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ABSTRACT 

 

Genetic programming (GP), a capable machine learning and search method, 

motivated by Darwinian-evolution, is an evolutionary learning algorithm which 

automatically evolves computer programs in the form of trees to solve problems. This 

thesis studies the application of GP for data mining and image processing. Knowledge 

discovery and data mining have been widely used in business, healthcare, and scientific 

fields. In data mining, classification is supervised learning that identifies new patterns and 

maps the data to predefined targets. A GP based classifier is developed in order to perform 

these mappings. GP has been investigated in a series of studies to classify data; however, 

there are certain aspects which have not formerly been studied. 

We propose an optimized GP classifier based on a combination of pruning subtrees 

and a new fitness function. An orthogonal least squares algorithm is also applied in the 

training phase to create a robust GP classifier. The proposed GP classifier is validated by 

10-fold cross validation. Three areas were studied in this thesis. The first investigation 

resulted in an optimized genetic-programming-based classifier that directly solves multi-

class classification problems. Instead of defining static thresholds as boundaries to 

differentiate between multiple labels, our work presents a method of classification where a 

GP system learns the relationships among experiential data and models them 

mathematically during the evolutionary process. Our approach has been assessed on six 

multiclass datasets. The second investigation was to develop a GP classifier to segment 

and detect brain tumors on magnetic resonance imaging (MRI) images. The findings 

indicated the high accuracy of brain tumor classification provided by our GP classifier. The 
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results confirm the strong ability of the developed technique for complicated image 

classification problems. The third was to develop a hybrid system for multiclass 

imbalanced data classification using GP and SMOTE which was tested on satellite images. 

The finding showed that the proposed approach improves both training and test results 

when the SMOTE technique is incorporated. We compared our approach in terms of speed 

with previous GP algorithms as well. The analyzed results illustrate that the developed 

classifier produces a productive and rapid method for classification tasks that outperforms 

the previous methods for more challenging multiclass classification problems. We tested 

the approaches presented in this thesis on publicly available datasets, and images. The 

findings were statistically tested to conclude the robustness of the developed approaches. 
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CHAPTER 1 

Introduction 
 

In data mining, classification is supervised learning that labels the data based on 

predefined targets. The goal of the classification is to create a classifier for a set of instances 

with some features to predict their class membership using their properties [1]. 

Given the great quantity of data now being collected and stored in databases and clouds, 

there is a fast-growing demand for systems that can autonomously do the analysis and find 

valuable patterns in data for classification without operator intervention. On the other hand, 

modeling the data and building predictive models that can consistently and accurately 

classify the input data is challenging. In real world classification scenarios required 

tackling a tremendous number of learning instances with high dimensions and complicated 

relationships [2, 3]. 

Over the years, a series of methods have been introduced to solve data classification 

problems, comprising statistical and machine learning algorithms such as linear regression 

[4], logistics regression [5], decision tree[6], Bayesian [7], random forest [8], neural 

networks [9], KNN [10], SVM [11], FCM [12, 13], CNN [14], and RNN [15] to name a 

few. Evolutionary algorithms [16] such as genetic algorithms [17] and genetic 

programming algorithms [18] inspired by nature are also widely used. 

The main objective of this thesis is to develop a genetic programming-based 

classification algorithm, and validate its performance in the domain of three types of data, 

including multiclass datasets, medical images, and satellite images and to investigate a 

hybrid system of GP and Synthetic Minority Over-sampling Technique (SMOTE) for 
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multi-dimensional class-imbalanced data. Tied in with the primary objective previously 

stated, this thesis will provide a complete analysis of the related literature on GP and 

multiclass data classification. Three objectives were framed for this thesis and are as 

follows: 

Objective 1: Incorporating genetic programming for multiclass classification. 

To advance genetic programming with a novel fitness function for multiclass dataset 

classification and employing a pruning subtree technique for improving the training phase. 

An orthogonal least squares algorithm is also applied in the training phase to create a robust 

GP classifier. The proposed approach will be applied on six multiclass datasets and 

compared against existing methods. 

Objective 2: Identifying genetic programming representations for medical image 

analysis. 

To identify the performance of the improved genetic programming in classification medical 

images, and to evaluate the role of the developed algorithm in brain tumor detection using 

magnetic resonance imaging scans. 

Objective 3: Creating a hybrid system based on genetic programming and SMOTE.  

To propose and study and implement a hybrid method which will classify imbalanced 

multiclass datasets. The goal is to determine how the SMOTE technique can be employed 

in the training phase for creating a robust multiclass imbalanced data classifier. To evaluate 

the implemented hybrid genetic programming algorithm combined with SMOTE, an 

analysis will be conducted on multiclass imbalanced satellite images in which the features 

are extracted from the red, blue and green intensities of the pixels. The functionality of the 

hybrid system will be compared with other techniques. 
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CHAPTER 2 

Literature Survey  
 

This chapter provides the directly relevant works which preceding this project that 

are related to subcategories of our research and analyzes the details of the methods used in 

the proposed algorithms and their application. Each subcategory presents an overview of 

the related work and the concepts of algorithms and techniques used in our research. A 

detailed analysis of classification, evolutionary algorithms, genetic programming (GP), 

imbalanced datasets, synthetic minority oversampling technique (SMOTE), and evaluation 

measurements are provided in this chapter. 

The novel system presented in our research is associated with the techniques and 

concepts introduced regrading improving GP, constructing novel features that are able to 

be incorporated by GP and SMOTE resampling approaches. The developed system is used 

for the classification of various multiclass datasets, as well as medical and remote sensing 

satellite images. 

 

2.1. Classification in machine learning 

 

Machine learning is a method of involving computers to perform tasks without 

being programmed in an explicit manner. In the development of a machine learning 

technique, datasets are observed to learn what patterns in datasets are to have better 

decision making in future. In another words, the major goal of machine learning is to enable 

computers to learn automatically without requiring human assistance or explicit 
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programming instructions and to develop the knowledge to identify unknown patterns and 

generate predictive models from data. Among various machine learning methods, two 

major points of discussion in this work include supervised learning, and unsupervised 

learning as shown in Figure 2-1.  

 
Figure 2-1. Two major machine learning categories. 

 

 

2.2. Supervised learning 

 

Supervised learning algorithms construct a mathematical model of a dataset 

comprising both the input data and the required outputs [19]. In supervised learning, a set 

of training data with well-labeled classes is used to indicate the correct answers, which is 

why we refer to this category as “learning with a teacher”. To perform the learning phase, 

a training dataset with input features and output labels is provided to conduct the learning 

process. Algorithms used in classification and regression (Figure 2-2) [20] are categorized 

as supervised learning. The output in classification is discontinuous while in regression, 

the output is continuous. 
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Figure 2-2. Types of Supervised learning 

 

 

2.1.2. Unsupervised learning  

 

Unsupervised learning algorithms use a collection of data that only includes inputs 

and finds patterns among the instances. In unsupervised learning, the types of the variables 

of the dataset are similar. Therefore, we do not have a set of data with a recognized output 

and there is no teacher for the training. Unsupervised learning leads to discovering the 

inherent configuration, relations, or patterns existing in data. 

 Clustering and association discovery are examples of unsupervised learning tasks 

[21]. Clustering tasks categorize data into distinctive groups, singles out sets of data that 

are different from each other, and finds which groups’ members are similar to one another. 

Association discovery is the identification of data values that frequently occur together in 

a given event or record. Association discovery rules are related to occurrence counts of the 

number of times items take place alone and in combination in the dataset [22]. 

2.2. Classification 

 



 
 

24 
 

Classification, supervised learning, is known as one of many effective data 

modeling and machine learning techniques [23]. An extensive range of problems in various 

domains can be solved by classification algorithms. For example, disease diagnosis [24], 

pattern recognition [25], document categorization [26], credit scoring [27], bankruptcy 

prediction [28], and software quality assessment [28], to name a few. A classification 

method uses a training set, including properly labeled data instances and a search 

algorithm, to create a classifier from the training set. To determine the excellence of the 

resulting classifier, a testing set, including a set of properly labeled data instances, is used. 

Different kinds of models such as decision trees [29] and random forest [30] have been 

used by researchers to represent classifiers. 

 

2.3. Evolutionary Algorithms 

 

There is a series of computational techniques for designing new classifiers such as 

linear classifiers, quadratic classifiers, k-nearest neighbor, K-means, Decision trees and 

Random Forest. K-means is a widely used unsupervised learning technique, which helps 

to divide n observations into k clusters; however, the weakness of the K-means algorithm 

is its need for knowing the number of groups or clusters [31]. This is a big challenge for 

data mining tasks because in practice, it is difficult to guess the number of clusters properly. 

In addition, most traditional machine learning algorithms perform a locally greedy search 

for data classification, and it is difficult to change or to extend their representations. 

Therefore, the need to develop an algorithm capable of determining answers to problems 
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that are hard to solve without the help of an intelligent machine, results in emerging 

evolutionary algorithms (EA). EA enables a machine to generate solutions, free of human 

prejudices or biases, which are equivalent to, and often stronger than a solution developed 

by human beings [32]. 

