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SUMMARY 

The exponential growth of malware has created a significant threat in our daily lives, which 

heavily rely on computers running all kinds of software. Malware writers create malicious 

software by creating new variants, new innovations, new infections and more obfuscated 

malware by using techniques such as packing and encrypting techniques. Malicious 

software classification and detection play an important role and a big challenge for cyber 

security research. Due to the increasing rate of false alarm, the accurate classification and 

detection of malware is a big necessity issue to be solved. In this research, eight malware 

family have been classifying according to their family the research provides four feature 

selection algorithms to select best feature for multiclass classification problem. Comparing. 

Then find these algorithms top 100 features are selected to performance evaluations. Five 

machine learning algorithms is compared to find best models. Then frequency distribution 

of features are find by feature ranking of best model. At last it is said that frequency 

distribution of every character of API call sequence can be used to classify malware family. 
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CHAPTER 1 INTRODUCTION 

 

1.1 Background 

 

                       In the COVID-19 pandemic the dependency of digital communication 

multiplies. The internet has become the main channel for effective human interaction and 

the primary way to work, contact and support each other. During this time, cyberattacks have 

increased exponentially. Businesses and public-sector organizations are increasingly 

offering or enforcing “work from home” policies, and social interactions are rapidly 

becoming confined to video calls, social media posts and chat programs. Many 

governments are disseminating information via digital means. For example, the UK has 

made digital the default mode of communication, instructing citizens to rely on official 

websites for updates to avoid flooding phone-based information services with requests. 

In today’s unprecedented context, a cyberattack that deprives organizations or families of 

access to their devices, data or the internet could be devastating and even deadly. In a 

worst-case scenario, broad-based cyberattacks could cause widespread infrastructure 

failures that take entire communities or cities offline, obstructing healthcare providers, 

public systems and networks. So, it is important to study malware and its functionality.  

Today's modern advanced malicious software (malware) has been integrated multi-module 

systems using sophisticated or obfuscated techniques to attack and target the vulnerable or 

weak systems. The sophisticated threat actors, Advanced Persistent Threats (APT), continued 

to make the headlines with audacious politically motivated attacks and thefts on target 
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organization. Any gaps in network security, software patching, or employee awareness will 

ruthlessly expose in the wave of destructive malware attacks. A single malicious software can 

attack and infect thousands or even millions of computers in various ways simultaneously. 

New malware variants are increasingly becoming in million number as well as viruses, worms, 

ransomware, adware, spyware, and trojan horses. The danger threats are rapidly increased 

annually, thus the detection of the malicious program plays an essential role in the cybercrime 

investigation system. The modern threats could lead to damage to the computer system 

easily and reduce system processing and performance. Malware analysis and 

classification are also important in the modern malware detection system to reduce and 

prevent cybercrimes. Recently, many researchers are interested in analyzing and 

classifying the variants of malware using the Windows API (Application Programming 

Interface) call sequences to model malware behavior through static or dynamic 

analysis. It helps incident responders understand the extent of a malware-based incident 

and rapidly identify additional systems or hosts that could be affected. The actionable 

information from malicious software analysis can help an organization more effectively 

to mitigate vulnerabilities exploited by malware and help prevent additional 

compromise. 

1.2 Motivation and Problem Statement 
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                 The detection of modern malware using machine learning methods has become 

harder due to the complex nature of malware. The information security has become a 

more important problem to various government, private organizations as well as business 

because the massive evolution of new malware types lead a major risk to information 

system. Traditional signatures-based antivirus software may fail to classify unfamiliar 

suspicious programs to corresponding categories and to identify new variants of malware 

programs [14]. 

The anti-virus software uses many obfuscation techniques like packing, metamorphosis 

and other anti-virtual technologies to evade detection. Thus, some of the existing 

techniques are developed in the traditional works to detect the threats accurately. However, 

these techniques lack some major drawbacks such as inaccurate detection, not highly 

efficient. A new idea is needed to remove these drawbacks of systems. The growth of this 

new malware can be derived from the known families of malware. Hence, it is very time 

to give time and effort to classify malware type. 

