1	Title: Molecular evidence for a recent founder event in the UK populations of the
2	adonis blue butterfly (Polyommatus bellargus)
3	
4	Running title: Molecular analysis shows a founder event in the adonis blue
5	
6	Authors:
7	Dr Georgina Harper ^{1,2*} ; Maclean ² , N., and Goulson ³ , D.
8	
9	Addresses:
10	1. School of Applied Sciences, University of Glamorgan, Pontypridd, Mid Glamorgan
11	CF37 1DL, UK
12	2. Biodiversity and Ecology, School of Biological Sciences, University of
13	Southampton, Bassett Crescent East, Southampton, SO16 7PX, UK
14	3. School of Biological and Environmental Sciences, University of Stirling, Stirling,
15	FK9 4LA, UK
16	
17	*Corresponding Author:
18	Dr Georgina Harper, School of Applied Sciences, University of Glamorgan,
19	Pontypridd, Mid Glamorgan, CF37 1DL, UK E-mail: glharper@glam.ac.uk.
20	
21	Keywords:

22 Lepidoptera, calcareous grasslands, mtDNA, founder event, metapopulation

25	Contrary to accepted theories of post-glacial colonisation of the UK approximately
26	10,000 ybp, historical population data for Polyommatus bellargus suggests the
27	butterfly was either extremely rare or not present before 1775. We examined the
28	phylogeography of the species by sequencing the 'hypervariable' mitochondrial
29	control region of UK and French butterflies. Overall, twenty-two polymorphic
30	nucleotide sites were identified within the control region. French specimens were
31	highly variable, with seventeen polymorphic sites, whereas most UK specimens were
32	monomorphic. Average nucleotide diversity was 0.026 (S.D. 0.016 , $n = 8$) in France,
33	whilst the UK values ranged from $0.00 (n = 6)$ (for every UK population outside
34	Dorset, $n = 43$) to 0.01 (S.D. 0.008, $n = 7$) (Dorset). The mean number of pairwise
35	differences among the French samples was 7.42, whilst the UK values ranged from
36	0.00 (all populations except Dorset) to 0.295 (Dorset). One French haplotype differed
37	from the predominant UK version by just a single nucleotide substitution. It seems
38	implausible that the species can have been resident in the UK for 10,000 years without
39	accumulating variation at this mitochondrial region. Thus, the results suggest that
40	either a severe genetic bottleneck or founder event has occurred recently in the UK.

41 Introduction

42	A combination of both historical and contemporary demographic processes will
43	determine the genetic structure and geographical distribution of genetic diversity
44	among populations (Templeton et al, 1995). The phylogeography of many European
45	species reflects the location of their glacial refugia, as well as the nature of the post-
46	glacial colonisation. Specifically, where colonisation has been rapid, genetic diversity
47	is often reduced, particularly in northern areas of Europe such as the UK (Hewitt
48	1996; Hewitt, 1999). Genetic diversity is also likely to be low for species that have
49	colonised more recently because they are often at the edge of their range, where the
50	cycles of expansion and subsequent bottlenecks will result in impoverished diversity.
51	Conserving genetic diversity is vital since it provides adaptive capacity and
52	evolutionary potential (Frankham ref?).
53	
54	Phylogeographic studies can allow inferences to be made about the history of
54 55	Phylogeographic studies can allow inferences to be made about the history of population divergence based on associations between the geographical distribution of
55	population divergence based on associations between the geographical distribution of
55 56	population divergence based on associations between the geographical distribution of mitochondrial DNA haplotypes and their genealogical relationships (Avise, 2000).
55 56 57	population divergence based on associations between the geographical distribution of mitochondrial DNA haplotypes and their genealogical relationships (Avise, 2000). This approach has been used to elucidate colonisation patterns for many species
55 56 57 58	population divergence based on associations between the geographical distribution of mitochondrial DNA haplotypes and their genealogical relationships (Avise, 2000). This approach has been used to elucidate colonisation patterns for many species (Hewitt, 1999), including butterflies such as the marsh fritillary (Joyce and Pullin,
55 56 57 58 59	population divergence based on associations between the geographical distribution of mitochondrial DNA haplotypes and their genealogical relationships (Avise, 2000). This approach has been used to elucidate colonisation patterns for many species (Hewitt, 1999), including butterflies such as the marsh fritillary (Joyce and Pullin, 2001). In this study, we use MtDNA haplotype diversity to shed light on patterns of
55 56 57 58 59 60	population divergence based on associations between the geographical distribution of mitochondrial DNA haplotypes and their genealogical relationships (Avise, 2000). This approach has been used to elucidate colonisation patterns for many species (Hewitt, 1999), including butterflies such as the marsh fritillary (Joyce and Pullin, 2001). In this study, we use MtDNA haplotype diversity to shed light on patterns of colonisation in the Adonis blue butterfly (<i>Polyommatus bellargus</i> (Rottemburg)
55 56 57 58 59 60 61	population divergence based on associations between the geographical distribution of mitochondrial DNA haplotypes and their genealogical relationships (Avise, 2000). This approach has been used to elucidate colonisation patterns for many species (Hewitt, 1999), including butterflies such as the marsh fritillary (Joyce and Pullin, 2001). In this study, we use MtDNA haplotype diversity to shed light on patterns of colonisation in the Adonis blue butterfly (<i>Polyommatus bellargus</i> (Rottemburg)
 55 56 57 58 59 60 61 62 	population divergence based on associations between the geographical distribution of mitochondrial DNA haplotypes and their genealogical relationships (Avise, 2000). This approach has been used to elucidate colonisation patterns for many species (Hewitt, 1999), including butterflies such as the marsh fritillary (Joyce and Pullin, 2001). In this study, we use MtDNA haplotype diversity to shed light on patterns of colonisation in the Adonis blue butterfly (<i>Polyommatus bellargus</i> (Rottemburg) (Lepidoptera: family Lycaenidae; subfamily Polyommatinae: tribe Polyommatini).