2.3.  Genetic Programming 

 

GP is an evolutionary algorithm that utilizes concepts learned from biological 

evolution and finds answers to problems human beings may not know how to solve directly 

[33]. Each program in a GP algorithm is expressed as a chromosome in a population, and 

each chromosome contests for resources and existence, analogous to natural species 

contending for resources such as nutrition and dwelling. In a GP algorithm, only the most 

acceptable or near acceptable individuals remain, and they generate newborns in the hope 

that these newborns can survive [34]. The tree structure of an example computer program 

is shown in Figure 2-3. Five preliminary steps are taken by an analyst to link the human-

level description of the problem to the GP algorithm. These well-defined steps are shown 

in Figure 2-4. The result of the GP algorithm is the best computer program that appears in 

the process of generations. 

Different control parameters are used for running the GP system. For example, how 

large the population is, what the probabilities of crossover and mutation are, and how 

complex the generated programs are. Among them, the population size is the most 

significant control parameter and needs to be chosen in a way that generates a considerable 

number of generations within the acceptable processing time and complexity. 
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Figure 2-3. An example computer program for the numerical 

expression (F1+F2) / (F3*F4). 

 

 

Figure 2-4. Five major steps in a GP algorithm. 

 

The following steps describe the complete process of the GP system: 

i. First, a population is initialized. 

ii. The following steps are repeated until an end condition is fulfilled: 

a. Individual programs are evaluated in the present population and a fitness is 

calculated for them. 
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b. The successive tasks are performed in a loop until the next population is 

completely produced: 

- Select programs and run crossover and mutation operators on them in the 

current generation. 

- Place the product of the crossover and mutation operators into the new 

generation. 

iii. The most viable chromosome of the population is provided as the result of the GP 

system. 

Figure 2-5 illustrates the basic cycle of GP algorithms. 

 
Figure 2-5. A basic cycle of GP algorithms. 
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2.3.1.  Initializing Population 

 

GP provides solutions using programs or functions displayed as a tree consisting of 

primitive functions (internal nodes) and terminals (leaf nodes). The terminals include 

independent variables and constants, which are the inputs to the problem. These functions 

and terminals create a randomly initial population for GP. The user is assigned maximum 

depth for the initial individuals. Three major techniques are used for individual 

initialization including grow method, full method, ramped half and half. 

- Grow Method 

In this method, initial individuals are created by trees with various sizes and shapes. 

This method selects nodes from the entire primitive set including functions and terminals 

to reach a limited depth. 

- Full Method 

In this method, nodes are selected randomly from the function set to reach the 

maximum tree depth. In this method, the resultant tree is balanced because every branch of 

the tree continues to reach the full maximum tree depth. 

- Ramped Half and Half 

Since grow and full method do not create an extensive array of size and shape, in 

order to improve diversity, the ramped half and half technique is proposed. One half of the 

initial individuals are built up using the full method and the other half using grow. This 

method makes diverse individuals including balanced and unbalanced tree. 
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2.3.2. Fitness function 

 

GP uses a fitness value which is the basic measure for associating the human-level 

description of the designer’s goals to the GP algorithm and determines a desired target. The 

fitness value is used to compare one individual to another and to determine how fit an 

individual is [35, 36]. 

 

2.3.3. Selection for Reproduction 

 

A selection mechanism is employed in GP to select an appropriate evolved program 

that will be utilized for crossover and mutation operators. The selected programs are 

employed to create new individuals for the following generation in the period of the 

evolutionary steps. There are many selection methods including Roulette Wheel Selection, 

Tournament Selection, Rank Selection, Elitism, etc. However, in this project, we used 

roulette wheel selection (fitness proportionate selection), which is the most commonly used 

selection method. The roulette method works similarly to a simple roulette, randomly 

rotating and stopping at a point. Every single individual possesses a sector of the roulette 

that links to its foreseen number of offspring. 

2.3.4. Genetic operators 

 

Diversification in the form of mutation and crossover are used for GP systems. 

Mutation analogous to biological mutation (Figure 2-6.a) is utilized to keep genetic 

diversity in the population. It can also adjust an evolved program by choosing the 

appropriate constants. Furthermore, mutation prevents the population of individuals from 
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becoming very similar to each other and therefore creating local minima. Mutation is 

commonly performed in the form of swap, insert, delete, alter, point, uniform, non-uniform, 

etc. On the other hand, crossover, which is similar to sexual reproduction, happens between 

two parents as shown in Figure 2-6.b. Crossover recombines the selected parents to 

generate one, two or more children. Crossover is performed in the form of one-point, two-

point, n-point, uniform, and cut-and-splice. 

 

Figure 2-6. Operations of genetic operators in GP. (a) Mutation; (b) Crossover. 

 

2.3.5. Termination criteria 

 

Termination criteria need to be defined to terminate the GP process when the result 

is satisfactory. Specific value of fitness function and how many generations the algorithm 

can proceed are examples of termination criteria. During the GP process, if the value of the 
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fitness does not improve for a specific number of generations, the GP algorithm will stop 

the process and will pick the individual with the highest associated fitness value as the 

result. 

2.4. GP Application 

 

GP is being used as an automated development platform, a computer learning tool, 

and an advanced problem-solving engine with effectiveness. GP is particularly helpful in 

environments where the precise form of the approach is not planned in advance or an 

approximate solution is appropriate (maybe since it is so hard to locate the actual solution). 

Several GP 's applications include curve fitting, data processing, symbolic regression, 

collection of functions, and classification. John R. Koza [37] lists 76 cases where genetic 

engineering has worked successfully that are comparable with the effects created by 

humans (so-called human-based outcomes). 

2.5.  GP related work 

 

GP has been extensively used to tackle classification problems due to its ability to 

determine primary data associations. Liu and Xu described GP as a reliable solution to 

detect and score top-ranked genes as the feature of the experimental data for classification 

purposes [38-41]. In previous studies, researchers applied GP-based techniques to analyze 

two-class microarray datasets. The traditional GP system involves evolving tree-based 

individuals. A tree can generate a binary solution for a classification; therefore, GP is an 

appropriate method for classifying two-class microarray datasets. Later, this technique was 

improved to classify multi-class microarray datasets. Liu and Xu showed that multiple-
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class datasets can be treated as multiple two-class data instances, and a set of sub-group 

classifiers were utilized to tackle associated two-class data instances. By combining these 

groups, an individual is generated leading to solve a multiclass problem without the need 

for a new algorithm. However, this technique can be time consuming and was not tested 

on a wide range of challenging datasets to be completely verified. GP is also used in other 

applications such as feature construction [41]. 

Tahmasebei et al. have used a GP model to classify high activity regions in the 

limbic system of the fMRI data. The high dimensionality of fMRI data makes the 

classification task challenging. In their GP model, a crossover operator was used to select 

and replace the winner of the tournament with a stochastic subtree. Additionally, their 

algorithm used mutation to maintain the diversity of subtrees. The authors concluded that 

accuracy of their algorithm is better than typical machine learning algorithms due to the 

power of the GP method [42]. Despite the authors' preliminary success, this method was 

designed for a two-class dataset while GP is previously shown to be much more capable 

for multi-class problems.  

In 2015, Al-Sahaf et al. employed GP for multiclass texture classification. In their 

method, a combination of raw pixel values as inputs and simple mathematical operators 

was used. The programs generated were used for initialization of a feature vector that was 

then grown into a nearest neighbor classifier to predict class labels. The performance of 

their proposed method was evaluated using multiclass datasets. Then, the results were 

compared with the performances of two GP-based and nine non-GP methods. The authors 
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reported high accuracies for their work. However, their algorithm was not tested on 

instances with rotation or with different dimensions [43]. 

2.6.  Tumor detection on MRI image 

 

The brain is truly the most important and complex organ in the human body; 

however, development of a brain tumor in the shape of abnormal brain cells could be the 

origin of numerus brain malfunctions. Neurologists categorize brain tumors into normal, 

malignant or benign types. Additionally, tumors can be studied in two categories of primary 

and secondary tumors. If an abnormal growth of brain cells is the origin of the tumor, the 

abnormal tissue is called a primary tumor. On the other hand, a tumor is called secondary 

if it originated from abnormal cells spreading from other tissues in the human body. 

Medical imaging techniques such as the Computed Tomography (CT) scan, Magnetic 

Resonance Imaging (MRI) [44-47] and Positron Emission Tomography (PET) are used for 

the early diagnosis of any brain tumor which is very important for successful treatment. 

Among them, MRI [45, 48]is a noninvasive technique that does not use the damaging 

ionizing radiation of X-rays or gamma-rays. Although MRI is very reliable to provide the 

location and size of tumors, there is still a need for a powerful and automated system to 

accurately diagnose and classify these tumors using MRI. The implementation of such a 

system will result in fewer human errors and lower medical expenses in poor remote areas 

[49-52]. 

 

 



 
 

34 
 

 

2.7. Imbalanced data problem 

 

Imbalanced datasets are a specific condition for classification problems where the 

class distribution among the classes is not uniform. In recent years, classification problems 

with imbalanced datasets have attracted attention. There are two types of classes in an 

imbalanced dataset - majority classes and minority classes. The distribution of imbalanced 

datasets is visualized in Figure 2-7. The classes with fewer samples, are called the minority, 

and the others are called majority classes.  The small number of minority class instances 

cannot provide sufficient details to successfully classify both minority and majority 

classes. In real-world problems, machine learning algorithms have substantial challenges 

in the classification of datasets with imbalanced distribution because it is difficult to 

achieve high accuracy in the prediction of minority class due to this lack of information. 

Indeed, the effect of minority class in classification is not avoidable because it is results 

from the nature of the problem.  