                The traditional malware classification and detection systems sometimes might 

fail to classify and detect the known and unknown malware variants and produce false 

alarms. They are the main challenges of behavior-based anomaly detection. The vital 

goal of this research work is to identify the malicious traces reliably, that is, to cut down 

the False Positive Rate (FPR). To reduce the FPR, the accurate classification of 

malware is solved by proposing the Malware Feature Extraction Algorithm (MFEA). 
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The complex program or executables embedded with malicious intentions can 

infect a numerous amount of computer systems through the Internet. They can be 

various forms likewise virus, worm, Trojan, bot or rootkit. The occurrence of malware 

is speedily rising on the Internet and poses a serious threat to computer and information 

systems. Thus, the battle between malicious code writers and researchers is virtually a 

never-ending game. Therefore, the scalable and applicable malware classification 

datasets are provided for malicious classification system. 

1.3 Contribution of the research 

        The main objective of the research is to study the behavior of malware, to analyze the 

nature and variations of malware, to provide the important features of effective malware 

family classification, to classify malware families with machine learning, to extract the 

prominent malicious function calls by using the proposed feature importance, to find out 

frequency distribution of each malicious function call according to their family. 

1, Conduct a literature search on existing malware family classification techniques 

for static and dynamic analysis with their pros and cons, Study the how malware API works 

according to family and collect the API call sequence according to malware family. 

2. Pre-processing the API call by counting the frequency of API for each sample to 

feature extract and find out the most important features with comparing four feature 
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selection techniques such as False discovery rate with ANOVA, RFE, LASSO and FDR 

with chi-square. Each algorithm selects the first top 100 features. 

3. Evaluate the malware family classification by comparing four machine learning 

algorithms such as SVM (RBF kernel, polynomial and linear), MLP, RF  with selected best 

100 features. 

4. Find out the feature importance based on AUC and F1 score of best classification 

results. 

5. Find out details’ frequency distribution of each feature according to the family. 

1.4 Organization of Research 

The thesis dissertation organized in six-chapter. This chapter describes the introduction, 

following with a brief introduction along with them the importance of malware analysis on 

cybersecurity, the problem areas and the solutions of the thesis, the objectives, the 

contributions, and finally the organization of the thesis. 

Chapter 2 discusses the recent research methodologies on malicious threats classification 

and detection of the cybersecurity field. The evolution of malware and different types of 

features for static and dynamic analysis have been described in Chapter 2 along with recent 

research works. Then, different feature selection approaches, and classification methods 

have been discussed in Chapter 2. 

Chapter 3 supports the proposed system of family classification for malicious threats. This 

chapter highlights the malicious feature extraction algorithms for API sequences. Four 
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different feature selection algorithms are used. The preprocessing phases have been 

conducted for malware family classification dataset download from IEEE Data Port. 

Chapter 4 highlights the implementation of the malware classification system for malware 

family. The experiment results are obtained by comparing the result of four machine 

learning algorithms in terms of ROC-AUC curves. 

Chapter 5 describes the feature importance of best results for machine learning algorithms 

in terms of AUC Curve and F1 score and provides frequency distribution of each feature 

according to its family. 

Chapter 6 concludes with the future work of the research. 
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Chapter 2                                    Literature Review 

2.1 Overview 

                 In this chapter, we will introduce the previous work of malware classification 

and feature selection method.  

2.2 Introduction 

   Malware is one of the most common attacks or threats to victims' hosts such as operating 

systems, network systems, and IoT devices, which can lead to huge damage and disruption 

on government and non-government organizations. At the beginning of the creating 

malware it is harmless to both user and computer. Malware writers do not use any 

encryption method to protect it. Now the things have been changed drastically. Now 

malware author is paying attention to gain financial profits. They introduce various hiding 

techniques to exploit vulnerabilities and attacks to the user. According to the report the rate 

of malware infections has been rising for the last ten years.
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Figure 1.1 The growth of malwares in past 10 years 

 

 

 

2.3 Malware Classification 

Any software that happens to pose a threat to users, computers, or network 

systems can be considered as malicious software. It can be various such as scareware, 

adware, viruses, rootkits, trojan, worms, and spyware, etc. [31]. The following 

subsection describes common different types of malicious software that can harm the 

computer system, network security, IoT devices, etc. 

