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Abstract  8 

Aim: An emerging framework for tropical ecosystems states that fire activity is either ‘fuel 9 

build-up limited’ or ‘fuel moisture limited’ i.e. as you move up along rainfall gradients, the 10 

major control on fire occurrence switches from being the amount of fuel, to the moisture 11 

content of the fuel. Here we used remotely sensed datasets to assess whether interannual 12 

variability of burned area is better explained by annual rainfall totals driving fuel build-up, or 13 

by dry season rainfall driving fuel moisture. 14 

Location: Pantropical savannas and grasslands 15 

Time period: 2002-2016 16 

Methods: We explored the response of annual burned area to interannual variability in 17 

rainfall. We compared several linear models to understand how fuel moisture and fuel build-18 

up effect (accumulated rainfall during 6 and 24 months prior to the end of the burning season 19 

respectively) determine the interannual variability of burned area and explore if tree cover, 20 

dry season duration and human activity modified these relationships.  21 

Results:  Fuel and moisture controls on fire occurrence in tropical savannas varied across 22 

continents. Only 24% of South American savannas were fuel build-up limited against 61% of 23 

Australian savannas and 47% of African savannas. On average, South America switched from 24 

fuel limited to moisture limited at 500 mm yr-1, Africa at 800 mm yr-1 and Australia at 1000 25 

mm yr-1 of mean annual rainfall.  26 

Main conclusions: In 42% of tropical savannas (accounting for 41% of current area burned) 27 

increased drought and higher temperatures will not increase fire, but there are savannas, 28 

particularly in South America, that are likely to become more flammable with increasing 29 

temperatures. These findings highlight that we cannot transfer knowledge of fire responses to 30 

global change across ecosystems/regions – local solutions to local fire management issues are 31 

required, and different tropical savanna regions may show contrasting responses to the same 32 

drivers of global change. 33 
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1. Introduction  36 

Understanding global controls on fire activity has become increasingly important in the 37 

context of ecosystem drying and climatic change (Jolly et al., 2015). In some ecosystems 38 

drought events and rising temperatures may exacerbate fire risk (Bowman et al., 2011; Price 39 

et al., 2015), and increase the incidence of large wildfires and fire-associated CO2 emissions 40 

(Voulgarakis & Field, 2015; Hantson et al., 2017). However, not all ecosystems burn more 41 

when exposed to drought and high temperatures. Pausas and Ribeiro (2013) showed that fire 42 

in lower-productivity systems was unresponsive to temperature, and paleo-records highlight 43 

regional differences in fire responses to changes in rainfall and temperature (Daniau et al., 44 

2012). Bradstock (2010) indicated that fire would respond to the factor that was most limiting 45 

in a particular ecosystem – and when there is no fuel to burn increased temperatures and 46 

drought conditions would be expected to have little impact on fire. Fires are therefore the 47 

outcome of complex interactions between climate, fire, vegetation and land management 48 

(Moritz et al., 2012; Andela et al., 2017; Forkel et al., 2017; Abatzoglou et al., 2018). Fire 49 

enabled Dynamic Global Vegetation Models (DGVMs) are designed to model these 50 

interactions, but model outcomes vary widely across models (Bowman et al., 2014; Williams 51 

& Abatzoglou, 2016; van Marle et al., 2017), based on a wide range of different 52 

parameterizations (Hantson et al., 2016; Rabin et al., 2017). The role of fire for carbon 53 

cycling and maintaining biodiversity under scenarios of future change therefore remain 54 

uncertain for tropical biomes.  55 

Fire is an essential ecosystem process in tropical savannas and grasslands, which are 56 

characterized by high fire frequency under natural conditions (Bond et al., 2005; Chuvieco et 57 

al., 2008). Rainfall is the dominant control on fire activity in the tropics (van der Werf et al., 58 

2008); seasonal variation in tropical savanna rainfall typically results in vegetation production 59 

and biomass build-up during the wet season, followed by a dry period when dead or dormant 60 

herbaceous vegetation becomes flammable (Bradstock, 2010). The dynamic balance of 61 

productivity and seasonal drought also determines the interannual variability of burned area 62 

(Pausas & Ribeiro, 2013). In the humid tropics fire activity is constrained by fuel moisture 63 

conditions (fuel moisture limited) (Bradstock, 2010; Whitlock et al., 2010): here negative 64 

rainfall anomalies increase fire activity by causing usually green, non-flammable vegetation 65 

to dry out sufficiently to carry fire (Aragão et al., 2008). In contrast, in tropical biomes with 66 

low net primary productivity such as grasslands and xeric savannas, fire activity is 67 

constrained by fuel produced during the preceding growing seasons (fuel build-up limited) 68 



 

 

(Whitlock et al., 2010; O’Donnell et al., 2011; Kahiu & Hanan, 2018): here anomalous wet 69 

years increase vegetation productivity which increases fire activity during the following dry 70 

seasons (Van Wilgen et al., 2004; Archibald et al., 2010; Pausas & Paula, 2012; Abatzoglou 71 

et al., 2018).   72 

Despite the important differences in fire ecology and behavior across fuel and moisture 73 

limited fire regimes, their global distribution remains unknown. While climate determines 74 

where and when fires can occur (van der Werf et al., 2008; Archibald et al., 2010), human 75 

land management modifies regional patterns of fire activity (Bistinas et al., 2013; Andela et 76 

al., 2017). Humans are a source of ignitions as fire is often used as a tool in pastoral and 77 

agricultural activities (Mistry, 2000; Cochrane & Ryan, 2009), but humans also alter fire sizes 78 

by increasing landscape fragmentation and changing the timing of ignitions (Le Page et al., 79 

