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Abstract

Green Fluorescent Protein (GFP) has grown in popularity and new applications are

currently being developed. There are certain residues that are highly conserved through all the

naturally occurring fluorescent proteins variants, and some of their functionality is yet to be

determined. This is the case for three glycines that appear in a GXGXGX motif in the second

β-sheet at positions 31, 33, and 35 with conservations of 100%, 87% and 95%, respectively.

Molecular dynamic simulations and other computational analyses of G31A, G33A, and

G35A mutants, derived from pre-cyclized wild-type GFP, determined with confidence that these

glycines are not involved in the chromophore formation. It is now suspected that these glycines

contribute to the folding pathways of the β-barrel, due to their innate flexibility and small size.

Key distances within the structures were measured such as the hydrogen bond network of the

ɑ-helix and tight turn to possibly determine the glycines functionality. Quantification of water

channels within the protein was completed for all the mutants in order to determine the water

migration pathways within the β-barrel. It was determined that the number of overall channels

increased, but those with the directionality towards the ɑ-helical region decreased.

Other mutants of the precyclized wild-type GFP included G35V, F71L, F71Y, and

G35V/F71L. These mutations were aimed to explore the steric effects and aromatic rescue

interactions between the glycines and their neighbouring strands (β1-3). It was determined that

there was an increase in the distances within the H-bond network of these mutants, decreasing

the rigidity of the β-barrel. The biggest increase was seen in G35V/F71L, due to steric effects,

and F71Y, possibly due to steric effects and the charge character that was added.
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Introduction

History of FPs:

Bioluminescence has been observed in different aquatic and terrestrial organisms such as jellyfish,

fireflies, sea cacti, and squids in different epochs.1 The organisms that exhibit this trait have a wide variety

of utilities for it such as communication, defense and even predatory usages.1 The bioluminescent process

involves an enzyme and a substrate that chemically react with each other in order to produce the

observable light within the organism. The enzyme is typically a form of luciferase and the substrate that

binds to it is a form of luciferin.1,2 Some species that possess bioluminescence also express fluorescent

proteins (FPs). Unlike bioluminescence, fluorescence requires absorption of a certain wavelength of light

from an external source to almost immediately output a lower energy wavelength. The most famous

example of this is the jellyfish known as Aequorea victoria.1,2 Its bioluminescent reaction produces a blue

light, but it's fluorescent protein converts it to an observable green. Not all fluorescent organisms have

bioluminescence; for example, reef corals and some species of shrimps are fluorescent but lack

bioluminescence. Some researchers believe that the evolution of fluorescent proteins are part of

environmental adaptations of species.3 For example, researchers believe that the fluorescent proteins

present in coral reefs are an adaptation to protect them from the constant exposure to ultraviolet light in

the shallow waters.3,15 Other possible uses that these proteins have are that they can serve as primitive

proton pumps or light-induced e- donors.4,15

Green fluorescent protein (GFP) is a protein that has become widely known and used in recent

years. GFP was first discovered in the jellyfish, Aequorea aequorea, or more commonly known as

Aequorea victoria.1 The first reported Aequorea fluorescence was in 1955 when the jellyfish was

irradiated with an ultraviolet light.1,2,4 The jellyfish bioluminescence involves two proteins, aequorin and

GFP.1,2 The Aequorea victoria GFP was the first fluorescent protein to be isolated, clone, and used in a

variety of experiments as a tracer.1,2 This protein takes the blue light generated from the reaction of three
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calcium ions in the photoprotein aequorin and coelenterazine, and radiationless converts it into green

light.1,2 The first crystallization of GFP occurred in 1974 and diffraction patterns were analyzed and

reported in 1988.5 Finally by 1996, the structure of GFP was solved and uploaded to the Protein Data

Bank by Ormo and Phillips.2,5

Osamu Shimomura isolated a small peptide fragment that contained the chromophore from a

heat-denatured GFP.1 From this Shimomura was able to synthesize a handful of compounds which he

compared to the GFP’s chromophore.1 By 1979, he was able to propose the chemical structure,

4-(p-hydroxybenzylidene)imidazoilid-5-one, the first of its kind.1 Further research confirmed

Shimomura’s proposed structure and that it was a cyclic hexapeptide formed by residues 64-69 (Fig 1).1

Figure 1. The 4-(p-hydroxybenzylidene)imidazoilid-5-one structure that was proposed by Shimomura in 1979.1

GFP has a rare behavior that allows it to attack its own backbone in order to form the fluorescent

chromophore, or fluorophore.1 This behavior was confirmed in 1994 which proved that the chromophore

formation was through an intramolecular autocatalytic cyclization (Fig 2).1
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Figure 2. Proposed autocatalytic mechanism for the formation of the chromophore.1

The presence and high stability of the chromophore has made it extremely useful as an imaging

tool. Many mutations have been performed on GFP in order to widen its use, some of which have changed

its color, brightness, and sensing capabilities. The first experimental application of GFP was seen as a

gene-detector on the nematode Caenorhabditis elegans.5 Researchers wanted to detect the C.elegans gene

expression of the mec-7 promoter in an in-vivo environment, this was made possible after the

implementation of a GFP tag.5 Research continues to advance on this protein in order to widen and

improve its understanding and usage.

FP Applications:

FPs have become abundant due to their wide range of usages such as photolabeling, tracking, and

imaging; all of which have allowed for significant improvements and advancements in a number of fields.
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GFP is commonly used due to the simplicity of its formation and the fact that it does not alter the mobility

and performance of tagged proteins.1 GFP is extremely durable, however, environmental factors such as

alkaline pH, detergents, photobleaching, and salts can affect is performance.12 Temperature has been

observed to have an inverse relationship to GFP’s folding rate.5 GFP synthesized at lower temperatures

has been observed to be stable and fluorescent up to temperatures of 65 ℃, a stability that is lost as the

ambient temperature increases.5 The malleability of this protein has also made it attractive in fields such

as cellular research.

Fluorescent proteins allow researchers to track the growth of cells, infections, and the effects that

mutations have on an organism by serving as fusion tags.1 This is done through the creation of a chimera,

which fuses the interested protein to the amino or carboxyl termini of the GFP.1 Expression levels of a

targeted gene can be monitored with GFP through its functionality as a reporter gene as seen in the C.

elegans studies. GFP can also function as an indicator for environmental factors such as metal ions, pH,

and halides.7

Different codons can be changed in order to optimize it for different environments such as

mammals, plants, fungi, etc..1 For example, changing the bulky groups in the protein to smaller ones can

increase the folding efficiency that it has, making it suitable for higher temperatures.5 Some have even

made a variant called “super folder” GFP which can fold in extremely poor conditions, have an improved

resistance to chemical denaturants, and increased folding kinetics.6 The protein’s popularity has also

increased in recent years due to the different colored analogs of GFP that can be engineered with similar

ease (Fig. 3).3
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Figure 3. Different color fluorescent proteins that have been discovered, all of which has a ƛmax = 550 - 650
nm. DsRed (red), mTagBFP (blue), zFP538 (yellow), (O) mOrange (orange), (S) mKOrange (orange), Kaede (green,

after photoconversion emissions shifts to red), and KFP (photoswitchable, orange). 7

The analogs shown in Fig. 3 have similar folding pathways as the wild-type GFP.3 The structural

and sequential differences between these variants are, in some cases, small.7 Other analogs have been

engineered to fluoresce near the infrared spectrum.8,9 Some of these variations are exceptional bright in

mammalian cells and allow for multicolor imaging, making them highly suitable for long term in vivo
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imaging.8,9 Their non-invasiveness makes them ideal for research in fields such as cancer studies, stem cell

biology, and neuroscience.8,9

Limitations:

A prominent field where GFP is used is cancer research. In these studies, GFP allows tracking of

tumor progression and possible metastasis. A major drawback to GFP is that it can not become fluorescent

in an anaerobic environment, which cancer/tumor cells are known to be, due to the dependence of the key

Tyr66-dehydrogenation step on O2 (Fig 2,step 2).5 This limitation is eliminated once the GFP has matured.

Once maturation has occurred, the presence of O2 has no effect on its functionality.5 Upon exhaustion of

O2, a variety of GFP species can undergo a photo conversion into a red fluorescent species.5

Even though GFP is relatively large for a tag, there have been numerous cases where the targeted

proteins were successfully tagged without losing functionality.10 Researchers can use three-color and

four-color flow cytometry techniques to track multiple variables at the same time in an in-vivo

environment.1 Expression of GFP has been successfully achieved in a number of species such as E. coli,

Drosophila, C. elegans, and yeast, but the expression efficiency and intensity decreases in more complex

organism such as mammals and plants.11 Through other modifications, researchers have been able to use

GFP as a convenient reporter for gene regulation, signal transduction, and subcellular localization of

chimeric proteins in plants.11 The only limitation is the fact that each GFP structure has only one

chromophore meaning that a high level of expression is needed for proper and accurate visualization.5,7,11

FPs can serve as a sensor for specific environmental factors such as pH level, Ca+ concentration

and intercellular processes.7 For example they can serve as a pH-sensor by switching the color of emission

from a blue light (~460 nm) in a low pH environment to green (~510 nm) at a higher pH.7 However, this

functionality is not used commonly or as efficiently as others since researchers are still exploring this

application.7 GFP’s 3D structure is highly interesting and thus the subject of our research.
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Fluorescent Proteins Structures:

GFPs consist of 238 amino acids including the chromophore forming residues and share the

common cylindrical shape formed by 11 β-sheets, each 3 to 10 residues long, with other naturally

occurring FPs.10 This twisted-cylinder formation is called the β-barrel or β-can, which is then threaded by

an ɑ-helix, another secondary structure, that is responsible for chromophore formation (Fig. 4,5).5,16

Figure 4. The 3 dimensional structure representation containing the 11 β-strands, ɑ-helix, and

chromophore.5
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Figure 5. GFP structure both 3D and 2D, with proper labeling of the strands and the 3 highly conserved

glycines.15

The β-can forms rapidly, but fluorescence does not appear until 90 mins - 4 hours later due to the

chromophore’s slower cyclization reaction.1,4 Some engineered GFP variations have minimized this delay

through deletions of certain residues that do not affect their overall structure and functionality. GFP’s

cyclization time is unable to shorten since most of the primary sequence is used in the formation of the

