. In the field, the vegetation 5 of each sampling site was recorded and a sample of surface sediment and leaf litter 6 approximately 2 x 2 x 4cm was removed. Depth to Water Table (DWT) was measured 7 by making a small hole which was left for the water table to equilibrate with the 8 surrounding sediments; such measurements were not obtainable for many of the Agmon samples. In the laboratory a 1 cm³ sediment subsample was suspended in 30 9 10 ml deionised water and pH and electrical conductivity (EC) measured. Further sub-11 samples were dried at 110° C and then incinerated at 550° C; weights pre-drying and 12 pre- and post-incineration were used to calculate % moisture and loss on ignition 13 (LOI). Dried sub-samples (approximately 0.2 g) were subjected to microwave-14 accelerated acid digestion with HNO₃, filtered and diluted. A suite of 22 elements 15 were analysed by ICP-AES, of which 14 (Al, B, Ba, Ca, Cr, Cu, Fe, K, Mg, Mn, Na, 16 Pb, Sr, Zn) were present in measurable concentrations.

17 Testate amoebae were extracted from samples using a slightly modified 18 version of the water-based method of Hendon and Charman (1997). A sub-sample of c.1 cm^3 was placed in a beaker with 50 ml of boiling water and stirred to disaggregate. 19 20 The sample was filtered at 300 μ m and then back-filtered at 15 μ m with the 15–300 21 um fraction retained. The sample was left for a day for the particulates to settle out 22 and the supernatant decanted off. The prepared sample was stored in a glass vial and 23 slides prepared by mixing a drop of the material with glycerol on a microscope slide. 24 A count of 150 amoebae per sample was aimed for (minimum=142, mean=151). A

conservative taxonomic scheme based on Charman et al. (2000) was adopted; full
 details are given in Appendix 1.

3 The data structure and links between the species and environmental data were 4 tested by ordination, linear techniques were most appropriate given the short 5 compositional gradients (determined by DCA). Principal Components Analysis 6 (PCA) was used to investigate the general structure of the entire testate amoeba data-7 set. The ecology of the larger dataset from the Hula Nature Reserve was first 8 investigated on its own. Redundancy Analysis (RDA) was used to determine the 9 major environmental controls on amoeba communities. A total of 20 environmental 10 variables were included in the analysis: DWT, pH, EC, LOI, % moisture, vegetation 11 (expressed as either Phragmites australis or Cyperus papyrus dominant) and 14 12 geochemical variables. A minimal suite of environmental variables was determined by 13 forward selection with variables exceeding a Bonferroni-corrected P-value included in 14 the model. A sequence of partial RDAs was used to determine the proportion of 15 variance explained by each of these variables independently. All ordination analyses 16 were carried out in CANOCO ver.4.53 (Ter Braak and Šmilauer 1997-2004) and used 17 square-root transformed data. The significance of these results was determined by 18 Monte Carlo Permutation tests (999 permutations).

Two approaches were used to test whether there was significant difference in amoeba community between the two sites. An initial test of similarity used Analysis of Similarity (ANOSIM) (Clarke 1993) with a Bray-Curtis distance measure and 10,000 permutations in PAST ver.1.71 (Hammer et al. 2001). Subsequently a combined data-set from both sites was analysed by RDA with a site nominal variable to determine the extent of difference between sites and identify the environmental data most closely associated with the site variable. Forward selection was again used

to minimise the number of environmental variables, however in these analyses the
'Site' variable was pre-selected. To help explore the relationship between amoeba
community and hydrology a species-environment (transfer function) model was
developed by testing a suite of model structures (Birks 1995) in C² ver. 1.4 (Juggins
2003) with outliers removed following Payne et al. (2006).

0

7 RESULTS

8 <u>The data-set</u>

9

10 A total of 27 testate amoeba taxa were identified in the 55 samples with 11 countable test concentrations (Table 1), of which the most abundant were Trinema 12 lineare (20% of total count), Difflugia minutissima type (17%), Tracheleuglypha 13 dentata (13%), Phryganella acropodia type (11%) and Centropyxis aerophila type 14 (11%). There is a predominance of small r-strategist taxa that are found in a wide 15 range of locations and environments. The samples were moderately diverse with 16 Shannon diversity 'H' ranging from 2.6 to 3.2. Two taxa (*T. lineare* and *T. dentata*) were found in all of the samples. Apparent test concentrations were low; probably due 17 18 at least as much to the abundance of fine, degraded, organic material as to genuinely 19 low concentrations. There is a high abundance of taxa with very small tests (e.g. D. 20 minutissima type, T. lineare, Cryptodifflugia oviformis), as many of these tests have a 21 breadth less than 15µm it is possible that some individuals may have been lost 22 through back-sieving and their abundance under-estimated (Payne 2009). Loss on 23 ignition values averaged 57%, showing that the sediments of the extant wetlands, 24 unlike the pre-drainage marshes, cannot be strictly classified as peat (some samples

had values as high as 92% but these high values are likely to be due to the inclusion ofoverlying leaf litter).