2010). Moreover, there is evidence that the sensitivity of fire regimes to climate variability 80 

depends on human activities (Archibald et al., 2010), as humans can “buffer” ecosystems 81 

(Bird et al., 2012) from climate and fire extremes through the way that they manage 82 

landscapes and light fires (Yibarbuk et al., 2002; Price et al., 2012; Bird et al., 2016). 83 

Vegetation cover and type also interact with fire, as grasses produce fine fuels that carry 84 

savanna fires. Tree cover in turn, may reduce fire occurrence by limiting grass productivity 85 

(Bond et al., 2005; Hoffmann et al., 2012; Aleman & Staver, 2018). The effects of climate 86 

and human land management on fire activity are therefore further modified by vegetation 87 

type, its cover and productivity (Archibald et al., 2009; Bistinas et al., 2014; Lehmann et al., 88 

2014). 89 

Here we use satellite observations to study burned area-rainfall relationships across a 90 

moisture gradient, ranging from xeric grasslands to mesic tropical savannas. First, we identify 91 

pantropical rainfall thresholds where savanna and grassland fire regimes switch from fuel 92 

build-up limited to fuel moisture limited. Second, we investigate how these thresholds vary 93 

across regions and how spatial patterns in fuel build-up- and fuel moisture limited fire regimes 94 

are modified by rainfall seasonality, human activity, and tree cover. Understanding how 95 

climate, human activity, and ecosystem structure modify the response of fire activity to 96 

changing weather conditions is critical to model and forecast future fire activity across 97 

different environments.   98 

2. Data and methods 99 

2.1. Remote sensing data 100 



 

 

For our analysis, we rescaled all data to 0.25° spatial resolution by calculating the mean value, 101 

land cover type formed a notable exception as we used the dominant cover type within each 102 

larger 0.25° grid cell. 103 

Savanna and grassland cover. We used the Moderate Resolution Imaging 104 

Spectroradiometer (MODIS) Global Land Cover product (MCD12C1 collection 5.1) for 2012 105 

(Friedl et al., 2010) to delimit savanna and grassland extent across continents. We included all 106 

0.25° grid cells (25°N - 25°S) where savannas and grasslands formed the dominant land cover 107 

type, based on the combined cover of “woody savannas”, “savannas”, and “grasslands” 108 

according to the International Geosphere-Biosphere Programme (IGBP) classification. We 109 

focus on “natural lands”, by excluding croplands and urban areas from our analysis, because 110 

we expect that fuel-build up and moisture status would primarily depend on management 111 

practice instead of antecedent rainfall across these landscapes. In addition, we used the 112 

MODIS vegetation continuous fields product (MOD44B collection 5 for 2010, (DiMiceli et 113 

al., 2011) to exclude areas with tree cover > 40%, assuming that savannas with high tree 114 

cover are less flammable (Archibald et al., 2009), and because fires are difficult to detect 115 

under canopies (Morton et al., 2011). In this study we analyzed data from Africa (55.6%), 116 

Australia (7.8%) and South America (27.4%), together containing 90.8% of the delimited 117 

tropical savannas and grasslands. Tropical savannas in Asia (6.1%) and Central America 118 

(3.1%) are highly fragmented and poorly defined (e.g., Ratnam et al., 2016), and were 119 

therefore excluded from our analysis. 120 

Burned area data. We derived the percentage of monthly burned area per 0.25° grid cell 121 

from the MODIS MCD64A1 collection 6 global burned area product (Giglio et al., 2018). 122 

Subsequently, we derived time series of annual burned area (BA in % yr-1) per fire year for 123 

each 0.25° grid cell for 2002–2016. For each grid cell, we delimited the fire-year as the 12-124 

month period centered on the month of maximum mean burned area (from 5 months before to 125 

6 months after the month of maximum burned area). This step is required because in the 126 

northern hemisphere tropics the fire season typically includes months of two calendar years, 127 

with maximum fire activity occurring in December or January. Based on these fire years, we 128 

defined the start and end months of the burning season as the all-year mean month where 10% 129 

and 90% of annual burned area had occurred, respectively. Our analysis is based on the 130 

assumption of clear seasonality with a unique fire season per year, which is generally true 131 

across tropical grasslands and savannas (Benali et al., 2017). 132 



 

 

Burned area drivers. Monthly rainfall data were obtained from the Climate Hazards Group 133 

InfraRed Precipitation with Station (CHIRPS) dataset (Funk et al., 2015) for the extended 134 

study period between 2002–2016. We used rainfall data to calculate mean annual rainfall 135 

(MAR, in mm yr-1, Fig 1b) over the calendar year and estimate the fuel moisture and fuel 136 

build-up effects on interannual variability in burned area. We defined the fuel moisture effect 137 

as the accumulated rainfall during the six months prior to the end of the burning season. We 138 

assumed that rainfall occurring during, or just before the burning season determines the 139 

probability of ignition and fire spread. The fuel build-up effect was defined as the accumulated 140 

rainfall during 24 months prior to the end of the burning season, as previous rainfall is an 141 

important control on the amount of biomass produced. We selected the 6- and 24-months cut-142 

off as, on average, the strongest negative response in fuel moisture limited landscapes was 143 

found around 6-7 months of antecedent rainfall (Fig. A1), while across fuel build-up limited 144 

landscapes accumulated rainfall over two wet seasons (24-months) had a slightly higher 145 

explanatory power than over a single wet season (12-months) (Fig. A1). 146 

We considered three explanatory variables for our initial analysis of the drivers of 147 

observed spatial patterns in fuel build-up and fuel moisture limited fire regimes. First, we 148 

focus on spatial differences in dry season duration. Following Hulme & Viner (1998), we 149 

define the dry season duration (in months) as the average number of months with rainfall 150 

below 50 mm month-1 during the 2002 – 2016 calendar years (Fig. A2b). This intermediate 151 