Spyware: Spyware refers to programs that use your Internet connection to send information 

from personal computers to some other computer, normally without knowledge or 

permission of the owner. This information is a record of the owner’s ongoing browsing 

habits, downloading history or it could be more personal data like username and address. 

Downloader: It is a type of trojan that installs itself to the system and waits until an internet 

connection becomes available to connect to a remote server or website to download 

additional programs (usually malware) onto an infected computer. 
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Trojan: A Trojan or Trojan horse is a type of malware that conceals its true content to fool 

a user into thinking it’s a harmless file. The “payload” carried by a Trojan is unknown to 

the user, it can act as a delivery vehicle for a variety of threats. 

Worms: A worm is a type of malware that operates as a self-contained application and can 

transfer and copy itself from computer to computer. 

Adware: Adware is unwanted software designed to throw advertisements up on a computer 

or device screen, most often within a web browser. Some security professionals view it as 

the forerunner of the modern-day PUP (potentially unwanted program). Typically, it uses 

an underhanded method to either disguise itself as legitimate or piggyback another program 

to trick you into installing it into PC, tablet or mobile device. 

Dropper: A dropper is a malicious software that has been designed to install some sort of 

malware (virus, backdoor, etc.) to a target system. It often carries several completely 

unrelated pieces of malware that may be different in behavior or even written by different 

codes. Example: Stuxnet 

Virus: A computer virus is a type of malicious code or program written to alter the way a 

computer operates and is designed to spread from one computer to another. A virus 

operates by inserting or attaching itself to a legitimate program or document that supports 

macros to execute its code. In the process, a virus has the potential to cause unexpected or 

damaging effects, such as harming the system software by corrupting or destroying data. 

Example: MyDoom 
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Backdoor: A backdoor refers to any method by which authorized and unauthorized users 

can get around normal security measures and gain high-level user access (aka root access) 

on a computer system, network, or software application. Once they're in, cybercriminals 

can use a backdoor to steal personal and financial data, install additional malware, and 

hijack devices. 

2.3 Feature selection Methods for Malware Classification 

The process of selecting the most important attributes is the main role in mining 

technology. It plays a significant role in improving the classifier’s performance and 

improving the accuracy by discarding or reforming the shape of features or attributes such 

as the noisy, redundant, and irrelevant from the dataset. To improve the classification rate 

of malicious and benign executables and to decrease the FP and FN, this stage is essential 

to find the best API features. Not all the extracted features can be used in training for the 

following reasons. 

• Consuming large memory usage 

• Taking long training time for classifiers 

• Producing the false alarm rate due to many noisy, redundant or irrelevant features [46]. 

Feature selection is the most important step for the malware family classification (MFC). 

As mentioned, one of the objectives is to choose the smallest number of features that keep 

the classification rate as high as possible to allow to use the minimum quantity of resources 

for the malware detection task [10]. The efficiency of classification was improved by 

https://blog.malwarebytes.com/glossary/backdoor/
https://en.wikipedia.org/wiki/Superuser
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implementing the attribute selection technique with the reduced number of attributes for 

training [9]. 

2.3.1 Types of Feature Selection 

There are three main types of methods in feature selection. 

1.Filter method  

2.Wrapper method 

3.Embedded method 

1.Filter Method: In this method features are selected based on their score in various 

statistical tests for their correlation with the outcome variable. The selection of features is 

independent of any machine learning algorithms.  

