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ABSTRACT

By means of the CRYSTAL computer program package, first-principles calcu-

lations of polar ZrO-, Ca- and O-terminated CaZrO3 (011) surfaces were per-

formed. Our calculation results for polar CaZrO3 (011) surfaces are compared

with the previous ab initio calculation results for ABO3 perovskite (011) and

(001) surfaces. From the results of our hybrid B3LYP calculations, all upper-

layer atoms on the ZrO-, Ca- and O-terminated CaZrO3 (011) surfaces relax

inwards. The only exception from this systematic trend is outward relaxation of

the oxygen atom on the ZrO-terminated CaZrO3 (011) surface. Different ZrO, Ca

and O terminations of the CaZrO3 (011) surface lead to a quite different surface

energies of 3.46, 1.49, and 2.08 eV. Our calculations predict a considerable

increase in the Zr–O chemical bond covalency near the CaZrO3 (011) surface,

both in the directions perpendicular to the surface (0.240e) as well as in the plane

(0.138e), as compared to the CaZrO3 (001) surface (0.102e) and to the bulk

(0.086e). Such increase in the B–O chemical bond population from the bulk

towards the (001) and especially (011) surfaces is a systematic trend in all our

eight calculated ABO3 perovskites.

Introduction

Surface and interface phenomena, taking place in the

ABO3 perovskites and their nanostructures, as well as

mechanisms of various (001) and (011) surface elec-

tronic processes, are the key topics in theoretical

solid-state physics [1–27]. CaTiO3, SrTiO3, PbTiO3,

BaTiO3, CaZrO3, SrZrO3, PbZrO3 and BaZrO3

perovskites all have a general chemical formula

ABO3, where (A = Ca, Sr, Pb or Ba and B = Ti or Zr).

The A cation size as a rule is much larger than the

relevant B cation size. The ABO3 perovskite cubic-

symmetry structure has the B atom in sixfold oxygen

coordination, surrounded by an octahedron of O

atoms as well as the A atom in 12-fold oxygen

cuboctahedral coordination. As temperature
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decreases, some of ABO3 perovskites, like SrTiO3 and

BaZrO3, stay in its high-temperature cubic phase,

while other ABO3 perovskites, such as CaTiO3,

PbTiO3, BaTiO3, CaZrO3, SrZrO3 and PbZrO3, exhibit

different phase transitions. The neutral (001) as well

as polar and charged (011) surfaces of the ABO3

perovskites are both of fundamental interest for basic

research, and also very important for practical

applications, for example, numerous microelectronic,

catalytic, and other high-technology applications as

well as they are frequently used as substrates for

growth of other materials such as cuprate supercon-

ductors [28–34].

The predictive power of ab initio calculations

caused by both the explosive development of new

computational codes and powerful increase in com-

puter speed allows for us to design a new material for

high technology purposes on the paper. Very good

example is prediction of the average battery voltage

for a large amount of 4 V battery cathodes from

ab initio calculations by Ceder et al. [35, 36]. More-

over, on the basis of our ab initio calculations per-

formed by Eglitis and Borstel [37, 38], it was

demonstrated that the cubic spinel structure Li2-
CoMn3O8 battery cathode material will lead to the

novel high-voltage lithium-ion battery working at the

5 V range [37, 38].

A great variety of metal ions can occupy the A and

B sites in the technologically important ABO3 per-

ovskite structure, and such versatility of this class of

materials makes them a perfect choice for a large

number of catalytic applications, including electro-

catalytic operations. An SOEC cathode should have

high electronic and ionic conductivities. An ABO3

perovskite oxide can possess both of these conduc-

tivities. Thereby, very novel and forefront research

direction is perovskite material cathodes. Due to the

problems such as Ni reoxidation and requirement of

using a reducing agent in the feed stream, coke

deposition at lower temperatures, and further

reduction of CO to carbon at high cathodic potentials,

the focus of research on CO2 electrolysis has shifted

from improvement of metal-cermet electrodes to

developing of alternative materials. Oxide-based

mixed ionic and electrical conductors (MIECs),

specifically perovskite-type MIEC oxides, have

attracted attention due to their easily tunable ionic

and electrical conductivity, high stability at high

temperatures as well as resistance to coke formation.

Therefore, it is self-evident that in last 25 years

CaTiO3, SrTiO3, PbTiO3, BaTiO3, CaZrO3, SrZrO3,

PbZrO3 and BaZrO3 perovskite neutral (001) surfaces

were world wide extensively explored both theoret-

ically and experimentally [39–54]. Recently, system-

atic trends in ab initio calculations for eight

technologically most important ABO3 perovskite

neutral (001) surfaces were summarized by Eglitis

et al. [55, 56]. For example, it was pointed out that

relaxation of ABO3 perovskite (001) surface metal

atoms for upper two surface layers, as a rule, is larger

than that of oxygen atoms. For ABO3 perovskite (001)

surfaces, in most cases, all atoms of the first surface

layer relax inwards, towards the bulk, all atoms of the

second surface layer relax outwards, and, again, all

atoms of the third surface layer relax inwards [55, 56].

It is worth to notice that for both AO and BO2 ter-

minations, the ABO3 perovskite (001) surface energies

are almost equivalent. According to our ab initio

calculations [55, 56], the ABO3 perovskite (001) sur-

face band gaps are always reduced regarding to their

respective bulk band gap values. Finally, in ABO3

perovskite bulk, the B–O chemical bond population is

always smaller than near the (001) surface [55, 56].