β-barrel and the α-helix, thus making deletion hardly possible.5

Structural studies have determined the amount of mutations that GFP can endure before

fluorescence extinction occurs. One study found that 75% of single mutations have a diminishing effect on

fluorescence and another 9.4% of these decreased fluorescence by >5-fold.17 However, for many of these

mutations the effects were small.17 It was observed that more mutations led to decreased fluorescence and

once there were more than five mutations, fluorescence was extinguished.17

Other research has indicated that the histidine ammonia lyase (HAL) and phenylalanine ammonia

lyase (PAL) protein families have the same post transitional ring formation.1 The fluorescent chromophore

is at the center of the β-barrel in the ɑ-helix where it is protected and formed through the autocyclization

of residues Ser65, Tyr66, and Gly67(Figure 1 & 2).1,2,5,12,13,15 Figure 1,2
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The chromophore can exist in 2 states, neutral and anionic, which affect the wavelength that they

absorb.7 The neutral, or A form, absorbs light around 395 nm, while the anionic, or B form, absorbs a

wavelength of 475 nm (Fig. 6).7

Figure 6. The different states of the chromophore, both the A (neutral) and B(anion) and their perspective

peaks.7

Both forms of the chromophore exist in the wild-type GFP in a 6:1 ratio, favoring the formation

of the A form, and are unaffected by environmental factors such as salinity or pH.7 The position and the

size of the cavity that surrounds the chromophore, which depends on hydrogens bonds and the

hydrophobic chains, is vital in determining the fluorescence level.7

All naturally occurring chromophores are created by 2 rings that are linked by a double bond.7 In

the chromophore’s excited state the two rings are perpendicular to each other, causing the energy to be

radiated thermally rather than radiatively.7 Stereochemistry does not affect its fluorescence, but there is a

favorability for the cis isomer.7 This is true for all GFP variants, but in other FPs such as eqFP611, a red

fluorescent protein, the trans isomer is favored.7

Conserved Residues in GFP:

An isolated chromophore is nonfluorescent, either as a naked molecule or as part of the isolated

hexapeptide.7 It is hypothesized that the β-barrel formation is crucial in restraining the chromophore in

the proper position for fluorescence promotion.7 An important residue in chromophore maturation is
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Gly67, as its unusual nucleophilic nature promotes the auto-cyclization reaction with minimal steric

hindrance.5 Other conserved residues include Arg96 and Glu222, which were determined to have a

catalytic role in chromophore formation.7 Arg96 was observed to promote ring closure in the

chromophore, and Glu222 seems to contribute to the rigidity of the chromophore within the structure,

preventing it from moving and becoming nonradiative.3,15,12 The preservation of Glu222 supports the

suggested role of fluorescent proteins as proton pumps.15 The ground state of the chromophore is

deprotonated by Glu222, which is then protonated through a well-designed proton entry pathway.15

However, experimental data demonstrates that the role of Glu222 is not to contribute to the excited state

proton transfer (ESPT) reaction.15 There are one hundred and fifty one GFP-like structures that conserve

Glu222, of them only 56 are in a proton chain.15 Thus, it is believed that the more important role of

Glu222 is in the chromophore maturation rather than the ESPT reactions.15

The GFP chromophore is formed through the autocyclization of the residues 65-67 (Ser-Tyr-Gly),

a sequence that is not conserved in all fluorescent proteins.3 Only a fraction of this is conserved in

GFP-like proteins: residues 66 and 67 (Tyr-Gly).3,15 Ser65 can mutate to Lys, Asn, and Gln and still have

functionality.3 However, in GFP, mutations in position 65 cause a significant drop in fluorescence.3,12

Substitution of Gly67 by any other amino acid will impair the formation of the chromophore and will

render GFP non-fluorescent.12 It is believed that glycine is the only amino acid that will allow the

kinked-conformation required for the auto-cyclization reaction. 12 All naturally occurring fluorescent

proteins conserved Tyr66, which can be mutated artificially to other aromatic residues (His/Trp) to

produce different colored FPs.12,15 Chromophore maturation can occur with non-aromatic residues at

position 66, but side reactions (hydrolysis/fragmentation) and small conjugation can quench its

fluorescence.12,5
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Figure 7. Table demonstrates the residues 65,66,67 that are present in a number of species as well as the
number of structures and other residues present in said species.15

Residues located at the “lids'' of β-barrel have been observed to be highly conserved due to their

suspected functionality as hinges for β-barrel formation.4,15 Glycine is one of the most conserved residues

in GFP variations, which is believed to be due to their stabilizing effect at certain positions.14 All natural

GFP variants conserve Gly31,Gly33, Gly35 located on the second β-sheet (Fig. 7).15 These residues are

not directly involved in the chromophore maturation and the second β-strand does not differ significantly

from the other strands, thus the purpose of these highly conserved residues still remains a mystery.4, 14 It is

suspected that these glycines aid in the formation and stability of the protein, but no evidence has been

proven. Studies have shown that the residues that have a greater impact on fluorescence are the ones that

were oriented internally towards the chromophore due to the influence that these have on the shape of the

cavity and chromophore positionality.17 These conservations have allowed researchers to replicate

GFP-like structures from de-novo experimentation.16 The denovo FP has less than half of the residues that
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are present in naturally occurring GFP, a size differentiation that can provide insight on the functionality

of highly conserved residues such as the glycines.15,16

Figure 7. Visualization of the conserved residues through the variations of GFP structures.15

The folding pathways of GFP has been studied through unfolding and refolding of the protein in

an attempt to understand the conservations.12 It was determined that the proline residues play an important

role in the maturation of the GFP.12 All the proline residues are in the trans form, with the exception of

Pro89.12 The position of this cis proline dramatically changes the direction of the chain, thus playing an

important role in packing the ɑ helix within the β barrel.12 The other prolines are suspected to kink the

helix into the right conformation.12 The chromophore seems to play an important role in the overall

protein stability after its maturation.12

Folding Pathways:

The folding pathway is key in promoting fluorescence in FPs.18 Computational analyses using

multicanonical (MC) molecular dynamics simulations of GFP have shown intermediates that serve as

potential energy traps, which prevent proper β-barrel folding and quench fluorescence (Fig. 8).18 GFP was
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unfolded through chemical and mechanical means.18 Mechanical force was applied to specific residues

within the structure.18 GFP unfolded in either a all-or-none process or by populating nonfluorescent

intermediate states, and was refolded through the reduction of the applied force.18 A commonality

between the pathways was that β strands remained grouped in the intermediates such as β-strands 1-6 and

the N-terminus β strands.18 These intermediates provide insights on the pathways that GFP takes to reach

its native state and the functionality of specific areas and residues within the structure.18 It also

demonstrated the stabilizing effect that the chromophore maturation provides, since a high energy

intermediate was populated in the simulations contrasting the observed stable experimental GFP

intermediates.18

Figure 8. Folding landscape and network of GFP.18

FPs Outside of Science:

GFP has mostly been used as a reporter gene in quantitative analysis of either gene

expression or other environmental factors. An example of this is the quantification of toxic

chemicals within an environment, where the lower fluorescence level indicated higher pollution.

The imaging field has also shown an advancement since GFP is non-invasive, allowing the
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tagged structure/cell to function normally. Due to its non-invasive behavior, the observation of

delicate systems such as brain circuitry and virus infections was made possible both in vitro and

in vivo.19 However with the development of the new mutants and their different colors, FPs can

be used in other fields such as art. Artists either draw inspiration from the structure of the protein

or use the protein in their artwork (Fig 9 and 10).20

Figure 9. Fluorescent artwork demonstrating the diversity of colors derived from the GFP
mutants (credit to Tsien).
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Fig 10. Julian Voss-Andreae’s sculpture of GFP, “Steel Jellyfish,” located at the University of
Washington.20

Fluorescent pets have also been engineered in order to demonstrate the wide-range of

applications that GFP has and demonstrate its non-invasive nature. Alba, the GFP rabbit, was

commissioned by Eduardo Kac in a French lab in order to speak to these attributes. However,

these animals can also serve the purpose of model-organisms in studies of different diseases such

as HIV, narcolepsy, and blindness.21,22 Other animals that were engineered include: axolotls,

zebrafish, cats, beagles, and pigs (Fig 11).21,22 These animals were commissioned by scientists

from all over the world including: the United States, Japan, South Korea, and Taiwan.21, 22
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Fig 11. Mutate mice (left & right) expressing their fluorescence compared to non-mutated mice
(center).22

Overall, GFP is a unique protein due to its nature, functionality, and structure. It has been

used throughout the world in the improvement of the imaging field, and even allowing the

creation of art. Research using GFP will continue to expand at the same rate as our curiosity,

eventually becoming an integral part of our understanding of the brain circuitry, cancer, and

many other diseases.

Our Research:

We obtain a pre-cyclized GFP structure from the Protein Data Bank (PDB), 2AWJ, which was

later graphically mutated to be identical to wild-type GFP (wtGFP). A 200ns molecular dynamic

simulation was run to set a baseline for the future experiments. A total of three single point mutants were

graphically constructed (G31A, G33A, G35A) to explore the functionality of these conserved residues.

Each of the mutants had a 200ns MD simulation with the same parameters, and it was determined that the

functionality of these was still unclear. These mutants were synthesized by Professor Schneider, who

observed a decrease in fluorescence caused by a large amount of misfolding. Our group suspected that this

aggregation to be a result of the G3XA mutations. This led to the belief that the glycines were involved in

the protein folding pathway. Moving forward, a set of 4 double mutants was constructed computationally

through the mutation G35A and the residue opposite from it (Phe71) in order to explore the interaction

between the surrounding residues and the glycine. Other simulations included solely the β-strands to

explore the folding pathway of GFP and its β-barrel as suggested by the results of the wet-lab. Strands 1-3

were the focus of these 200ns MD simulations, allowing us to observe their movement and interactions in

respect to each other.
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Experimental
______________________________________________________________

Baseline and Single-Point Mutants Simulations:

Obtained GFP structures 2AWJ, 2AWK and 1EMB from the Protein Data Bank, all of

which have been synthesized and had their structure determined via crystallography. The 2AWJ

structure is a precyclized intermediate of 2AWK while 1EMB is a mutant constructed by

substituting Gln80 with an arginine.23 Both 2AWJ and 2AWK have substituted the positively

charged arginine at position 96 with a neutral methionine.24 This mutation slows the

chromophore formation from hours to months.24 Graphically mutated the 2AWJ structure to

match the sequence of the immature wtGFP structure (1EMB), these mutations included: L64P,

T65S, M96R, S99P, T153M, and A163V.

A 25,000 large-scale low-mode sampling step conformational search was conducted on

the wtGFP, the resulting structure was then minimized (10,000 steps) to determine the lowest

energy structure to serve as a starting point for MD simulations. Three single-point mutants were

constructed graphically from this wtGFP structure by substituting the glycines at positions 31,

33, and 35 with alanines. Another 10,000 step minimization was conducted on each of the

mutants. The conformational searches explored different vibrational (large-scale low-mode

sampling) and torsional space using the Monte Carlo method in order to determine the lowest

possible energy structure.

The program Desmond, a software package designed to run high-speed molecular

simulations on existing systems such as GFP and the current mutants, was used to run all of our

simulations.3 The GUI Maestro, a program in the Schrödinger suite, was used to model all the

mutants as well as to visualize the data acquired from the MD simulations.25 The resulting
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structures from the MD simulations were overlapped with each other to determine the

simulations quality and accuracy.