A solution to improve the classification performance of imbalanced datasets is to 

combine balancing methods with classification algorithms to achieve to a higher accuracy 

and efficient classification of the minority class along with the majority class [53]. One 

technique to deal with this issue is to use resampling methods by adding new samples to 

the dataset, removing existing samples, or a combination of two methods. There are various 

resampling techniques, so that choosing the appropriate method to deal with the problem 

is a key factor in solving an imbalanced dataset’s classification problem.  
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Figure 2-7. Distribution of an imbalanced dataset including minority and majority class. 

2.8. Resampling techniques 

 

When thinking about Machine Learning and Data Science, we also consider a 

concept called Imbalanced Class Distribution, which typically occurs when the number of 

samples are either significantly higher or lower in one of the classes than the other one. 

Resampling is the simplest strategy to deal with class imbalances by changing class 

frequencies in a pre-processing phase to balance training data class distribution. This 

approach, therefore, does not require any change in an original learning algorithm [21]. 
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There may be under-sampling, over-sampling, or both. The sample number can be selected 

empirically or in conjunction with its misclassification costs. The problem is that under-

sampling can exclude any useful data, and over-sampling can even contribute to over-

estimation. Most algorithms also mix under-sampling and over-sampling to benefit from 

all of them [22]. We will discuss the following resampling techniques as shown in Figure 

2-8. 

 

Figure 2-8.  Major resampling techniques discussed in this project 

 

 

2.8.1. Under-sampling technique 
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Under-sampling remove some of the instances of the majority class to match the 

number of the minority class. Therefore, the sample sizes of both classes become equal or 

in the same range. However, the major drawback of this method is that it can remove 

instances with valuable information which are useful for the learning process of the 

algorithm. Figure 3-9 shows the under-sampling method. 

 

 

 

 

Figure 2-9. Under-sampling technique. 

 

2.8.2. Random under-sampling technique 

 

There are different under-sampling methods available but random under-sampling 

is the simplest one. This under-sampling technique can manage unequal class distribution 
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by random elimination of instances of the dominant class until the optimal equilibrium 

between the minority and majority classes is reached. This technique has two benefits: it is 

computationally inexpensive and it reduces in the classification model’s learning time by 

eliminating the size of the training data. A limitation of under-sampling is that examples 

from the majority class are deleted that may be useful, important, or perhaps critical to 

fitting a robust decision boundary. 

2.8.2. Over-sampling technique 

 

Over-sampling technique increase the size of minority class by replicating some of 

the samples to match the size of majority class. Figure 2-10 shows the over-sampling 

technique. 

 
Figure 2-10. Over-sampling technique 

 

 

2.8.2. Random over-sampling technique 
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Random oversampling method is the simplest and most common technique of 

oversampling which balance the class distribution by replicating randomly selected 

samples. The main drawback of this method is that it can cause overfitting because it 

replicates the original samples. 

 

2.8.3. SMOTE technique 

 

The implementation of resampling methods in imbalanced datasets consists of 

adjusting class data quantities to ensure a balanced class distribution. Chawla has suggested 

an efficient SMOTE over-sampling technique, a process called Synthetic Minority 

Oversampling Technique [54]. SMOTE is a method for oversampling the minority class to 

generate synthetic samples in the line segments which link k nearest minority class 

neighbours. Figure 2-11 shows the process of the SMOTE technique in which S0 is one of 

minority samples considered to generate new artificial samples under it, S1 to S4 are the 4 

nearest neighbours, and d1 to d4 are the synthetic samples created. Neighbours from the k 

nearest neighbourhood are randomly selected according to the sum of the over-sampling 

required. It is important to predefine parameter N that is the number of synthetic samples 

produced by the original minority case and parameter k for the nearest neighbour. 

There are several steps to generate the synthetic new instances. First, the difference 

between minority instances is considered and its nearest neighbour is calculated. Then, the 

multiplication of this difference by a randomly selected number between 0 and 1 is added 

to the original instance considered to generate a random instance in the line segment 

between two different samples.  
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                    Figure 2-11. Synthetic Minority Oversampling Technique 

 

Formula 2.1 shows the process of creating new synthetic instances d1 based on the 

process of SMOTE technique shown in Figure 2-11.  

d1=S0 + (S0 – S1) * α     , α ∈ [0 , 1]                      (2.1) 

2.9. Accuracy measurements 

 

Typically, the performance of machine learning algorithms is analyzed with 

confusion matrix. In the confusion matrix, TN is the right labeled number of negative 

examples (True Negative), FP is the number of incorrectly labeled negative examples 

(False Positives), FP is the number of incorrect examples classified as negative, and TP is 

the number of correctly categorized positive examples (True Positives). A confusion matrix 

is provided in Table 2-1. 
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Predicted 

 

 

Actual 

 Positive Negative 

       Positive True Positive (TP) False Negative (FP) 

        Negative False Positive (FN) True Negative (TN) 

 

        Table 2-2. Confusion matrix. 

In order to evaluate the effectiveness of an algorithm, overall accuracy is used to 

calculate the classification accuracy. Formula 2.2 shows the overall accuracy. Since the 

classification accuracy of the majority class dominates the minority class accuracy in 

imbalanced datasets, overall accuracy is not an acceptable measurement to evaluate the 

algorithm. However, overall accuracy can be used to check the performance of an 

algorithm in the training phase and its general performance. Also, precision and recall 

measurements are used for the accuracy of information detection, and classification in a 

computer program. Precision is the fraction of related samples among the whole extracted 

samples shown in Formula 2.3. Precision measurement shows number of samples correctly 

classified as a minority. Recall is the fraction of related samples extracted over the total 

amount of related samples shown in Formula 2.4. Recall shows the number of samples of 

minority correctly classified. 

                    𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
TP + TN

𝑇𝑃+𝐹𝑃+𝑇𝑁+𝐹𝑁
                                       (2.2) 
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                    𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃 

𝑇𝑃+𝐹𝑃
                                                     (2.3) 

                    𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃 

𝑇𝑃+𝐹𝑁
                                                   (2.4) 

Traditional measures, such as overall accuracy, precision, and recall, do not include 

a valid measure to compare the efficiency of combinations of multiple sampling methods 

and classifiers. This is not suitable due to the natural imbalance problem [55]. Therefore, 

F1 measure and G-mean are used for evaluating the classification of imbalanced datasets. 

Since overall accuracy is not enough measurement for evaluation of imbalanced 

data problems, the F1 score is used for assessing the classification algorithm. The F1 score 

is represented in Formula 2.5. 

 

              𝐹1 − 𝑠𝑐𝑜𝑟𝑒 =
(1+𝐵2).𝑟𝑒𝑐𝑎𝑙𝑙.𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛

𝐵2.𝑟𝑒𝑐𝑎𝑙𝑙+𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛
                                          (2.5) 

Like precision and recall, a poor F1- score is 0.0 and a best or perfect F1- score is 

1.0.  

In G-mean value, the proportion of positive accuracy and negative accuracy is 

utilized. G-mean is an efficient measurement for imbalanced dataset problems because it 

evaluates the balance between classification effectiveness on the majority and minority 

classes. The best value is 1 and the worst value is 0. If a classifier has a high accuracy for 

all classes, it is considered as an efficient classifier. Therefore, a high G-mean shows a 

strong performance for a classifier and low G-mean represents a weak performance for a 
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classifier. In imbalanced data problems, G-mean is considered as the most accepted attitude 

for evaluating the performance of a classifier. G-means uses the ratio of positive accuracy 

and negative accuracy. G-mean formula is represented in Formula 2.6. 

                    𝐺 − 𝑚𝑒𝑎𝑛 =  √
𝑇𝑃

𝑇𝑃+𝐹𝑁
+

𝑇𝑁

𝑇𝑁+𝐹𝑃
                                  (2.6) 

 

2.10. Imbalanced data problem related work 

 

Ling and Li [55] offered a particularly valuable reference to our work. They mixed 

the minority class over-sampling with the dominant class under-sampling. They used lift 

analysis to measure a classifier's performance, rather than precision. The majority class is 

under-sampled and the best lift measure collected, if the classes are evenly distributed, then 

the positive (marginalized) examples have been over-sampled to balance the number of 

negative (majority) examples to the number of positive ones. The combination of over-

sampling and under-sampling did not improve the lifted index significantly. Nevertheless, 

our over-sampling method varies from theirs. 

Solberg [56] brought the matter of imbalanced data collections into consideration 

in the classification of SAR imagery oil slicks. Over-sampling and under-sampling 

methods were used to improve the detection of oil slicks. The study analyzed 42 oil slicks, 

and circulated 2'471 look-alikes, with an earlier chance of 0.98 for look-alikes.  

The solution for Domingos [57] is close to our research as well. He applies the 

"meta cost" solution to every sub-sample majority and excess over-sample minority. He 
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noticed the increases in meta prices, and sub-sampling is better than minority over-

sampling. Cost-sensitive classifiers built on mistakes. With each case, the likelihood for 

each class was determined, and the cases were relegated optimally with cost of 

misclassification. Reappointing examples increased the room for judgment, as new 

examples were generated to benefit from the classifier. 

2.11. Remote Sensing Images 

 

Remote sensing is a process for measuring emitted radiation at a remote distance to 

detect and monitor the physical characteristics of an area. Remote sensing images (RSI) 

are gathered by finding the energy reflected from earth’s surface without physical contact. 

RSI are analyzed for pulling out the information related to the object. Remote sensors 

located either on satellite or aircraft are categorized into active and passive remote sensing. 