3	Although most of the taxa encountered in this study are found comparatively
4	frequently in testate amoeba studies, the community composition appears distinct
5	from that of previous studies of wetland testate amoebae. Particularly notable is the
6	high abundance of Euglyphidae and total absence of several common genera, most
7	notably Nebela. The species composition is clearly distinct from true peatlands
8	including both ombrotrophic peatlands (which have been the most studied ecosystems
9	to date) and also brown moss and sedge dominated minerotrophic peatlands
10	(Opravilova and Hajek 2006; Payne and Mitchell 2007).
11	
12	Testate amoeba ecology in the Hula Reserve
13	
14	The testate amoeba data were analysed using PCA and RDA. Analyses of the
15	data from the Hula Nature Reserve alone are discussed first, before discussing
16	differences between the Hula Nature Reserve and Lake Agmon data-sets. In the RDA
17	of the Hula Nature Reserve data-set (Fig. 4) alone, only two significant environmental
18	variables (DWT and Sr) were identified in forward selection (collectively explaining
19	46.7% of variance (P=0.001)). When the role of the two variables was separated in
20	variance partitioning, Sr explained 5.9% of variance and DWT explained 37.5%
21	variance (both P=0.001) (Table 3). As hydrology was the most important
22	environmental control on amoeba community structure it was possible to develop a
23	transfer function model to estimate DWT for samples without a measured value. The
24	best performing model structure was found to be Weighted Averaging with inverse
25	deshrinking giving an RMSEP _{jack} of 2.7 cm with two unusual samples removed (Fig.

1	2, Table 2). Although the model performed well in cross-validation of the Hula Nature
2	Reserve samples, there were significant differences between model-predicted and
3	measured DWT values for those Lake Agmon samples with DWT measurements (Fig.
4	2). This suggests there may be some intrinsic differences in amoeba community
5	response to hydrology between the two sites.
6	
7	Differences between the two-sites
8	
9	Seven taxa were encountered in the Hula Reserve but not in the samples from
10	around Lake Agmon (Arcella vulgaris type, Arcella dentata, Difflugia 'type X',
11	Difflugia cf. glans, Difflugia cf. lacustris, Difflugia oblonga, Euglypha compressa and
12	Plagiopyxis spp.) and one taxon (Trinema complanatum) in the Lake Agmon samples
13	but not the Hula Reserve. The species data (Table 1) shows major differences in
14	overall abundance between the two sets of samples for several taxa, notably Arcella
15	discoides, Centropyxis aculeata type, D. minutissima type, Difflugia pulex type and
16	Trinema enchelys. There is no significant difference in diversity between the two sets
17	of samples (permutation t-test [10,000 permutations] on Shannon 'H' P=0.76) but
18	there is a significant difference in species richness (permutation t-test P=0.002). The
19	difference in community composition between the two sets of samples emerges very
20	clearly in the PCA (Fig. 3). Agmon samples generally have higher scores on both axis
21	one and axis two. With the exception of a single sample, the Agmon samples form a
22	coherent group on the upper right-hand side of the plot. This difference is confirmed
23	by ANOSIM, showing there is a significant difference between the two multivariate
24	data-sets (R _{ANOSIM} =0.28, P<0.001).

1	Using RDA to test difference between the amoeba community of the two sites
2	presents problems due to the differences in the hydrological range represented by the
3	two sets of samples. While there may well be real differences between the
4	hydrological ranges of the two sites, the differences in DWT measurements here
5	largely reflects differences in sampling. As hydrology is the most important control on
6	amoeba communities it is important that differences in DWT be accounted for in
7	comparing the two sets of samples. We test five approaches here: 1) Ignoring DWT
8	values entirely. 2) Excluding all samples without DWT measurements (measured
9	DWT values are termed DWTm). 3) Assigning samples without DWT measurements
10	a ball-park estimate of 25 cm (this dataset is termed 'DWT25'). 4) Using the transfer
11	function derived from the Hula Reserve to estimate DWT in Agmon samples without
12	measured values (termed TI-DWTa). 5) As above but using transfer function
13	estimates for all Agmon samples (termed TI-DWTb). None of these approaches are
14	ideal. Approach 2 leaves a very small sample set (4 samples), Approach 3 is a crude
15	approximation, Approaches 4 and 5 are based on the Hula Reserve transfer function
16	which performs comparatively poorly for Agmon samples with DWT measurements
17	and Approach 1 ignores an important environmental variable. However, by combining
18	a range of approaches it is hoped that it is possible to account for the limitations of
19	each individual method.