66	counties of the UK,	specifically of	on areas of south	facing calcareous	s grassland

67 (Thomas, 1983; Emmet and Heath, 1990; Bourn and Warren, 1998; Bourn *et al*, 1999;
68 Stewart *et al*, 2000; Asher *et al*, 2001).

69

It has been suggested that many butterfly species, including P. bellargus, colonised 70 the UK during the first half of the Flandrian period, around 9,500 to 10,000 years BP 71 (Dennis, 1977). This was because much of the UK was glaciated 18,000 years BP, at 72 which time most of its present flora and fauna were confined to refugia in southern 73 74 parts of Europe. They remained there until the ice, which covered most of northern Europe, retreated around 10,000 years BP, and they then began to expand northwards, 75 recolonising areas such as Britain (Dennis, 1977; Hewitt, 1999). 76 77 There is no fossil evidence for butterflies to test this theory, but data for Coleoptera are broadly consistent with it (Osborne, 1976). However, since the Flandrian period, 78 there have been several smaller scale temperature variations, including the "little ice 79 age", dated to the late medieval period (Grove, 1988), and it is possible that this 80 climatic cooling resulted in a contraction of the range of *P. bellargus*, culminating 81 82 once again in its exclusion from Britain. 83 84 Evidence already exists for the butterfly's susceptibility to climatic change; for 85 example, it is known that a drought in 1976 severely affected the host plant, Hippocrepis comosa, causing UK populations of P. bellargus to crash. Many of the 86 more isolated northerly populations have not recovered from this event (Thomas, 87 1983; Emmet and Heath 1990; Pearman et al, 1998; Asher, 2001; Harper et al, 2003) 88

90	It is notable that the species appears to have been extremely rare or not present in the
91	UK prior to 1775 CE, when the first confirmed record of the species was made
92	(Harris, 1775; as cited by Emmet & Heath, 1990). In Wiltshire the species was not
93	identified until 1883, yet there are now over 90 confirmed populations in the county
94	(Fuller, 1995). The collecting of butterflies as a hobby began during the last quarter
95	of the 17 th century, and one of its chief proponents, James Pettiver, "the father of
96	British entomology", named and described the majority of the British butterfly species
97	(Emmet & Heath, 1990). Notably he made no description that fits P. bellargus,
98	although this species is a conspicuous butterfly and most of his collecting trips were
99	in the south east of the UK, where the species currently occurs. Despite a period of
100	intense entomological activity, no description of this species appears in any work on
101	the British fauna prior to 1775(summarised in Emmet & Heath, 1990). Emmet and
102	Heath (1990) conclude that <i>P. bellargus</i> "must have been an extremely rare species".
103	This historical population data for <i>P. bellargus</i> implies that the present day
104	populations of the butterfly in the UK may have a more recent origin.
105 106	
107	In order to test this theory, we use the mitochondrial control region to characterise
108	contemporary populations of <i>P. bellargus</i> from the UK and France. These data can
109	infer the likely source population and time at which the UK was colonised. In many
110	insect species, the control region is one of the most variable regions in the
111	mitochondrial genome, and has been described as "hypervariable" (Simon et al.,
112	1994; Taylor, 1993; Brookes et al. 1997). It has been applied to lepidopteran species
113	to deduce both phylogenetic relationships (Taylor, 1993) and population demography
114	(Brookes, 1997).