The Desmond system builder was used to prepare all structures for the MD simulations.26

Predefined SPC solvent were used in a 10Åx10Åx10Å orthorhombic buffer box around the

starting structure.4 Due to the intrinsic charge that the structures have, 6 Cl- ions and 0.15 M

NaCl, were added for charge neutralization.26 The engineered system was loaded into the

Molecular Dynamic panel for preparations/initialization of the simulations. The temperature,

ensemble class, and pressure that were used for all simulations were 300K, NPT, and 1.01325

bar, respectively.26 Simulation quality and structural equilibrium were confirmed through

examination of root-mean-squared deviation (RMSD) measurements.26 The RMSD value

determines the movement that the structure exhibits throughout the simulation. A stable structure

will have minimal RMSD fluctuation since it will not be shifting into different conformations.

Simulations that had a high RMSD value were extended until an equilibrium was found. The

OPLS3 force field was used while conducting our computations.27,28

Hydrophobic Pocket Simulations:

Followed the same procedure for the system builder as previously described. These

simulations explored the steric interactions between residues Gly35 and Phe71, located across

from each other. Engineered a total of 4 mutants from the minimized wtGFP structure, three

single (Gly35Val, Phe71Leu and Phe71Tyr) and one double mutant (Gly35Val / Phe71Leu). All

had 200ns MD simulations conducted on them.

β-strands Simulations:

β-strands 1-3 were graphically isolated (residues 3-57) from the immature, engineered

wild-type structure (wtGFP) to determine folding pathway interactions between them. The
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terminus of the structure was capped through the protein preparation wizard tool and minimized

(10,000 steps). The three single-point Gly/Ala mutations were made on this minimized structure

and another 10,000 minimization was run in preparation for the MD simulations. All of these

simulations were 400ns in length.
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Results and Discussion

Structural comparison between Mutant & wtGFP and validation:

The structure, 2AWJ was used for these simulations due to this variant having a

precyclized form caused by the R96M mutation. This mutation strips position 96 of the positive

charge that provides its catalytic property, slowing chromophore formation to months.24 The

slowed chromophore formation allowed for the determination of the pre-cyclized intermediate,

2AWJ, as well as its fully cyclized counterpart, 2AWK. Since the difference between the

wild-type GFP and the 2AWJ mutant were the kinetics, this structure once graphically mutated to

match the wtGFP sequence, could provide adequate modeling of the pre-cyclized intermediate’s

behavior. Validation of all the output structures from the molecular dynamic (MD) simulations

was determined through observation of RMSD values relative to 1EMB, with a constant value

signifying a stable conformation of the structure. The first 100 ns of the mutation G31A

simulation was observed to have a constant increase in the RMSD, thus extensions to the

simulations were required. Depending on the mutation, the structure found the stable

confirmation either earlier or later in the simulation.
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Figure 12. Graphical representation of the G31A mutant’s RMSD. From left to right were 0-100ns (A),
100-150ns (B), and 150-200ns (C).

The outputted structure of the engineered 2AWJ was compared, both graphically and

quantitatively, with the default 2AWJ, its cyclized counterpart (2AWK), and the wild-type GFP

(1EMB) to determine the RMSD values and differences reported in Table 1. Comparison of the

RMSD between structures provides an insight into the similarities and differences that the

structures possibly have, thus a low RMSD is desired in such studies as our own. The low RMSD

values implied that there are only local changes in the structures without any significant global

change, thus we can use this as the starting structures for our simulations.

Table 1. RMSD values of the superimpositions and the largest distance difference for the engineered
2AWJ structure.

Structure-engineered 2AWJ RMSD (Å) Residues with largest
difference, distance

Default 2AWJ 0.8625 G67, 1.734

2AWK 0.5911 Y66, 1.548

1EMB 0.6729 S67, 1.480

The observed low RMSD values indicated that the engineered 2AWJ had a similar

structure as the wtGFP and thus it was a suitable pre-cyclized model for the studies. This

structure was then modified for all the other mutants: G31A, G33A, G35A, G35V, F71L, F71Y,

and G35V/F71L, and validated through the measurement of respective RMSD.
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Measurement Acquisitions:

The G3XA mutants were used in order to determine whether the glycine at those

positions were contributing to the formation of the chromophore. Using the simulation event

analysis built into the Schrödinger suite, different measurements were performed on key

distances to draw a comparison between the wtGFP and the mutants. These measurements

included: H-bonds interactions/distances between β-sheets, ɑ-helical H-bonds, aromatic rescue

interactions, chromophore’s “tight turn” distance, and water migration.

Hydrogen distance in helical section of GFP beta barrel:

Hydrogen bonds have a significant effect on the structure of the protein, thus the

monitoring of them is essential in determining the effects of certain residues on a protein’s

overall structural stability.29 GFP’s hydrogen network is unique due to its kinked α-helix

structure. This structure has a “sporadic” hydrogen bond pattern, rather than the traditional i+4

pattern found in α-helices, thus a comparative analysis of the following distances between the

wild type and our mutant, 2AWJ G31A, was performed (Figure 13).30
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Figure 13. Key distances that were measured during the experiment. The diagram labeled A,
demonstrates the H-bonds (solid lines) that are present in the main chain of the alpha helix of GFP. The

left diagram B, is a canonical alpha helix and the H-bonds are that formed within it (solid lines). 30

This unique break in the hydrogen bonding of the α-helix contributes to the formation of

the chromophore due to it positioning the reacting residues closer to each other. This reduces the

number of H-bonds in the α-helices that need to be broken for the formation of the

chromophore.29 GFP overcomes this energetically unfavorable reaction through its distorted

α-helix which disrupts the hydrogen bonding network, allowing the chromophore formation to

occur without breaking any H-bonds.30
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Table 2. Alpha helical, shown in Figure x, H-bond distances in angstrom (Å) for all the wtGFP and all the
mutants.

R1-R2 60-64 61-65 62-96 66-96 66-94 68-71 69-72 70-85 65-67

2AWJ M96R (wtGFP)

avg
distance (Å) 4.739 3.546

5.411 (N+)
4.232 (N0)

8.872 (N+)
7.519 (N0) 4.036 3.283 4.318 4.047 3.493

standard
deviation 0.327 0.303

0.373 (N+)
0.362 (N0)

0.555 (N+)
0.531 (N0) 1.089 0.291 0.331 0.447 0.167

G31A (100-150 ns)

avg
distance (Å) 3.638 2.911

4.062 (N+)
5.145 (N0)

3.103 (N+)
4.935 (N0) 2.895 3.082 3.347 3.563 3.588

standard
deviation 0.265 0.159

0.495 (N+)
0.483 (N0)

0.326 (N+)
0.472 (N0) 0.229 0.222 0.327 0.710 0.190

G31A (150-200 ns)

avg
distance (Å) 4.034 2.936

4.686 (N+)
4.898 (N0)

3.010 (N+)
4.419 (N0) 3.053 3.090 3.366 5.407 3.353

standard
deviation 0.374 0.162

0.668 (N+)
0.442 (N0)

0.287 (N+)
0.531 (N0) 0.628 0.224 0.367 0.339 0.170

G33A

avg
distance (Å) 4.143 3.897

4.085 (N+)
3.054 (N0)

7.898 (N+)
5.668 (N0) 6.222 3.400 3.212 3.300 3.295

standard
deviation 0.362 0.311

0.398 (N+)
0.321 (N0)

0.340 (N+)
0.363 (N0) 0.721 0.287 0.229 0.341 0.140

G35A

avg
distance (Å) 4.179 3.000

4.259 (N+)
5.779 (N0)

6.697 (N+)
4.933(N0) 4.713 3.358 4.218 5.238 3.836

standard
deviation 0.315 0.213

0.398 (N+)
0.456 (N0)

0.507 (N+)
0.438 (N0) 1.047 0.307 1.180 1.098 0.158

G35V

avg
distance (Å) 3.358 3.149

3.935(N+)
4.677(N0)

3.028(N+)
4.365(N0) 4.340 5.563 5.970 5.770 3.493
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standard
deviation 0.360 0.294

0.467 (N+)
0.458(N0)

0.407(N+)
0.574 (N0) 1.356 0.779 2.276 2.614 0.291

G35V/F71L

avg
distance (Å) 4.150 3.285

5.072(N1)
3.833(N0)

8.133(N1)
7.444(N0) 3.620 3.293 3.578 4.317 3.396

standard
deviation 0.291 0.266

0.590(N1)
0.404(N0)

0.621(N1)
0.614(N0) 1.016 0.319 0.856 0.586 0.212

F71L

avg
distance (Å) 4.691 3.814

6.275(N1)
6.858(N0) 3.544(N1)

5.606(N0) 3.544 3.149 3.026 3.346 4.784

standard
deviation 1.019 0.744

1.298(N1)
1.307(N0)

0.741(N1)
0.816(N0) 0.741 0.364 0.201 0.766 0.627

F71Y

avg
distance (Å) 4.001 3.015

3.825(N1)
4.599(N0)

3.313(N1)
4.940 (N0) 2.864 3.224 3.666 3.956 3.244

standard
deviation 1.049 0.765

0.492(N1)
0.385(N0)

0.4917(N1)
0.633 (N0) 0.191 0.339 0.863 1.007 0.166

Table 2 shows the standard deviation and averages for the H-bonds distances shown in

Figure 13 as measured in all our simulations. Besides examining the H-bond network within the

α-helix we also examined the hydrogen bond interactions that formed the α-helix and Arg96. In

wtGFP, the T62 and Y66 carbonyl oxygens H-bond to Arg96, allowing the Gly67 nitrogen to

attack and form the chromophore, see Figure 2 in introduction .30

There was a significant difference in the distance between Cys70’s carbonyl oxygen and

Lys85’s amide in the G31A and 1EMB structures, possibly due to the side chain of Lys 85 being
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in a different conformation (Fig 14, 15). Other measured distances changed slightly, but overall

the distances were similar with each other. There seemed to be some distances that had a greater

change, however, these are not significant since they do not contribute to the chromophore

maturation as they were not involved in the autocatalytic chromophore formation step or are part

of the α-helix.

Figure 14. Distance between residue 70’s carbonyl oxygen and K85’s nitrogen.
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Fig 15. Visualization of the different conformations that Lys85 had in 1EMB (fuschia) and G31A
(green), which accounted for the large difference.

The distance between the Arg96 and Tyr66 was vastly different amongst the glycine

mutants. This distance increased by an average of 6 Å, potentially decreasing the catalytic effect

that Arg96 has, slowing the chromophore maturation process. The increase could be caused by a

change in a single dihedral angle and influence the formation of the chromophore. However, the

exact cause is still unknown.

Interactions between aromatic rings and the conserved glycines of the second beta sheet:

Earlier studies have noted that glycines present in parallel β-sheets are accompanied by

phenylalanine across them on neighbouring β-sheets which provide a stabilizing effect. 31 This

has also been observed in naturally occurring GFP structures. In wtGFP, two of the three glycines

(Gly31 & Gly35) within the second β-strand have aromatic residues (Phe46 & Phe71,

respectively) accompanying them. In order to investigate the effects that this interaction has on

31



the spacing and overall structural stability, another batch of GFP mutants was engineered. These

were mostly focused on the Gly35- Phe71 interaction, either increasing or decreasing the size of

either residues as shown in Table 3.

Table 3. Mutations that were performed on the baseline structure, the engineered 2AWJ
structure, and reasoning behind them.