 

 

 

2.Wrapper Method: 

The feature selection process is based on a specific machine learning algorithm that we are 

trying to fit on a given dataset in the Wrapper method. It follows a greedy search 

approach by evaluating all the possible combinations of features against the evaluation 

criterion. The evaluation criterion is simply the performance measure which depends on 

the type of problem, e.g. for regression evaluation criterion can be p-values, R-squared, 

Adjusted R-squared, similarly for classification the evaluation criterion can be accuracy, 
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precision, recall, f1-score, etc. Finally, it selects the combination of features that gives the 

optimal results for the specified machine learning algorithm. 

3.Embedded Methods 

 

Embedded methods perform feature selection as a part of the model creation process. This 

generally leads to a happy medium between the two methods of feature selection previously 

explained, as the selection is done in conjunction with the model tuning process. Lasso 

and Ridge regression are the two most common feature selection methods of this type, 

and the Decision tree also creates a model using different types of feature selection. 

2.3.2 Previous Work on Feature Selection on Malware Detection 

In [11] the authors used memory access patterns to distinguish malicious families. The 

feature selection process was performed and trained by ML Models. They took 50,000 

features by selecting the highest IG rank. CFS in Weka was also performed to find the best 

10,000 features. However, the accuracy was 0.845% with RF classifiers in their work. 

In [12] the researcher use API calls for TF-IDF feature selection algorithm on 552 

malicious and benign dataset and achieve 96.4 percent accuracy. In [13] IG feature 

selection method used a malware and benign dataset and achieve 95.7 percent accuracy. 

The authors in [46] used information gain after extracting the n-grams to choose the top 

500 features. They experimented on two different datasets: the first data set contains a 

collection of 1,435 executables (597 clean ware and 838 malware), and dataset2 contains 
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2,452 executables, (1,370 clean and 1,082 malware). IG attribute selection method was 

used in [36, 49, 47] and their accuracies with 98%, 94.6, and 97.7% respectively. The 

accuracy of the hybrid model was 97.4 for both datasets n = 6,4 respectively in [13]. Tf-idf 

was applied in [15] to get the most relevant features. Among the three FS methods such as 

filter, wrapper, and embedded methods, most researchers commonly used the filter-based 

approach in malicious classification and detection research areas. In our work, we first 

implement three different feature selection techniques and select the best feature set by 

comparing the result. 

2.4 Malware classification in Machine learning 

Machine learning has been widely used in the cybersecurity domain. Machine learning has 

been deployed in many fields such as speech recognition, computer vision, robot control, 

natural language processing and other applications. Machine Learning has a powerful 

ability and capability to do many things for cybersecurity. It can be used to identify the 

APTs which are more complex than the normal malware or threats [16]. Various Machine 

Learning techniques have been successfully applied to highlights the wide-ranging 

problems in computer and information security. Machine Learning techniques can be used 

in many intrusion detection systems (IDS) because it can detect new and unknown attacks. 

This section provides some of the related works on malware detection and classification 

using ML approaches. 

Paper 4 The Author compares six different feature selection methods to the exact best 

feature on n-gram based static analysis of malware sample with 100 samples. For 

examining the efficiency of the best feature to the antivirus system four different machine 
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learning algorithms such as SVM, PCA, j48, Naïve Bayes are used. The result shows that 

the use of Principal Component Analysis (PCA) feature selection and Support Vector 

Machines (SVM) classification gives the best classification accuracy using a minimum 

number of features. 

In this paper [2] author does a comparative study of several feature selection methods 

(correlation-based feature selection (CFSSubset) with four different machine learning 

classifiers in n-gram based static malware detection. 

The researcher extracts an API call pattern from 787 malware samples of nine families 

from malware API call sequences. In this process RNN (Recurrent Neural Network) is 

used. It gives 71 percent accuracy on average [3].  

In paper 5 researchers extract features with four types of feature selection algorithms 

such as 1-gram Selection 2. 1-gram Paring 3. n-gram Selection 4. n-gram Paring then apply 

deep feed-forward neural network and convolutional neural network then combining this 

two neural with ensemble classifier. The using n-gram features trained to be 96.7% 

accurate. The convolutional neural network, on the other hand, trained to 88.5% accuracy 

on the test data. By multiplying the nodes by these accuracies, we created weighted nodes. 