118	Fifty adult male specimens of <i>P. bellargus</i> were collected from throughout the UK
119	range (the Isle of Portland, the Isle of Wight, Kent, South Downs, Sussex, Salisbury
120	Plain, Dorset) during June and August in 1998 and 1999. These localities represent
121	the geographic spread of the UK populations. Eight adult butterflies from southern
122	France were also collected during September 1999 (5°22'E 44°45'N). For details of
123	DNA extraction method refer to Harper et al., 2001.
124	
125	PCR amplification and sequencing of a 722 bp fragment encompassing the entire
126	mitochondrial control region and a section of the 12SrRNA gene was achieved using
127	invertebrate specific oligonucleotide primers TM-N-193 (Met-20) (5'-TGG GGT
128	ATG AAC CCA GTA GC) (Simon et al., 1994) and 12s-332 (5'-TAG GGT ATC
129	TAA TCC TAG TT) (Taylor et al, 1993). Each 25µl PCR reaction contained 50-
130	100ng of template DNA; 2U Taq DNA polymerase (ABgene, UK); 0.2µmoles of each
131	primer; 20mM (NH ₄)SO ₄ ; 75mM Tris-HCl, pH 8.8; 0.01%(v/v) Tween [®] 20; 1.5mM
132	MgCl ₂ ; 0.25mM dNTPs (ABgene, UK). Amplifications were carried out under the
133	following conditions: 1x 94°C, 4 min; 30x 94°C, 1min, 45°C, 1min, 72°C, 2.5min; 1x
134	72°C, 7 min. Negative controls for each batch of PCRs showed no contamination.
135	
136	PCR products were purified from the agarose gel by excision of the band, then a
137	Qiaquick gel purification kit (Qiagen, USA) was used to isolate the DNA. Each
138	sequencing reaction was carried out via the manufacturers instructions using Big-Dye
139	Terminators (PE-Applied Biosystems, USA) and run on 5% denaturing
140	polyacrylamide gel by vertical electrophoresis at 20-60mA for 2 hours using a Perkin-

141	Elmer ABI 377 automated sequencer. The region was sequenced using both Met20
142	and 12Sr348, so that both the forward and reverse sequences were obtained.
1 4 2	

144 Statistical Analysis

145

146	Sequence data were subjected to alignments using the computer programme Clustal-X
147	(Thompson et al 1997), highlighting any sequence variation between the control
148	regions of the individuals studied. The P. bellargus control region was also compared
149	with other species: Jalmenus evagoras (from Ebor, Australia) (Lepidoptera: family
150	Lycaenidae; subfamily Theclinae: tribe Zeziini) (GenBank L16849) and Strymon
151	melinus (from North America) from the same subfamily (Theclinae: tribe Eumaeini;
152	classification follows Eliot, 1973) (GenBank L16850).
153	
154	Basic statistics (haplotype number, transition:transversion ratio (TS:TV), nucleotide
155	composition and mean number of pair-wise differences between haplotypes (Tajima
156	1983; Nei 1987)) were calculated using Arlequin (Schneider et al., 2000). The
157	relationships between populations were calculated in Arlequin, using Tamura's (1992)
158	genetic distance. This distance measure was considered most appropriate because of
159	the high A+T content of the sequences, and also on the basis of the transition:
160	transversion ratio, which was higher than the expected ratio of 1:2 (Tamura, 1992;
161	Oyler-McCance et al., 1999).
162	
163	A Tree representing the relationship between the haplotypes was constructed in <i>Phylip</i>
164	3.57c (Felsenstein, 1993) using a maximum likelihood method, without the

assumption of a molecular clock. Published control region sequences for *J. evagoras*

and *S. melinus* were used in the analysis as outgroups. The data were bootstrapped in
the subroutine *SEQBOOT*, with 1000 iterations, and then 1000 distance matrices were
created from the bootstrapped data using the subroutine *DNADIST*. These matrices
were used to create 1000 Neighbour Joining trees, using the subroutine *NEIGHBOUR*,
invoking option J to randomise the input order. Finally, a maximum likelihood
consensus tree was created using the subroutine *CONSENSE*. A minimum spanning
network between haplotypes was also created using *MINSPNET* (Excoffier, 1993).