(50 mm month-1) rainfall threshold assures reasonable sensitivity to dry season duration 152 

across both arid and more humid tropical environments. Second, to investigate how humans 153 

affect fire occurrence and climate-fire interactions, we used the Wildlife and Conservation 154 

Society (WCS) Human Influence Index (HII, Fig. A2a) (WCS & University, 2005), a 155 

measure, varying between 0 and 64 (for no human and maximum influence respectively), of 156 

the direct human influence on ecosystems based on eight different measures of human 157 

presence: population density (people per km2), land cover type, and a measure of the presence 158 

of railroads, major roads, navigable rivers, coastlines, nighttime stable lights, and urban 159 

polygons. Third, because vegetation structure can affect fire activity and varies across 160 

continents (Lasslop et al., 2018), we also considered tree cover as an explanatory variable for 161 

observed patterns of fuel and moisture limited fire regimes. Tree cover data was obtained from 162 

MODIS vegetation continuous fields (MOD44B collection 5, Fig. A2c) for 2010 (DiMiceli et 163 

al., 2011). Because in our definition of tropical savannas and grasslands we already excluded 164 

areas with tree cover >40%, this variable ranged from 0 to 40%.  165 

https://en.wikipedia.org/wiki/Ecosystem
https://en.wikipedia.org/wiki/Population_Density


 

 

2.2. Methods  166 

Burned area response to fuel moisture and fuel build-up effects. Based on the per-fire-year 167 

burned area time series, we explored the response of annual burned area to interannual 168 

variability in rainfall for each 0.25° grid cell. All grid cells that showed negative correlations 169 

(Pearson’s r) between antecedent rainfall accumulated over 6 months prior to the end of the 170 

burning season and annual BA were considered fuel moisture limited fire regimes, indicating 171 

higher burned area when accumulated rainfall was low during or shortly before the burning 172 

season. Similarly, we considered ecosystems to be fuel build-up limited, for all grid cells with 173 

a positive correlation between annual BA and antecedent rainfall accumulated during 24 174 

months prior to the end of the burning season. Some grid cells had both negative correlations 175 

(fuel moisture effect) with the short lead times and positive correlations (fuel build-up effect) 176 

with the long lead times, but in these cases, effects were generally not significant at the same 177 

time (p<0.05 in 5% of total grid cells). For simplicity, we therefore selected the strongest 178 

absolute correlation for each grid cell. 179 

Based on the biome wide characterization of burned area response to antecedent rainfall, 180 

we explored how these relationships varied across continents. First, we identified the MAR 181 

threshold where fire regimes switched from being fuel build-up limited to being fuel moisture 182 

limited. We binned the per grid cell strongest absolute (i.e. positive or negative) correlation 183 

between annual BA and antecedent rainfall into 100 mm MAR bins. We then defined the 184 

threshold where ecosystems switched from fuel build-up limited to fuel moisture limited (and 185 

vice versa) as the MAR bin where >50% of the correlation coefficients switched from 186 

negative to positive (i.e. the median value in a boxplot crossed the zero line).  187 

Drivers of burned area response.  We used two different approaches to explore the drivers 188 

of spatial differences in the relationship between annual burned area and antecedent rainfall. 189 

First, to keep annual rainfall constant, we binned all grid cells based on 200 mm yr-1 MAR 190 

increments; within each rainfall bin, we further subdivided the grid cells based on bins of dry 191 

season duration (DS; increments of months with rainfall below 50 mm), Human Influence 192 

Index (HII; increments of 5 units of HII, HII ranged from 0 to 40 across the study area), and 193 

tree cover (TC; 5% increments from 0 to 40%). Based on this subdivision along rainfall 194 

gradients, we explored how DS, HII, and TC modified patterns of a) mean annual burned 195 

area, b) interannual variability in burned area (measured as the coefficient of variation), and c) 196 

the correlation coefficient between antecedent rainfall and annual BA.  197 



 

 

Second, we compared two multiple linear regression models to understand how the fuel 198 

moisture effect (Rain6, 6 months of accumulated rainfall) and the fuel build-up effect (Rain24, 199 

24 months of accumulated rainfall) influenced the interannual variability of BA (Eq. 1) and 200 

investigate if BA response to rainfall varied at continental scales (Eq. 2). In order to increase 201 

model sensitivity to temporal variability in burned area, we used burned area anomalies rather 202 

than absolute burned area time series.    203 

 204 

BAi,j anomaly ~ α + β1 * Rain6i,j + β2 * Rain24i,j + ε Equation 1 205 

BAi,j anomaly ~ α + β1 * Rain6i,j : Continent + β2 * Rain24i,j,t : Continent + ε Equation 2 206 

where BAi,j anomaly is the burned area anomaly for each pixel (i) and year (j) calculated as 207 

BAi,j – mean BAi, β parameters represent the slope of the linear regression between the BA 208 

anomaly and the explanatory variables (Rain6i,j and Rain24i,j), α is the intercept and ε the 209 

residual error term. The BA anomaly includes both negative and positive values, where 210 

negative values indicate that the BA for the year j was lower than the mean BA and positive 211 

values indicate that annual BA was higher than the mean. Thus, β1 and β2 indicate the rate of 212 