In contrast to neutral (001) surfaces, the ABO3

perovskite polar (011) surfaces are much more com-

plicated, since they consist of charged and polar

planes, and thereby also of course less studied, both

theoretically and experimentally. To the best of our

knowledge, first ab initio study of the atomic and

electronic structure of the polar CaTiO3 (011) surface

was performed by Zhang et al. [57]. The calculation

results by Zhang et al. indicated that the energetically

most favourable CaTiO3 surfaces are the CaO-termi-

nated (001) (0.824 eV), the A-type O-terminated (011)

(0.837 eV), and the TiO2-terminated (001) (1.021 eV)

surfaces. This result by Zhang et al. [57] sharply

contrasted with all another calculation results dealing

with ABO3 perovskite (001) and (011) surfaces

[58–69], where the ABO3 perovskite (001) surface

energies are always smaller than (011) surface ener-

gies. One year later, Eglitis and Vanderbilt [11] per-

formed very comprehensive first-principles

calculations for three possible CaTiO3 (011) surface

terminations. Just opposite to Zhang et al. [57], Eglitis

and Vanderbilt [11] found that CaO (0.94 eV)- and

TiO2 (1.13 eV)-terminated (001) surface energies are

considerably smaller than the O-terminated (1.86 eV)

CaTiO3 (011) surface energy, in a line with all other
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previous ab initio studies for ABO3 perovskite polar

(011) surfaces [58–69].

The first ab initio calculations for polar SrTiO3 (011)

surfaces were carried out by Bottin et al. [59]. One

year later, Heifets and his co-workers [60] performed

ab initio Hartree–Fock (HF) calculations for SrTiO3

(011) surfaces. Around 10 years ago Eglitis and

Vanderbilt [10] performed first-principles calcula-

tions for O-, Sr- and TiO-terminated SrTiO3 (011)

surfaces using a hybrid description of exchange and

correlation. Finally, Enterkin et al. [61] reported a

comprehensive research on the 3 9 1 polar SrTiO3

(110) surface structure obtained through transmission

electron diffraction and direct methods and con-

firmed through density functional theory calculations

and scanning tunnelling microscopy images and

simulations.

First in the world ab initio calculations for PbTiO3

and BaTiO3 (011) surfaces were performed by Eglitis

and Vanderbilt [9]. Eglitis and Vanderbilt presented

and discussed the results of calculations of surface

relaxations and rumplings for the polar (011) surfaces

of PbTiO3 and BaTiO3 by means of the hybrid B3PW

description of exchange and correlation [9]. They

considered three types of polar PbTiO3 and BaTiO3

(011) surfaces, terminated on a TiO layer, a Pb or Ba

layer as well as O layer. They found that the relax-

ation energies for TiO-terminated PbTiO3 and BaTiO3

polar (011) surfaces are much larger than for the Pb-

or Ba-terminated (011) surfaces. Two years later

Zhang et al. [62] performed ab initio calculations of

the atomic and electronic structure as well as stability

of the polar PbTiO3 (011) surfaces. At the same time

independently Zhang et al. [63] by means of the GGA

exchange–correlation functional performed first-

principles calculations for the surface energy, cleav-

age energy, surface grand potential as well as surface

relaxation for five different terminations of polar

PbTiO3 (011) surface. Simultaneously with Eglitis and

Vanderbilt [9] in 2007, Xie et al. [64] investigated the

electronic and atomic structures of the polar BaTiO3

(011) surfaces by means of ab initio DFT calculations

using the slab model. Finally, Wang et al. [65]

explored the thermodynamic surface stability for

polar BaTiO3 (011) surface five terminations, namely

BaTiO, TiO, Ba, O2 and O.

To the best of our knowledge no ab initio studies

exist dealing with polar CaZrO3 (011) surfaces, and

thereby in this paper we performed first in the world

predictive theoretical calculations for CaZrO3 (011)

surfaces. Eglitis and Rohlfing [66] performed first

ab initio calculations of surface relaxations, energet-

ics, rumplings, optical band gaps as well as charge

distribution for three different terminations of polar

SrZrO3 and PbZrO3 (011) surfaces. It is worth to

notice, that 4 years latter Chen et al. [67] also at

ab initio level investigated the stabilities and elec-

tronic properties of five possible terminations for

SrZrO3 (011) polar surfaces.

First ab initio calculations for BaZrO3 (011) surfaces

were simultaneously performed 10 years ago by

Eglitis [68] as well as by Heifets et al. [69]. Eglitis [68]

performed polar BaZrO3 (011) surface relaxation as

well as calculated the surface energies and rumplings

for three different terminations, namely Ba, ZrO and

O. Heifets et al. [69] by means of the density func-

tional theory calculations studied the atomic and

electronic structure as well as charge redistribution of

polar BaZrO3 (011) surfaces.

Along with theoretical ab initio investigations of

ABO3 perovskite (011) surfaces, their polar (011)

surfaces are world wide extensively studied also

experimentally. For example, Crosby et al. [70]

resolved the surface structure of (110) faceted stron-

tium titanate nanoparticles synthesized via

solvothermal method using high-resolution micro-

scopy. The authors demonstrate that the surface is a

titania-rich structure containing tetrahedrally coor-

dinated TiO4 units similar to the family of (n 9 1)

reconstructions observed on (110) surfaces of bulk

crystalline SrTiO3 [70]. As an another example of

brilliant experimental work, 8 years ago Enterkin

et al. [61] reported a solution to the 3 9 1 SrTiO3 (110)

surface structure obtained through transmission

electron diffraction and direct methods and con-

firmed through scanning tunnelling microscopy and

simulations [61].

The aim of this research paper was to carry out first

in the world ab initio calculations for CaZrO3 polar

(011) surfaces in order to complete our more than

10 year long work dealing with first-principles cal-

culations of polar and charged ABO3 perovskite (011)

surfaces [9–11, 59, 60, 66, 68]. For our CaZrO3 (011)

surface calculations, we chose the high symmetry

cubic phase because it is most extensively studied for

CaTiO3, SrTiO3, PbTiO3, BaTiO3, SrZrO3, PbZrO3 and

BaZrO3 perovskites. The (011) surface studies for

other CaZrO3 low symmetry phases remain a chal-

lenging problem for our future calculations. After we

completed first-principles calculations for CaZrO3
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(011) surfaces, we analysed results for all eight ABO3

perovskites, and detected systematic trends common

for CaTiO3, SrTiO3, PbTiO3, BaTiO3, CaZrO3, SrZrO3,

PbZrO3 and BaZrO3 perovskite polar (011) surfaces in

a form interesting for a large audience of readers.