Combining these nodes as an ensemble classifier returned an accuracy of 97.7%. The 

training time for the feed-forward neural network was much longer than the training for 

the convolutional neural network. This was expected since the feed-forward neural network 

was training weights for every input node rather than the training the smaller convolutions. 

In paper 7, the Author proposes the training features for malware family analysis and 

analyzes the multi-classification performance of ensemble models. For malware 
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classification machine learning algorithm Random Forest and XGBoost are used to extract 

features from API and DLL information. For family classification using dimension 

reduction techniques to convert API and DLL information high to low, The proposed 

feature selection method provides the advantages of data dimension reduction and fast 

learning. In performance comparison, the malware detection rate is 93.0% for Random 

Forest, the accuracy of the malware family dataset is 92.0% for XGBoost. 

In paper 6, In 2018, the Author made the first part of our Android malware dataset, 

CICAndMal2017 [16], publicly available while performing dynamic analyses on real 

smartphones. In this paper, we provide the second part of the CICAndMal2017 dataset [16] 

publicly available which includes permissions and intents as static features, and API calls 

as dynamic features. Besides, we examine these features with our two-layer Android 

malware analyzer. According to our analyses, we succeeded in achieving 95.3% precision 

in Static-Based Malware Binary Classification at the first layer, 83.3% precision in 

Dynamic-Based Malware Category Classification and 59.7% precision in Dynamic-Based 

Malware Family Classification at the second layer. 

In paper 8, In this paper author use memory access patterns to distinguish between 

10 malware families and 10 malware types. The author uses n-gram techniques to feature 

extraction and Information gain feature selection methods to select the best features and 

convert these best features into bitmap images. Then different machine learning algorithms 

such as KNN, RF, j48, SVM, NB, ANN are used to evaluate the performance. The accuracy 

is 0.688 for malware type and malware family classification is 0.8. 

  

https://www.sciencedirect.com/topics/computer-science/malware-family
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CHAPTER 3 FEATURE ENGINEERING 

3.1 Overview 

In this chapter the description of the dataset is given. We discuss how data is preprocessing 

and extract the most efficient feature for machine learning algorithms. 

3.2 Description of dataset 

The IEEE dataset is collected from IEEE Data Port. The dataset contains eight main 

malware families: Trojan, Backdoor, Downloader, Worms, Spyware, Adware, Dropper, 

Virus. The dataset is constructed by obtaining the MD5 hash values of the malware 

collected from GitHub where the families are selected from the report of 67 different 

antivirus software in virus total. The total malware samples are 7059. 
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Figure 2 The growth of malware in past 10 years 

 

 

 

3.3 Dataset preprocessing 

In this experiment, The API call frequency is counted for each sample. The number of each 

API Call is counted as a feature for each sample. Along with API call frequency we 

calculate the frequency of every character (such as blank space, comma etc.) at each 

sample. The total number of features is 761 with 7059 samples.  

3.3 Feature Selection 

           For feature selection, four different algorithms such as FDR-ANOVA, FDR-chi2, 

RFE, LASSO from three different methodologies like Filter, Wrapper and Embedded 

System are used. For each feature selection SVM with RBF kernel is used as a machine 

learning algorithm. 
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3.3.1 No Feature Selection 

          At first, we implement Kernel SVM with Gaussian as a kernel parameter to project 

nonlinear separable data lower dimensions to linearly separable data in a higher dimension 

in such a way that data points belonging to different classes are allocated to different 

dimensions. 

   The SVM with RBF kernel machine learning model is applied to the whole dataset. With 

no feature selection, the ROC curve is 0.76. 

 

Figure 3 ROC curve for SVM with RBF kernel using no feature selection 
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3.3.2 FDR Feature Selection 

     Univariate feature selection was performed by calculating p-values for each feature 

using analysis of variance (ANOVA) and applying the Benjamin-Hochberg procedure 

(alpha = 0.005) for multiple comparisons. A univariate statistics-based feature selection 

method rather than manual selection automates the feature selection process, making it 

possible to treat the data blindly without assumptions. The ROC score for the top 100 

features is 0.81.  
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Figure 4  ROC curve for SVM with RBF kernel using 191 features 
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Then most important 100 features are selected for classification. 