Mutation Explanation

G35/F71L Decreased the size at position 71 in order to
allow space within the structure.

G35V/F71 Investigate the increased steric effects and its
effect on the G35 position.

G35/F71Y Introduced a charge character in order to
explore the effect on both the steric effects
and the hydrogen bond network

G35V/F71L Investigated a “balancing act,” where G35V
mutation increased size and F71L mutation
decreased it.

Structural validation was obtained in the same manner as described for the previous

simulations, i.e. through the acquisition of a low RMSD. All of the simulations were able to

reach an equilibrium within the completion of the 50ns simulation. Equilibration time was

different for the four mutations, F71L, G35V, G35/F71Y, G35V/F71L, which were 38, 12, 5, 5ns,

respectively (Fig. 16).
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Fig 16. Graphical representation of RMSD of the (A) G35/F71L, (B) G35V/F71, (C) G35/F71Y, (D)
G35V/F71L mutants.
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Overall, the aromatic rescue interaction was expected for the non-mutated structure, thus

a disruption or weakening of it was expected for the mutants. Structure integrity was expected to

change with the mutants due to the steric clashes preventing it from reaching the normal

conformation, and more than likely decreasing the rigidity of the barrel. The following

measurements of the hydrogen bond distances between the backbone of the strands were taken to

determine the impact of the glycine mutations, in which a bigger distance increased the rigidity

of the overall structure (Table 4).

Table 4. Backbone hydrogen bond distances between β-strands 1-3, all in Å, for the
hydrophobic pocket  mutants.

Mutants
G35/F7

1L
G35/F7

1L
G35/F7

1Y
G35/F7

1Y
G35V/F

71
G35V/F

71
G35V/F

71L
G35V/F

71L wtGFP wtGFP

Dist, Avg St. Dev. Avg St. Dev. Avg St. Dev. Avg St. Dev. Avg St. Dev.

H25NH
-V22C

O 2.3708 0.4711 4.2686 1.8843 2.1462 0.2240 2.3196 0.3408 2.1590 0.2916

H25CO
-

V22NH 2.0995 0.2196 2.1546 0.2493 2.3045 0.3373 2.1432 0.2212 2.1590 0.2183

F27NH
-G20C

O 2.0567 0.2031 2.0743 0.2145 2.1061 0.2199 2.0957 0.2317 2.3746 0.2731

F27CO-
G20NH 2.2558 0.2447 2.2935 0.2636 2.2911 0.2397 2.3205 0.2829 2.1289 0.2130

V29NH
-L18CO 1.9240 0.1804 1.8914 0.1650 1.9841 0.1926 1.9773 0.1983 1.9780 0.2016

V29CO
-L18NH 2.2748 0.3307 2.1845 0.3003 2.1206 0.2711 2.1588 0.3112 2.0395 0.2201
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G31NH
-V16C

O 2.2785 0.3919 2.5359 0.9936 2.0481 0.2419 5.2081 0.4742 2.1886 0.3191

G31CO
-

V16NH 2.1016 0.3347 2.4322 0.7980 1.9987 0.2029 3.5411 0.5474 2.1522 0.2916

I47CO -
S30NH 1.9772 0.1596 2.0311 0.1730 2.0319 0.1636 2.0398 0.1707 2.0425 0.1596

I47NH -
S30CO 1.8992 0.1554 1.9443 0.1854 1.9278 0.1521 1.9215 0.1533 1.8994 0.1401

L45CO
-E32NH 2.2052 0.3466 2.1875 0.3071 2.3183 0.4321 2.0648 0.2583 2.3074 0.3244

L45NH
-E32CO 2.0901 0.2832 2.0857 0.2658 2.3377 0.5862 3.0888 0.5518 2.1230 0.2384

E34NH
-T43CO 2.1241 0.2313 2.4578 0.7993 2.1788 0.4875 7.5276 0.9802 2.0301 0.1790

E34CO
-T43NH 1.9961 0.1829 2.6536 0.8737 2.2030 0.7329 5.5800 0.5803 2.0023 0.1790

G35NH-
V12CO 2.1886 0.2217 3.1598 0.8277 N/A N/A N/A N/A 2.1107 0.2113

G35CH-
V12NH 1.9271 0.1838 4.0419 1.8843 N/A N/A N/A N/A 1.9454 0.1898

V35NH-
V12CO N/A N/A N/A N/A 1.9669 0.1862 2.0892 0.2286 N/A N/A

V35CO-
V12NH N/A N/A N/A N/A 2.0694 0.2018 1.8852 0.1582 N/A N/A

It was observed that there was an overall increase in the distances between the β strands,

which aligned with the expectations caused by the increased steric effects. The G35V/F71L had

the biggest increase between the H-bond distances of β-strands 1-3, with a maximum distance of

7.5276 Å between the hydrogen bond of E34NH and T43CO. For the G35V/F71 mutants the

biggest distance was between Lys45NH and Glu32CO (2.3377 Å). All other distances

fluctuated, but an overall increase was observed. A similar pattern was observed for the F71Y
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mutation with the largest distance being between His25NH and Val22CO (4.2686 Å). The

G35/F71L mutant was different - a slight decrease is observed, the largest distance was between

Gly31NH and Val16CO (2.2785 Å) and biggest decreased compared to the wtGFP was 0.1023

Å.

H-bond distances were also observed for the glycine/alanine mutants and compared to

those in the wtGFP (Table 5). As expected there was an overall increase in the distances between

the strands, with the biggest distance corresponding to the G31A mutation between Ala31CO

and Val16NH (3.0753 Å). This was expected due to the increased steric effects caused by the

alanine’s methyl group. The largest H-bonds distances in the G33A and G35A, were between

Gly31CO-Val16NH (2.6427 Å) and Lys45CO-Glu32NH (2.5832 Å), respectively. These

increases were not surprising due to the proximity that each of the pairs have to the mutated

region.

Table 5. Backbone hydrogen bond distances for G3XA mutants, all in Å.

Mutant
s

G31A
(100 -
150ns)

G31A
(100 -
150ns)

G31A
(150 -
200ns)

G31A
(150 -
200ns) G33A G33A G35A G35A wtGFP wtGFP

Dist, Avg St. Dev. Avg St. Dev. Avg St. Dev. Avg St. Dev. Avg St. Dev.

L41CO
-
D36NH 2.6792 0.6415 2.4109 0.5911 2.1002 0.2483 2.2321 0.3019 2.0512 0.1868

E34CO
-
T43NH 2.4111 0.6908 2.0165 0.2182 1.9685 0.1640 2.0538 0.1952 2.0023 0.1790

E34NH
-
T43CO 2.6463 0.8218 2.1583 0.2757 2.0497 0.1856 2.0587 0.2256 2.0301 0.1747

L45NH 2.1728 0.4868 2.1469 0.3194 2.3117 0.3632 2.2523 0.3140 2.1230 0.2384
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-
E32CO

L45CO
-
E32NH 2.3259 0.4949 2.3996 0.4111 2.5832 0.5980 2.4307 0.4495 2.3074 0.3244

I47NH
-
S30CO 1.9489 0.1681 1.9343 0.1486 1.8778 0.1546 1.8828 0.1575 1.8994 0.1401

I14CO
-
S30NH 2.0664 0.1808 2.0256 0.1701 2.0061 0.1503 2.0079 0.1573 2.0425 0.1596

A31CO
-V16N
H 3.0753 0.9130 2.5835 0.6149 N/A N/A N/A N/A N/A N/A

A31NH
-V16C
O 2.8252 0.6864 2.6654 0.5162 N/A N/A N/A N/A N/A N/A

H25NH
-V22C
O 2.5303 0.6867 2.2230 0.2998 2.3450 0.3910 2.3459 0.3488 2.1522 0.2916

H25CO
-
V22NH 2.1590 0.2357 2.0487 0.1909 2.1852 0.2372 2.1895 0.2481 2.1590 0.2183

V29NH
-
L18CO 1.9173 0.1882 1.9281 0.1892 1.8879 0.1580 1.9444 0.1882 1.9780 0.2016

V29CO
-
L18NH 2.3562 0.4192 2.4975 0.4567 2.0155 0.2013 2.0215 0.2461 2.0395 0.2201

G31NH
-
V16CO N/A N/A N/A N/A 2.5747 0.6116 2.2521 0.3916 2.1886 0.3191

G31CO
-
V16NH N/A N/A N/A N/A 2.6427 0.7767 2.1283 0.3049 2.1522 0.2916

I14CO-
A33NH N/A N/A N/A N/A 2.2903 0.5172 N/A N/A N/A N/A
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I14NH
-
A33CO N/A N/A N/A N/A 1.9426 0.1839 N/A N/A N/A N/A

F27CO
-G20N
H 2.2968 0.2481 2.0170 0.1880 2.3748 0.2714 2.2989 0.2558 2.1289 0.2130

F27NH
-
G20CO 2.0615 0.2046 2.1699 0.2246 2.1260 0.2283 2.0915 0.2085 2.3746 0.2731

G35CO
-

V12NH 1.9378 0.1911 1.9279 0.1878 2.0896 0.3482 N/A N/A 1.9454 0.1898

G35NH
-

V12CO 2.1830 0.2489 2.1712 0.2697 2.2805 0.3447 N/A N/A 2.1107 0.2113

G35CO
-

V12NH N/A N/A N/A N/A N/A N/A 1.9204 0.1679 N/A N/A

G35NH
-

V12CO N/A N/A N/A N/A N/A N/A 2.1514 0.1981 N/A N/A

Measurements were taken of the distance between the centroid of the aromatic ring and

the α-carbon of the glycine in question. The centroid could not be selected directly thus the

average distances of the 6 carbon members of the ring were taken and averaged to make a

makeshift “centroid” for these measurements (Fig. 17). The main interaction that was explored

through these measurements was that between Gly35 and Phe71, the other glycines were not

examined because Gly33 is not accompanied by an aromatic residue.
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Figure 17. Visualization of the centroid measurements taken between Gly35 and Phe71 interaction.

These distances can affect the H-bond network across stranded pairs by either decreasing

or completely eliminating their interactions.31 There is a statistical preference in nature for

glycines to be in the non-hydrogen bonding site and the phenylalanine in the hydrogen bonding

site.31 This preference results in the side chain of the phenylalanine residue to bend towards the

α-carbon of the glycine, which could serve as a door allowing or blocking bulk solvent from

entering the β-barrel.31 The following distances between the targeted residues were obtained from

the G3XA mutants and wtGFP structures (Table 6).
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Table 6. Distance of F71 Phenyl Ring to G35 α-Carbon for G3XA Simulations

Avg. F71- CαG35 Distance (Å) Std. Deviation

wtGFPimm 4.4796 0.4912

G31A (100-150) 5.0152 0.7044

G31A (150-200) 5.1193 0.7864

G33A 4.4332 0.4039

G35A 5.6834 0.4112

It was determined that the mutation increased the overall distances between the Phe71

and Gly35 with the average increase of 0.52 Å. Previous experiments suggest that the

phenylalanine-glycine pairing provides a thermodynamic benefit for the structure, which aligns

with the naturally occurring phenomenon.31 The interaction with each other has possibly

weakened as a result of the increased distance caused by the mutation, decreasing the observed

thermodynamic benefit. Another possible effect caused by the increased distance is that it could

have provided an entryway for waters into the GFP barrel since the residues would not have the

same compactivity as the wtGFP. Either of these could have detrimental effects on structural

stability and/or chromophore formation, possibly providing an insight on the functionality of the

glycines.