RDA of the combined data set from both sites shows that water table depth
(however assessed) remains the strongest environmental variable but the combination
of chemical variables selected in forward selection depends on the approach taken to
the lack of DWT measurements from the Agmon site. Analyses variously include Sr,
Mg, Fe and Zn. When all data is analysed, the site variable without co-variables
explains 16.7% of variance (when only samples with DWT measurements are used

1	this is greatly decreased to 9% (P=0.001 and P=0.011 respectively)). When hydrology
2	is accounted for the proportion of variance explained by the 'Site' variable depends on
3	the approach to dealing with the lack of DWT data for some Agmon samples. If
4	hydrological variables are not considered (Approach 1) 'Site' explains 22.9% of
5	variance, if only measured DWT values are used (Approach 2) 'Site' explains 8% of
6	variance, if an arbitrary value of 25 cm is used (Approach 3) 'Site' explains 5.5 % of
7	variance, if model-predicted values are used for the Agmon samples without DWT
8	measurements (Approach 4) 'Site' explains 7.8 % variance and if model predicted
9	values are used for all Agmon samples (Approach 5) 'Site' explains 7.1 % variance
10	(all P=0.001) (Table 3). These results therefore show that the 'Site' variable explains
11	a significant proportion of variance if DWT is estimated using any of these methods,
12	if only samples with measured DWT values are used and if DWT is ignored entirely.
13	Despite the limitations of each of these approaches it therefore seems highly probable
14	that there is a significant difference between the two sites regardless of hydrology.
15	Fig. 5 shows the RDA plot using Approach 4, DWT estimated by transfer function for
16	samples without measured values, other approaches give similar results.
17	
18	DISCUSSION
19	Environmental controls and autecology
20	
21	The redundancy analyses show that depth to water table is the most important
22	environmental variable, independently explaining 37.5% of variance in the Hula
23	Reserve data. The importance of hydrology as an environmental control in these sites
24	is unsurprising given its importance for testate amoeba communities in other wetland

25 environments. Wetness (however assessed) has been widely found to be the most

significant environmental variable in numerous studies from peatlands (e.g. Woodland
et al. 1998; Mitchell et al. 1999; Booth 2002; Payne et al. 2008) and tidal level to be
most important in saltmarshes (Charman et al. 2002). Even in the context of this
previous research, the independent proportion of variance explained in this study is
notably high. Studies in peatlands have found that DWT explained 7% (Charman et
al. 2007), 5.8% (Payne et al. 2006), 10% (Payne and Mitchell 2007) and 9.4%
variance (Payne et al. 2008).

8 The hydrological preferences of taxa found in this study are in general 9 agreement with results from other wetland environments (Fig. 4). In peatlands 10 Trinema lineare, Cryptodifflugia oviformis and Euglypha rotunda type are most 11 commonly found at the drier end of the hydrological gradient and A. discoides and C. 12 aculeata in wetter positions, consistent with observations here. P. acropodia type is 13 negatively correlated with DWT, which is counter to some studies in peatlands; 14 however the group includes many taxa which are likely to have different hydrological 15 preferences so it is difficult to make such comparisons. There is little comparison data 16 for D. minutissima type (negatively correlated with DWT), T. enchelys or T. dentata 17 (both positively correlated with DWT).

18 The importance of Sr as an environmental control on amoeba communities in 19 these datasets is somewhat surprising. Sr independently explains 5.9% of variance in 20 the Hula Reserve dataset and around 4-5% in the overall dataset (depending on 21 approach taken to lack of hydrological data for some Agmon samples). Sr has not 22 been analysed in previous testate amoeba ecology studies but other chemical variables 23 have been shown to be important including Ca, K and Mg (Lamentowicz et al. 2008, 24 Opravilova and Hajek 2006). Sr concentrations in our samples averaged 101 μ g/g; by 25 comparison in profiles from three minerotrophic peatlands in Switzerland Sr

1	concentrations ranged between approximately 15 and 250 μ g/g (Shotyk et al. 2000)
2	and in surface samples from a Phragmites wetland on Cyprus Sr concentrations
3	reached over 1000 μ g/g (Payne, unpublished data). Sr concentrations in these
4	sediments therefore appear relatively high but not extremely so. Sr in the Hula
5	wetlands is ultimately derived from the bedrock but Sr concentrations increase
6	markedly downstream from the headwaters to the lower reaches of the Jordan River
7	(Sandler et al. 1988). To investigate the causes of this increase we studied
8	geochemical data collected from the 'Z canal' (directly upstream of Lake Agmon) in
9	2004 (Nishri, unpublished data). These data show a strong correlation between Ca and
10	SO ₄ (R^2 =0.95; Fig. 6) and between Sr and SO ₄ (R^2 =0.96) which we interpret as
11	indicating that both Ca and Sr in the waters of the Hula are derived from leaching of
12	the extensive gypsum deposits in the drained peat soils. The co-precipitation
13	coefficient of strontium with gypsum has been shown to be relatively high (Kushnir
14	1980). The Ca: SO_4 ratio in these water samples is 0.37, close to the ideal ratio of 0.41
15	which would be theoretically expected due to dissolution of gypsum. The correlation
16	with SO_4 is notable given recent suggestions that sulphate may be a relatively
17	important control on testate amoeba communities (Payne et al. in press). In our
18	sediment samples Ca, K and Mg are all highly correlated with Sr, particularly
19	noticeable when considering the Hula Reserve data alone (Fig. 4). It is probable that
20	once Sr is selected in forward selection these other variables lose significance. We
21	suggest that the Sr variable should probably be interpreted as representing the broader
22	trophic gradient. The taxa most closely correlated with Sr are Centropyxis aerophila
23	type and Phryganella acropodia type (positive correlation), and Arcella megastoma,
24	Difflugia cf. lacustris and Arcella vulgaris type (negative correlation) (Figs. 4 and 5).