174 Results

All variation was found to be within the initial 193bp of control region, the remaining 175 529bp of the amplicon was found to be monomorphic among all 58 P. bellargus 176 177 individuals sequenced. The UK populations of *P. bellargus* were particularly impoverished of variation in the control region. The only divergence between the 178 sequences was by either one or two indels of a (TA) repeat unit in the latter part of a 179 180 short microsatellite repeat $((TA)_3C(AT)_n)$ (See figure 1). The addition of a single repeat occurred in three individuals and the addition of two repeat units was present in 181 a single individual, all four originating from a Dorset population (variation at this 182 microsatellite was not found to exclusively relate to the geographic origin of the 183 haplotype; it is present in both the French and UK butterflies). All other UK samples 184 185 were monomorphic; represented by a single mtDNA haplotype (represented by 46 sequences) (shown in figure 2). However, the French specimens showed a much 186 higher level of haplotypic variation than that observed in the UK, and there was 187 188 significant divergence between the UK and French specimens. The eight French specimens were represented by six haplotypes (figure 2). 189

192	Of the 58 sequences analysed, seven substitutions and 15 indels characterised a total
193	of nine haplotypes, of which six were transitions, and two were transversions. As
194	expected for insect MtDNA, there was an extremely low G+C content in the sequence
195	data (Clary & Wolstenholme, 1985) and whilst this varied slightly between
196	individuals, the nucleotide ratios were on average found to be: A 36.4%; C 5.74%; G
197	6.63%; T 51.5%. Nucleotide diversity (average number of nucleotide differences per
198	site between two sequences) was 0.021 (S.D. = 0.012 , n = 58) overall, with the French
199	population at 0.026 (S.D. = 0.016, $n = 8$) and the UK values ranging from 0.00 ($n = 6$)
200	(All UK populations except Dorset, $n = 43$) to 0.01 (S.D. 0.008, $n = 7$) (Dorset). The
201	mean number of pairwise differences among the French samples was 7.42, whilst the
202	UK values ranged from 0.00 (all populations except Dorset) to 0.295 for Dorset, the
203	overall number of pairwise differences between all haplotypes being 3.25. Gene
204	diversity (the probability that two randomly chosen haplotypes are different) ranged
205	from 0.153 (n = 50) for the UK, to 0.929 (n = 8) for France.
206	

The French haplotypes showed much higher levels of variation than in the UK, with 207 seventeen polymorphic nucleotide sites. Haplotypes can be characterised by between 208 one and sixteen nucleotide changes between them, although the majority appear to be 209 from one to three mutational steps (see figure 2). Most have at least eleven nucleotide 210 differences compared with the predominant UK haplotype, but a single French 211 haplotype ("Fr2") is almost identical to the predominant UK haplotype ("UK1"), with 212 only one nucleotide change separating them (figure 1). The maximum likelihood tree 213 (figure 3) shows that all but one ("Fr2") of the French haplotypes group away from 214 the UK haplotypes (and "Fr2") very robustly, supported by 100% of the bootstraps. 215

218 Discussion

220	The lack of haplotype diversity and polymorphism within the UK populations of <i>P</i> .
221	bellargus is most unusual when compared to the results of similar surveys in other
222	taxa. MtDNA studies of vertebrates (e.g. Avise, 1986; Moritz et al., 1987) and
223	invertebrates (Smith & Brown 1990; Brookes et al. 1997, Joyce & Pullin 2001)
224	generally reveal a much higher degree of differentiation at the population level than
225	observed within <i>P. bellargus</i> . The A+T-rich mitochondrial control region sequenced
226	for this study is considered to be hypervariable in many insect species (Zhang &
227	Hewitt, 1997), and has been found to contain sufficient variation for demographic
228	analyses in several lepidopteran species (Taylor et al., 1993; Brookes et al., 1997).
229	This is in sharp contrast to the three haplotypes, varying by just one or two TA repeats
230	at a short microsatellite, found for P. bellargus across its entire UK range. However, it
231	is notable that in France, <i>P. bellargus</i> had far higher levels of mitochondrial diversity.
232	
233	The analysis of the UK and French haplotype variation reveals a separation of the UK
234	haplotypes from the majority of those found in France (figures 2 and 3). With the
235	exception of "Fr2", a minimum of 11 base pair differences can be found between any
236	two UK and French sequences. The maximum likelihood tree echoes this pattern,
237	with 99.9% of the bootstraps separating the two groups. The only exception is
238	haplotype "Fr2", which groups strongly with UK haplotypes. The six French
239	haplotypes were obtained from just eight specimens, so it is likely that with more
240	comprehensive screening, additional haplotypes would be identified, a proportion of

which would probably bridge this 11bp difference. The minimum spanning network
tree provides a putative pattern of descent for the UK haplotypes: with "UK2" and

"UK3" both stemming from "UK1", via the sequential insertion of (TA) repeats (or a
single insertion of a (TA)₂ repeat in "UK3").