Passive sensors collect energy emitted by the object on earth. Active remote sensing sends 

the radiation to an object, then detects the radiation emitted from the object. The process 

of remote sensing of images is shown in Figure 2-13. Extracting useful information from 

RSI is a big challenge for image processing in different applications such as agriculture, 

military, geology, and atmospheric science.  Image classification plays an important role 

in remote sensing images. Classification of images is performed based on certain features 

using different kinds of machine learning algorithms. Machine learning algorithms teach 

machines to make them intelligent. Then, the learned machine can automatically classify 

images. 

Satellite images are significant means to extract useful information from remote 

sensing images for image processing in different applications such as agriculture, military, 
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geology, and atmospheric science. Image classification plays an important role in remote 

sensing images due to areas with a few numbers of pixels named minority class. 

Classification of images is performed based on certain features using different kinds of 

machine learning algorithms. Many machine learning algorithms are unable to classify RSI 

effectively. New technologies along with huge interest in collecting data in a rapid and 

extensive way attract companies and institutions to develop remote sensing further [58, 

59]. 

 

 
Figure 2-12. Remote sensing [60] 

 

2.12. Discussion and Analysis 

 

There are many different classifiers available in classification tasks; among them 

GP proposes many advantages compared to other classifiers in classification applications. 

GP is a novel method to tackle a broad range of problems due to its flexibility and the 

fluency of computer program representation as well as the strong proficiencies of its 
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evolutionary search. GP applications have shown a trend of success in recent years [61-

66]. The main advantage of the GP algorithm is that it performs a global search for a model 

allowing evaluation of that model as a whole in the fitness function without focusing on 

the impact of each possible condition. Additionally, GP allows us to easily change or 

extend a representation.  

The focus of this study is mainly to develop a technique based on GP for classifying 

datasets precisely without the previous knowledge of numbers of clusters. The developed 

technique uses a pruning algorithm to promote the accuracy and speed of classification. 

The resulting classifier is first applied on multiclass datasets then it is tailored for detecting 

brain tumors based on MRI images. Also, a hybrid system is proposed consisting of the 

combination of GP and SMOTE technique to enable GP to dominate some of its restrictions 

and to allow GP to handle classification problem more effectively for imbalanced 

multiclass datasets. Since GP demonstrates a bias toward the majority class instances, the 

hybrid system proposed in this study is designed to neutralise that bias.  Our experiments 

on imbalanced remote sensing satellite images using the hybrid system confirm its strength 

in classification of imbalanced multiclass datasets compared with other techniques. 

In this project, we use overall accuracy, mean, and standard deviation for evaluating 

the performance of our proposed GP classifier applied on multiclass datasets and MRI 

image data along with comparing the results with existing algorithms. Also, we use overall 

accuracy, G-mean and F1-score, standard deviation, and mean measurements for 

evaluating the proposed hybrid GP system for classification of imbalanced RSIs and 

compare them with the SVM-SMOTE classifier. 



 
 

47 
 

CHAPTER 3 

Proposed Algorithm 
 

In recent years, classification has become increasingly significant and is used in 

various aspects of applications including disease diagnosis, image processing, target 

recognition, and document categorization. There are various algorithms for classifying data 

into different categories according to some attributes including k-nearest neighbour 

classifier, SVM, ANN, Naive Bayes, and evolutionary algorithms [67, 68]. GP has also 

been employed well as a subcategory of evolutionary algorithms for classification of 

different types of datasets. 

We present an optimized genetic-programming-based classifier that directly solves 

the multi-class classification problems in data mining and image analysis. A new fitness 

function is proposed for multiclass classification and brain tumor detection, which is 

validated by 10-fold cross validation. Instead of defining static thresholds as boundaries to 

differentiate between multiple labels, our work presents a method of classification in which 

a GP system learns the relationships among samples and models them mathematically 

during the evolutionary process. We propose an optimized GP classifier based on a 

combination of pruning subtrees and a new fitness function. An orthogonal least squares 

algorithm is also applied in the training phase to create a robust GP classifier. 

In this research, three types of real-world classification scenarios are used to 

evaluate the performance of our proposed GP classifier in different applications. First, 

multiclass datasets collected from various sources in the real-world such as diverse kinds 

of plants, wines, and diseases were used to validate our developed GP classifier. The GP 
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classifier was tested on Iris, Wine, Glass, Pima, BUPA Liver, and Balance Scale datasets. 

The results of the six classification problems demonstrated that this method performed very 

well even when applied on multiclass datasets with very small sample sizes.  

Furthermore, brain tumor has been observed as a prevalent malignant disease 

among human beings, so it is significant to study this area. An MRI is commonly used by 

physicians to recognize a brain tumor. The correct detection of a tumor area on the MRI 

images is considered a critical task; therefore, machine learning algorithms assist to 

recognize tumors in MRI brain images. Therefore, the proposed GP classifier was applied 

on an MRI brain image for tumor detection. This preliminary experiment demonstrates that 

by using the features extracted from a mapped image, the GP classifier can provide a robust 

tumor detection performance. The results of data classification and tumor detection are 

compared with existing algorithms. The proposed method shows a promising capability in 

detecting the location of a tumor or a lesion and successfully segments the tumor from the 

brain tissue. The high accuracy of our GP approach for the classification of multiclass 

datasets and the brain tumor image confirms the strong ability of the developed technique 

for assessing complicated classification problems.  

Finally, the developed GP classifier was applied on imbalanced remote sensing 

satellite images to investigate its capability in tackling imbalanced data problems. 

However, the developed technique shows a bias during performance toward the majority 

class in imbalanced remote sensing satellite images. Imbalanced data classification is a big 

challenge in classifying and analyzing remote sensing images (RSI), which aim to receive 

and process information from earth and its environment remotely. Remote sensing using 
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strong cameras installed on satellites or aircrafts helps to acquire valuable data about the 

Earth's surface. Such data is of significance for agriculture, military, geology, and 

atmospheric science, to name a few. This illustrates the significance of RSI classification, 

which is a big challenge due to the existence of minority classes such as rivers and roads 

in which we are interested. In this work, we investigated whether a SMOTE algorithm can 

be combined with the developed GP approach to successfully deal with imbalanced class 

distribution in RSI, which is a common drawback of most classification algorithms. The 

SMOTE resampling approach is combined with the GP algorithm to handle this problem 

by balancing the training datasets and therefore allow GP algorithm to evolve toward a 

stronger model. The final classifier is a hybrid system capable of multiclass imbalanced 

data classification using the combination of GP and the SMOTE technique. We evaluated 

our system by classifying four imbalanced remote sensing satellite images. For each of 

these RSIs using 10-fold cross validation, 10 models were developed, and the best one was 

selected as the outstanding hybrid GP classifier. The results of the satellite image 

classification were compared with the SVM algorithm. In addition, G-Mean and F-Score 

values were calculated for the hybrid classifier and SVM before and after SMOTE 

balancing method in order to compare the performance of both systems. 

3.1. Classification 

 

In data mining and machine learning, classification is a common method of creating 

a predictive model for experiential data. The concept of classification involves creating a 

model that partitions data into different classes. The model is created by determining a 

subset of data as the training part by which an algorithm is trained to label the classes. 
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Then, the model is applied on a different dataset, called a test set, to predict the class of 

each member of the dataset using the model learned from training [69]. In the most cases, 

the problem uses supervised training in which a portion of a dataset labeled with the type 

of the class it belongs to is provided to the system. 

 

3.2. Genetic Programming Classifier 

 

In the past few years, researchers have presented a series of computational 

techniques for designing new classifiers, such as linear classifiers, quadratic classifiers, k-

nearest neighbor, and decision trees. GP has also been employed because it can discover 

underlying data relationships [70, 71]. We propose an optimized GP classifier based on a 

combination of pruning subtrees and a new fitness function. An orthogonal least squares 

algorithm is also applied in the training phase to create a robust GP classifier.  GP has 

several advantages compared with other algorithms for classification applications. First, 

GP can handle the raw form of the input data without the need for a preprocessing function 

in most situations while most classifiers require preprocessing of training data. The other 

advantage is the flexibility of GP.  In other words, in a GP algorithm, a solution could be 

a combination of various functions including arithmetic, conditional, non-linear, and many 

other functions. Interpretation of the result is another factor that makes GP important. In 

addition, GP allows us to easily choose to change or extend a representation. This means 

in redesigning a GP classifier, all we need is a description of what a tree should look like 

and how to evaluate it. 
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A GP classifier, which uses a set of arithmetic and mathematical operators as well 

as conditional/logic operators, provides a mathematical equation as the solution to a 

classification problem. The individual structure for a GP classifier is shown in Figure 3-1. 

 

Figure 3-1. The individual structure for a GP classifier. 

 

3.2.1. Fitness Function 

 

The fitness function in a GP algorithm represents the evolving quality of a possible 

solution that depends on the selection probability of the individual. Therefore, we designed 

a fitness function to guide the GP system to evolve towards a high performing classifier. 

The new fitness value designed for the n-th individual is shown in equation 3.1. 

𝑓𝑖𝑡𝑛𝑒𝑠𝑠 =
𝑎. 𝑇𝐶𝑁

𝑁+𝑏.𝐹𝐶𝑁
                                                           (3.1) 
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Where TCN is the true classification number, FCN is the false classification number, and 

N is the number of instances in the training set. The factors a and b allow the fitness 

measure to be adjusted to affect the individuals’ sensitivities or specificities. In our 

algorithm, an individual could be evaluated using the fitness function to measure its fitness 

in evolving the programs toward the best model that forms the GP classifier. Then, if the 

value of fitness for an individual is high, it will be chosen. Also, if more than one individual 

has the same fitness value, the individual with fewer features will be the first one to be 

chosen.  