1	It is notable that more environmental variables are not identified as significant
2	in forward selection. In peatlands pH has been found to be an important secondary
3	environmental gradient in many studies (Lamentowicz and Mitchell 2005; Payne et al.
4	2006) and even surpasses hydrology in some studies, particularly from minerotrophic
5	sites (e.g. Opravilova and Hajek 2006; Booth et al. 2008). Electrical conductivity
6	(Booth 2007; Booth et al. 2008) and loss on ignition (Payne and Mitchell 2007) have
7	also been shown to be significant environmental variables in some peatland studies.
8	While it may be the case that these environmental variables are less important in sites
9	like these than in peatlands, it is more probable that all these variables are acting as
10	proxies for the base richness gradient, which in this study is represented by Sr.
11	
12	Differences between Lake Agmon and Hula Nature Reserve
13	
14	There is a clear difference between the amoeba communities of the Hula
15	Nature Reserve and Lake Agmon samples (Table 1, Fig. 5). A variable for site
16	remains significant even when hydrology and chemical variables are accounted for
17	(Table 3). In the RDA plot of the major taxa the 'Site' variable is positively correlated
18	with A.megastoma, and negatively correlated with Cyclopyxis 'type Z' and Trinema
19	complanatum, and to a lesser extent Trinema enchelys and Phryganella acropodia
20	type. Given the limited knowledge of the autecology of these taxa it is difficult to
21	provide any ecologically meaningful explanation for why their abundances are so
22	different in these two sites. It is interesting to note that A. discoides is significantly
23	more abundant in the samples from around Lake Agmon than in the Hula Reserve.
24	Recent research in Polish peatlands (Lamentowicz et al. 2008, in press) has suggested
25	that this taxon may be an indicator of disturbance and fluctuating water tables.

1 The 'Site' variable is strongly negatively correlated with various chemical 2 variables which were not selected in forward selection (Ca, EC). The concentration of 3 Ca is considerably higher in the Lake Agmon samples, despite the presence of 4 calcareous basal sediments in the Hula Nature Reseve. This is presumably because the 5 lateral and vertical development of the marsh sediments has reduced the contact 6 between the surficial sediments and the hard water supplied by the River Jordan. As 7 can be seen in the RDA plot (Fig. 5) there is some co-variance between the 'Site' and 8 'Sr' variables, this explains 1% of overall variance in this example. Lake Agmon 9 samples were more nutrient rich but there is still significant difference between the 10 sites even when these differences are accounted for.

11 The difference between the Hula and Agmon data might be explained by some 12 other environmental variables which were not determined in this study. Although this 13 study includes a large number of environmental variables it is possible that other 14 variables such as Bulk density, NO₃, PO₄ and SO₄ could also be significant controls 15 on amoeba communities, analysis of these further variables was precluded by sample 16 size. However, the study of Lamentowicz et al. (2008), which did include many of 17 these additional variables, found that only pH, Mg and DWT were selected in forward 18 selection so additional variables would not necessarily have explained additional 19 variance here.

20 One apparent difference between the two amoeba communities is the species 21 richness. The Hula Reserve samples have a greater species richness than the Agmon 22 samples (mean=9.8 against mean=11.6) and this difference is highly significant. 23 While it is possible that this difference might relate to environmental differences 24 between the sites, no previous studies have (to our knowledge) suggested that species 25 richness varies along either the trophic or hydrological gradients. An alternative

1 possible cause is the difference in the age of the two ecosystems. While the Agmon 2 ecosystem was only created by pool excavation in the 1990s the Hula Reserve has, 3 broadly speaking, been in its current form since the 1970s and has a continuous 4 history back to before the drainage of the original marshes and lake. Studies of testate 5 amoeba primary succession show a gradual increase in species richness over time 6 with little or no replacement (Lousier 1982; Wanner and Xylander 2005). The 7 difference in species richness suggests that the amoeba community of the Agmon 8 Reserve might still contain vacant niches which have not yet been colonised despite 9 the presence of amoeba communities adapted to wetland environments in the 10 surrounding area. It is notable that many of the taxa found in the Hula Reserve but not 11 the Agmon site have intermediate- to large-sized tests (none have tests lengths below 12 c.70 µm), and may therefore be expected to have more restricted distributions (cf. 13 Wilkinson 2001). By contrast, the only taxon found in the Agmon Reserve but not the 14 Hula Reserve (*T. complanatum* type) is a small generalist that is often found in drier 15 niches which may not have been sampled in the Hula Reserve. 16

17 CONCLUSIONS

18

In terms of floristic composition and appearance the new marshes fringing Lake Agmon are essentially identical to many areas of the more established Hula Nature Reserve (and to areas of the original Hula marshes); a tall, dense monoculture of *Phragmites australis*. Analysis of testate amoebae shows that despite this apparent similarity, the environment as experienced by microorganisms is quite different. The Agmon marshes are more nutrient-rich and the testate amoeba community appears to be at an earlier successional stage. This shows the value of including micro-organisms

in studies of wetland restoration. Whether or not the testate amoeba communities of
the two environments will eventually converge is an open question. It would be
interesting to also test the similarity in amoeba community between these two sites
and the original Hula marshes. However, we have been unable to locate any sediment
samples preserved from before drainage, and even if any such samples were available
the uncertain preservation of tests might well compromise a comparison (cf. Payne
2007).