245

The similarity between "Fr2" and the UK haplotypes suggests that the UK population 246 may have originated via a recent and rapid colonisation event from France. The 247 maternal inheritance pattern of the mitochondrial genome provides a powerful 248 249 indicator of such colonisation events (Moritz, 1991; Harrison, 1989), and additionally can be used to estimate the numbers of individuals mediating them. In this study, 250 where all of the observed UK haplotypes appear to stem from a single predominant 251 252 version (which is closely related to a haplotype found in France where widespread 253 variation is present), the most plausible explanation is that the colonisation of the UK by P. bellargus was mediated by very few female butterflies. Furthermore, the severe 254 255 lack of sequence variation observed in the control region among UK butterflies tends to indicate that this colonisation was a recent event, because variation at this non 256 coding site would have accrued among the UK haplotypes by mutation over longer 257 time periods. It has been proposed that in fast colonising events, pioneers rapidly 258 expand to fill new areas, and that the genes of these individuals will subsequently 259 260 dominate the new population genome (Hewitt, 1999). It is plausible that following the initial colonisation of the UK, the butterfly spread rapidly across suitable habitats to 261 occupy its present range. 262

263

An alternative possibility is that a range wide bottleneck reduced the UK variability to just a few closely related haplotypes. This rationale is improbable, because the UK population would need to have been reduced to one or a few females (and an
unknown number of males) in order to eradicate virtually all variation. The more
probable outcome of this scenario would be the loss of most, but not all UK
populations, leaving a few butterflies in core areas. This would inevitably result in
the fixation of different haplotypes in separate geographic regions, a pattern that is not
found.

272

If this genetic evidence for a recent UK founder event is combined with the historical 273 274 population data for *P. bellargus*, and geological evidence for climatic fluctuations, then the evidence for a recent colonisation becomes more convincing. The failure of 275 entomologists to describe P. bellargus anywhere in the UK until 1775 (Emmet and 276 277 Heath, 1990) suggests that P. bellargus must have either been extremely rare before this date, or was not present in the UK. The latter explanation would infer that the 278 colonisation of the UK may have occurred as recently as within the last 250 years, 279 280 perhaps as global temperatures increased after the "little ice age". This cannot rule out the possibility that the butterfly may have previously been native to the UK prior 281 282 to this date, and subsequently became extinct, but it does provide compelling evidence that contemporary populations of P. bellargus in Britain are the descendants of recent 283 colonists, almost certainly from France. This type of biogeographic event is generally 284 285 accepted as a route of colonisation, but whether this happened through a chance natural event (perhaps a mated female was blown from France during a storm) or at 286 the hands of man will remain unknown. If the colonisation was anthropogenic, this 287 288 inevitably raises the issue of whether the species should be considered to be native to Britain, leading to questions about its conservation. There is often debate as to the 289 natural range of species, and those that are deemed not to be native generally receive 290

291 much lower conservation efforts. Even species which are natural recent colonists are generally given low priority of importance to conservation. The comparative lack of 292 genetic diversity within the UK also implies that these populations may be less 293 294 important in the conservation of the species, in comparison to the French populations that appear to be much richer in diversity and hence in adaptive potential. 295 296 One important caveat of this work is that because of the inheritance pattern of 297 mtDNA, no inferences can be made towards male mediated gene flow. Although 298 299 there is disagreement about whether dispersal is male or female mediated in butterflies (Goulson 1993; Kuussaari et al., 1996; Barascud, 1999; Mouson et al., 300 1999), mark-release-recapture studies of P. bellargus have indicated that the male is 301 the main proponent of gene flow (Thomas, 1983; Emmet & Heath, 1990; Rusterholz, 302 & Erhardt, 2000). Thus although the UK was probably colonised by a very small 303 number of females it is possible that a larger number of males have made the crossing, 304 305 so that levels of variation in nuclear DNA may be higher. 306