 

3.2.2. Genetic programming with pruning subtrees and OLS 

 

In this study, an improved GP algorithm that uses a pruning mechanism is used to 

perform the classification with higher speed and accuracy. In the process of the GP 

operation, the algorithm produces multiple possible tree-based solutions, which are the 

individual parts of the population. These trees are composed of subtrees with good or bad 

effects on the accuracy of the model. To improve the GP system, the tree structure is 

disintegrated to subtrees, and the errors of these subtrees are measured. Then the terms 

with the least importance are removed [72]. This tree pruning step is performed before the 

calculation of the fitness value of the tree as illustrated in Figure 3-2. The main purpose of 

the pruning approach is to simplify the trees and still maintain accuracies as close as 

possible to their original trees. An orthogonal least squares (OLS) algorithm is utilized to 

monitor the decomposition of the trees to keep the original structure of the trees as much 

as possible [73]. First, errors of the branches of the tree are calculated and the subtrees with 
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errors less than a threshold are eliminated with respect to the OLS algorithm. By using this 

technique, it is not necessary to rearrange the structure of the tree after pruning. Fitness is 

calculated in the next step, and if it is in the defined range, the associated individual is 

selected as the final model.  

 

 
Figure 3-2. The tree pruning step is performed before the evaluation of fitness value. 

 

3.2.3 Genetic programming classifier structure using 10-fold cross validation 

 

Error rates were estimated using 10-fold cross validation as described in Figure 3-

3. To estimate how accurately the GP classifier will perform in practice, each dataset is 

randomly partitioned into 10 folds of equal size subsets. The data in 9 folds are treated as 

the training set, and the remaining fold is used to estimate the error rate. The cross-
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validation step is then redone 10 times, with each of the 10 subsets used once as the test 

dataset. The 10 results are then averaged to calculate the mean accuracy. 

 

 
Figure 3-3. The structure of GP classifier with 10- fold cross-validation used to 

estimate error rates  

 

3.3. Multiclass dataset classification using GP classifier 

 

In the current study, six real world classification problems, including Iris, Wine, 

Glass, Pima, BUPA Liver, and Balance Scale datasets, are used to evaluate the performance 

of the GP classifier for multiclass datasets. The results of classification for these datasets 

are compared with other algorithms, including Decision Tree (DT), Random Forest (RF), 

and Random Forest with Self Organizing Map (RF-SOM) and Support Vector Machine 

(SVM) [74, 75].  
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Our GP classifier works in two steps, including training and testing. In this study, 

we used the 10- fold cross-validation method for the training and testing phases of 

classifying the datasets. The GP classifier developed in this work provides potential 

solutions to a classification problem in terms of computer programs consisting of terminal 

and function parts that evolve recursively. The function set used in our GP algorithm 

consists of the primary arithmetic operations (+, - , × ,  /), and the terminal set consists of 

the features of each dataset including F1, F2, …, and Fk. 

A custom-designed fitness function was used to select the best program in the 

training phase. Then, the best program created during the training phase is applied to 

classify the test dataset in order to analyze the accuracy of the GP. Furthermore, the pruning 

mechanism is applied in the training phase to remove insignificant terms of a generated 

program, which leads to increasing the speed of the GP algorithm and reducing the 

complexity of programs. The analyzed results illustrate that the developed classifier 

produces a productive and rapid method for classification tasks that outperforms the 

previous methods for more challenging multiclass classification problems. 

3.4. Tumor detection using the proposed GP classifier 

 

A typical anatomical MRI image is a 2D matrix of pixels with a range of possible 

values from 0 to 255 representing the brightness of each pixel. Generally, in such a 

grayscale image, 0 is assumed to be black, and 255 is taken to be white. As a preprocessing 

step, the grayscale MRI image is transformed to a colored image using a custom colormap. 

This preprocessing step is required to create red, blue, and green attributes for each pixel 

that will be used in the training phase of the GP system. The colormap used in this study is 
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a 2D matrix with 256 rows and 3 columns. In this matrix, each row includes red, green, 

and blue values in the range of [0 , 1]  allowing transformation of each gray value to an 

RGB color. This RGB mapping step creates three features, including red, blue, and green, 

and improves the pictorial contrast of MRI images. Then the mapped image is transformed 

to a two-dimensional dataset with four columns in which each row consists of R, G, B, and 

the ground truth label for the associated pixel. Then, our improved GP classifier is trained 

and validated against the same dataset using 10-fold cross-validation.  

The MRI image is cropped into a smaller window of pixels around the tumor 

(177×177) used to form the dataset and to train the model. Cross-validation is performed 

by partitioning the cropped image into a training set to train the model and a test set to 

evaluate its accuracy. In our 10-fold cross-validation, pixels of the cropped image are 

randomly partitioned into 10 equally sized subsets. Of the 10 subsets, a single subset is 

held as the validation data for testing the model, and the remaining 9 subsets are used as 

training data. The cross-validation step is then redone 10 times. After creating an n-th GP 

model, it is validated using the n-th training subsets. The 10 results from the folds are used 

to judge whether a model is an acceptable model or not. The block diagram of our proposed 

approach for tumor detection using the improved GP classifier is illustrated in Figure 3-4. 

The high accuracy of brain tumor classification provided by our GP classifier confirms the 

strong ability of the developed technique for complicated classification problems. 



 
 

57 
 

 

Figure 3-4. The structure of the proposed tumor detection approach using the 

improved GP classifier. 

 

3.5. Transforming RGB images into 2D datasets 

An RGB image includes three 2-dimensional (2D) matrixes (Red, Green, and Blue). 

Figure 3-5 illustrates how to transform a 2D matrix into a one-dimensional (1D) matrix (a 

vector) and use it as a feature. For the mapped brain MRI image, the transformed dataset 

will have four columns. The first column includes red pixel intensities; the second column 

is comprised of green pixel intensities; the third column lists the blue color. Additionally, 

the fourth column is added, which includes the class of each pixel extracted from ground 

truth images. 
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Figure 3-5. Transforming an RGB image to a 2D matrix including features and the 

associated label. 
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3.5. Proposed hybrid system for classifying imbalanced data  

 

Imbalanced class distribution in multiclass datasets makes solving classification 

problems very challenging. Most standard classifiers are not able to successfully deal with 

classifying imbalanced data; therefore, the minority class remains undetected. In another 

words, most classifiers have a bias to the majority group and overlook the minority group. 

Such a bias could be responsible for a poor minority classification accuracy rate while an 

outstanding majority classification is observed. 

While the developed GP classifier shows a remarkable classification accuracy for 

balanced multiclass dataset and medical images, it needs improvement to perform 

efficiently for imbalanced data.  To address the classification of imbalanced data, we 

combined the GP classifier designed in this work with a robust balancing technique named 

SMOTE (Synthetic Minority Oversampling Technique). The solution is a hybrid system 

that involves two parts. First, SMOTE is applied to the dataset in order to improve the 

minority class samples. The SMOTE technique produces new synthetic samples and adds 

them to the minority classes to make the balanced distribution of all classes in the training 

dataset. Finally, the balanced training dataset produced by SMOTE and partitioned by 10-

fold cross validation is used in the training phase to generate a predictive model for 

classifying the dataset. The resultant hybrid system using the combination of GP and 

SMOTE techniques is our proposed classifier to handle imbalanced data. The structure of 

our proposed hybrid system is shown in Figure 3-6. 
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3.5.1. SMOTE resampling technique 

 

The Synthetic Minority Oversampling Technique (SMOTE) is proposed to balance 

the dataset while avoiding the overfitting problem in the random oversampling technique. 

The SMOTE technique has been represented to be robust and widely used for handling 

imbalanced data problems in classification [76]. In the SMOTE technique, each minority 

class sample is taken to be oversampled from the k nearest neighbors of the sample, which 

are joined by a line ignoring nearby majority samples. This leads to enhancing the number 

of minority samples to be comparable with majority samples. Figure 3-7.a denotes the 

distribution of imbalanced data, including minority and majority instances. Figure 3-7.b 

shows how the SMOTE technique oversamples the minority class in the imbalanced 

dataset. The number of k nearest neighbours is randomly selected depending on the number 

of required overdamped instances. New oversampled data become like the original 

minority class because they are produced based on the features of the original dataset. 

 

 

 
 

Figure 3-6. Proposed methodology for a hybrid system using the combination 

of SMOTE and GP 
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Figure 3-7. a) The distribution of imbalanced data with minority and majority classes. 

b) Synthetic minority samples produced using the SMOTE technique. 

 

3.5.2. Evaluation of the hybrid system on imbalanced satellite images 

 

Imbalanced data is a prevalent problem in remote sensing satellite images (RSI) 

because classification functionality is affected by imbalanced data. This thesis aims to deal 

with this problem by using a hybrid system that is implemented in two steps. The proposed 

solution is applied to the four imbalanced remote sensing satellite images. The proposed 

hybrid system is compared with SVM classifier and evaluated by calculation of both G-

Mean and F-Score before and after incorporating the SMOTE method. The experimental 

results prove that the proposed hybrid system can efficiently solve the problem of 

imbalanced satellite images and improve classification proficiency.  
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CHAPTER 4 

Experimental Results and Analysis 
 

To evaluate the functionality of our proposed GP classifier, we conducted test with 

six multiclass datasets including Iris, Wine, Glass, Pima, Bupa Liver, and Balance Scale 

[77]. In addition, to illustrate the performance of the developed classifier in medical image 

analysis, we applied the GP classifier for tumor detection on an MRI brain image [78].  