Water Migration and Water Channels:

The effect that waters have on the maturation and cyclization of GFP species has been

observed in previous studies and shown in the high conservation of waters in GFP’s crystal

strcuture.15 Waters within the structure contribute to its H-bond network and thus can play an

important role in the formation of the chromophore depending on their location and interactions

(Fig 18). There are a number of mechanisms for chromophore formation that have been
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proposed, but the following figure is the one that has been widely accepted (Figure 19). Waters

are present throughout the process in order to stabilize the conformation needed for the

cyclization.

Figure 18. Visualization of the H-bonds that waters have around the chromophore and their interactions.2
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Figure 19. Chromophore forming mechanism that has been proposed, intermolecular auto
cyclization interaction between the 3 residues: Ser65, Tyr66, and Gly67.1

There are waters within hydrogen bonding distance of residues Arg96 and Glu222, both

of which are highly conserved catalytic residues within FPs.32 In this aspect, the gap size between

the β-strands of GFP can be significant to the overall cyclization of the chromophore since it will

either allow or deny water access during chromophore formation.

Water migration channels were determined using the trajectory file and the MoleOnline

program, a web-based application for determination of channels within structures.32 Any water

molecule that was within 5 Å of the structure was selected for trajectory analysis. In order to

determine which waters traveled in and those that left the GFP barrel during the simulation,

waters in the barrel in the first and the last frame were selected. These measurements were

repeated for both simulations, 100-150 ns and the 150-200 ns.

Table 7. Waters that migrated either in or out of the protein in the G31A 100-150 ns with
description of their movements.

Atom # SPC # Description
Entering
Frame

Leaving
frame

4842 404

Atom was on the edge (not completely in or out of
the protein) at the beginning of the simulation in
between the gap of ASN146 and the tenth beta
strand, this water then moves in and stays within
the protein for the rest of the simulation near the
alpha helix THR62 (Yellow) 1

23449 8273

This water is in between the 9th and 10th beta
sheets, it left at frame 13 (in between the residues
SER208 and MET218) 13

18201 4857
It is located in the middle of the lid, closest residue
is LYS79, it left the protein at frame 31 31
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4419 263

It is located near the previous water, however it is
located closer to the residue SER72, it left the can
at frame 42 42

4470 280

This water is in between the the first and the
second beta strand near the residues GLY10 and
ALA37, it left at frame 18 18

5958 776

The water entered into the protein in between
residue PHE100 and ASN135 at the frame 984
where it is located for the rest of the simulation 984

5307 559

The water is located in the middle of the lid of the
GFP in between the residues LEU137, LYS131,
and ASP103, it entered at frame 3 through the
same passage that it resides in 3

32634 9668

The water entered through the gap between the
10th and 11th beta strand, in between the residues
HIE169 and TYR145, it is located in near the alpha
helix residue THR62 at frame 664 664

10944 2438

It entered through the same gap as the previous
water at frame 969, this one is located near
VAL150 at the end of the simulation, it made its
way to the alpha and then moved near ASN149 969

29901 8757

It entered through the lid gap that is located
between GLU5 and GLN80 at frame 981 stayed
relatively in the same area 981

17775 4715
Entered the same gap as the previous at frame 995,
it is near ALA37 at the end of the simulation 995

13461 3277
Same gap as before at frame 999, and stayed
within the same area 999

27462 7944

Lid gap in between residues GLU5, LEU194, and
ASP82 at frame 841, stayed in the same position
for the rest of the simulation 841

25653 7341

It entered the through the same gap (ALA37 and
ARG73) at frame 818, stayed in this position for
the 190 frames and then moved towards GLN80 818

16884 4418

The final position of this water was near TYR75,
entered through the gap of GLY4 and SER86 at
frame 976, left and came back through GLU5,
THR38 and LYS79 gap.(frame 995) 995

15468 3946
Through the top lid at frame 999, stayed at the
center 999
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18822 50664
Entered through the GLN80 and GLU5 gap (lid)
and stayed there for the rest of the simulation

27462 7944

Entered through the lid between LYS79 nad GLU5
at frame 840 stayed near ASP82 for the rest of the
simulation 840

31326 9232

Entered through the lid in between ASP197 and
ASP82 in the frame 999, stayed relatively in the
same area 999

For the 100-150 ns simulation there were a total of 19 waters that entered into the G31A

mutant. Of these 19 water molecules, 6 left the β-barrel at different times. There were a few

waters that entered through the same gap between Ala37 and Gly10. This gap is not present in

wtGFP, thus it is most likely the result of the mutation. Many waters entered through the lids of

the residues. These waters usually stayed near the lids and did not seem to enter the barrel

completely as a result of H-bonds formed on the termini. Waters that travel within the barrel

remained near the α-helix throughout the simulation.

For the 150-200 ns simulation there were no waters that left the protein, all of them either

entered or were already there. This analysis was repeated for the G33A (Table 9 & 10) and G35A

(Table 11 & 12) mutants.

Table 8. These were the water that migrated either in or out of the protein in the G31A 150-200
ns with description of their movements. This is the continuation of the previous simulation thus

water entered through the same gaps.

Atom # SPC # Description
Entering
Frame

Leaving
Frame

11728 2702

Starts close to the first couple residues of the
protein (near GLY 10 and ALA 37). GLY 10 is on a
turn while ALA 37 is on a 3/10 helix. Leaves from
this space between frames 93 and 94 (around 4.60
ns into the simulation).
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28909 8429

Starts between LYS 131 and ASN 135 (on turn
before 7th β-sheet). Definite H-bonding with the
oxygen of the water and amino group off of the
side chain of each residue with possible H-bonding
with amide nitrogen of ASN 135 backbone. Stays
in the same position for the whole simulation.

28909 8429

Entered and stayed in the same position for the
entire simulation, minimal movement around
LEU137 5

21277 5885
Entered and stayed in the same position for the rest
of the simulation, it is positioned near LYS131 804

7003 1127 Entered through the gap ASP102 and GLY134 986

19771 5383

Entered through the gap LEU53 on the lid of the
barrel, final position is in between VAL55 and
HIS217 53

8464 1614
Entered through the gap of ASN146 and SER205,
final position near the same gap, minimal movement 470

21265 5881
Entered through the gap of ASN146 and SER205,
final position near the same gap, minimal movement 480

18586 4988

Entered through the same gap as before (ASN146
and SER205), near the same gap, minimal
movement 101

29761 8713

Entered through the same gap as before (ASN146
and SER205), final position between TYR66 and
LEU44 20

17623 4667

Entered through a gap in the lid of the barrel
(between ASP82, ASN198 and GLY228), made its
way down the beta barrel ended near TYR66 355

22585 6321
Entered through a gap formed by VAL163 and
ILE152, final position near HIE81 578

17176 4518

Entered through a gap formed by HIS181 and
THR38 in the lid of the barrel, final position near
CYS70 in the lid 679

13981 3453 Entered through a gap formed by LYS85 and GLY4, 928
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final position near ARG73 in the lid

15667 4015

Entered through a gap formed by GLY4 and SER86,
stayed in this position for the rest of simulation with
minimal movement 10

24841 7073

Entered through a gap formed by GLU5 and LYS85
and stayed with minimal position, final position near
HIE81 960

Table 9. Waters that were within the ß-barrel at frame 1 of the G33A simulation.

Atom # SPC # Description

57679 15027 The starting position for this water was between Y143 and
H169, within the first 20 frames of the simulations, it flowed

out. It never re-entered the barrel.

57238 17880 The starting position for this water was between Y143 and
H169, within the first 20 frames of the simulations, it flowed

out. It never re-entered the barrel.

57451 17951 The starting position for this water was between Y143 and
H169, within the first 20 frames of the simulations, it flowed

out. It never re-entered the barrel.

57682 18028 The starting position for this water was between Y143 and
H169, within the first 20 frames of the simulations, it flowed

out. It never re-entered the barrel.

57532 17978 Positioned near D149 and S205 in the first frames, moving
towards the ɑ-helix as the simulation progressed. It stayed near

the ɑ-helix until fram 295, where it left through the gap
between N146 and A206.

57151 17851 Positioned near the ɑ-helix and β-strands, between L60 and
H181. Roams around this area until frame 55, where it leaves

through the gap formed by Y145 and N170.

57445 17949 Positioned near the ɑ-helix between T62, T59 and I167. Moves
towards the V61 & L60 of the ɑ-helix and stayed there for the

rest of the simulation.

57625 18009 Positioned near the L201 and Y66, between the ɑ-helix and
β-strand. Moves closer to the  ɑ-helix near S65 and roams
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around the area between G67 and C70, normally staying closer
to S65. It then slowly moves out of the protein through the gap

between S147 and A206 in frame 181. It does not enter the
protein after this.

57154 17852 Positioned between T62 and V61. The water stayed near the
V61 of the ɑ-helix, where it stayed for the rest of the

simulation.

57277 17893 Positioned near the S65 of the ɑ-helix. It moved towards the
Q69 and C70. It was later pushed off and it moved towards the

strands for a bit after coming closer again to the ɑ-helix.

57559 17987 Positioned near G67 of the ɑ-helix. It moves closer to the
ɑ-helix, roaming the area of the chromophore forming residues.

It started to head out, moving towards the lids of the barrel.

57736 18046 Positioned near the T108 and E124. Water moves towards the
Y66 and roams around the chromophore forming residues.

57531 17911 Starting near the R96, it moved a little towards the
chromophore forming region towards the G67, and it stayed in

that area for the rest of the simulation.

57160 17884 Positioned near the E5, L85, and C70. It stayed around this area
for the entire simulation, moving back and forth between the

surrounding residues.

57187 17863 Positioned near the F84, D197. It stayed around this area for the
entire simulation, moving back and forth between the

surrounding residues.

Table 10. Waters that were within the ß-barrel at frame 1001 of the G33A simulation.

Atom # SPC # Description

14062 3488 Ended near the opening of S205 and other waters, but the others
did not completely enter the structure. Entered at frame 986

between the gap S197 and S205. Where it moved towards the
ɑ-helix.

26608 7670 Ended near ɑ-helix close to T62. Entered through the gap
formed by S147 and S205 at frame 977.

12805 3069 Ended near the ɑ-helix by P58. Entered in the 266 frame
between the gap friend by S205 and Y143, and it moved
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towards the L60, where it stayed near it for the rest of the
simulation.

22537 6513 Ended near the lid residues by N144. Entered at frame 226
between the gap N144 and H169. It moved towards the general

direction of E142, where it stayed at.

Table 11. Waters that were within the ß-barrel at frame 1 of the G35A simulation, courtesy of Justin
Nwafor.