Computational method as well as polar
CaZrO3 (011) surface models and energies

In this paper, we performed ab initio calculations for

polar CaZrO3 (011) surfaces, using the hybrid

exchange–correlation functional B3LYP [71] as well

as the world well-known CRYSTAL [72] computer

code. Our previous calculation results for CaTiO3,

SrTiO3, PbTiO3, BaTiO3, SrZrO3, PbZrO3 and BaZrO3

(011) surfaces performed by B3LYP [71] or B3PW [73]

functional are listed for comparison purpose with

aim to detect systematic trends in polar (011) surface

calculations for all eight technologically most

important ABO3 perovskites. For CaZrO3 bulk, we

performed the reciprocal-space integration by sam-

pling the Brillouin zone with an 8 9 8 9 8 times,

whereas for (011) surfaces with 8 9 8 9 1 times

extended Pack–Monkhorst net [74]. In this paper, for

Ca, Zr and O atoms, we used exactly the same basis

sets as in our previous work dealing with ab initio

calculations of neutral CaZrO3 (001) surfaces [75].

The polar CaZrO3 (011) surfaces were modelled with

two-dimensional (2D) slabs, which contained nine

planes perpendicular to the [011] crystal direction

(Fig. 1). The main difficulty in modelling the CaZrO3

(011) polar surface is that it consists of charged

planes, O–O or CaZrO3. If we assume fixed ionic

charges Ca2?, Zr4? and O2- in the CaZrO3 per-

ovskite, then calculating the polar CaZrO3 (011) sur-

face precisely as would be acquired from a CaZrO3

crystal cleavage leads to either an endless macro-

scopic dipole moment in the direction perpendicular

to the (011) surface, when the slab is terminated by

different planes—O2 and CaZrO (Fig. 2a), or an

excess of charge, when both sides of the slab are

terminated by the same crystalline planes (O2–O2)

(Fig. 2b) or (CaZrO–CaZrO) (Fig. 2c). It is well

known that these two kinds of crystal terminations

make the polar CaZrO3 (011) surface unsta-

ble [1, 60, 76]. In ab initio calculations for a slab ter-

minated by the different kind of planes the charge

redistribution near the surface, in principle, can

Ca Zr O

Figure 1 Schematic picture of the cubic CaZrO3 perovskite

structure containing two (011) cleavage planes which create

charged O2 and CaZrO (011) surfaces.

(a) (d)

(b) (e)

(c) (f)

Figure 2 CaZrO3 (011) surface slab models (a–f) used in our

calculations. CaZrO3 slabs obtained by crystal cleaving yields

mixed O2- and CaZrO-terminated polar surfaces (a), O2-

terminated (b) as well as CaZrO-terminated (c) charged

surfaces. Our modified nonpolar and neutral TiO-terminated

CaZrO3 (011) surfaces (d), Ca-terminated (e) and O-terminated

(f) surfaces.
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compensate the macroscopic dipole moment. From

another side, in the ab initio calculations of slabs

terminated by the same planes the charge neutrality

may be easily retained by setting in the computer

input files an appropriate number of electrons or the

zero net charge of the unit cell. Nevertheless, careful

calculations [1, 59, 77] demonstrate that these two

options for ABO3 perovskite surfaces are energeti-

cally expensive with respect to the dipole moment

elimination via introduction of vacancies.

For these two reasons, in order to get as good as

possible results, we used for our CaZrO3 (011) surface

calculations nonpolar CaZrO-terminated surfaces

and modified their upper and lower layers. Namely,

we removed the Ca atom from the upper and lower

layer of the nine-layer symmetric CaZrO-terminated

slab (Fig. 2d). We get a neutral 21-atom containing

ZrO-terminated CaZrO3 (011) slab as illustrated in

Fig. 2d. If we simultaneously remove both the Zr and

O atoms from the upper and lower layers of the

symmetric 9-layer CaZrO-terminated CaZrO3 (011)

slab, we get a neutral Ca-terminated CaZrO3 (011)

9-layer slab which contains 19 atoms (Fig. 2e). Lastly,

if we remove the O atom again from the upper and

lower layers of the nine-layer symmetric O–O-ter-

minated CaZrO3 (011) slab, we get the neutral and

symmetric 20-atom containing nine-layer supercell

with O-terminated CaZrO3 (011) surfaces (Fig. 2f).

With aim to calculate the CaZrO3 (011) surface

energies, we started with the cleavage energy calcu-

lations for unrelaxed Ca- and ZrO-terminated (011)

surfaces. Surfaces with Ca and ZrO terminations

simultaneously arise under (011) cleavage of the

CaZrO3 crystal. We assume that the cleavage energy

is equally distributed between the created Ca- and

ZrO-terminated (011) surfaces. In our CaZrO3 (011)

surface calculations, the nine-layer Ca-terminated

(011) slab with 19 atoms and the ZrO-terminated

(011) slab with 21 atoms together contain 40 atoms, or

in another words eight bulk unit cells (40 atoms),

thereby:

Eunr
surfðWÞ ¼ 1=4 Eunr

slab Cað Þ þ Eunr
slab ZrOð Þ�8Ebulk

� �
; ð1Þ

where W means Ca or ZrO termination of CaZrO3

(011) surface, Eslab
unr (W) are the total energies of the

unrelaxed Ca- or ZrO-terminated CaZrO3 (011) slabs,

Ebulk is the total energy per bulk unit cell, and the

coefficient of � comes from the event that we create

four surfaces due the cleavage procedure. As a next

step, we will calculate the relaxation energies for each

of Ca- and ZrO-terminated CaZrO3 (011) slabs, when

both sides of the slabs relax, by means of the fol-

lowing equation:

ErelðWÞ ¼ 1=2½Erel
slabðWÞ�Eunr

slabðWÞ�; ð2Þ
where Eslab

rel (W) is the slab energy after the geometry

relaxation (W = Ca or ZrO). The CaZrO3 (011) surface

energy is equal to a sum of the cleavage and relax-

ation energies:

EsurfðWÞ ¼ Eunr
surfðWÞ þ ErelðWÞ; ð3Þ

Finally, in case when we cleave the CaZrO3 crystal in

another way, we got two equal O-terminated CaZrO3

(011) surface slabs. Each of them contains 20 atoms.