Also, we extended our experiments by applying the developed hybrid GP on imbalanced 

satellite images [79] in order to evaluate the effectiveness of the proposed technique on 

imbalanced data. MATLAB (MathWorks, Natick, MA) software is used to implement our 

algorithm, as it is one of the most recognized platforms for numerical and symbolic 

computing as well as simulation and model-based design. 

3.1 Multiclass Datasets 

 

In the current study, we carry out test with six datasets including Iris, Wine, Glass, 

Pima, Bupa Liver, and Balance Scale datasets as listed in Table 4-1. We used the 10- Fold 

cross validation method for the training and testing phases of the multiclass datasets 

experiments. Key parameters used in GP developed in this work are shown in Table 4-2. 

As it is mentioned before, a GP system produces a model during an evolutionary process 

in terms of computer programs consisting of two elements: terminals and functions. The 

primary arithmetic operations (+, -, ×, /) are employed as the function set and the attributes 

of each class serve as the terminal set. 
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Table 4-1. Six datasets used to evaluate the GP classifier 

Datasets 

Name 

No. Class No. Features Dataset Size No. Each Class 

Iris 3 4 150 50+50+50 

Wine 3 13 178 59+71+48 

Glass 6 9 214 
70+76+17+ 

13+9+29 

Pima 2 8 768 500+268 

BUPA 

Liver 
2 6 350 145+200 

Balance 

Scale 
3 4 625 49+288+288 

 

 

Table 4-2. Parameters used in the GP algorithm 

Parameter Value 

Population Size 100 

Selection Method Roulette-wheel 

Mutation Operator Point Mutation 

Crossover Operator One-point Crossover 

Proportion of Crossover 70 

Proportion of Mutation 30 
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3.1.1 Results of multiclass dataset classification 

 

For each dataset, the developed GP method was trained with 10-fold cross 

validation and 10 models were developed. Then the models were tested on the test datasets 

and the model with the highest accuracy was selected as the best model to form the GP 

classifier for that dataset. Table 4-3 shows the accuracies analysis of classification results 

with our GP system on Iris, Wine, Glass, Pima, BUPA Liver, and Balance Scale where the 

columns “Max”, “Min” and “Mean” represent the maximum, minimum and average of the 

overall accuracies of 10 experiments for each dataset.  

 

 

 

 

 

 

 

 

The classification results performed by our developed GP classifier for Iris, Wine, Glass, 

and Pima datasets are depicted in Figures 4-(1-4) respectively. 

 

Table 4-3. Classification accuracies for Iris, Wine, Glass, Pima, BUPA 

Liver, and Balance Scale with 10- fold cross-validation. 

Dataset Max Accuracy Min Accuracy Mean Accuracy 

Iris 100 95.55 98.44±1.50 

Wine 98.11 94.33 97.54±1.27 

Glass 98.43 89.06 93.27±3.21 

Pima 83.47 75.65 80.34±2.97 

Bupa Liver 91.14 80 85.42±4.55 

Balance Scale 98.38 93.54 96.124 ±2.176 
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Figure 4-1. Scatter plot of Iris dataset classification using the GP 

classifier. 
 

 

Figure 4-2.  Scatter plot of Wine dataset classification using the GP 

Classifier. 
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Figure 4-3.  Scatter plot of Glass dataset classification using the GP 

classifier. 
 

 

Figure 4-4. Scatter plot of Pima dataset classification using the GP 

classifier. 
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3.1.2 Evaluation and Comparison 

 

Average accuracies for 10 experiments are calculated for 6 multiclass datasets and 

shown in Figure 4-5. Table 4-4 lists the average accuracies and standard deviations of 10 

experiments for all datasets. The accuracy of the GP classifier developed in this research 

was compared with those of Decision Tree, Random Forest and Random Forest with Self 

Organizing Map methods and the results are illustrated in Figure 4-6. The accuracy 

performance of our GP classifier on BUPA Liver and Balance Scale datasets are compared 

with GP, DT, and SVM methods based on the 10-fold cross validation method as shown in 

Figure 4-7 [36, 37]. 

         

 Figure 4-5. The evaluation of GP classifier for 10 experiments. 
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Figure 4-6. The comparison of classification accuracies for each dataset using GP, 

DT, RF, and RF-SOM. 
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Table 4-4. The table evaluation of GP Classifier for each dataset based on 

accuracy and standard deviation in 10 experiments.      

Datasets Accuracy (%) Standard deviation 

Iris 98.44 1.5 

Wine  97.54 1.27 

Glass  93.27 3.21 

Pima  80.34 2.97 

Bupa Liver 85.42 3.82 

Balance Scale 96.124 2.17 
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Figure 4-7. The comparison of classification accuracies for BUPA Liver and 

Balance Scale datasets using GP, DT, and SVM. 

 

 

3.2 MRI brain image with a tumor 

 

The developed GP classifier is used for automatic detection of tumors on MRI brain 

images. In the proposed approach, a grayscale MRI brain image is mapped into an RGB 

color image and then the RGB feature vectors are combined with ground truth labels to 

form the dataset used for training the GP classifier. We used an MRI brain image 

(374×456) with a defective area as shown in Figure 4-8.a. to illustrate the proposed tumor 

detection process. The mapped image using the custom colormap is shown in Figure 4-8.b. 

We used a cropped version of the original MRI image, including the pathological area 
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shown in Figure 4-9.a, to form the training dataset. The ground truth image for training is 

shown in Figure 4-9.b. 

 
                     (a)                                    (b) 

Figure 4-8. a) MRI brain image with a tumor (374×456). b) Mapped image using a 

custom colormap. 

 

 
           (a)                                (b) 

Figure 4-9. a) Cropped MRI image. b) Ground truth image used for training the 

GP classifier. 
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3.2.1 Results of Tumor Detection 

 

To illustrate the performance of the developed classifier in medical image analysis, 

we applied the GP classifier for tumor detection on an MRI brain image. Table 4-5 shows 

the accuracies of GP brain tumor classifier in 10 experiments. Table 4-6 lists maximum, 

minimum and average of the overall accuracies for the GP brain tumor classifier analyzed 

for 10-fold cross-validation in 10 experiments. Figure 4-10.a indicates the raw MRI brain 

image labeled from the GP classification process. Then a threshold value is used to 

categorize the classified data into two categories: the tumor and the remaining section 

(Figure 4-10. b). Using index labels, we can separate objects in the brain image by two 

colors: yellow and blue. The evaluation of GP classifier for the brain image dataset 

classified in 10 experiments is shown in Fig 4-11. 

 
 

     (a)                  (b) 

Figure 4-10. a) Labelled MRI brain image with a tumor (374×456) before 

applying a threshold. b) Labelled MRI brain image with a tumor (374×456) 

after applying a threshold. 
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Table 4-5. The accuracies of GP brain tumor classifier in 10 

experiments. 

Experiments Accuracy 

Experiment 1 93.12% 

Experiment 2 94.49% 

Experiment 3 95.53% 

Experiment 4 94.49% 

Experiment 5 95.21 % 

Experiment 6 89.85% 

Experiment 7 95.45 % 

Experiment 8 95.7 % 

Experiment 9 95.37% 

Experiment 10 95.05% 

                

Table 4-6. The average accuracy of GP brain tumor classifier 

calculated for 10-fold cross validation in 10 experiments. 

Dataset Max Accuracy Min Accuracy Mean Accuracy 

Brain 

Image 
95.70% 89.85% 94.42% ± 1.77 
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Figure 4-11. The evaluation of GP classifier for the brain MRI image dataset classified 

in 10 experiments. 

 

 

3.2.3 Evaluation of GP classifier’s performance on MRI brain image compared with 

SVM classifier 

 

We applied the SVM (Support Vector Machine) classifier [80, 81] on the MRI brain 

image in order to compare the performance of SVM algorithm in classification of MRI 

brain image with our GP classifier (Figure 4-12).  The evaluation results of classification 

interns od Max, Min, and Mean accuracy in 10 experiments using 10-fold cross validation 

for both GP, and SVM classifier are illustrated in Table 4-7. Finally, the classified MRI 

brain image using the GP classifier compared with the SVM classifier are shown in Figure 

4-13. 
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Figure 4-12. a) The original MRI brain image with a tumor (374×456). b) 

Labelled MRI brain image with a tumor (374×456) using the SVM 

classifier. 

Table 4-7. The comparison of classification accuracies for MRI 

brain image using GP, and SVM classifier using 10-fold cross 

validation in 10 experiments. 

Dataset 
Max 

Accuracy 
Min Accuracy Mean Accuracy 

Labelled MRI image 

using GP  
95.7% 89.85% 94.42 ± 1.77 

Labelled MRI image 

using SVM 
91.32% 85.27% 89.57±1.91 

 

 

Figure 4-13. a) The original MRI brain image with a tumor (374×456). b) Labelled 

image using GP classifier. c) Labelled image using the SVM classifier. 
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3.3 Satellite Images 

 

The capability of effectively classifying imbalanced data is a critical role that a 

robust classifier should play. Therefore, to validate the effectiveness of the proposed hybrid 

GP system, imbalanced satellite images are used with their corresponding ground truth 

image as shown in in Figure 4-14. These satellite images include three regions consisting 

of forest, river, and village. In ground truth images, lyft pixels represent the village area, 

green pixels show the forest area and blue pixels are indication of the river area. A quick 

visual survey on these satellite images reveals that forest and river areas are considered as 

the majority classes while the village region is considered as the minority class. Table 4-8 

describes the details of the satellite images in terms of dimension and the ratio of minority 

class (Formula 3.1) in the dataset. The class distribution and the number of pixels for both 

minority and majority classes in the images are shown in the Table 4-9.  