 

Figure 5 ROC curve for SVM with RBF kernel using 100 features 

3.3.3 Chi2-FDR Feature Selection  

             For each feature we are calculating p values by using the Chi2-Square test. The 

ROC score for the top 100 features is 0.69.  
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Figure 6   ROC curve of SVM with RBF kernel using Chi2 FDR selected top 100 features 

 

 

 

 

3.3.4 RFE Feature Selection 

The recursive feature elimination is to select features by recursively constructing smaller 

sets of features by evaluating each feature importance with SVM with RBF kernel. The 

ROC score for the top 100 features is 0.80.  
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Figure 7 ROC curve of SVM with RBF kernel using RFE Selected 100 Features 

 

 

3.3.5 Lasso Regression: 

The LASSO method puts a constraint on the sum of the absolute values of the model 

parameters, the sum must be less than a fixed value (upper bound). To do so 

the method applies a shrinking (regularization) process where it penalizes the coefficients 

of the regression variables shrinking some of them to zero. The ROC score for the top 100 

features is 0.81. 
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Figure 8 ROC curve of SVM with RBF kernel using LASSO Selected 100 Features 

\  

 

3.4 Comparing Results of all Different Feature Selection Algorithms 

In this experiment, four different feature selection algorithms are implemented in the 

malware API dataset for selecting the top 100 features, The FDR with ANOVA gives the 

best results. The AUC score is 0.82. In the next step different machine learning algorithms 

are implemented the most important features.  
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Figure  9 AUC of SVM with RBF kernel using ANOVA,ANOVA with FDR, Chi Square with FDR, RFE, Lasso 

Feature Selection Method with no feature selection 
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CHAPTER 4                 MACHINE LEARNING      

4.1 Overview 

In this chapter, four machine learning algorithms are used on 100 features of ANOVA -

FDR feature selection algorithm with 10-fold cross-validation and obtain ROC Curve. 

4.2 SVM 

4.2.1 Linear Kernel 

SVM obtains an optimal decision boundary function with a linear kernel that divides the 

data in such a way that the misclassification error can be minimized q2.  For selected top 

100 features the ROC score is 0.78. 
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Figure 10 ROC curve of SVM with Linear Kernel using Anova FDR Selected 100 Features 

4.2.2 Poly Kernel 

SVM obtains an optimal decision boundary function with the poly kernel by controlling 

the gamma parameter by auto that divides the data in such a way that the misclassification 

error can be minimized.  For selected top 100 features the ROC score is 0.76. 
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Figure 11 ROC of SVM with Poly Kernel using Anova FDR Selected 100 Features 

 

4.2.3 RBF Kernel          

SVM obtains an optimal decision boundary function with RBF kernel by controlling the 

gamma parameter by auto that divides the data in such a way that the misclassification 

error can be minimized.  For selected top 100 features the ROC score is 0.82   
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Figure 12 ROC curve of SVM with RBF kernel using FDR Selected 100 Features 

   4.3 Random Forest 

The random forest predicts ROC Curve with 1000 number of decision tree on various 

sample of dataset and uses averaging to improve the predictive accuracy and controlling 

over-fitting by max depth 20.  For selected top 100 features the ROC score is 0.88. 
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Figure 13 ROC Curve of Random Forest using Anova FDR for top 100 features  

4.4 MLP 

             A multilayer perceptron is a neural network model. In this experiment we use a 

maximum iteration of 100000 with two hidden layers for training the features and use 

stochastic gradient descent to optimized log loss function.  For selected top 100 features 

the ROC score is 0.78. 
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Figure 14 ROC Curve of MLP Anova FDR Selected 100 Features 

 

4.5 Comparing AUC performance for different Classifier 
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Figure 15 Comparison of AUC Curve in Linear SVM,SVM with Polynomial, SVM with RBF, Random Forest 

and Multilayer Perceptron 
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CHAPTER 5 FEATURE IMPORTANCE 

5.1 Overview 

In this chapter, the most important API call is finding out by obtaining the feature 

importance of the Random forest classifier model and also given details frequency 

distribution of each malware feature according to their families. 