310	Aljanabi SM & Martinez I (1997) Universal and rapid salt-extraction of high quality
311	genomic DNA for PCR-based techniques. Nucleic Acids Research 25:4692-4693.
312	
313	Asher J, Warren M, Fox R, Harding, P et al. (2001) The millennium atlas of
314	butterflies in Britain and Ireland. Oxford University Press, Oxford.
315	
316	Avise JC (1986) Mitochondrial DNA and the evolutionary genetics of higher animals.
317	Philosophical Transactions of the Royal Societyof London. B-Series. 312:325-242.
318	
319	Avise JC (2000) Phylogeography: The History and Formation of Species. Harvard
320	University Press, Cambridge
321	
322	Barascud B, Martin JF, Baguette M & Descimon H (1999) Genetic consequences of
323	an introduction- colonization process in an endangered butterfly species. Journal of
324	Evolutionary Biology. 12:697-709.
325	
326	Bourn NAD & Warren MS (1998) Species Action Plan: Adonis Blue, Lysandra
327	bellargus (Polyommatus bellargus). Butterfly Conservation
328	
329	Bourn AD, Whitfield KEJ, Pearman GS & Roberts E. (1999) Site dossier and status of
330	the Adonis Blue Polyommatus (lysandra) bellargus in Dorset between 1997 and 1999.
331	Butterfly Conservation.
332	

333	Brookes MI, Graneau YA, King P et al (1997) genetic analysis of founder		
334	bottlenecks in the rare British butterfly Plejebus argus. Conservation Biology.		
335	11:648-661.		
336 337 338	Buckland PC, & Wagner, P (2001) Is there an insect signal for the Little Ice Age? Climate Change. 48: 137-149.		
339			
340	Clary DO & Wolstenholme DR (1985) The mitochondrial DNA molecule of		
341	Drosophila yakuba: nucleotide sequence, gene organisation and genetic code. Journa		
342	of Molecular Evolution. 22:252-271.		
343			
344	Dennis RLH (1977) The British Butterflies. Their origin and establishment.		
345	Farringdon: EW Classey.		
346			
347	Eliot JN (1973) The higher classification of the Lycaenidae (Lepidoptera): a tentative		
348	arrangement. Bulletin of British Museum of Natural History (Entomology). 28: 373-		
349	506.		
350			
351	Emmet AM & Heath J (1990) The butterflies of great Britain and Ireland. Volume 7,		
352	part 1. Hesperiidae to Nymphalidae. Colchester: Harley books.		
353			
354	Excoffier L (1993) MINSPNET. http://anthroplogie.unigie.ch/lgb/software/win/min-		
355	span-net/		
356			
357	Felsenstein J (1993) PHYLIP (Phylogeny Inference Package) v3.57c. Department of		
358	Genetics, University of Washington, Seattle.		

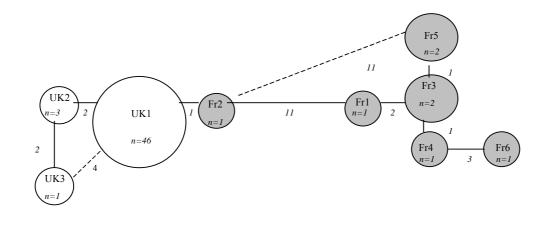
- 360 Fuller M (1995) The butterflies of Wiltshire: their history, status and distribution.
- 361 Pisces publications, Newbury, Berkshire.
- 362
- Girling MA (1984b) A Little Ice Age extinction of a water beetle from Britain. Boreas13:1-4.
- 365
- 366 Goulson, D. (1993) Allozyme variation in the butterfly *Maniola jurtina* (Lepidoptera:
- 367 Satyrinae): evidence for selection. Heredity, 71:386-393
- 368
- 369 Grove J (1988) The little ice age. Methuen, London
- 370
- Harper GL, Piyapattanakorn S, Goulson D & Maclean N. (2001) Isolation of
- 372 microsatellite markers from the Adonis Blue butterfly (*Lysandra bellargus*).
- 373 Molecular Ecology 9:1948-1949
- 374
- Harper GL, Maclean N & Goulson D (2003) Microsatellite markers to assess the
- influence of population size, isolation and demographic change on the genetic
- 377 structure of the UK butterfly *Polyommatus bellargus*. Molecular Ecology 12:3349-
- 378 3357
- 379
- 380 Harper GL, Piyapattanakorn S, Goulson D & Maclean N (2000) Isolation of
- 381 microsatellite loci for the Adonis blue butterfly (*Lysandra bellargus*). Molecular
- 382 Ecology 9:1948-1949.
- 383