BA change per unit of accumulated rainfall (% year-1 mm-1).  213 

Next, we explored how other variables, including MAR, DS, HII and/or TC modify the 214 

influence of antecedent rainfall on burned area anomalies by analyzing how the β1 and β2 215 

values changed when introducing each driver in the model. In addition, when including a new 216 

variable, we compared the model with and without the effect in question, using an ANOVA 217 

likelihood-ratio test and AIC (Akaike’s Information Criterion) to confirm the selection of the 218 

best model (Burnham & Anderson, 2004). Finally, we constructed the same models, but now 219 

based on full burned area time series instead of anomalies. This analysis helped to understand 220 

how each variable contributes to both spatial and temporal patterns of biome wide burned 221 

area. All analyses were done using the ‘raster’ and ‘rgdal’ packages in R, version R2.5.1 (R 222 

Core Team, 2016). 223 

3. Results 224 

3.1. Burned area response to antecedent rainfall 225 

We observed the strongest correlations between antecedent rainfall and annual burned area 226 

(BA) in frequently burning savannas and grasslands across the tropics (Fig. 1). Here we 227 

considered grid cells with a negative correlation between burned area and rainfall (6-month 228 

lead time) to be fuel moisture limited and grid cells with a positive correlation (24-month lead 229 



 

 

time) to be fuel build-up limited. Interestingly, we found that savannas with fuel build-up 230 

limited fire regimes (41.4%) in more arid regions covered less area than savannas with fuel 231 

moisture limited fire regimes (58.6%, Fig. 1b, e) in more humid systems. Mean annual rainfall 232 

(MAR) varied widely across tropical savannas on the three continents, resulting in 233 

predominantly fuel moisture limited fire regimes across the relatively humid savannas of 234 

South America, and fuel build-up limited fire regimes across Australian savannas that were 235 

more arid on average (Fig. 1b to 1e). Africa showed a mix of fuel and moisture limited 236 

savannas across a large rainfall gradient. For example, we observed strong positive 237 

correlations for arid regions (e.g. Namibia, Botswana and Zimbabwe) and strong negative 238 

correlations for humid regions (e.g. the north of Mozambique and the south of Tanzania and 239 

the Democratic Republic of Congo) (Fig. 1e). 240 

3.2. Continental differences in the switch from fuel build-up to fuel moisture 241 

limitation 242 

  Africa tropical savanna and grassland fire regimes switched from a predominantly positive 243 

(fuel build-up effect) to negative (fuel moisture effect) response to antecedent rainfall around 244 

800 mm annual rainfall (Fig. 2), while fire regimes in South America switched around 500 245 

mm yr-1, and in Australia around 1000 mm yr-1 (Fig. 2). For all three continents, MAR bins 246 

that contained a low number of grid cells often showed a more variable response (cf. Figs. 2 247 

and A3). We also observed large spatial variability in burned area-rainfall responses (Fig. 1 248 

and 2), indicating that the switch from fuel build-up to fuel moisture limited fire regimes 249 

occurred gradually. On each continent, there was a transition zone in MAR levels rather than 250 

a clear threshold, where the strength of the dominant correlation weakened before switching 251 

to a different dominant driver. Only 24% of South American savannas were fuel build-up 252 

limited against 61% of Australian savannas and 47% of African savannas.  253 

3.3.Drivers of continental differences.  254 

In addition to MAR, we explored how rainfall seasonality influences median annual BA 255 

and interannual variability in BA, both important indicators of the strength of fire-climate 256 

interactions. Globally, longer dry season durations tended to increase median annual BA, 257 

particularly in intermediate productive savannas and grasslands (MAR between 900-1500 258 

mm, Fig 3a). Interestingly, when dry season length exceeded 9 months, annual burned area 259 

typically declined again, likely because very short growing seasons may limit ecosystem 260 

productivity and thus fuel availability. In addition to burned area, we also analyzed its 261 

coefficient of variation, we hypothesize that the strength of the burned area response to 262 



 

 

antecedent rainfall partly depends on the variability of both variables. For bins of comparable 263 

rainfall and dry season duration, Australia showed the lowest coefficients of variation, 264 

potentially weakening correlation coefficients between antecedent rainfall and burned area, 265 

seen as a more variable response of positive and negative correlations (Fig 3b and c). In 266 

contrast, large on average coefficients of variation across South America may be responsible 267 

for the relatively strong negative correlation observed across productive savannas. We also 268 

observed a reduction in the coefficient of variation in areas of high fraction of annual burned 269 

area (Fig. 3b), possibly reducing the strength of the correlation between annual burned area 270 

and fuel conditions (Fig. 3c). Although dry season duration clearly affected burned area and 271 

it’s variability, patterns were not uniform, suggesting other factors also played a role. 272 

Human impact strongly reduced burned area across continents (Fig. 4a), while Australian 273 

savannas and grasslands were generally characterized by low human impact values (HII <10) 274 

and African and South American savannas were characterized by higher impact values (HII = 275 

10-25; Fig. 4b). The coefficient of variation was clearly reduced in natural areas with a large 276 

fraction of burned area and low human influence (Fig. 4b). Despite the large impact of HII on 277 

absolute burned area, impacts on the interannual variability were more limited and complex. 278 

Globally, a small decline in the strength of the burned area response to rainfall variability was 279 

observed with decreasing HII and increasing burned area in the peak biomass burning regions 280 

(MAR ranging from 900 – 1500 mm yr-1; Fig. 4c). In contrast, at continental scales sometimes 281 

the opposite pattern was observed. For example, in productive savannas (MAR 1300 – 2100 282 

mm yr-1) of South America the negative correlation between antecedent rainfall and burned 283 

area strengthened with decreasing HII. The global pattern in the response of BA to the fuel 284 

build-up and fuel moisture effects was mainly determined by South America and Africa, with 285 

a dominant negative response in savannas with MAR above 900 mm yr-1 and positive 286 

response in savannas with MAR below 900 mm yr-1, independently of the HII (Fig. 4c).  287 