Thereby, we can simplify our calculations, since the

unit cell of the nine-plane O-terminated CaZrO3 (011)

slab contains four bulk unit cells. The surface energy

for O-terminated (011) surface is equal to:

Esurf Oð Þ ¼ 1=2 Erel
slab Oð Þ�4Ebulk

� �
; ð4Þ

where Esurf(O) and Eslab
rel (O) are the O-terminated

CaZrO3 (011) surface energy and the relaxed O-ter-

minated CaZrO3 (011) slab total energy.

Calculation results for polar CaZrO3 (011)
surfaces

As a first step of our calculations, we calculated, by

means of the hybrid B3LYP functional, the CaZrO3

bulk lattice constant and found it equal to 4.157 Å. In

order to characterize the covalency effects and

chemical bonding, we used a classical Mulliken

population description for the effective atomic char-

ges Q and other local properties of CaZrO3 electronic

structure as defined in Refs. [78, 79]. By means of

B3LYP hybrid exchange–correlation functional, our

calculated CaZrO3 effective bulk atomic charges are

equal to (? 1.787e) for the Ca atom, (? 2.144e) for the

Zr atom, and (- 1.310e) for the O atom. Our calcu-

lated CaZrO3 bulk bond population of the chemical

bonding is largest between Zr and O atoms

(? 0.086e). The bond population between Ca and O

atoms is more than six times smaller (? 0.014e) than

between Zr and O atoms. Finally, the bond popula-

tion between O and O atoms is even negative

(- 0.010e), which indicates a small repulsion between

O and O atoms in the CaZrO3 bulk matrix.

As we explained in ‘‘Computational method as

well as polar CaZrO3 (011) surface models and
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energies’’ section, nonpolar and neutral ZrO-, Ca- and

O-terminated (011) surfaces for the CaZrO3 per-

ovskite can be constructed by us as shown in Fig. 2d–

f, respectively. Our calculated atomic displacements

obtained by B3LYP hybrid exchange–correlation

functional for ZrO-, Ca- and O-terminated CaZrO3

(011) surfaces are shown in Table 1.

From the results of our calculations (Table 1), all

atoms of the upper CaZrO3 (011) surface layer relax

inward, namely towards the bulk, for all three ZrO-,

Ca- and O-terminated CaZrO3 (011) surfaces. The

only exception is outward relaxation of ZrO-termi-

nated CaZrO3 (011) surface upper-layer O atom by

4.96% of the bulk lattice constant a0. As we can see

from Table 2 and Fig. 3, also for all another our cal-

culated ABO3 perovskites systematic trend is that all

upper-layer atoms for all three (011) terminations

relax inward with the exception of BO-terminated
Table 1 Our B3LYP calculated atomic relaxations for the CaZrO3

(011) surfaces (in per cent of the bulk lattice constant a0) for the

three surface terminations ZrO, Ca and O

Layer Ion Dz Dy

ZrO-terminated CaZrO3 (011) surface

1 Zr - 6.06

1 O ? 4.96

2 O - 0.38

3 Ca - 3.61

3 O - 7.94

3 Zr - 0.41

Ca-terminated CaZrO3 (011) surface

1 Ca - 18.67

2 O ? 1.25

3 Zr ? 0.25

3 O - 0.63

3 Ca - 0.14

O-terminated CaZrO3 (011) surface

1 O - 5.97 - 5.05

2 Zr ? 0.75 - 2.17

2 Ca ? 1.78 13.95

2 O ? 0.67 1.32

3 O ? 0.51 1.23

Positive signs correspond to outwards atomic displacements

Table 2 Our calculated upper-layer atom relaxations for all eight ABO3 perovskite AO-, A- and O-terminated (011) as well as AO- and

BO2-terminated (001) surfaces

Term Atom CTO STO PTO BTO CZO SZO PZO BZO

BO (011) B - 7.14 - 7.69 - 8.13 - 7.86 - 6.06 - 6.16 - 6.87 - 6.61

O ? 4.67 ? 3.59 ? 3.30 ? 2.61 ? 4.96 ? 4.36 ? 4.27 ? 3.35

A (011) A - 16.05 - 12.81 - 11.94 - 8.67 - 18.67 - 15.73 - 15.17 - 11.81

O (011) O - 6.10 - 6.61 - 7.37 - 5.40 - 5.97 - 6.56 - 6.61 - 7.32

BO2 (001) B - 1.71 - 2.25 - 2.81 - 3.08 - 1.30 - 1.38 - 2.37 - 1.79

O - 0.10 - 0.13 ? 0.31 - 0.35 - 2.31 - 2.10 - 1.99 - 1.70

AO (001) A - 8.31 - 4.84 - 3.82 - 1.99 - 10.01 - 7.63 - 5.69 - 4.30

O - 0.42 ? 0.84 - 0.31 - 0.63 - 0.79 - 0.86 - 2.37 - 1.23

Positive signs correspond to outwards atomic displacements
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Figure 3 Our calculated upper-layer atom relaxations for all eight

ABO3 perovskite BO-, A- and O-terminated (011) as well as AO-

and BO2-terminated (001) surfaces. A-terminated (011) surface A

atom relaxation (line 1). AO-terminated (001) surface A (line 2)

and O (line 6) atom relaxations. BO-terminated (011) surface B

atom (line 3) and O atom (line 8) atom relaxations. O-terminated

(011) surface O atom relaxation (line 4). BO2-terminated (001)

surface B atom (line 5) and O atom (line 7) atom relaxations.
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(011) surface upper-layer O atoms. The largest

relaxation magnitude between all upper-layer

CaZrO3 (011) surface atoms exhibits the Ca-termi-

nated (011) surface Ca atom by 18.67% of a0. This our

calculated Ca atom displacement magnitude (18.67%

of a0) is approximately three times larger than the

relevant displacement magnitudes for Zr atom (6.06%

of a0) on the ZrO-terminated and O atom (5.97% of a0)

on the O-terminated CaZrO3 polar (011) surfaces.

Also for all another ABO3 perovskites, the A atom

inward relaxation magnitude on A-terminated (011)

surface always is larger than the B atom and O atom

relaxation magnitudes on BO- and O-terminated

ABO3 perovskite (011) surfaces (Table 2 and Fig. 3).