Atom # SPC # Description

55639 17318
• Begins nearest to Phe 8 on α-helix position of strand 1
• Leaves at frame 4 from termini capped end of barrel

55195 17170
• Begins closest to Phe 84 on the α-helix that runs through the center of
barrel
• Leaves at frame 403 (40.3ns) from the termini capped end of barrel

55222 17179
• Begins closest to Phe 83 on the α-helix that runs through the center of
barrel
• Leaves at frame 695 (69.5ns) from the termini capped end of barrel

55312ቸ 17209

• Begins closest to Phe 71 near α-helix that runs down the center of the
barrel
• Moves toward Gly 67 at frame 142 (14.2ns), but never leaves cavity
during the simulation

55660ቸ 17325

• Begins closest to Phe 71 near α-helix that runs down the center of the
barrel
• Moves toward Gly 67 at frame 142 (14.2ns), but never leaves cavity
during the simulation

55771ቸ 17362
• Begins closest to Gly 67 near α-helix that runs down the center of the
barrel
• Remains there over the course of the simulation, never leaving the barrel

55186ቸ 17167

• Begins closest Leu 60 near α-helix that runs down the center of the
barrel
• Moves closer to Ala 179 at frame 792 (79.2ns) and stays there inside
barrel for the remainder of the simulation

55567 17294
• Begins closest to Ser 205 on Strand 9
• Leaves at frame 467 (46.7ns) through strands 9 and 10
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55189 17168
• Begins closest Thr 62 near α-helix
• Leaves through strands 7 and 8 at frame 8

55486 17267
• Begins closest to His 169 near strands 7 and 8
• Leaves through strands 7 and 8 at frame 8

55234ቸ 17183
• Begins closest to Asn 135 on α-helix on the end of the barrel without
the termini
• Remains there over the course of the simulation, never leaving the barrel

55273 17196
• Begins closest to Tyr 145 between strands 6 and 7
• Leaves through strands 6 and 7 at frame 2

55594ቸ 17303
• Begins simulation closest to Gln 69 on α-helix that runs down the center
of the barrel
• Remains there over the course of the simulation, never leaving the barrel

55246 17187
• Begins closest to Asn 170 on strand 6 on the end of the barrel without
termini
• Leaves at frame 229 (22.9ns) between strands 7 and 8

Table 12. Waters that were within the ß-barrel at frame 1001 of the G35A simulation, courtesy of Justin
Nwafor.

Atom # SPC # Description

53521 16612

• At frame 1001, this water molecule is closest to K101 on the end of the
barrel without termini
• Water molecule enters GFP at frame 882 through the loops next to
K101

22708 6341

• At final frame, water molecule is closest to Ile 171 between strands 6
and 7
• Enters barrel at frame 767 through the end of the barrel without termini

16060 4125

• At frame 1001, water molecule is closest to S147 between strands 5
and 6
• Enters cavity at frame 928 from end of GFP without termini through
strands 5 and 6

50



37009 11108

• At final frame 1001, water molecule is closest to F84 on α-helix that
runs through the center of barrel on the end without the termini
• Enters cavity at frame 335 next to the on α-helix that runs through the
center of barrel on the end with termini closest to R73

38710 11675
• At last frame, water molecule is closest to Y66 on the on α-helix that
runs through the center of barrel, right in the center
• Enters cavity at frame 237 through a gap between strands 6 and 7

19321 5212
• At final frame, water molecule is closest to D36 on the second strand
• Enters GFP at frame 951 through the top of GFP with termini

32431 9582
• At final frame, water molecule is closest to Lys 85 on α-helix that runs
through the center of barrel on the end with the termini
• Enters barrel at frame 874 through the termini capped end of GFP

23893 6736
• At frame 1001, water molecule is closest to Ile 188 at the termini
capped end of GFP
• Enters GFP at frame 888 through termini capped end

ቸ - Stays in the same position for the whole/rest of simulation.

Due to minimal water movement observed within the β-barrel, it is suspected that these

waters hydrogen bonded to something within the β-barrel, whether a residue within the α-helix or

the β-barrel itself. This hypothesis explains the minimal movement that is observed in the

simulations and the area that the waters inhabited (near the α-helix). As well as the fact that

crystal structures of fluorescent proteins have numerous well defined waters, some of which are

conserved across many structures. There were waters that moved a significant amount towards

the α-helix and remained there until the end of the simulation. The increased water migration is

observed to be focused around the “lid” area of the barrel, which is expected as it is exposed to

the bulk solvent and their secondary structures being composed of loops. It is observed that there

is an overall decrease of water migration on the area around the α-helix which could be the result

of the residues increasing distance between the strands, increasing the rigidity of the barrel. The
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increase in steric effects caused by the alanine’s methyl could be disrupting the H-bond network

within the GFP, distorting the spaces between the strands, thus making it harder for waters, see

Interactions between aromatic rings and the conserved glycines of the second beta sheet, pg 31.

Water channels were calculated through MOLEonline to draw the comparison between

the observed water movement and predicted channels. From the possible channels determined by

the program, a structural comparison can be drawn between the predicted channels and the

observed water movement, as well as correlations between the dimensions of the water channels

(Fig 20 & 21, and Tables 12-16). It was observed that water channels were concentrated in the

lids area of the β-barrel, possibly due to the increased steric effects of the alanine causing smaller

spacings between the β strands. The lack of waters observed within the barrel of the mutants

aligns to the observed decrease of channels.
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Figure 20. Visual representation on the predicted water channels calculated through MoleOnline
in the immature wtGFP (first row, a-c) and G31A mutant, middle (d-f, 100-150ns simulation) and

last row  (g-i, 150ns-200ns simulation).
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Figure 21. Visual representation on the predicted water channels calculated through MoleOnline
in the immature wtGFP (first row, a-c) and G33A mutant, middle (d-f) and last row (g-i).

Table 12. MOLEonline’s predicted channels and their dimensions for the wtGFP simulation, courtesy of
Justin Nwafor

Frame Name Length
(Å)

Bottleneck
(Å)

Lining Residues Description

1* T1C3 8.2 1.5 V22, H25, P54, Located at the end opposite of
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L137, V22 the C and N termini. Near the 1st
beta sheet and the turn after the
6th beta sheet. It has something
of an U-shape.

1* T2C4 8.2 1 D36, A37, T38,
Y39, F8, T9, G10,
A37

Located near the C and N
termini, near the 1st and second
beta sheets.

501 T1C2 17 1.1 V61, T62, S65,
Y66, N144, Y145,
T203,  S205, L207,
L220, V61, T62,
Y145, S205,
A206, L207

Located near the alpha helix,
exiting between the turn of the 7th

beta sheet and the 10th beta sheet.

501 T2C2 29 1 L18, V22, N23,
H25, F27, V29,
L53, P54, V55,
T57, L60, T63,
F64, I123, L125,
E132, L137, V22,
N23

Located near alpha helix, exits
between the turn of the 1st beta
strand and the turn after the 6th

beta sheet.

501 T3C2 39.5 0.8 L60, V61, T62,
T63, F64, R96,
I98, Y106, I123,
L125, Y145, N146,
H148,
R168, H169,
N170,H181,
R168, H169, P58,
T59, L60
N144, Y145,
N146, K166

Located near alpha helix, exits
near the 7th beta sheet. It looks
as if it is connected to the tunnel,
T2C2. However, they’re oriented
in opposite directions.

501 T4C3 7.7 2 D129, K131,
D133, D102,
D103, D129,
G134

This tunnel is almost completely
outside of the beta barrel. It is
located opposite of the C and
Termini end of the protein near
the 4th and 6th beta strands. It’s
also very compact.

501 T5C4↥ 9.4 1.1 D36, L42, T43,
F71, E34, G35,
D36, K41, L42

Near the 2nd and 3rd beta sheet
and F71 of the alpha helix. G35’s
backbone also lines this cavity.

55



501 T6C5 3.8 1.3 S147, N149,  T203,
H148, L201, S202,
T203

This tunnel is only lined by beta
sheet residues, it does not go far
enough into the barrel. Exits
between the 10th and 7th beta
strands.

1001 T1C1 11 1.1 P58, L141, Y145,
N146, H169,
N170, E142,
N144, Y145, N146,
R168, H169, N170

Only lined by alpha helix residue
(P58). Leaves between the turn
of the 6th beta sheet and the
residues before the 5th beta
sheet.

1001 T2C1 12.7 1 P58, H139, L141,
Y143, H169, K209,
L141, E142 , N170

Seems to be connected to tunnel
T1C1. It is lined by some of the
same residues as T1C1, but it
moves out more in the opposite
direction, allowing it to be lined
with residues that are near the
turn of the 10th and 11th residue
(i.e. K209).

1001 T3C1 26.9 1.1 V16, E17, L18,
F27, V29, F46,
L53, V55, L60,
T63, R96 , T108,
I123, L125, V16
E17, L18, V29,
S30, E124

This tunnel is wide enough and
twists within the beta barrel,
resulting in it being near residues
that are on 6 different beta sheets,
and alpha helix. Exits between
the 1st and 2nd beta sheets, slightly
above G31.

1001 T4C2 24.3 1 Y66, Q69, S72,
Y74, F84, V150,
Y151, I152, I161,
V163, F165, N185,
H199, L201, Y66

Closer to the C and N termini of
the barrel, very close to the alpha
helix. Exits through 7th and 8th
beta sheets.

1001 T5C3 9.9 1.2 E5, F8, T9, A37,
T38, K85, G4,  F8,
T9, A37, T38

Smaller tunnel, almost
completely outside of the barrel.
It’s located almost right next to
the C Termini of the protein.

1001 T6C3 10.7 1.2 E5, F8, A37, T38,
K85, G4, F8, T9,
A37, T38

There’s almost complete overlap
with T5C3. Their directions
differe, in that they point at the
outermost point of the tunnels.
This tunnel points back up
between the two helices while
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T5C3 points to the side near the
C termini.

1001 T7C3 14.4 1.3 K3, E5, F8, K85,
S86, L194, G4, E5,
K79, Q80, D82,
S86

This tunnel looks connected to
both T6C3 and T5C3, but it
points in a separate direction.
This one actually does pass by
the C termini while the other two
just approach it. This tunnel is
also much wider than the two
that were previously described.

1001 T8C3 15.6 1.2 E5, F8, A37, T38,
R73, K79, K85,
G4, F8, A37, T38,
Y74, D76

This tunnel also looks connected
to the three previously described
tunnels, but this one points
opposite the direction of T5C3
for a longer length which allows
it to be lined with residues like
Y74.

1001 T9C4↟ 21.5 1.2 E90, K156, N159,
P187, P192, V193,
L195, S86,
A87, G189,  D190,
G191,   P192,
V193

This tunnel is located on the bend
after the 9th beta sheet. The
middle of it sits on the helix and
then each side the tunnel goes out
of the protein. The side closest to
the C termini gets in fairly close
proximity to T7C3.