Vegetation structure also influenced biome wide patterns of burned area and the strength 288 

and sign of correlation coefficients between antecedent rainfall and burned area (Fig. 5). As 289 

expected, we observed that higher tree cover was often associated with reduced burned area, 290 

particularly in the humid tropics (Fig. 5a). In productive savannas (MAR ranging from 900 to 291 

2000 mm yr-1), the fuel moisture effect tended to strengthen with increasing tree cover, 292 

although relationships were often weak (Fig. 5c). In fuel limited ecosystems of Australia, 293 

there was a weak increase in the strength of the fuel build-up effect with tree cover, opposite 294 

to the global pattern, where the strength of the fuel build-up effect weakened with increasing 295 



 

 

tree cover. As noted earlier, coefficients of variation varied widely across continents, possibly 296 

strengthening or weakening regional correlation coefficients. In contrast to Africa and 297 

Australia, South America showed high coefficients of variation for savannas of intermediate 298 

productivity, likely contributing to the exceptionally strong moisture limitation on regional 299 

burned area. 300 

Despite the clear biome wide patterns of fuel moisture and fuel build-up limited fire 301 

regimes, we could not establish a single global model to explain the interannual variability in 302 

burned area (BA) based on fuel build-up effect and fuel moisture effect alone (Table 1). Here 303 

we used multiple linear regression models to test the effect of the antecedent rainfall on BA 304 

anomalies (Table 1) per pixel across the time series, and the spatial and temporal pattern in 305 

BA time series (Table A1), across tropical savannas and grasslands. We expect that the model 306 

based on BA anomalies is better able to capture interannual variability, while the second 307 

model captures both temporal variability and spatial patterns of burned area. The global 308 

model of BA anomalies that included only the fuel build-up effect and fuel moisture effect as 309 

explanatory variables explained less than 1% of BA variation (Table 1), while the same model 310 

for absolute BA explained 3% of the variance (Table A1). Surprisingly, BA did not vary as 311 

expected when an interaction term between MAR and fuel build-up effect and fuel moisture 312 

effect was added to the model and its performance did not improve. In contrast, the inclusion 313 

of “continent” as an interaction term with the 6- and 24-month accumulated rainfall increased 314 

the percent of explained variance and reduced AIC for both BA (from 3.6 to 19%, Table A1) 315 

and its internannual variability (from 0.0019 to 0.0029%, Table1). Both models, supported 316 

different slopes between the fuel moisture effect and fuel build-up effect and burned area 317 

across continents (p < 0.001), confirming continental scale differences in burned area-rainfall 318 

response (Table 1 and A1, Fig. 2).  319 

 The models with the highest explanatory power (lowest AIC) explained 0.4% of the 320 

variance of the interannual variability of BA (Table 1) and 29% of spatial occurrence (Table 321 

A1). These models included tree cover, dry season duration and HII all in interaction with 322 

Continent as additional factors to fuel build-up effect and fuel moisture effect. The response of 323 

BA anomalies to the fuel-moisture effect and the fuel build-up effect was strongest in Australia 324 

(β1 = -0.0036 % mm-1 and β2 = 0.0019 % mm-1 respectively, Table 1) and weakest in Africa 325 

(β1 = -0.0012 % mm-1 and β2 =0.00035 % mm-1 respectively, Table 1). Statistical analysis 326 

confirmed the expected response, with negative slope coefficients for fuel moisture effect and 327 

positive coefficients for fuel build-up effect (Table 1). The inclusion of tree cover, dry season 328 



 

 

duration or HII in the models modified the slopes of fuel build-up effect across all the three 329 

continents, while the slopes for fuel moisture effect remained more similar (Table 1). When 330 

we included all three variables in the model, we detected a slight decrease in the slope of fuel 331 

build-up effect for African (from 0.00041 to 0.00035% mm-1) and South America savannas 332 

(from 0.00058 to 0.00046% mm-1) and a larger increase for Australian savannas (from 333 

0.00088 to 0.0019% mm-1, Table 1). The inclusion of these three factors also modified the 334 

intercept sign from negative to positive indicating a positive anomaly (BA > mean BA) when 335 

these factors are zero. When considering the inclusion of each of these explanatory variables 336 

(DS, HII, and TC) separately, the inclusion of dry seasons length had the strongest effect on 337 

the response of BA to the fuel build-up effect; in Africa β2 decreased from 0.00041 to 338 

0.00023% mm-1 and the smallest effect was observed in South America from 0.00058 to 339 

0.00051 % mm-1. In contrast, the inclusion of HII had the strongest effect on the response of 340 

BA to the fuel build-up effect in Australia β2, increasing from 0.00088 to 0.0011% mm-1 while 341 

in Africa and South America we observed a slight decrease (from 0.00041 to 0.00040% mm-1 342 

and from 0.00058 to 0.00054% mm-1 respectively). The inclusion of tree cover had the 343 

strongest effect on the response of BA to the fuel build-up effect for South America, β2 344 

increased from 0.00058 to 0.010% mm-1. When we analyzed the absolute BA (Table A1), HII 345 

coefficients were also negative for the three continents, in line with lower burned area in 346 

human dominated landscapes (Archibald et al., 2012; Andela et al., 2017), with the highest 347 

decrease in BA variation when human influence increased in Australia (β4 = -3.10%), and a 348 

similar lower variation observed in Africa and South America (β4 = -1.29% and -1.10% 349 

respectively, Table A1).  350 

 351 

4. Discussion  352 

4.1. Fire-climate threshold 353 

Here we explore the extent of fuel build-up and fuel moisture limited fire regimes across 354 

tropical savannas based on a per-pixel temporal correlation between burned area and 355 

antecedent rainfall. Savanna fire-climate interactions changed along gradients of mean annual 356 

precipitation, with burned area in xeric savannas being primarily limited by fuel build-up and 357 

in mesic savannas by fuel moisture (Fig. 1, Krawchuk & Moritz, 2011; Kahiu & Hanan, 358 