However it is worth to notice that for the BaTiO3

perovskite, the Ba atom inward relaxation (8.67% of

a0) on the Ba-terminated BaTiO3 (011) surface is only

slightly larger than the Ti atom inward relaxation

(7.86% of a0) on the TiO-terminated BaTiO3 (011)

surface (Table 2 and Fig. 3). As we can see from

Table 2 and Fig. 3, systematic trend is that the ABO3

perovskite (011) surface upper-layer atom relaxation

almost always is larger than the (001) surface upper-

layer atom relaxation. For ABO3 perovskite (011) and

(001) terminated surfaces, in most cases the metal

atom relaxation magnitudes are larger than the oxy-

gen atom relaxation magnitudes.

All second-layer ZrO-, Ca- and O-terminated

CaZrO3 (011) surface atoms relax upwards, with the

sole exception for O atom on the ZrO-terminated

(011) surface (Table 1). Such systematic tendency,

mostly upward relaxation of second-layer atoms on

BO-, A- and O-terminated (011) surfaces, is common

for all eight ABO3 perovskites (Table 3 and Fig. 4).

Namely, according to our calculations, for CTO, STO,

PTO, BTO, CZO, SZO, PZO and BZO perovskite

second layers, upwards relax 23 atoms, whereas

inwards only 17 atoms (Table 3 and Fig. 4).

Finally, all ZrO-, Ca- and O-terminated CaZrO3

(011) surface third-layer atoms relax inwards, with

the exception of Ca-terminated (011) surface third-

layer Zr atom and O-terminated (011) surface O

atom, which both relax upwards (Table 1). Also for

all our eight calculated ABO3 perovskite BO-, A- and

O-terminated (011) surface third-layer atoms, a large

majority, namely 37 atoms, relax inwards, while only

16 atoms relax outwards (Table 4 and Fig. 5).

According to our B3LYP calculations, on the ZrO-

terminated CaZrO3 (011) surface, the upper-layer Zr

atom relax inwards by 6.06% of the a0, but the same

upper-layer O atom relax outwards by 4.96%

(Table 1), creating a large surface rumpling equal to

11.02 (Table 5). On the ZrO-terminated CaZrO3 (011)

surface, the displacement magnitudes of all atoms in

the third layer are larger than in the second-layer and

the third-layer O atom displacement magnitude

Table 3 Our calculated

second-layer atom relaxations

for all eight ABO3 perovskite

BO-, A- and O-terminated

(011) surfaces

Term Atom CTO STO PTO BTO CZO SZO PZO BZO

BO (011) O - 0.44 - 0.51 - 0.41 - 1.02 - 0.38 - 0.38 - 0.24 - 0.29

A (011) O ? 1.35 ? 1.02 - 0.61 ? 0.80 ? 1.25 ? 1.24 - 0.57 ? 0.66

O (011) B - 0.26 - 1.02 ? 0.20 - 0.15 ? 0.75 ? 1.45 ? 0.73 ? 0.12

A - 2.10 - 1.18 ? 0.18 ? 1.54 ? 1.78 - 1.43 ? 0.73 ? 0.21

O ? 3.43 ? 1.79 ? 0.51 ? 1.95 ? 0.67 ? 4.29 ? 4.29 - 0.78

Positive signs correspond to outwards atomic displacements
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Figure 4 Our calculated O-terminated (011) surface A atom

relaxations (line 1), BO-terminated (011) surface O atom

relaxations (line 2), O-terminated (011) surface B atom

relaxations (line 3), A-terminated (011) surface O atom

relaxations (line 4), and, finally, O-terminated (011) surface

O-atom relaxations (line 5).
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7.94% of a0 is the largest displacement magnitude

between ZrO-terminated (011) surface all three layer

atoms (Table 1). Our calculated first interlayer

distance Dd12 values (Table 5) show that the reduced

distance between the first and second layers for ZrO-

terminated CaZrO3 (011) surface is more than 189

times larger than the corresponding expansion Dd23
between the second and third layers. From Table 5,

all our eight calculated ABO3 perovskite BO-termi-

nated (011) surfaces exhibit very large surface rum-

pling, ranging from 9.96 for BaZrO3 till 11.81 for

CaTiO3. For all our eight calculated ABO3 per-

ovskites, systematic trend is reduction in the inter-

layer distance Dd12, ranging from 5.68 for CaZrO3 till

7.72 for PbTiO3. Our calculated BO-terminated (011)

surface interlayer distance Dd23 is reduced for STO,

PTO, BTO, PZO and BZO perovskites, but expanded

by a very small magnitude for CZO, CTO and SZO

perovskites (Table 5).

The O-terminated CaZrO3 (011) surface has a lower

symmetry than the ZrO- and Ca-terminated CaZrO3

(011) surfaces; therefore, atomic displacements occur

not only in the z direction perpendicular to the sur-

face, but also in the y direction along the surface. For

example, the O atom on the O-terminated CaZrO3

(011) surface moves inwards, in the z direction by

5.97% and by a comparable magnitude of 5.05% also

along the surface in the y direction (Table 1). All

second-layer O-terminated CaZrO3 (011) surface,

Table 4 Our calculated third-

layer atom relaxations for all

eight ABO3 perovskite AO-,

A- and O-terminated (011)

surfaces

Term Atom CTO STO PTO BTO CZO SZO PZO BZO

BO (011) B - 0.78 ? 0.16 ? 0.30 - 0.41 - 0.40 - 0.02 ? 0.90

A - 2.75 - 2.10 - 2.54 - 0.88 - 3.61 - 1.94 - 2.37 - 1.51

O - 3.79 - 2.56 - 4.07 - 7.94 - 5.69 - 5.69 - 3.54

A (011) B - 0.37 - 0.04 ? 1.78 ? 0.16 ? 0.25 ? 0.10 - 0.66 ? 0.09

A - 0.93 ? 0.26 ? 1.52 - 0.14 - 0.48 ? 3.41 ? 0.71

O - 1.71 - 1.08 ? 1.67 - 0.43 - 0.63 - 0.95 ? 2.37 - 0.07

O (011) O - 0.55 - 0.79 - 0.41 ? 0.90 ? 0.51 - 0.10 - 0.19 - 0.07

Positive signs correspond to outwards atomic displacements
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Figure 5 Our calculated third-layer atom relaxations for all eight

ABO3 perovskite BO, A and O-terminated (011) surfaces. BO-

terminated (011) surface O atom relaxation (line 1), A atom

relaxation (line 2) and B atom relaxation (line 5). A-terminated

(011) surface O atom relaxation (line 3), A atom relaxation (line 4)

and B atom relaxation (line 7) as well as O-terminated (011)

surface O atom relaxation (line 6).