Table 13. MOLEonline’s predicted channels and their dimensions for the 2AWJ G31A simulation
(100-150ns section), courtesy of Justin Nwafor

Frame Name Length
(Å)

Bottleneck
(Å)

Lining Residues Description

1 T6C9 8.9 1.1 V22, H25, F27, P54,
V55, L137, V22,
H25, P54

This tunnel is located on the end of
the barrel opposite of the C and N
termini. It is lined by residues of
the end and turn of the first
β-strand, the turn between the sixth
and seventh β-strands, and residues
that are close in sequence to the
alpha helix in the barrel.

1 T3C3 6.5 1.6 F83, A154,
P187,V193,
L195, K156,

This tunnel is located on the lid of
the beta barrel on the side of K158
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K158, G160 and G191. It is on the turns of the
seventh and eighth beta sheet.

1 T4C4 16 1 Y66, Q69, F84,
I152, M153, I161,
V163, Q183,
N185, L201, Y151,
I152, M153, K162

The tunnel travels through the
residue in between I152 and V163.
It is in between the 6th and 7th
beta sheet. It does not get
sufficiently close to the alpha
carbon.

1 T5C6 6.8 1.2 N144, Q204,
A206, L207, Y145,
S205, A206, L207

The tunnel slightly enters the beta
barrel through the gap between
L207 and Y145. It is a gap
between the turn of the 6th and 7th
beta sheet, and the 10th beta sheet.

1 T2C2 11.3 1.6 K52, P56, W57,
P58, H139, Y143,
E172, D216, L53,
V55, P56, W57,
L141, E142

The tunnel is in one of the lids of
the beta barrel on the side of E142.
It seems to enter the protein
slightly before leaving yet again. It
overlaps with the tunnel  T1C2

1 T1C2 3.4 2.2 K52, W57, H139,
D216, L53, V55

The closest residue is L53, and it
overlaps with T2C2. It seems not
to enter the protein.

501 T3C2 20.7 1 F83, A87, Y92,
N159, P187, V193,
A87, G91, K156,
P187, I188, G189,
D190, G191

The tunnel goes through the V193
and I188. The bottleneck is
bending towards F84.

501 T2C2 13.2 1.1 F83, A87, E90,
Y92, P187, V193,
S86, A87, G91,
P187, I188, G191,
P192

It is perpendicular to the tunnel
T3C2 and travels in the same
manner as it.

501 T4C3 8.9 1.6 K3, E5, K79, L194 This tunnel is located in the center
of the lid that contains G4. It does
not enter the protein, it remains
entirely outside.
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501 T1C1 11 1.1 V61, N144, Y145,
S205, L207, L220,
Y145, N146, S205,
L207

This tunnel enters the protein
through a gap provided by Y145
and A206. It bends towards the
alpha helix slightly, but does not
get too close to it.

501 T5C4 10.2 1.1 P56, P58, H139,
Y143, H169,
K209, P56, T59,
L141, E142, Y143

The widest part of the tunnel is
outside the protein on the lid that
contains E142. It enters in between
W57 and E142. P58 is the residue
that is closest to the end of the
tunnel.

1001 T1C3 10.9 1.1 Y66, H148, N149,
V150, F165, R168,
S147, H148, N149,
K166

The tunnel is located between
residues V150 and F165.

Table 14. MOLEonline’s predicted channels and their dimensions for the 2AWJ G31A simulation
(150-200ns section), courtesy of Justin Nwafor

Frame Name Length
(Å)

Bottleneck
(Å)

Lining Residues Description

1 T2C6 9.1 1 V12, P13, F114,
D117, L119, L7,
V11, P13, D117,
L119

The tunnel is located between
the D117 and V12, in between
the second beta sheet and the
turn of the 5th beta sheet.

1 T3C7 4 1.1 M78, H81, H199,
I229, N198, G228

The tunnel is located between
G228, N198 and H199. It is
between the 10th and the 11th
beta sheet

1 T1C5 8.1 1.5 F83, N159, P187,
V193, P196, K158,
V193, L194

The tunnel is located between
L194, T186, which means that it
is close to the 9th beta strand
and the turn that connects both
the 9th and the 10th beta strand.

501 T1C1 15.1 1 V22, H25, P54, V55,
Y106, F130, E132,
L137, V22, N23, P54

This tunnel is located in
between the barrel lids in
between N23 and L53. The
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bottleneck resides within the
protein, but as the tunnel moves
outward it widens.

501 T3C4 5.5 1.2 P56, P58, T59, Y143,
H169, T59, L141,
E142, Y143

The tunnel is located between
W57 and E142, outside the beta
sheets, near the lids. This tunnel
is in the same lid as the T1C1 of
this frame.

501 T2C1 44.1 0.9 V16, L18, V29, F46,
L60, T62, T63, F64,
S65, Y66, I98, F100,
Y106, Y108, I123,
L125, Y145, S147,
H181, T203, Q204,
S205, E222, S30,
T59, T62, E124,
N146, S147, T203,
Q204, S205

The entry/exit is in between the
residues Q204 and N146, in
between the 10th and 7th beta
sheet. It loops around the alpha
helix on the side of V162, Y182,
I98 , L125, L18, ending in S30.
It seems to have equal distance
between the alpha helix and the
beta sheet.

1001 T2C3 9.6 1.1 P56, P58, T59, H139,
L141, Y143, H169,
W57, T59, L141,
E142

The tunnel is located L141 and
P58. It is located in the lid and
the entry to the protein is located
near the alpha helix.

1001 T3C4 9.7 0.9 E32, K45, I47, R215,
H217, F46, M218

The tunnel is outside the protein
and it does not enter anywhere.
The closest the tunnel is in the
protein is at F46 and M218.

1001 T1C1 11.5 1.2 V11, V12, D36, A37,
T38, E6, L7, F8, T9,
G10, D36, A37, T38

It is located in the other lid,
opposite to the first tunnel
described for this frame. It is in
between G10 and A37. It goes
slightly in towards the
bottleneck

Table 15. MOLEonline’s predicted channels and their dimensions for the 2AWJ G33A simulation,

courtesy of Justin Nwafor.

Frame Name Length Bottleneck Lining Residues Description
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(Å) (Å)

1 T1C1 28.3 0.9 L42, V61, Y66, Q69,
S72, N144, Y145,
T203, S205, A206,
L207, L220, E22,
V224, S65, Y145,
L207

Comes in between strands 10
and 7 opposite the N/C termini,
then goes all the way toward the
chromophore tripeptide and
other parts of the α-helix.

1 T2C3 17.1 1.3 A87, E90, N159,
P187, G189, D190,
G191, V193, S86,
G189, D190, G191

Mainly lined by loop regions
between β(9-10) and β(7-8) on
the same side as the N/C
termini. Somewhat horseshoe
shaped.

1 T3C3 18.8 1.2 A87, P89, E90,
N159, P187, G189,
D190, G191, V193,
S86, G189, G191

Overlaps significantly with
T2C3. Close  to the N-terminus.

1 T4C5 7.1 1.2 K3, E5, K79, D82,
L194, K79

Small tunnel lined by residues
of the N-terminus, loop between
β(9-10) and the end of the
α-helix.

1 T5C5 13.1 1.1 E5, A37, T38, R73,
Y74, P75, K79, D82,
K85, A37

Slight overlap with T4C5, also
located close to N-terminus,
closer to the end of the α-helix,
and interacts with residues of
the β-turn between strands 2 and
3.

1 T6C6 6.5 1.3 R109, A110, E111,
R122, I123, E124,
E111, R122, E124

Lined by residues pointing
outward toward bulk solvent.
Ends at space between strands 5
and 6, almost aligned with the
chromophore tripeptide, but
does not go into the barrel to
interact with those residues.

1 T7C7 5.8 1.1 D102, D103, K131,
G134, N135, I136,
N177, K101, D102,
N135

Lined by residues of loops
between strands 4,5, and the lid
opposite the N/C termini.

1 T8C8 6.1 1.3 V93, E95, K158,
T186

Tunnel points toward the space
between β-strands 4 and 9, but
does not actually enter the
β-barrel.
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501 T1C2 7.1 1.8 E5, T9, A37, T38,
K79, Q80, E5, F8

Somewhat bean-shaped, lined
by residues close to the
N-terminus, the β-turn between
strands 2 and 3, and residues in
the loop between the α-helix and
strand 4.

501 T2C2 8.4 1.8 E5, E6, T9, K79,
Q80

Some overlap with T1C2, points
further out into the bulk solvent.

501 T3C3 7.4 1.8 D102, N135, I171,
S175, Q177, K101,
V176

Small tunnel lined by residues
on loops between strands 4 and
5 and the lid opposite the N/C
termini.

501 T4C3 13.8 1.1 D102, D103, F130,
K131, K131, G134,
N135, Q177, D102,
D129

Some overlap with T3C3, points
in the opposite direction when
exiting the β-barrel.

501 T5C6 8.2 1 E90, P187, G189,
D190, G191, V193,
S86, G189, D190,
G191

Lined by residues on the loop
between strands 9/10 and the
loop between the α-helix and
strand 4.

501 T6C7 6.4 1.4 E111, K113, V120,
R122, E111

Points toward the space between
strands 5 and 6, but does not
enter the β-barrel.

501 T7C7 11.1 1.4 R109, A110, E111,
K113, V120, R122,
E124, E111, R122

Overlap with T6C7, goes in the
opposite direction on the way
out of the β-barrel.

501 T8C9 11.9 0.8 P58, Y143, N144,
Y145, H169, L207,
E142, Y143, N144,
Y145

Lined by residues at the top of
the α-helix (opposite N/C
termini). Exits the β-barrel
between strands 7 and 10.

501 T9C10 6.6 1.2 V93, E95, Q184,
N185, T186, E95,
Q184

V-shaped, points toward the
space between strands 4 and 9,
but never enters the barrel.

501 T10C11 4 1.1 L15, E17, S30,
R122, V16

Points between strands 1 and 6,
but does not enter the β-barrel.
Also interacts with S30 of the
strand 2 and is in line with the
chromophore tripeptide.
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501 T11C12 5.5 1.1 K107, K126, G127,
I128, K126

Points toward the space between
strands 5 and 6 opposite the N/C
termini, but does not enter the
β-barrel.

1001 T1C3 7.1 1.5 N159, P187, D190,
V193, G189, G191

Located in the loop region of
strands 9 and 10 and strand 8
(N159), on the same side as the
N/C termini.

1001 T2C3 16.7 1.6 K3, A87, P89, E90,
P187, G189, D190,
G191, V193, S86,
M88, G191

Some overlap with T1C3, goes
in the opposite direction of
T1C3 out of the barrel.

1001 T3C4 9.4 1 V22, H25, P54,
E132, L137

Interacts with the β-turns of
β(1-2), β(6-7), and the loop
region of the α-helix (between
β3 and helix)

1001 T4C10 5.6 1.5 F99, K101, L178,
A179, D180, F99

Tunnel points toward space
between strands 4 and 9
opposite N/C termini, but does
not enter the barrel.

1001 T5C12 4.2 1.9 V11, E34, K41, T43 Hovers over G35. Points right
into the space between strands 2
and 3, but does not enter the
β-barrel.