8 Testate amoeba communities of these sites are strongly controlled by 9 hydrology. The transfer function model developed here may allow palaeoecological 10 reconstruction of post-drainage hydrological change in the Hula Nature Reserve. It is 11 possible that the model could also be used to reconstruct the longer-term history of 12 hydrological change in the Hula, although the preservation of tests is likely to be poor 13 and this may be impossible in practise.

The importance of Sr in this study is an interesting finding. Sr concentrations probably represent the trophic gradient, and while it is not surprising that this gradient is an important control on amoeba communities it is surprising that this is better represented by Sr than by other elements such as Ca or Mg. It will be worth analysing Sr in future studies of testate amoeba ecology.

19

20

- 21
- 22

23

- 24
- 25

1	
2	
3	ACKNOWLEDGEMENTS
4	
5	RJP was supported by a Wyndham Deedes Scholarship and fellowships from the
6	University of Manchester and the Council for British Research in the Levant. Thanks
7	to Lake Agmon administration, JNF (Keren Kayenet Le'Israel) organization, and
8	Israel Nature and National Parks Authority for permission to work on the sites. Figure
9	1 was prepared by Graham Bowden. Thanks to two anonymous reviewers for

10 constructive comments on a previous version of the paper.

1 REFERENCES

3	Atzmon N, Henkin Z (1998) Establishing forest tree species on peatland in a
4	reflooded area of the Huleh valley, Israel. Forestry 71:141-146
5	Birks HJB (1995) Quantitative palaeoecological reconstructions, In: Statistical
6	modelling of Quaternary science data. Quaternary Research Association, Cambridge
7	Booth RK (2002) Testate amoebae as paleoindicators of surface-moisture changes on
8	Michigan peatlands: modern ecology and hydrological calibration. J Paleolimnol 28:
9	129-348
10	Booth RK (2007) Testate amoebae as proxies for mean annual water-table depth in
11	Sphagnum-dominated peatlands of North America. J Quat Sci 23:43-57
12	Booth RK, Sullivan ME, Sousa VA (2008) Ecology of testate amoebae in a North
13	Carolina pocosin and their potential use as environmental and paleoenvironmental
14	indicators. Ecoscience 15:277-289.
15	Buttler A, Warner BG, Grosvernier Ph, Matthey Y (1996) Vertical patterns of testate
16	amoebae (Protozoa:Rhizopoda) and peat-forming vegetation on cutover bogs in the
17	Jura, Switzerland. New Phytol 134: 371-382
18	Charman D, Hendon D, Woodland W (2000) The Identification of testate amoebae
19	(protozoa: rhizopoda) from British oligotrophic peats. Quaternary Research
20	Association Technical Guide Series, Cambridge
21	Charman D, Roe H, Gehrels W (2002) Modern distribution of saltmarsh testate
22	amoebae: regional variability of zonation and response to environmental variables. J
23	Quaternary Sci 17:387-409

I	Charman DJ, Blundell A, ACCROTELM members (2007) A new European testate
2	amoebae transfer function for palaeohydrological reconstruction on ombrotrophic
3	peatlands. J Quaternary Sci 22:209 – 221
4	Clarke KR (1993) Non-parametric multivariate analyses of changes in community
5	structure. Aust. J Ecol 18:117–143
6	Davis SR, Wilkinson DM (2004) The conservation management value of testate
7	amoebae as 'restoration' indicators: speculations based on two damaged raised mires
8	in northwest England. Holocene 14:135–143
9	Dimentman Ch, Bromley HJ, Por FD (1992) Lake Hula: Reconstruction of the fauna
10	and hydrobiology of a lost lake. Israel Academy of Sciences and Humanities,
11	Jerusalem
12	Gophen M (2004) Water utilization in Semi-arid Zone, The Hula Valley (Israel):
13	pollutant removal, agriculture and ecotourism management. In: Water in the Middle
14	East and in North Africa, resources, protection and mangement, Springer, Berlin
15	Gophen M (2008) Long – Term (1970 – 2001) Eco – Hydrological processes in Lake
16	Kinneret and its watershed. In: Climate changes and water resources in the Middle
17	East and North Africa.
18	Gophen M (2007) Annual report Hula Project submitted to JNF (Keren Kayemet
19	Le'Israel) and the US Forest Service organization: monitoring, nutrient dynamics,
20	hydrology, water chemistry, agro-forestry, vegetation, eco-tourism, avifauna,
21	hydrological regime and underground water table.
22	Hambright KD, Zohary T (1998) Lakes Hula & Agmon: destruction and creation of
23	wetland ecosystems in northern Israel. Wetlands Ecol Manage 6:83-89

.