Table 5 Our calculated

surface rumpling s and relative

displacements Ddij (in per cent

of the ABO3 perovskite bulk

lattice constant a0) for the

three near-surface planes on

the BO- and O-terminated

ABO3 perovskite (011)

surfaces

Material BO-terminated (011) surface O-terminated (011) surface

s Dd12 Dd23 Dd12 Dd23

CaZrO3 (this paper) 11.02 - 5.68 0.03 - 6.72 0.24

CaTiO3 [11] 11.81 - 6.70 0.34 - 5.84 0.29

SrTiO3 [10] 11.28 - 7.18 - 0.67 - 5.59 - 0.23

PbTiO3 [9] 11.43 - 7.72 - 0.71 - 7.57 0.61

BaTiO3 [9] 10.47 - 6.84 - 1.02 - 5.25 - 1.05

SrZrO3 [62] 10.52 - 5.78 0.02 - 8.01 1.55

PbZrO3 [62] 11.14 - 6.63 - 0.22 - 7.34 0.92

BaZrO3 [64] 9.96 - 6.32 - 1.19 - 7.44 0.19
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atoms relax outwards in the z direction by 0.75% for

Zr atom, 1.78% for Ca atom and 0.67% for O atom. It

is worth to notice that the second-layer Ca atom

exhibits the largest displacement magnitude among

all our calculated CaZrO3 atoms along the surface in

the y direction by 13.95%. The third-layer O atom,

same as all three second-layer atoms, also moves

outward in the z direction, but by a small displace-

ment magnitude of 0.51%. From Table 5, for the

O-terminated CaZrO3 (011) surface there is a sub-

stantial contraction of the interlayer distance Dd12 on
the z direction by 6.72% and only a very small

expansion of Dd23 by 0.24%. Also for all other our

calculated ABO3 perovskites a large contraction of

the interlayer distance Dd12 for O-terminated (011)

surface occurs ranging from 5.25% for BTO till 8.01%

for SZO. For most of ABO3 perovskite O-terminated

(011) surfaces, like CZO, CTO, PTO, SZO, PZO and

BZO, there are a small expansion of the interlayer

distance Dd23 observed from our calculations,

whereas for STO and BTO perovskites the interlayer

distance Dd23 contracts. Comparison of surface rum-

pling s and interlayer distances Ddij for ABO3 per-

ovskite (011) and (001) surfaces is depicted in Fig. 6.

As we can see from Fig. 6, surface rumplings s for

ABO3 perovskite BO-terminated (011) surfaces are

always larger than the relevant surface rumplings for

AO and especially BO2-terminated ABO3 perovskite

(001) surfaces. ABO3 perovskite interlayer distances

Dd12 are always reduced for their BO-terminated

(011) as well as BO2 and especially AO-terminated

(001) surfaces (Fig. 6). In contrast, the interlayer dis-

tances Dd23 are always expanded for ABO3 perovskite

(001) surfaces, but they may be either expanded or

reduced for BO- and O-terminated (011) surfaces

(Fig. 6).

Our calculated surface energies of the relaxed ZrO-

, Ca- and O-terminated CaZrO3 (011) surfaces are

presented in Table 6 and plotted in Fig. 7 together

with another ABO3 perovskite (011) as well as for

comparison purpose also BO2- and AO-terminated

ABO3 perovskite (001) surface energies [55]. The

CaZrO3 (011) surface energies were computed by us

using Eqs. (1)–(4). Unlike the ABO3 perovskite (001)

surfaces [55], from Table 6 we can see that different

terminations of the ABO3 perovskite (011) surface, as

a rule, lead to considerable difference in the surface

energies. For example, the our calculated surface

energy difference between ZrO (3.46 eV)- and Ca

(1.49 eV)-terminated CaZrO3 (011) surfaces is really

huge and equal to 1.97 eV, which is more than any of

ZrO2 (1.33 eV)- or CaO (0.87 eV)-terminated CaZrO3

(001) surface energies. Among all three of our B3LYP

calculated CaZrO3 (011) surfaces, the Ca-terminated

CaZrO3 (011) surface has the lowest surface energy
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Figure 6 Our calculated surface rumplings s and interplanar

distances Dd12 and Dd23 for BO (lines 2, 6, 11)- and O (lines 3, 5)-

terminated ABO3 perovskite polar (011) surfaces as well as for

BO2 (lines 4, 8, 9)- and AO (lines 1, 7, 10)-terminated neutral

(001) surfaces.

Table 6 Our calculated surface energies for CaZrO3, CaTiO3 [11],
SrTiO3 [10], PbTiO3 [9], BaTiO3 [9], SrZrO3 [66], PbZrO3 [66] and
BaZrO3 [68] (011) surfaces (in electron volt per surface cell). Our

earlier calculated ABO3 perovskite (001) surface energies are listed for
comparison purpose [9–11, 66, 68, 75]

Term Esurf CTO STO PTO BTO CZO SZO PZO BZO

BO (011) 3.13 3.06 1.36 2.04 3.46 3.61 1.89 3.09

A (011) 1.91 2.66 2.03 3.24 1.49 2.21 1.74 2.90

O (011) 1.86 2.04 1.72 1.72 2.08 2.23 1.85 2.32

BO2 (001) 1.13 1.23 0.74 1.07 1.33 1.24 0.93 1.31

AO (001) 0.94 1.15 0.83 1.19 0.87 1.13 1.00 1.30
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equal to 1.49 eV, which only slightly by 0.16 eV

exceeds the surface energy for ZrO2-terminated

CaZrO3 (001) surface [75]. The surface energy for the

Ca-terminated CaZrO3 (011) surface 1.49 eV is more

than two times smaller than the ZrO-terminated

CaZrO3 (011) surface energy 3.46 eV (Table 6). The

O-terminated CaZrO3 (011) surface energy 2.08 eV is

very close to the sum of ZrO2 (1.33 eV)- and CaO

(0.87 eV)-terminated CaZrO3 (001) surface energies

equal to 2.20 eV.