2018). In line with previous work, we find that fire activity in humid savannas and grasslands 359 

primarily responds to drought conditions during the fire season (Archibald et al., 2010; 360 

Lehsten et al., 2010; Alvarado et al., 2017) similar to tropical rainforests (Aragão et al., 361 



 

 

2008). We find that fuel moisture was the dominant control on fire activity over 58.6% of 362 

tropical savannas and grasslands. These systems currently account for 59.1% of the tropical 363 

area burned, and the remaining 40.9% is in systems are fuel build-up limited.   364 

Striking differences were observed across continents, with large areas of fuel build-up 365 

limited fire regimes occurring across more arid grasslands and savannas of southern Africa 366 

and northern Australia, and a near-absence of fuel build-up limited systems in tropical South 367 

America (Figs. 1 and 2). Fuel moisture formed the key control on burned area across South 368 

America’s savannas, except for more arid grasslands along the eastern edge of the Brazilian 369 

Cerrado. Burned area in arid regions of Africa and Australia responded strongly to antecedent 370 

rainfall, highlighting the importance of fuel build-up and connectivity in these regions 371 

(Archibald et al., 2010; Whitlock et al., 2010; Krawchuk & Moritz, 2011; Price et al., 2015). 372 

Continental scale differences were partly driven by differences in climate, for example, the 373 

extent of semi-arid and arid savannas with MAR<1000 mm yr-1 was largest across Africa and 374 

Australia, resulting in an overall larger fraction of ecosystems where fire occurrence was 375 

limited by fuel build-up (Fig. 1; Archibald et al., 2010a). However, savanna fire regimes also 376 

switched from being dominantly fuel build-up limited to fuel moisture limited at different 377 

thresholds, around 500 mm yr-1 in South America,  800 mm yr-1 in Africa, and 1000 mm yr-1 378 

in Australia (Fig. 2). Together, these two factors resulted in continental scale differences in 379 

fire regimes, and fire activity was limited by fuel build-up in only 24% of South American 380 

savannas, against 47% of African savannas and 61% of Australian savannas. Interestingly, 381 

these continental differences in fire regimes are in line with previous work showing similar 382 

differences in controls on savanna distribution and structure (Lehmann et al., 2011, 2014). In 383 

the transition zones, where fire regimes switched from being predominantly fuel-build up 384 

limited to fuel moisture limited, the relationship between burned area and fuel dryness or fuel 385 

availability was often weak, and likely further modified by other climatic, ecological, and 386 

anthropogenic factors influencing fuel conditions.  387 

4.2. Drivers of fire response 388 

Seasonal rainfall distribution varied considerably across continents and had a strong effect on 389 

annual burned area (Fig. 3a). Previous analyses have shown that rainfall amount during the 390 

dry and wet seasons contribute to explain the spatial patterns of tropical fire activity (van der 391 

Werf et al., 2008; Bowman et al., 2014; Chen et al., 2017), and that climate seasonality can 392 

explain observed differences in fire activity across regions with similar MAR (Saha et al., 393 

2019). We found that a minimum dry season duration of 6 to 8-months was required for 394 



 

 

frequent fires to occur in productive and humid savannas, but we only detected a weak 395 

relationship between annual burned area and increasing dry season lengths longer than six 396 

months. A possible explanation for this weak relationship could be that dry season duration 397 

longer than six months may limit herbaceous productivity by shortening the growing season 398 

in spite of MAR. In addition, our results suggest that observed differences in rainfall 399 

seasonality may also modify the response of burned area to antecedent rainfall across different 400 

regions (Fig. 3b and c). Although the relatively long and pronounced African dry season is 401 

one of the factors contributing to high fire frequencies across the continent (Archibald et al., 402 

2009), African savannas were characterized by relatively low variability in burned area. In 403 

contrast, South American savannas were characterized by lower fire frequencies, but showed 404 

higher interannual variability in burned area driven by climate anomalies (cf. Figs. 3b and c; 405 

Alvarado et al., 2017b; Chen et al., 2017; Mataveli et al., 2018).  406 

Several analyses have shown that human land management, and therefore population 407 

density has a significant impact on global burned area (Bistinas et al., 2013). In line with 408 

these findings, we found that higher human influence significantly reduced burned area across 409 

continents, with larger consequences for more densely populated continents like Africa and 410 

South America compared to Australia (Fig. 4a and Table A1; Archibald et al., 2012; Andela 411 

et al., 2017). Previous work has also shown that human land management may reduce the 412 

sensitivity of fire regimes to climate extremes (Bird et al., 2016). We found that the observed 413 

biogeographic differences in fire responses to antecedent rainfall could be related to human 414 

land management to some extent, but this factor alone could not explain the differences 415 

observed across continents (Fig. 4c). In general, areas with large annual mean burned area and 416 

low population densities, showed a relatively strong burned area response to rainfall 417 

variability. Nevertheless, this pattern did not hold everywhere, and particularly in savannas of 418 

intermediate productivity we observed an overall increase in the strength of the fuel-moisture 419 

effect on burned area in human dominated landscapes.  420 

Continental scale differences in tree cover also explained part of the observed differences 421 

in fire-climate interactions. Previous work has shown that tree cover may limit fire activity in 422 

savannas (Archibald et al., 2009), though these effects may be partly masked out in our study, 423 

that focuses on more open cover types with tree cover smaller or equal to 40%. Across areas 424 

with fuel moisture limited fire regimes, we observed a slight increase in the strength of the 425 

responses of BA to the antecedent rainfall with the increase of tree cover at similar MAR. 426 