-

4

1	Hambright KD, Zohary T (1999) The Hula Valley (northern Israel) wetlands
2	rehabilitation project. In: An International Perspective on Wetland Rehabilitation,
3	Springer, Berlin
4	Hammer Ø, Harper DAT, Ryan PD (2001) PAST: Paleontological Statistics Software
5	Package for Education and Data Analysis. Palaeontologia Electronica 4
6	Hendon D, Charman D (1997) The preparation of testate amoebae (Protozoa:
7	Rhizopoda) samples from peat. Holocene 7:199-205
8	Hendon D, Charman DJ (2004) High-resolution peatland water-table changes for the
9	past 200 years: the influence of climate and implications for management. Holocene
10	14:125–134
11	Jauhiainen S (2002) Testacean amoebae in different types of mire following drainage
12	and subsequent restoration. Eur J Protistol 38:59-72
13	Jones RF (1940) Report of the Percy Sladen expedition to Lake Huleh: A contribution
14	to the study of the Fresh Waters of Palestine. J Ecol 28:357-376
15	Juggins S (2003) C2 user guide. Software for ecological and palaeoecological data
16	analysis and visualisation. University of Newcastle, Newcastle Upon Tyne
17	Kaplan D, Oron T, Gutman M (1998) Development of macrophytic vegetation in the
18	Agmon wetland of Israel by spontaneous colonization and reintroduction. Wetlands
19	Ecol Manage 6:143-150
20	Kushnir J (1980) The coprecipitation of strontium, magnesium, sodium, potassium,
21	and chloride with gypsum, an experimental study. Geochim Cosmochim Acta 44:
22	1471–1482
23	Laggoun-Défarge F, Mitchell E, Gilbert D, Disnar J-R, Comont L, Warner B, Buttler
24	A (2008) Cutover peatland regeneration assessment using organic matter and
25	microbial indicators (bacteria and testate amoebae). J Appl Ecol 45:716-727

1	Lamentowicz M, Mitchell EAD (2005) The ecology of testate amoebae (Protists) in
2	Sphagnum in relation to peatland ecology. Microbial Ecol 50:48-63
3	Lamentowicz L, Lamentowicz M, Gabka M. (2008) Testate amoebae ecology and a
4	local transfer function from a peatland in western Poland. Wetlands 28:164-175
5	Lamentowicz M, Milecka K, Gazka M, Cedro A, Pawlyta J, Piotrowska N,
6	Lamentowicz L, van der Knaap WO (in press) Climate and human induced
7	hydrological change since AD 800 in an ombrotrophic mire in Pomerania
8	(N Poland) tracked by testate amoebae, macro-fossils, pollen and tree rings of pine.
9	Boreas
10	Lamentowicz M, Obremska M (submitted) A rapid response of testate amoebae and
11	vegetation to inundation of a kettle-hole mire: palaeoecology helps to understand the
12	present state of peatland. J Paleolimnol
13	Lousier JD (1982) Colonization of decomposing deciduous leaf litter by Testacea
14	(Protozoa, Rhizopoda): Species succession, abundance, and biomass. Oecologia 52:
15	381-388
16	Mitchell EAD, Warner BG, Buttler A, Gobat J-M (1999) Ecological patterns of testate
17	amoebae (Protozoa) on peatlands in the Jura Mountains, Switzerland and France.
18	Ecoscience 6:565-576
19	Mitchell EAD, Charman DJ, Warner BG (2008). The usefulness of testate amoebae
20	analysis in ecological and palaeoecological studies of wetlands: past, present and
21	future. Biodiver Conserv 17:2115–2137
22	Nguyen-Viet H, Bernard N, Mitchell EAD, Badot P-M, Gilbert D (2008) Effect of
23	lead pollution on testate amoebae communities living in Sphagnum fallax: An
24	experimental study. Ecotoxicology and Environmental Safety 69:130-138