In Table 7, we collected our B3LYP calculated

interatomic distances R as well as chemical bond

populations P for the ZrO, Ca and O terminations of

the CaZrO3 (011) surface. The most important effect

observed here is a strong increase in the Zr–O

chemical bonding covalency near the ZrO- and

O-terminated CaZrO3 (011) surface as compared to

both the CaZrO3 bulk (0.086e) and even to the ZrO2-

terminated CaZrO3 (001) surface 0.102e. For the

O-terminated CaZrO3 (011) surface, the O(I)–Zr(II)

chemical bond population is equal to 0.130e, which is

by 0.044e larger than the CaZrO3 bulk Zr–O bond

population as well as by 0.028e larger than the rele-

vant ZrO2-terminated CaZrO3 (001) surface chemical

bond population. For our calculated ZrO-terminated

CaZrO3 (011) surface, the Zr–O chemical bond pop-

ulation is larger in the direction perpendicular to the

ZrO-terminated (011) surface 0.240e than in the plane

0.138e (Table 7). As we can see from Table 8 and

Fig. 8, systematic trend is that the B–O chemical bond

population in all our eight calculated ABO3 per-

ovskite bulk as a rule are smaller than near their (001)

as well as especially (011) surfaces. It is worth to

notice that for all eight ABO3 perovskites (Table 8

and Fig. 8), the BO-terminated (011) surface B–O
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Figure 7 Our calculated ABO3 perovskite surface energies for

polar BO (line 1)-, A (line 2)- and O (line 3)-terminated (011) as

well as neutral BO2 (line 4)- and AO (line 5)-terminated (001)

surfaces.

Table 7 Our calculated A–B chemical bond populations P (in e)

as well as interatomic distances R (in Å) on CaZrO3 (011) surfaces

CaZrO3 (011) surface

Atom A Atom B P R

ZrO-terminated CaZrO3 (011) surface

Zr(I) O(I) 0.138 2.128

O(II) 0.240 1.919

O(II) Zr(III) 0.114 2.079

Ca(III) 0.018 3.009

O(III) 0.012 3.108

Zr(III) Ca(III) 0.002 3.603

O(III) 0.114 2.102

O(IV) 0.082 2.067

Ca(III) O(III) 0.016 2.945

O(IV) 0.016 2.867

O(III) O(IV) - 0.052 2.789

Ca-terminated CaZrO3 (011) surface

Ca(I) O(II) 0.028 2.625

O(II) Ca(III) 0.022 2.969

Zr(III) 0.078 2.108

O(III) - 0.010 2.979

Ca(III) O(III) 0.012 2.94

O(IV) 0.014 2.936

Zr(III) O(III) 0.052 2.079

Ca(III) 0.002 3.600

O(IV) 0.112 2.086

O(III) O(IV) - 0.012 2.927

O-terminated CaZrO3 (011) surface

O(I) Ca(II) 0.022 2.470

Zr(II) 0.130 1.986

O(II) - 0.010 2.959

Ca(II) O(II) - 0.012 2.415

Zr(II) - 0.002 3.078

Zr(II) O(II) 0.084 2.084

O(III) 0.186 1.989

O(II) O(III) - 0.002 2.945

Ca(II) O(III) 0.006 2.743

O(III) O(IV) - 0.014 2.939

Zr(IV) 0.066 2.130

Ca(IV) 0.012 2.925

Symbols I–IV denote the number of each plane enumerated from

the surface. The nearest-neighbour Zr–O distance is 2.0785 Å in

CaZrO3 bulk
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chemical bond population is larger in the direction

perpendicular to the BO-terminated (011) surface

than in the plane.

In Table 9 we listed our calculated CaZrO3 effec-

tive Mulliken charges Q as well as their changes

DQ in comparison with the respective bulk values for

near the surface atoms for the ZrO-, Ca- and O-ter-

minated CaZrO3 (011) surfaces. Firstly, on the ZrO-

terminated CaZrO3 (011) surface, the effective Mul-

liken charge on the first surface layer Zr atom

(? 2.178e) is slightly increased by ? 0.034e in com-

parison with the relevant bulk value. The third-layer

metal atom Ca loses - 0.033e charge, while the other

third-layer metal atom Zr gains almost the same

amount of charge, namely 0.039e. It is interesting to

notice that the O atoms in the first, second, third and

fourth surface layers have reduced charges making

them less negative. The largest O atom charge change

equal to (0.178e) is observed for the CaZrO3 subsur-

face O atoms, thereby giving a large positive charge

change of 0.356e for the whole subsurface layer

(Table 9).

On the CaZrO3 Ca-terminated (011) surface, the

only positive charge change is observed for the third-

layer Zr atom, where the Zr atom charge increases by

0.033e from the bulk value 2.144e till 2.177e. The lar-

gest charge changes are for the subsurface O ion

(0.157e) as well as surface Ca ion (0.101e). Thereby,

Table 8 Our calculated eight ABO3 perovskite bulk, BO2-terminated (001) surface as well as BO-terminated (011) surface B–O chemical

bond populations in the plane (B(I)–O(I)) and in the direction perpendicular to the (011) surface (B(I)–O(II))

CZO CTO STO PTO BTO SZO PZO BZO

Bulk (B–O) 0.086 0.084 0.088 0.098 0.098 0.092 0.106 0.108

(001) (B–O) 0.102 0.114 0.118 0.114 0.126 0.114 0.116 0.132

(011) (B(I)–O(I)) 0.138 0.128 0.130 0.132 0.130 0.142 0.148 0.152

(011) (B(I)–O(II) 0.240 0.186 0.188 0.196 0.198 0.246 0.252 0.252
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Figure 8 Our calculated B–O chemical bond populations for

ABO3 perovskite bulk (line 1), BO2-terminated (001) surfaces

(line 2) as well as B(I)–O(I) (line 3) and B(I)–O(II) (line 4)

chemical bond populations for the BO-terminated ABO3

perovskite (011) surfaces.