While all three variables (DS, HII and TC) modified the response of burned area to antecedent 427 



 

 

rainfall, none of these variables could explain the differences in thresholds observed across 428 

the continents (Figs. 3, 4 and 5). For example, when controlling for TC, continental scale 429 

differences in rainfall thresholds at which savannas switched from fuel build-up to fuel 430 

moisture limited fire regimes remained different.  431 

To confirm these findings, we used a range of multiple linear regression models to explore 432 

if the continental scale differences could be explained by differences in DS, HII, and TC. 433 

Allowing the burned area to respond differently to antecedent rainfall across continents 434 

caused a considerable model improvement both when modeling absolute burned area (Table 435 

A1) or it’s variability (Table 1). While the introduction of DS, HII and TC as additional 436 

explanatory variables further improved model performance, they only marginally affected 437 

continental scale differences in burned area response to antecedent rainfall (compare slopes in 438 

Table 1). Nevertheless, our linear model explained just 29% of absolute burned area and 439 

about 1% of the burned area anomalies even when considering continental scale differences in 440 

DS, HII and TC as additional drivers. Improving model representation of fire response to 441 

antecedent rainfall therefore remains a topic of future investigation. While we explored the 442 

role of dry season duration, it is possible that other indicators of vegetation and fuel 443 

conditions, like evapotranspiration, also play an important role (Boer et al. 2016). Similarly, 444 

regional differences in herbivory and human fire management, as well as the different 445 

composition and structure of grass and tree communities across continents may also be 446 

important (Lehmann et al., 2011).  447 

Understanding the distribution of fuel build-up - and fuel moisture limited fire regimes is 448 

critical for fire management now and in the future, as changes in land management or climate 449 

may result in contrasting responses across fuel and moisture limited systems. In contrast to 450 

earlier studies that have suggested that fire activity in savannas was mostly limited by fuel 451 

availability (Whitlock et al., 2010; Krawchuk & Moritz, 2011), we found that fuel moisture 452 

controlled burned area variability in more than half (58.6%) of the tropical savannas and 453 

grasslands, accounting for 59,1% of total burned area. Striking differences in burned area 454 

response to rainfall variability across continents highlighted that South American savannas 455 

were particularly sensitive to fuel moisture conditions, suggesting that rising temperatures 456 

may increase fire activity across the continent, and explaining the extraordinary strong 457 

response of fire activity across the continent to drought conditions driven by sea surface 458 

temperature anomalies (Chen et al., 2011). In contrast, a reduction of moisture availability 459 

would likely decrease burned area over most of Australia, where fire activity was mainly 460 

controlled by fuel build-up. In African savannas and grasslands, the area where burned area 461 



 

 

was primarily controlled by fuel build-up was about equal to the area where fuel moisture 462 

conditions were most important. Although we could not conclusively attribute the continental 463 

scale differences to a single driver, we found that rainfall seasonality, human land 464 

management and tree cover all modified fire-climate interactions regionally through their 465 

effects on fuel availability and moisture status. Our work demonstrates that one single “global 466 

model” for savanna fires will not be enough to predict future fire regimes and fire regimes 467 

across different continents will likely respond differently to the same drivers of global change.  468 
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Tables 648 

Table 1. Multiple Linear Regression Models explaining the variation of annual burned area 649 
anomalies (BAi,j anomaly) in pixel i and year j for tropical savannas and grasslands areas 650 
(2002 – 2016). The variables representing the fuel moisture effect (6 months of accumulated 651 
rainfall; Rain6i,j), and the fuel build-up effect (24 months of accumulated rainfall; Rain24i,j), 652 
varied both by pixel i and year j. Other variables, including mean annual rainfall (MARi), dry 653 

season duration (DSi), human influence index (HIIi) and tree cover (TCi) varied by pixel i 654 
only. Model performance was evaluated based on the coefficient of determination (R2), p-655 
value and Akaike’s Information Criterion (AIC). All models were significant at p<0.001. 656 

Regression model Regression equation R2 AIC 

Rain6i,j + Rain24i,j BAi,j anomaly ~ -0.22 – 0.0018 * Rain6i,j + 0.00040 * 

Rain24i,j + εij 

0.0019 2090280 

Rain6i,j : MARi + 

Rain24i,j : MARi 

BAi,j anomaly ~ 0.0098  – 0.0000011 * Rain6i,j : MARi + 

0.00000018 * Rain24i,j : MARi + εij 

0.0013 2090422 

Rain6i,j : Continenti + 

Rain24i,j : Continenti 

BAi,j anomaly ~ -0.43  – 0.0011 * Rain6i,j : Africai – 0.0037 * 

Rain6i,j : Australiai – 0.0033 * Rain6i,j : SouthAmericai + 

0.00041 * Rain24i,j : Africai + 0.00088 * Rain24i,j : Australiai 

+ 0.00058 * Rain24i,j : SouthAmericai + εij 

0.0029 2089998 

Rain6i,j : Continenti + 

Rain24i,j : Continenti 

+ DSi : Continent 

BAi,j anomaly ~ 0.38  – 0.0012 * Rain6i,j : Africai – 0.0034 * 

Rain6i,j : Australiai – 0.0035 * Rain6i,j : SouthAmericai + 

0.00023 * Rain24i,j : Africai + 0.0014 * Rain24i,j : Australiai 

+ 0.00051* Rain24i,j : SouthAmericai – 0.062 * DSi : Africai 

– 0.31 * DSi : Australiai – 0.12 * DSi : SouthAmericai + εij 

0.0034 2089875 

Rain6i,j : Continenti + 

Rain24i,j : Continenti 

+ HIIi : Continenti 

BAi,j anomaly ~ -0.55  – 0.0011 * Rain6i,j : Africai – 0.0036 * 

Rain6i,j : Australiai – 0.0033 * Rain6i,j : SouthAmericai + 

0.00040 * Rain24i,j : Africai + 0.0011 * Rain24i,j : Australiai 

+ 0.00054 * Rain24i,j : SouthAmericai + 0.011 * HIIi : 