1	Opravilova V	, Hajek M (20)6) The variation (of testacean a	ssemblages (Rhizopoda)

- 2 along the complete base-richness gradient in fens: A case study from the Western
- 3 Carpathians. Acta Protozool 35:191-204
- 4 Payne, R. (2009) The standard preparation method for testate amoebae leads to
- 5 selective loss of the smallest taxa. Quaternary Newsletter (in press)
- 6 Payne R (2007) Laboratory experiments on testate amoebae preservation in peats:
- 7 implications for palaeoecology and future studies. Acta Protozool 46:325-332
- 8 Payne R, Mitchell E (2007) Ecology of testate amoebae from mires in the Central
- 9 Rhodope Mountains, Greece and development of a transfer function for
- 10 paleohydrological reconstruction. Protist, 158:159-171
- 11 Payne R, Kishaba K, Blackford J, Mitchell E (2006) The ecology of testate amoebae
- 12 in southcentral Alaskan peatlands: Building transfer function models for
- 13 palaeoenvironmental inference. Holocene 16:403-414
- 14 Payne R, Charman D, Matthews S, Eastwood W (2008) Testate amoebae as
- 15 palaehydrological proxies in Sürmene Ağaçbaşi Yaylasi peatland (Northeast Turkey).
- 16 Wetlands 28:311-323
- 17 Payne, R., Charman, D. & Gauci, V. (2009- in press) The impact of simulated sulfate
- 18 deposition on peatland testate amoebae. Microb Ecol
- 19 Sandler, A., Brenner, I.B., Halicz, L. (1988) Trace element distribution in waters of
- 20 the northern catchment area of Lake Kinneret, northern Israel. Environ Geol Water
- 21 Sci 11:35--44
- 22 Shotyk W, Cheburkin AK, Appleby PG, Fankhauser A, Kramers JD (1997)
- 23 Lead in three peat bog profiles, Jura Mountains, Switzerland: Enrichment factors,
- 24 isotopic composition, and chronology of atmospheric deposition. Water, Air and Soil
- 25 Pollution 100:297-310

1	Shotyk W, Blaser P, Grünig A, Cheburkin AK (2000) A new approach for quantifying
2	cumulative, anthropogenic, atmospheric lead deposition using peat cores from bogs:
3	Pb in eight Swiss peat bog profiles. Sci Total Environ 249:281-295
4	Stoiko T, Mazei Y, Tsyganov A, Teekhonenkov DV (2006) Impact of chemical
5	weapon destruction on the structure of lake zoohydrobiont community. Biology
6	Bulletin 33:79–184
7	Ter Braak C, Šmilauer P (1997-2004). CANOCO for Windows. Biometris-Plant
8	Research, The Netherlands
9	Vickery E, Charman DJ (2004) Biomonitoring of peatland restoration using testate
10	amoebae. In: 7th INTECOL international wetlands conference, vol. Book of abstracts,
11	Utrecht, The Netherlands
12	Wanner M, Xylander WER (2005) Biodiversity development of terrestrial testate
13	amoebae: is there any succession at all? Biol Fert Soils 41:428-438
14	Wilkinson DM (2001) What is the upper size limit for cosmopolitan distribution in
15	free living micro-organisms? J Biogeogr 28:285-291
16	Woodland W, Charman D, Simms P (1998) Quantitative estimates of water tables and
17	soil moisture in Holocene peatlands from testate amoebae. Holocene 8:261-273
18	
19	

1 FIGURES

- 2
- 3 Fig. 1. Map showing location of Hula valley within Israel, location of Lake Agmon
- 4 and Hula Nature Reserve, outlines of former lake and marshes and position of
- 5 sampling areas within the sites.

Fig. 2. Transfer function model performance showing: model predicted against
measured DWT values for Hula Reserve samples (black circles); model predicted
against measured DWT values with boot-strapped (1000 cycles) standard error
estimates for Agmon samples (white circles) and model predicted DWT values and
errors for Agmon samples without measured DWT values (black triangles, inset).
Solid line is 1:1, the ideal relationship between model predictions and measured
values.

Fig. 3. Principal components analysis (PCA) of testate amoeba data. Samples marked
in white are from the Hula Nature Reserve, samples marked in black are from Lake

1

4

Agmon.

Fig. 4. RDA plot based on square-root transformed data from Hula Nature Reserve.
Showing major species (narrow solid lines), significant environmental variables (thick
solid lines) and other environmental variables passively projected (dotted lines).
Species codes are given in Table 1. Environmental variable codes: depth to water
table (DWT), loss on ignition (LOI), *Phragmites* or Papyrus dominant (Vegetation),
electrical conductivity (EC), percent moisture (% moisture) and chemical variables
shown by standard abbreviations.

1

2 Fig. 5. RDA plot for all data, details as for Fig. 4.

Fig. 6. Geochemical data for water samples from the 'Z canal' collected between
January and November 2004. (a) Ca against SO₄, and (b) Sr against SO₄. We interpret
these correlations as suggesting both Ca and Sr in these samples are derived from
dissolution of gypsum.

- 1
- 2

3 TABLES

4

5 Table 1. Abundances of major taxa (>1% overall total) in Hula Nature Reserve and

6 Lake Agmon. Also showing species codes used in Figs. 4 and 5.

7

Taxon ¹	Code	% in Hula	% in
		Reserve	Agmon
			Reserve
Arcella discoides Ehrenberg 1872 type	ADISC	0.3	3.9
Centropyxis aculeata Ehrenberg 1830 type	CACU	0.4	9.6
Centropyxis aerophila Deflandre 1929 type	CAERO	8.5	11.3
Centropyxis platystoma Penard 1890 type	CPLATY	0.8	1.8
Cryptodifflugia oviformis Penard 1890	COVI	7.2	1.6
Difflugia minutissima Penard 1904 type	DMINU	2.8	19.5
Difflugia pulex Penard 1902 type	DPUL	0.1	3.8
Euglypha rotunda Wailes & Penard 1911 type	EROT	4.9	6.3
Phryganella acropodia Hertwig & Lesser 1874 type	PACRO	18.5	8.8
Tracheleuglypha dentata Vejdovsky 1882	TDENT	25.4	9.1
Trinema enchelys Penard 1878	TENCH	6.7	1.0
Trinema lineare Penard 1890	TLIN	20.3	19.9