Table 16. MOLEonline’s predicted channels and their dimensions for the 2AWJ G35A simulation,
courtesy of Justin Nwafor.

Frame Name Length
(Å)

Bottleneck (Å) Lining Residues Description

1 T1C1 12.8 1.3 K3, E5, K79, D82,
K85, S86, L194,
G4, E5, K79

Located right next to the
N-terminus and the loop
between the ɑ-helix and β4.
Most of the tunnel is parallel
with the bottom of the barrel.

1 T2C1 13.6 1.3 E5, T9, A37, T38,
Y74, K79, D82,
K85, F8, A37, Y74

Some overlap with T1C1, and
go out the opposite side of
the barrel. Both T2C1 and
T1C1 combined to have a
horseshoe shape around the
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N-terminus.

1 T3C2 16.5 1.2 P58, Y143, Y145,
N146, I167, R168,
H169, N170,
V176, L207, N144,
R168, N170

This tunnel enters between β7
and β8, and penetrates the
barrel directly to P58, at the
top of the helix.

1 T4C3 5.5 3.5 K52, H139, K209,
D216

Very large tunnel that
interacts with lids regions of
the side opposite to the N/C
termini.

1 T5C5 22.3 0.7 Y74, F83, F84,
I152, M153, A154,
I161, L195, P196,
D197, N198,
H199, F83, A154,
P196, D197, N198

Long tunnel that enters
between β7 and β10 on the
side of the N/C termini.
Penetrates into the barrel,
interacting with the loop after
the helix.

1 T6C7 5.5 N/A T97, F99, Y182 Points towards space between
β4 and β9, but does not come
close to the barrel at all.

1 T7C8 3.6 2.2 A87, P89, E90,
G189, G191, P192,
S86, P192

Located between the
B-termini of β9 and β10 and
the loop of the helix on the
same side of the N/C termini.

1 T8C9 15.8 0.6 L7, T9, G10, A35,
A37, F71, D117,
L7, T9, G10, A35,
A37

This tunnel goes right into
the hydrophobic pocket that
G35 us typically in.

1 T9C10 16.9 0.9 K101, D102,
D103, N135, I136,
L141, I171, S175,
Q177, K101, V176

Interacts with β9, the β4 and
β5 turn, and lids opposite to
the N/C termini.

1 T10C11 8.4 0.9 K156, N159,
V193, L195, V193

Located between the loops of
β7/β8 and β9/β10 on the
same side of the N/C termini.
Tunnel points straight up into
the barrel, but the tunnel is
very much short.

1 T11C12 6 1.2 E111, K113, R122,
V120

Pointing at the space between
β5/β6 (supposed to be strands
but it is a loop), on the same
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side as N/C termini.

501 T1C1 8.7 1.9 E5, T38, Y74,
K79, K85, A37,
Y74

Located on the same side as
N/C termini, interacts with
residues on the β-turn of
β2/β3. The loop following the
α-helix, and loop of the
N-terminus.

501 T2C3 9.6 0.8 V22, H25, K52,
P54, V55, L137,
V22, L137

Located on the turn of β1/β2,
interacting with the loop prior
to α-helix (opposite to N/C
termini) and the loop between
β6/β7.

501 T3C4 3.5 1.8 E32, K45, I47,
E213

This tunnel is lived by
residues that point outward
towards bulk solvent, on the
2nd and 3rd β-sheets and
loop between β10/β11
(opposite to N/C termini).

501 T4C5 7.4 1.2 Y39, R73, Q204,
F223, T225, Y39,
G40, V224

Funnel shaped tunnel that
points into the space between
β3/β11. The same side as the
N/C termini, but does not go
far unto the β-tunnel.

501 T5C7 3.8 2.1 V11, E34, A35,
D36, K41, T43

This tunnel points right into
the space between β2/β3
where our G35A simulation
is, but it does not go into the
β-barrel.

1001 T1C1 10.9 1.8 F8, A37, T38, R73,
P75, K79, K85,
F8, A37, Y74, D76

Located near the β-turn of
strands 2,3, and the loop
region, immediately
following the α-helix, and
some of the loop following
the N-terminus. Runs
somewhat parallel with the
bottom of the protein.

1001 T2C1 13 1.8 E5, E6, F8, T9,
A37, T38, R73,
K79, K85, F8, A37

Overlaps with T1C1 (fairly
perpendicular to each other),
points more towards the
N-terminus on the way out
towards the bulk solvent.
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1001 T3C1 19.5 1 E5, T38, R73,
Y74, P75, K79,
D82, K85, A37,
Y74, D76, K79,
H81

In the same place T1C1 and
T2C1, but there’s more
overlap with this tunnel and
T1C1. Narrower size and
longer, having more
interactions with residues of
the post- α-helix loops
regions.

1001 T4C2 10.2 1.3 E142, N144, N146,
R168, N170, R168

Horseshoe shaped with both
ends pointing into the space
between β7 and β8 (and the
loop that follows them),
opposite to the N/C termini.

1001 T5C2 13.3 1 P58, V61, Y143,
Y145, I167, H169,
L207, S208, M218,
Y143, Y145, Y146

Another horseshoe type
tunnel near T4C2, but this
tunnel is inside the barrel.
One end points out towards
the same space that T4C2
points into, and the other
points out to the space
between β7 and β10 opposite
to the N/C termini.

1001 T6C3 9.5 1.8 K3, A87, E90,
G191, V193, G4,
S86, P192

Located right next to the
N-terminus and the loop
residues between β9 and β10.

1001 T7C3 10.1 1.4 A87, E90, P187,
G189, P190, G191,
V193, G189, G191

Overlap with T6C3, go in the
same direction, These tunnels
are basically stacked on top
of each other.

1001 T8C6 6.8 1.4 K52, L53, W57,
H139, Y143, D216

This tunnel interacts with
residues near the top of the
α-helix (W57). Does not go
for enough to interact with
chromophore tripeptide.

1001 T9C8 5 1.5 H25, F27, T50,
L53, P54, K26,
T50, K52

Interacts with β2, β3, and the
loop prior to α-helix
(opposite N/C termini).
Points right in the β-barrel
through the vertical axis.

1001 T10C12 3.4 2.2 E95, K158, Q184,
T186

Tunnel points into space
between β4/β9, right under
R96, but it does not go into
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the β-barrel.

*Bold lining residues indicate interaction with the backbone of the named residue.

Tight Turn distances:

Chromophore formation occurs through a catalytic autocyclization of

Ser65-Tyr66-Gly67. It is necessary for the protein to adopt the “tight turn” conformation for

chromophore maturation to occur since this conformation allows the Gly67’s amide to attack the

Ser65’s carbonyl carbon, initiating the maturation process.29

Figure 22. The tight turn conformation results in a short distance between  the nitrogen of Gly67
and the carbonyl oxygen that is present in Ser65. For chromophore formation has to be short

enough for a nucleophilic attack to proceed.1

This distance was tracked through the entirety of the simulations for all structures. It was

observed that all the mutants had an increase in the tight turn distance, but it was not enough to

make chromophore maturation less likely to happen. Since all the mutations did not have a

significant effect, it is unlikely that the glycines have an impact on this distance and chromophore

formation.
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Figure 23. Graph representing the tight-turn distance for all the structures, wtGFP and all
the mutants.
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Conclusion

Previous analysis of fluorescent proteins (GFP-like) structures revealed that conserved

residues fell within 3 categories: chromophore forming, “lid” residues (which serve as hinges)

and those located centrally with unknown functions. Within the second β-sheet, there are three

highly conserved glycines at positions 31, 33, and 35, with 100%, 87%, and 95% conservation,

respectively. These glycines are not observed to be involved in the chromophore formation or are

part of the chromophore forming pore. Due to the glycines in the GXGXGX motif being in

alternating positions, all three of the glycines are directed towards the protein’s core, possibly

retarding or hindering the chromophore maturation. To explore this conservation, a number of

simulations were run on a modified 2AWJ structure, and its G3XA and hydrophobic pocket

mutants (G35/F71L, G35/F71Y, G35V/F71, and G35V/F71L). It was originally hypothesized

that the glycines were involved in the chromophore formation considering their proximity to it.

The small size and flexible nature of glycines, led us to monitor the distances between the

chromophore forming residues, specifically the tight-turn distance. The tight turn conformation

increased in all the G3XA mutants, though it was negligible and did not affect the maturation of

the chromophore. Thus, it is now suspected that their functionality arises in the protein’s folding

pathways. A number of key distances were measured throughout the study including H-bonds

between strands and aromatic rescue interactions, in order to explore the structural rigidity of the

mutants and possible mutational effects. Key α-helical H-bonds were measured for all the G3XA

mutants, which were observed to have no significant change, thus no structural change occurred.
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An increased distance between strands was observed in all the G3XA mutants, thus an increase

of water channels within the β-barrel was expected.

Water migration analyses revealed that there was an increase in water movement around

the lids of the residues and a decrease in the α-helical area. This was likely caused by the

increased steric effects caused by the methyl groups of the alanines preventing waters from

reaching the chromophore in the α-helix area through the strands. The concentrated water

movement in the lid area was expected due to the increased bulk-solvent exposure that this area

has. In continuation with the observation that G3XA mutants are more likely to misfold and

aggregate, it was observed that the β-strands that form the N-terminus were more separated than

those found in the wtGFP structure.

One difference that was noted between the mutants and the wtGFP was a larger spacing

between G35 and F71, possibly leading to the formation of water channels within the β-barrel.

Their interactions were explored through the hydrophobic pocket mutations, which indicated a

decrease in the β-barrels rigidity. This was suggested by the observed increase in the H-bond

distances between the strands, and expected due to the increased steric effects in the mutated

regions. The interaction between the Phe71 and Gly35 was also quantified for all the

hydrophobic pocket mutants to determine the effects of the mutations on previously observed

aromatic rescue interactions. It was observed that this H-𝝅 interaction between these two

residues promotes proper packing of the strands.

From these analyses, we were able to determine that the glycines in the positions 31, 33,

and 35 do not influence chromophore formation. It is suspected that these three residues and

GXGXGX motif are crucial in the proper formation of the β-barrel. Other studies have expanded

on the folding pathway intermediates and determined that the β-strands unfold in groups. The
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first groups to unfold are the N/C termini strands. The remaining strands move in groups

consisting of: β1–3, β4–6 and β7–11.18

Our simulations demonstrated diminished H-bonding throughout the β-sheets, thus it is

more than likely that the functionality of this triad of glycines is in the folding pathways, as well

as to provide proper spacing between the sheets. These findings correlate to those found by

Professor Schneider, since the G3XA mutants had an decreased fluorescence and a high

propensity to misfolding, thus supporting the importance of the triad within the folding process.

Future studies could involve partial structures focusing on β-strands 1-3. The main focus of these

would be the folding pathways since these strands remain intact and next to each other for many

maturation pathways. It is suspected that these strands could be behaving in a “zipper”-like

fashion due to their innate flexibility, which is needed to complete the β-barrel structure.
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