Figure 4-14. (a), (b), (c), and (d) are the original satellite images with their 

corresponding ground truth images below them (e), (f), (g) and (h). Lyft, green and 

blue pixels represent village, forest and river areas respectively. 
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          𝐼𝑚𝑏𝑎𝑙𝑎𝑛𝑐𝑒𝑑 𝑅𝑎𝑡𝑖𝑜 =
minority samples

minority samples + majority samples
                         (3.1) 

 

 

 Table 4-8. Experimental satellite image datasets. 

Images Height Width Imbalanced Ratio 

Image (a) 200 200 0.03 

Image (b) 100 100 0.06 

Image (c) 200 200 0.02 

Image (d) 412 412 0.01 

 

         

Table 4-9. Distribution and ratio of each class in satellite image datasets. 
 

Forest Village River 

Image(a) Population 25166 1515 13319 

Ratio 0.63 0.03 0.34 

Image(b) Population 5427 584 3989 

Ratio 0.54 0.06 0.40 

Image(c) Population 13765 901 25334 

Ratio 0.35 0.02 0.63 

Image(d) Population 112433 2486 54825 

Ratio 0.67 0.01 0.32 
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3.3.1 Results of plain GP classifier on imbalanced satellite images 

 

The performance of the plain GP classifier without implementation of SMOTE 

technique is validated on imbalanced satellite images. To discriminate our GP classifier 

from the developed hybrid GP classifier we use the term “plain GP classifier” instead 

of ”GP classifier” from here on. The results of classification represented in the Figure 4-

15 shows that there is a need for a hybrid system that can perform a better job in the 

minority regions. The results of are evaluated by calculation of mean accuracy, confusion 

matrix, G-means, and F1 score for all images. Tables 4-(10-13) show the confusion matrix 

assessed for classification of these images classified by the plain GP classifier (results for 

the hybrid GP classifier will be reported later). Tables 4.14 itemizes the accuracy, G-mean 

and F1 scores for classification of each image using the plain GP classifier. Figure 4-16 

indicates the average and standard deviation of plain GP classification using 10-fold cross 

validation in 10 experiments for each image. The classification results propose that the 

plain GP classifier requires a major improvement to perform successfully in classification 

of minority classes in imbalanced multiclass datasets; therefore, we developed the hybrid 

GP classifier to solve this problem. 
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Figure 4-15. (a), (b), (c), and (d) are the original satellite images. (e), (f), (g) and (h) 

depicted below them are their corresponding classified images using our plain GP 

classifier without implementation of SMOTE technique. 

 

       

Table 4-10. Confusion matrix for imbalanced satellite image (a) classified 

by the plain GP classifier. 
 

Actual Class 

Forest Village River 

  

 

Predicted   

Class 

Forest 24012 695 458 

Village 752 405 358 

River 326 738 12255 

 

         

 

 

 

(c) (a) (b) (d) 

(e) (f) (g) (h) 
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Table 4-11. Confusion matrix for imbalanced satellite image (b) classified 

by the plain GP classifier. 
 

Actual Class 

Forest Village River 

 

 

Predicted 

Class 

Forest 4490 647 290 

Village 269 113 202 

River 88 368 3533 

       

 

 

 

 

 

 

 

 

 

Table 4-12. Confusion matrix for imbalanced satellite image (c) classified by 

the plain GP classifier. 
 

Actual Class 

Forest Village River 

 

 

Predicted 

class 

Forest 10972 1893 899 

Village 479 206 216 

River 150 215 24969 
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Table 4-13. Confusion matrix for imbalanced satellite image (b) classified by 

the plain GP classifier. 
 

Actual Class 

Forest Village River 

 

 

Predicted 

Class 

Forest 105876 4863 1693 

Village 532 835 1119 

River 331 597 53897 

 

 

 

 

 

 

 

 

 

 

 

 

Table 4-14. Classification evaluation for the plain GP classifier including 

accuracy, G-mean, and F1score values calculated for the imbalanced satellite 

images. 

 Image(a) Image(b) Image(c) Image(d) 

Accuracy 
 

91.68% 
 

81.35% 
 

90.38% 
 

94.61% 

G-mean 
 

0.62 
 

0.52 
 

0.56 
 

0.67 

F1 Score 
 

0.71 
 

0.63 
 

0.65 
 

0.71 
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Figure 4-16. Evaluation of plain GP classifier on imbalanced satellite images in 

10 experiments using 10-fold cross validation. 

 

3.3.2 Hybrid GP classifier equipped with SMOTE technique for resampling 

 

The evaluation results of our plain GP classifier based on the calculation of 

accuracy, G-mean, and F1 score on the imbalanced satellite images revealed that our 

technique needs to be modified for tackling imbalanced data. While the classification 

accuracy for the imbalanced data is high because of the correct classification of majority 

instances, the low G-means and F1 scores confirm poor classification of the minority 

classes. Therefore, our hybrid system employs SMOTE resampling technique to make the 

size of the minority class samples balanced with majority class samples. Figures 4-(17- 20) 

visualize the class distribution in the images before and after resampling using the SMOTE 

technique. 
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Figure 4-17. Distribution of the dataset before and after applying SMOTE 

technique for the satellite image (a). 

 

 

 

Figure 4-18. Distribution of the dataset before and after applying SMOTE technique 

for the satellite image (b). 
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Figure 4-19. Distribution of the dataset before and after applying SMOTE technique 

for the satellite image (c). 

 

 
Figure 4-20. Distribution of the dataset before and after applying SMOTE technique 

for the satellite image (d). 
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3.3.3 Results of the hybrid GP classifier  

 

The functionality of our hybrid GP classifier is tested employing SMOTE technique 

with 4 nearest neighbours. Fig 4-21 shows the results of classification on the satellite 

images using the hybrid system. The results are evaluated by the confusion matrix, 

accuracy, G-means, and F1 score. Tables 4-(15-18) illustrate the confusion matrixes for 

classification of these images. Table 4-19 lists the accuracies, G-means and F1 scores for 

the classification of the satellite images using the hybrid system which are clearly improved 

compared with the results of the plain GP classifier described in section 3.3.2. Evaluation 

of GP classifier on imbalanced satellite images in 10 experiments using 10-fold cross 

validation is represented in Figure 4-21. 

 

Figure 4-21.  (a), (b), (c), and (d) are the original satellite images, and (e), (f), (g) and 

(h) are their corresponding classified images using our hybrid GP classifier. The results 

are significantly improved compared with the plain GP classifier. 
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Table 4-15. Confusion matrix for imbalanced satellite image (a) 

classified by the hybrid GP classifier. 
 

Actual Class 

Forest Village River 

  

 

Predicted   

Class 

Forest 24600 325 241 

Village 195 1204 116 

River 192 328 12799 

        

Table 4-16. Confusion matrix for imbalanced satellite image (b) 

classified by the hybrid GP classifier. 
 

Actual Class 

Forest Village River 

 

 

Predicted 

Class 

Forest 5020 283 124 

Village 83 442 59 

River 53 236 3700 

 

 

 Table 4-17. Confusion matrix for imbalanced satellite image (c) 

classified by the hybrid GP classifier 
 

Actual Class 

Forest Village River 

 

 

Predicted 

Class 

Forest 12530 893 342 

Village 173 601 127 

River 103 218 25013 
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Table 4-18. Confusion matrix for imbalanced satellite image (d) 

classified by the hybrid GP classifier. 
 

Actual Class 

Forest Village River 

 

 

Predicted 

Class 

Forest 109895 1625 913 

Village 331 1503 652 

River 198 297 54350 

 

 

 

 

 

Table 4-19.  Classification evaluation for the hybrid GP classifier including 

accuracy, G-mean, and F1score values calculated for the imbalanced satellite 

images. 

 Image (a) Image (b) Image (c) Image (d) 

Accuracy 
 

96.50% 
 

91.12% 
 

95.36% 
 

97.64% 

G-mean 
 

0.813 
 

0.851 
 

0.912 
 

0.931 

F1 Score 
 

0.912 
 

0.895 
 

0.932 
 

0.952 
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Figure 4-22. Evaluation of the hybrid GP classifier on the satellite images in 10     

experiments using 10-fold cross validation. 

3.3.4 Improvement made by the hybrid GP classifier versus the plain GP classifier 

 

Both hybrid GP classifier and the plain GP classifier are conducted on the 

classification of imbalanced satellite images. We compared average accuracy, G-mean, and 

F1 score values associated with their performances and reported the results in Table 4-20. 

The results confirm the superiority of the hybrid GP system over the plain GP classifier for 

the classification of imbalanced data. 
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 Table 4-20. Average accuracies, G-means, and F1scores calculated 

for both hybrid and plain GP classifiers. 
 