8

¹ Minor taxa not shown are: Arcella vulgaris Ehrenberg 1830 (AVUL), Arcella dentata Ehrenberg 1830 (ADENT),

9 Arcella hemispherica Perty 1852 (AHEM), Arcella megastoma Penard 1902 (AMEGA), Cyclopyxis 'type Z' (CZ),

10 Difflugia 'type X' (DX), Difflugia cf. glans Penard 1902 (DGLANS), Difflugia cf. lacustris Penard 1899 (DLAC),

11 Difflugia oblonga Ehrenberg 1832 (DOBL), Euglypha compressa Carter 1864 (ECOMP), Euglypha tuberculata

12 Dujardin 1841 (ETUB), *Plagiopyxis* spp (PLAG), *Paraquadrula* undiff. (PARA), *Trigonopyxis arcula* Leidy 1879

13 (TARC), *Trinema complanatum* Penard 1890 type (TCOMP). See appendix for notes on taxonomy.

- Table 2. Performance of transfer function model showing root mean squared error of
 prediction (RMSEP), maximum bias (Max Bias), and R² assessed by boot-strapping
 - 4 ('boot') and jack-knifing ('jack').

Model	Samples	Таха	RMSEPj	RMSEP	Мах	Max	R ² _{jack}	R ² _{boot}
structure			_{ack} (cm)	_{boot} (cm)	Bias _{jack}	Bias _{boot}		
					(cm)	(cm)		
Weighted								
Average	42	26	2.7	2.8	3.6	3.7	0.80	0.81
(inverse								
deshrinking)								

- 2 Table 3. Results of redundancy analysis

DWT	Data set	No.	Explanatory	Co-	%	Р
approach		samples	variables	variables	variance	
for					explained	
Agmon						
Samples*						
-	Hula Reserve	55	DWT, Sr	-	46.7	0.001
	samples only					
-	All samples	55	Site	-	16.7	0.001
-	All samples with	48	Site	-	9	0.011
	DWT measurements					
1	All samples	55	Site	Zn	22.9	0.001
2	All samples with	48	Site	DWTm,	8.1	0.001
	DWT measurements			Mg, Sr		
3	All samples	55	Site	DWT25,	5.5	0.001
				Fe, Sr		
4	All samples	55	Site	TIDWTa, Sr	7.8	0.001
5	All samples	55	Site	TI-DWTb,	7.1	0.001
				Fe, Sr		

* Methodology used to account for lack of measured DWT values in analysis. See text for details.

2 APPENDIX 1

- 3 Details of unidentified taxa and taxonomic groupings used in this study.
- 4

Name	Synonymy
Arcella vulgaris type	Follows Charman et al. (2000).
Arcella discoides type	Follows Charman et al. (2000).
Centropyxis aculeata type	Follows Charman et al. (2000).
Centropyxis aerophila type	Includes all sub-rounded centropyxidae with ovoid sub-
	terminal aperture. Synonymous with Centropyxis cassis
	type of Charman et al. (2000).
Centropyxis platystoma type	Follows Charman et al. (2000).
Cyclopyxis 'type Z'	An unidentified species of Cyclopyxis (?); test a shallow
	disc composed of fine particles c.120 μm diameter with a
	round approximately central aperture approx 20 µm
	diameter.
Difflugia minutissima type	Very small ovoid <i>Difflugia</i> tests (<20µm length). There
	may be some overlap between this type and Difflugia
	<i>pulex</i> type
<i>Difflugia</i> 'type X'	A Difflugia test approx 60µm length with a rounded
	posterior and round cross-section. Distinguished by a
	curious 'flared' aperture. The few individuals observed
	were in a poor state of preservation.
Difflugia cf. glans	A test which generally agrees with the description of this
	species in Ogden (1983), although the aperture is
	markedly wider (30+ µm).
Difflugia cf. lacustris	Generally in good agreement with descriptions, all tests
	parallel-sided not pyriform.
<i>Difflugia pulex</i> type	Small ovoid <i>Difflugia</i> tests (approx 20-40µm length).

Euglypha rotunda type	Follows Charman et al. (2000). Includes <i>E.laevis</i> .
Phryganella acropodia type	Synonymous with the Cyclopyxis arcelloides type of
	Charman et al. (2000). Includes all 'bowl-shaped' tests.
Plagiopyxis spp.	Includes all <i>Plagiopyxis</i> species.
Paraquadrula undiff.	All Paraquadrula species.
Trigonopyxis arcula type	In general agreement with descriptions of this species but
	none of the individuals encountered had a triangular
	aperture; apertures were irregular but approximately
	round.
Trinema complanatum type	Includes Trinema penardi.