384	Harper GL, Maclean N & Goulson D (2006) Analysis of Museum Specimens Reveals		
385	Extreme Genetic Drift in the Adonis Blue Butterfly (Polyommatus bellargus).		
386	Biological Journal of the Linnean Society 88:447-452		
387			
388	Harrison RG (1989) Animal mitochondrial DNA as a genetic marker in population		
389	and evolutionary biology. Trends in Ecology and Evolution. 4:6-11		
390			
391	Hewitt GM (1999) Post-glacial recolonisation of Eurpean biota. Biological Journal of		
392	the Linnean Society. 68:87-112.		
393			
394	Hewitt GM (1996) Some genetic consequences of ice ages, and their role in		
395	divergence and speciation. Biological Journal of the Linnean Society 58:247-276 J		
396			
397	Joyce DA & Pullin AS (2001) Phylogeography of the Marsh Fritillary Euphydryas		
398	aurinia (Lepidoptera: Nymphalidae) in the UK. Biological Journal of the Linnean		
399	Society. 72:129-141.		
400			
401	Kuussaari M, Nieminem M & Hanski I (1996) An experimental study of migration in		
402	the Glanville Fritillary. Journal of Animal Ecology. 65:791-801.		
403			
404	Moritz C, Dowling TE & Brown WM (1987) Evolution of animal mitochondrial		
405	DNA: relevance for population biology and systematics. Annual Review of Ecology		
406	and Systematics. 18:269-292.		
407			

408	Moritz C (1991) The origin and evolution of parthenogenesis in <i>Heteronotia binoei</i>		
409	(Gekkonidae): evidence for recent and localized origins of widespread clones.		
410	Genetics, 129,211-219.		
411			
412	Mouson L, Neve G & Baguette M (1999) Metapopulation structure and conservation		
413	of the cranberry fritillary Boloria aquilonaris (Lepidoptera: nymphalidae) in Belgium.		
414	Biological Conservation. 87:285-293.		
415			
416	Nei M (1987) Molecular Evolutionary Genetics. Columbia University Press, New		
417	York.		
418			
419	Osborne, P J 1976 Evidence from the insects of climatic variation during the		
420 421	Flandrian period a preliminary note - World Archaeol. 8: 150-158		
422	Oyler-McCance SJ, Kahn W, Burnham KP et al (1999) A population genetic		
423	comparison of large- and small- bodied sage grouse in Colerado using microsatellite		
424	and mitochondrial markers. Molecular Ecology. 8:1457-1465		
425			
426	Pearman GS, Goodger B, Bourn NAD & Warren MS (1998) The changing status of		
427	the Lulworth Skipper (Thymelicus acteon) and Adonis Blue (Lysandra bellargus) in		
428	south-east Dorset over two decades. Butterfly Conservation.		
429			
430			
431	Rusterholz HP & Erhardt A (2000) Can nectar properties explain sex-specific flower		
432	preferences in the Adonis Blue butterfly Lysandra bellargus? Ecological Entomology.		
433	25:81-90		
434			

435	Schneider S, Roessli D & Excoffier L (2000) Arlequin, version 2.000: a software for			
436	population genetics data analysis. Genetics & Biometry Laboratory, University of			
437	Geneva, Switzerland.			
438				
439	Simon S, Frati F, Beckenbach A, et al (1994) Evolution, weighting, phylogenetic			
440	utility of mitochondrial sequences and a compilation of conserved polymerase chain			
441	reaction primers. Annals of the Entomological Society of America. 87:652-701			
442				
443	Smith DR & Brown WM (1990) Restriction endonuclease cleavage site and length			
444	polymorphisms in mitochondrila DNA of Apis mellifera and A. carnica			
445	(Hymenoptera: Apidae). Annals of the Entomological Society of America. 83:81-88.			
446				
447	Stewart KEJ, Bourn NAD, Pearman GS & Roberts E (2000) status of the Adonis blue,			
448	Polyommatus (Lysandra)bellargus, in Dorset between 1997 and 2000. Volume 2 -			
449	update 2000. Butterfly Conservation.			
450				
451	Stuiver M, Grootes PM, Brazunias TF (1995) The GISP2 δ18O record of the past 16,			
452	500 years and the role of the sun, ocean and volcanos. Quat. Res. 44, 341 - 354			
453				
454	Sunnucks P & Hales DF (1996) Numerous transposed sequences of mitochondrial			
455	cytochrome oxidase I-II in aphids of the genus Sitobium (Hemiptera: Aphididae).			
456	Molecular Biology & Evolution. 13:510-524			
457				