Table 9 Our B3LYP calculated Mulliken atomic charges Q (in e)

and changes in atomic charges DQ with respect to the CaZrO3

bulk charges (in e) on the ZrO-, Ca- and O-terminated CaZrO3

(011) surfaces

CaZrO3 (011) surface

Atom Q DQ

ZrO-terminated CaZrO3 (011) surface

Zr(I) ? 2.178 ? 0.034

O(I) - 1.263 ? 0.047

O(II) - 1.132 ? 0.178

Ca(III) ? 1.754 - 0.033

Zr(III) ? 2.183 ? 0.039

O(III) - 1.283 ? 0.027

O(IV) - 1.300 ? 0.01

Ca-terminated CaZrO3 (011) surface

Ca(I) ? 1.686 - 0.101

O(II) - 1.467 - 0.157

Ca(III) ? 1.778 - 0.009

Zr(III) ? 2.177 ? 0.033

O(III) - 1.394 - 0.084

O(IV) - 1.312 - 0.002

O-terminated CaZrO3 (011) surface

O(I) - 1.314 - 0.004

Ca(II) ? 1.734 - 0.053

Zr(II) ? 2.173 ? 0.029

O(II) - 1.327 - 0.017

O(III) - 1.297 ? 0.013

Ca(IV) ? 1.775 - 0.012

Zr(IV) ? 2.153 ? 0.009

O(IV) - 1.291 ? 0.019

The CaZrO3 bulk Mulliken charges are equal to 1.787e for Ca,

2.144e for Zr, and - 1.310e for O
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our calculated largest overall charge change occurs in

the Ca-terminated CaZrO3 (011) surface subsurface

layer (0.314e). On the O-terminated CaZrO3 (011)

surface, the largest charge change between all atoms

is observed for the subsurface Ca atom equal to

0.053e, whereas the total charge density change in the

fourth layer is almost negligible and equal to only

0.016e.

Summary and conclusions

Based on our current ab initio B3LYP calculations for

polar CaZrO3 (011) surfaces as well as for comparison

purposes listed previous B3PW and B3LYP calcula-

tions [9–11, 66, 68, 75] for CTO, STO, PTO, BTO, SZO,

PZO and BZO (011) surfaces, the following system-

atic trends for ABO3 perovskite polar (011) surfaces

were detected:

1. For ABO3 perovskite polar (011) surfaces, sys-

tematic trend is that most of upper-layer atoms

relax inwards, with only exception of all eight

ABO3 perovskite BO-terminated (011) surface O

atoms. Twenty three of BO-, A- and O-terminated

ABO3 perovskite (011) surface second-layer

atoms relax outwards, whereas 17 second-layer

atoms inwards. Finally, a large majority of (011)

surface third-layer atoms, namely 37 atoms, relax

inwards, while only 16 remaining atoms relax

outwards. It is worth to notice, that inward

relaxation of upper-layer atoms, upwards relax-

ation of second-layer atoms and, again, inwards

relaxation of third-layer atoms were even more

strongly pronounced effect for the ABO3 per-

ovskite (001) surfaces [55].

2. The strongest relaxation magnitude between all

BO-, A-, and O-terminated ABO3 perovskite (011)

surfaces always exhibit the A-terminated (011)

surface upper-layer A atoms. The BO-terminated

ABO3 perovskite (011) surface third-layer atoms,

in most cases, exhibit larger relaxation magnitude

than the second-layer atoms.

3. The BO-terminated ABO3 perovskite (011) sur-

face upper layer rather large metal atom inwards

relaxation as well as the same upper-layer oxygen

atom outwards relaxation leads to a considerable

rumpling of the outermost plane ranging from

9.96 for BZO till 11.81 for CTO. For all our eight

calculated ABO3 perovskite BO and O-terminated

(011) surfaces, a systematic trend is a strong

contraction of the interlayer distance Dd12, rang-

ing from 5.68 (CZO) till 7.72 (PTO) for BO-

terminated (011) surface as well as from 5.25

(BTO) till 8.01 (SZO) for O-terminated CaZrO3

(011) surface. For all eight ABO3 perovskites and

for both BO and O terminations, the interlayer

distance Dd23 exhibits either very small expansion

for ZrO-terminated (011) surface for CZO, CTO,

SZO perovskites ranging from 0.03 (CZO) till 0.34

(CTO) and for O-terminated (011) surfaces small

expansion is observed for CZO, CTO, PTO, SZO,

PZO and BZO ranging from 0.19 BZO till 1.55

(CZO), or a small contraction for remaining of

eight ABO3 perovskites.

4. Unlike the ABO3 perovskite (001) surfaces [55]

different BO, A and O terminations of the ABO3

perovskite (011) surface, as a rule, usually, lead to

a considerable difference in the surface energies.

Our calculated eight ABO3 perovskite (011) sur-

face energies are always larger than the (001)

surface energies. Although in some cases, the

ABO3 perovskite (011) and (001) surface energies

are really close, as for example the CaZrO3

perovskite Ca-terminated CaZrO3 (011) surface

energy (1.49 eV) only by 0.16 eV exceeds the

ZrO2-terminated CaZrO3 (001) surface energy

equal to 1.33 eV.

5. The B–O chemical bond population in ABO3

perovskites increase in direction from the bulk,

ranging from 0.084e (CTO) till 0.108e (BZO)

towards the BO2-terminated (001) surface, rang-

ing from 0.102e (CZO) till 0.132e (BZO) and reach

its maximum for BO-terminated ABO3 perovskite

(011) surface. Our calculated BO-terminated (011)

surface B(I)–O(I) in plane chemical bond popula-

tion is in the range from 0.128e (CTO) till

0.152e (BZO). Finally, the maximal chemical bond

population value is for the direction perpendic-

ular to the BO-terminated ABO3 perovskite (011)

surface, where B(I)–O(II) values are in the range

from 0.186e (CTO) till 0.252e (PZO, BZO).
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