5.2 Feature importance Ranking using Random Forest Classifier 

 

Figure 16 Feature Importance Ranking of Random Forest using AUC 
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Figure 17 Feature Importance Ranking of Random Forest using F1 score 

5.3 Frequency Distribution of Top Feature 

 5.3.1 The API Sequence length 

                   The API sequence length has the most significant impact on Malware family 

Classification. We can predict the family of malware by finding the frequency pattern of 

each malware family. 
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Figure 18 Frequency Histogram of API Sequence length 

 

Figure 19 The frequency distribution of API frequency for adware, Backdoor, Downloader, Dropper, Spyware, 

Trojan, Virus, Worms  
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5.3.2 Idgetprocedureaddress 

The next important API is Idgetprocedureaddress which returns a pointer to the location in 

memory of the symbol ProcName or Ordinary value Ordinal in the dynamically loaded 

library.  
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Figure 20 Frequency Histogram of Idgetprocedureaddress 

 

 

 

Figure 21 The frequency distribution of Idgetprocedureaddress for adware, Backdoor, Downloader, Dropper, 

Spyware,Trojan, Virus, Worms 

 

5.3.3 ntclose 

The NtClose function closes Access token, Communications device, Console input, 

Console screen buffet, Event, File, Job, Mail slot, Mutex, Named pipe, Process, 

Semaphore, Socket, Thread. 
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Figure 22 Frequency Histogram of NtClose 

 

Figure 23 The frequency distribution of ntClose for adware, Backdoor, Downloader, Dropper, Spyware, 

Trojan, Virus, Worms 
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5.3.4 ntallocatevirtualmemory 

The NtAllocateVirtualMemory routine reserves, commits, or both, a region of pages 

within the user-mode virtual address space of a specified process. 

 

Figure 24 Frequency Histogram of NtAllocateVirtualMemory 
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Figure 25 The frequency distribution of NtAllocateVirtualMemory for adware, Backdoor, Downloader, 

Dropper, Spyware,Trojan, Virus, Worms 

5.3.5ldrloaddll
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Figure 26 Frequency Histogram of ldrloaddll 

 

 

 

Figure 27 The frequency distribution of drloaddll for adware, Backdoor, Downloader, Dropper, 

Spyware,Trojan, Virus, Worms 
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CHAPTER  6 CONCLUSION AND FUTURE WORK 

6.1 CONCLUSION 

  In this experiment, four different feature selection algorithms such as FDR-ANOVA, 

RFE, LASSO, FDR-Chi2 square are applied on the processed malware family API dataset 

and figure out the top 100 features by comparing those algorithms with SVM RBF kernel. 

The best top 100 feature is selected from the FDR-ANOVA feature selection technique 

where the ROC Curve is 82 percentiles. Then five machine learning algorithms such as 

SVM algorithms (linear, RBF and polynomial), MLP, Random Forest are implemented on 

the one hundred most important features from the dataset. By comparing those machine 

learning algorithms, we find out the best classifier Random Forest. The ROC curve score 

is 0.82. Then we calculate feature importance concerning AUC and F1 score. Both results 

are almost the same. We will find API sequence length as the best feature to classify the 

malware family.  Finally, we find out the frequency distribution of the first five best 

features of malware family classification. In conclusion, we can say that the frequency 

distribution of each feature including malware API call function can be used as malware 

family classification. 

6.2 Future Work 

In the future, for better performance, we increase the number of best features. We use 

frequency pattern as a feature to classify the malware family. By extending the present 

work, the unidentified malware and zero-day attack will be developed for the detection 

system. Deep learning and big data analysis will be kept exploring. 
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