 Accuracy G-mean F1 score 

 

Image (a)  

Plain GP classifier 91.68% 0.62 0.72 

Hybrid GP classifier 96.50% 0.82 0.91 

 
Image (b) 

Plain GP classifier 81.35% 0.52 0.63 

Hybrid GP classifier 91.12% 0.85 0.90 

 
Image (c) 

Plain GP classifier 90.38% 0.56 0.65 

Hybrid GP classifier 95.36% 0.91 0.93 

Image (d) 
 

Plain GP classifier 94.61% 0.67 0.71 

Hybrid GP classifier 97.64% 0.93 0.95 

 

3.4 Evaluation of SVM classifier performance on satellite images before and after 

SMOTE technique 

 

The performance of SVM (Support Vector Machine) algorithm in classification of 

imbalanced satellite images is shown in the Figure 4-25.  The results of classification on 

the imbalanced satellite images after balancing using SMOTE are represented in Figure 4-

26. Also, the results of SVM classifier on the images before and after balancing using 

SMOTE in 10 experiments including 10-fold cross validation are assessed by average 

accuracy and standard deviation and listed in Table 4-21. 
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Figure 4-23. (a), (b), (c), and (d) are the original satellite images, and (e), (f), (g) and (h) 

are their corresponding classified images using SVM before balancing. 

 

 

Figure 4-24. (a), (b), (c), and (d) are the original satellite images, and (e), (f), (g) and (h) 

are their corresponding classified images using SVM after SMOTE resampling 

technique. 
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Table 4-21. Evaluation of SVM performance by accuracy, G-mean, and 

F1score. 
 

Accuracy G-mean F1 score 

Image (a) before balancing 91.42% 0.62 0.73 

Image (a) after balancing 94.40% 0.65 0.78 

Image (b) before balancing 79.14% 0.50 0.43 

Image (b) after balancing 80.26% 0.59 0.52 

Image (c) before balancing 85.98% 0.41 0.39 

Image (c) after balancing 86.42% 0.57 0.50 

Image (d) before balancing 92.78% 0.60 0.66 

Image (d) after balancing 95.32% 0.74 0.72 

 

 

Figure 4-25. Accuracy evaluation of SVM classifier on imbalanced satellite 

images in 10 experiments using 10-fold cross validation. 
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Figure 4-26. Accuracy evaluation of SVM classifier on balanced satellite 

images using SMOTE  in 10 experiments using 10-fold cross validation. 

 

3.5 Comparison between the hybrid GP system and SVM-SMOTE classifier  

 

In this section, the performance of our hybrid GP classifier on the imbalanced 

satellite images is compared with the SVM classifier which employs SMOTE (SVM-

SMOTE). Table 4-22 itemizes the average accuracy, G-mean, and F1 score values for both 

hybrid GP and SVM classifiers. Additionally, the classified images by both hybrid GP and 

SVM-SMOTE classifiers are shown in Figures 4-(27-30). The results approve that our 

developed hybrid GP classifier provides higher accuracies as well as higher G-means and 

F1 score values on imbalanced satellite images. Since the GP algorithm performs a global 

search for a model enabling the algorithm to evolve with respect to satisfying the criteria 

of the fitness function, it needs a balanced training dataset to produce a strong minority-

considering classifier. Our hybrid GP system benefits from the strength of SMOTE 
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approach to successfully classify both minority and majority classes in an imbalanced 

dataset. 

Table 4-22. Comparison between hybrid GP and SVM classifiers for the satellite 

images using mean accuracy, G-mean, and F1scor values. 
 

Average Accuracy G-

mean 
F1 

score 
 

 

 

 

 

 

Imbalanced 

images 

Image (a)  GP classifier  91.68% 0.62 0.71 

SVM classifier 91.42% 0.62 0.73 

Image (b) GP classifier  81.35% 0.52 0.63 

SVM classifier 79.14% 0.50 0.43 

Image (c) GP classifier  90.38% 0.56 0.65 

SVM classifier 85.98% 0.41 0.39 

Image (d) GP classifier  94.61% 0.67 0.71 

SVM classifier 92.78% 0.69 0.66 

 

 

 

 

 

Balanced images 

using  SMOTE  

Image (a)  GP classifier  96.50% 0.81 0.91 

SVM classifier 94.40% 0.65 0.78 

Image (b) GP classifier  91.12% 0.85 0.89 

SVM classifier 80.26% 0.59 0.52 

Image (c) GP classifier  95.36% 0.91 0.93 

SVM classifier 86.42% 0.57 0.50 

Image (d) GP classifier  97.64% 0.93 0.95 

SVM classifier 95.32% 0.74 0.72 
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Original image (a)               Hybrid GP classifier       SVM-SMOTE classifier 

Figure 4-27. The comparison between classification performance of the hybrid 

GP and SVM-SMOTE classifiers applied on image (a). 

Fig 4-27 shows that SVM can generally classify the satellite image but in some 

areas, which are shown by blue arrows perform worse than the hybrid GP.  

Original image (b)                 Hybrid GP classifier    SVM-SMOTE classifier 

Figure 4-28. The comparison between classification performance of the hybrid 

GP and SVM-SMOTE classifiers applied on image (b). 

 

Fig 4-28 shows that SVM over-classified the minority pixels shown by blue arrows; 

therefore, the village areas are classified larger than the ground truth image. However, 

hybrid GP can detect minority pixels with a higher accuracy compared with the SVM-

SMOTE. 
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Original image (c)           Hybrid GP classifier     SVM-SMOTE classifier 

Figure 4-29. The comparison between classification performance of the hybrid 

GP and SVM-SMOTE classifiers applied on image (c).. 

 

Fig 4-29 shows that SVM-SMOTE cannot classify minority pixels in the image and 

misclassified the majority and minority pixels shown by blue arrows; therefore you cannot 

see the village areas in some parts of the image like the ground truth and  the river is 

classified as forest in some parts. However, Hybrid GP can detect minority and majority 

pixels efficiently compared with SVM-SMOTE. 

    Original image (d)      Hybrid GP classifier         SVM-SMOTE classifier 

Figure 4-30. The comparison between classification performance of the 

hybrid GP and SVM-SMOTE classifiers applied on image (d). 
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Figure 4-30 shows that SVM-SMOTE misclassified the majority and minority 

classes. Some parts of the river is classified as the village which is shown by blue arrows 

on the Figure 4-30. Additionally, SVM-SMOTE ignores the minority class in some parts 

indicated by blue arrows thus the village inside the forest is not identified correctly. On the 

other hand, hybrid GP can detect minority and majority pixels with a higher accuracy 

compared with SVM-SMOTE. 

The evaluation results for both hybrid GP and SVM-SMOTE classifiers in terms of 

accuracy, G-mean, and F1 score on satellite images are represented in Figures 4-(31-33). 

The results confirm that the hybrid GP system performs with a higher accuracy and can 

detect minority classes in the imbalanced data more effectively based on the G-mean and 

F1 score values. 

 

Figure 4-31. The classification comparison for the hybrid GP, and SVM-SMOTE 

performed in 10 experiments and with 10-fold cross validation. 

0

20

40

60

80

100

Image(a) Image(b) Image(c) Image(d)

The comparison of classification accuracies of hybrid GP, 

and SVM-SMOTE on the satellite images

GP SVM



 
 

96 
 

 

Figure 4-32. The evaluation of the hybrid GP and SVM-SMOTE classifiers in terms 

of G-mean measurement for each satellite image. 

 

Figure 4-33. The evaluation of GP-hybrid and SVM-SMOTE classifier in terms of 

F1 score measurement for each satellite image. 
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CHAPTER 5 

Conclusion and Future Work 

 

To conclude, this thesis explored the classification of multiclass datasets, medical 

images and imbalanced satellite pictures using a novel genetic programming (GP) system. 

A GP classifier that autonomously evolves feature equations in the form of trees for the 

classification of multiclass data has been developed and described. The proposed algorithm 

uses a pruning mechanism and a new fitness function to solve the classification problem 

for multiclass datasets. The pruning technique passes the orthogonal least squares (OLS) 

check in order to maintain the original tree-based structure to the extent that it is possible. 

This is necessary because the tree structure is an essential element of GP system. Our 

developed GP classifier was tested on Iris, Wine, Glass, Pima, BUPA Liver and Balance 

Scale datasets. The results of the six classification problems demonstrate that this method 

performed very well even when applied on datasets with very small sample sizes. This 

approach is compared with DT, RF, and RF-SOM for Iris, Wine, Glass, and Pima datasets. 

In addition, it is compared with DT and SVM for BUPA Liver and Balance Scale datasets 

with the 10- fold cross-validation. Furthermore, the GP classification method is used for 

detecting a tumor in MRI brain images. Classification accuracy for the brain tumor data 

was compared to that of the SVM method to validate the findings, as well as employing 

10-fold CV. To extend our algorithm, we combined our modified GP classifier with the 

SMOTE approach for classification with multiclass unbalanced data and to develop a 

hybrid GP classifier to address limitations of classifying both minority and majority 

classes. Our results verified that the hybrid classifiers that evolved using the SMOTE-
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balanced training dataset performed with a higher accuracy on the tasks compared to other 

techniques such as SVM. 

Future research will include extending this study to improve the performance of 

object detection on image datasets, particularly for tumor type classification of MRI brain 

images. The improved GP classifier was not applied to classify tumor types, and thus future 

research will aim at developing a predictive model for brain tumor type classification. 

Furthermore, to reduce the training time of the developed GP algorithm, our method will 

be modified in order to run on parallel computing systems with a higher speed. 
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