458	Taylor MFJ, McKechnie SW, Pierce N & Kreitman M (1993) The Lepidopteran		
459	Mitochondrial Control Region: Structure and Evolution. Molecular Biology and		
460	Evolution. 10:1259-1272		
461			
462	Tajima F (1983) Evolutionary Relationship of DNA sequences in finite populations.		
463	Genetics. 105:437-460.		
464			
465	Templeton AR, Routman E and Phillips CA (1995) Separating population structure		
466	from population history - A cladistic analysis of the geographical distribution of		
467	mitochondrial haplotypes in the Tiger Salamander Ambystoma tigrinum. Genetics		
468	140:767-782		
469			
470	Thomas JA (1983) The ecology and conservation of Lysandra bellargus (Lepidoptera:		
471	Lycaenidae) in Britain. Journal of Applied Ecology, 20:59-83		
472			
473	Thompson JD, Gibson TJ, Plewniak F et al (1997) The ClustalX windows interface:		
474	flexible strategies for multiple sequence alignment aided by quality analysis tools.		
475	Nucleic Acids Research, 24:4876-4882.		
476			
477	Zhang DX & Hewitt GM (1997) Insect mitochondrial control region: A review of its		
478	structure, evolution and usefulness in evolutionary studies. Biochemical Systematics		
479	and Ecology. 25:99-120		
480			


484

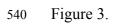
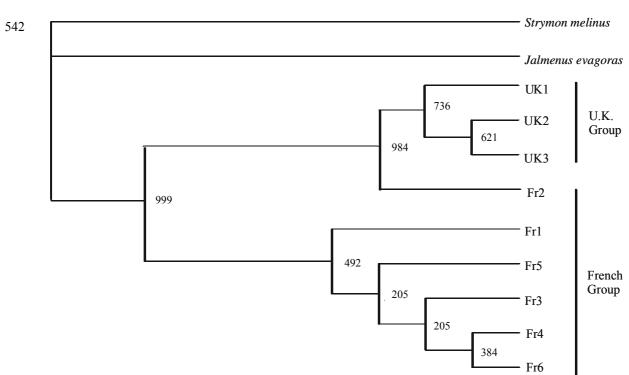

485 P. bellargus individuals. A colon (:) indicates identity with the predominant UK haplotype; and a dash (-) indicates a deduced indel. The haplotypic variation within 486 the UK is indicated at the bottom of the figure. 487 488 Figure 2. . A minimum spanning network (Excoffier, 1993) showing the number of 489 base changes between haplotypes. Each haplotype is represented as a circle with its 490 relationship to the most similar haplotypes (defined by the number of base changes) 491 492 represented as a line. A dotted line indicates an alternative relationship. The numbers of base pair differences between haplotypes is only indicated where values are >1. 493 Shaded circles are French and non-shaded are UK haplotypes. 494 495 Figure 3. An unrooted maximum likelihood consensus tree of control region 496 haplotypes, from UK and French populations of P. bellargus. Equivalent published 497 498 sequences for Jalmenus evagoras and Strymon melinus have been included as outgroups. Tree created using the DNADIST programme in PHYLIP3.57c. Figures 499 in italics indicate bootstrap values after 1000 replications 500 501 502 503 504

Figure 1. Sequences of the Met20 amplified control region of six French and one UK


506	Figures:	
507	Figure 1	
508 509 510 511 512 513 514 515 516 517	UK Fr1 Fr2 Fr4 Fr6 Fr3 Fr5 UK	CTTTATTTAGCTTATTTTTAAAAAATAATTTTTTATTATTATAAAAATTATTAAAA
518	Fr1	:G:C:
519	Fr2	:-:
520	Fr4	:G:C:C:
521	Fr6	:G:C:C:
522	Fr3	:G:C:C:C:
523 524 525	Fr5	:::C::::::::::::::::::::::::::::::::
526	UK	ССТАТ-АТАТАСАТАТАТАТА—-ТАТАТТАААТТТТТААТТААТТАТТААТТТААТААТТ
527	Frl	:::::T:::::T::::::::::::::::::::::::::
528	Fr2	
529	Fr4	:::::T:::::T::::::C::::::::::::::::::
530	Fr6	:::::T:::::T::::::TAC::::::::::::::::::
531	Fr3	:::::T:::::T::::::::::::::::::::::::::
532	Fr5	:::::T:::::T::::::::::::::::::::::::::
533		

- 534 Indels:-
- \checkmark Insertion of either TA or TATA here (UK only).
- 537 Figure 2