Africai – 0.11 * HIIi : Australiai + 0.017 * HIIi : 

SouthAmericai + εij 

0.0031 2089957 

Rain6i,j : Continenti + 

Rain24i,j : Continenti 

+ TCi : Continenti 

BAi,j anomaly ~ -0.42  – 0.0012 * Rain6i,j : Africai – 0.0038 * 

Rain6i,j : Australiai – 0.0033 * Rain6i,j : SouthAmericai + 

0.00049 * Rain24i,j : Africai + 0.0015 * Rain24i,j : Australiai 

+ 0.00050 * Rain24i,j : SouthAmericai – 0.010 * TCi : Africai 

– 0.13 * TCi : Australiai + 0.010 * TCi : SouthAmericai + εij 

0.0034 2089868 

Rain6i,j : Continenti + 

Rain24i,j : Continenti 

+ TCi : Continenti + 

DSi : Continenti + 

HIIi : Continenti 

BAi,j anomaly ~ 0.36  – 0.0012 * Rain6i,j : Africai – 0.0036 * 

Rain6i,j : Australiai – 0.0036 * Rain6i,j : SouthAmericai + 

0.00035 * Rain24i,j : Africai + 0.0019 * Rain24i,j : Australiai 

+ 0.00046 * Rain24i,j : SouthAmericai – 0.013 * TCi : Africai 

– 0.13 * TCi : Australiai + 0.0077 * TCi : SouthAmericai – 

0.055 * DSi : Africai – 0.29 * DSi : Australiai – 0.16 * DSi : 

SouthAmericai – 0.0064 * HIIi : Africai + 0.058 * HIIi : 

Australiai + 0.016 * HIIi : SouthAmericai + εij 

0.0039 2089756 
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Figures 661 
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 663 

 664 

Fig. 1. Rainfall – burned area interactions varied widely across continents. (a) Mean annual 665 

burned area (% yr-1), (b) mean annual rainfall (mm yr-1), (c) correlation between annual 666 

burned area and 24 months of antecedent rainfall (positive correlations), (d) correlation 667 

between annual burned area and 6 months of antecedent rainfall (negative correlations), and 668 

(e) the strongest absolute correlation shown in (c and d). Figure e shows the distribution of 669 

fuel build-up limited (positive correlation) and fuel moisture limited (negative correlation) fire 670 

regimes across tropical savannas. Grid cells with land cover classes other than savannas and 671 

grasslands were excluded from our analysis and are masked in white. Pixels with negative 672 

correlations in b and positive correlations in c were masked in grey.   673 
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 677 
 678 

Fig. 2. Box-and-whisker plots of the response of burned area to antecedent rainfall. Results 679 

for (a) Pantropical savannas and grasslands, and for (b) Africa, (c) Australia, and (d) South 680 

America, separately. Box plots include all 0.25° grid cells per bin of 100 mm mean annual 681 

rainfall (MAR). For each grid cell we registered a single response (positive, based on 24-682 

months of antecedent precipitation) or negative (based on 6 months of antecedent rainfall) 683 

using the per-grid cell strongest absolute correlation. The boxes indicate the 25th and 75th 684 

percentile of the data, the mid band indicates the median, and the whiskers indicate the 5th and 685 

95th percentiles. Box plots with less than 5 pixels were excluded from this figure.  686 
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 690 

Fig. 3. Burned area response to dry season duration. (a) Median burned area (% yr-1) per bin 691 

of Mean Annual Rainfall (MAR intervals) and dry season duration (b) Coefficient of variation 692 
of burned area per bin of Mean Annual Rainfall and dry season duration,  circle size represent 693 
the upper limit of the number of grid cells by bin (n = number of grid cells). (c) Median 694 
correlation coefficient based on the per-pixel strongest absolute correlation within each bin of 695 
Mean Annual Rainfall and dry season duration. Cells with less than 3 pixels were excluded 696 

from panel b because the coefficients of variation calculate require at least 3 data. 697 
 698 
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 701 

Fig. 4. Burned Area response to human land management. (a) Median burned area (% yr-1) 702 

per bin of Mean Annual Rainfall (MAR intervals) and Human influence index. (b) Coefficient 703 
of variation of burned area per bin of Mean Annual Rainfall and Human influence index, 704 

circle size represent the upper limit of the number of grid cells by bin (n = number of grid 705 
cells). (c) Median correlation coefficient, based on the per-pixel strongest absolute correlation 706 

within each bin of Mean Annual Rainfall and Human influence index. Cells with less than 3 707 
pixels were excluded from panel b because the coefficients of variation calculate require at 708 
least 3 data. 709 
 710 
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 714 

 715 
Fig. 5. Burned Area response to tree cover fraction. (a) Median burned area (% yr-1) per bin of 716 
Mean Annual Rainfall (MAR intervals) and tree cover fraction (%). (b) Coefficient of 717 

variation of burned area per bin of Mean Annual Rainfall and tree cover fraction, circle size 718 
represent the upper limit of the number of grid cells by bin (n = number of grid cells). (c) 719 
Median correlation coefficient, based on the per-pixel strongest absolute correlation within 720 

each bin of Mean Annual Rainfall and tree cover fraction. Cells with less than 3 pixels were 721 
excluded from panel b because the coefficients of variation calculate require at least 3 data.  722 
 723 
 724 


