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and Best Selection Approach 2 
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Abstract 4 

Reliability-based design optimization (RBDO) is frequently used to determine optimal structural 5 

geometry and material characteristics that can best meet performance goals while considering 6 

uncertainties.  In this study, the effectiveness of RBDO to develop a rating load model for a set 7 

of bridge structures is explored, as well as the use of an alternate Best Selection procedure that 8 

requires substantially less computational effort. The specific problem investigated is the 9 

development of a vehicular load model for use in bridge rating, where the objective of the 10 

optimization is to minimize the variation in reliability index across different girder types and 11 

bridge geometries.  Moment and shear limit states are considered, where girder resistance and 12 

load random variables are included in the reliability analysis. It was found that the proposed Best 13 

Selection approach could be used to develop rating model as nearly as effective as an ideal 14 

RBDO solution but with significantly less computational effort. Both approaches significantly 15 

reduced the range and coefficient of variation of reliability index among the bridge cases 16 

considered. 17 
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Introduction 25 

Bridge load rating is required by the US Department of Transportation (DOT) to assure 26 

that structures within each state inventory are sufficiently safe for vehicular traffic. Bridge rating 27 

procedures are specified in the Manual for Bridge Evaluation (MBE) (AASHTO 2018), where 28 

rating for design, legal, and permit loads is discussed. Generally, it is desired by the DOTs to 29 

limit bridge posting as much as possible, as restrictions prevent the general public, as well as 30 

commercial vehicles, from fully utilizing the transportation network. Typically, the design load 31 

rating evaluates the ability of the bridge to carry the HL-93 design load specified in the 32 

American Association of State Highway and Transportation Officials Load and Resistance 33 

Factor Design Specifications (AASHTO LRFD 2017) and is used to complete the Federal 34 

inventory rating. The design load is also used to evaluate the bridge at the Federal operating 35 

level, where capacity associated with a lower level of reliability is assessed. Structures  are also 36 

rated for state-specific legal loads at the operating level, to determine if traffic restriction is 37 

required. 38 

Since 2003, with the publication of the Manual for Condition Evaluation and Load and 39 

Resistance Factor Rating (LRFR) of Highway Bridges (AASHTO 2003), bridge rating has been 40 

implicitly based on an assessment of structural reliability.  The MBE was later released in 2008, 41 

replacing the initial LRFR specifications as well as the alternative 1998 Manual for Condition 42 

Evaluation of Bridges (based on Load Factor Rating, which was not reliability-based).  The 43 

purpose of the LRFR version was to provide a more consistent level of safety than that achieved 44 

under the previous procedure.   Part of the LRFR calibration effort was to develop appropriate 45 

vehicular live load statistics used in the reliability assessment to establish live load factors for 46 

rating.  These factors were later revised in 2011 (Sivakumar and Ghosn 2011) using weigh-in-47 
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motion (WIM) data from truck traffic collected from six states. Based on a 5-year return period 48 

for load rating, the recalibrated MBE rating process was formulated to result in an average target 49 

reliability index (β) of 2.5, with a minimum level of 1.5 for any particular structure.   50 

Although the WIM data collected to develop the live load factors in the MBE represented 51 

a significant improvement in load modeling over previous versions, understandably, it does not 52 

necessarily well-represent the traffic loads in various other states that were not included in the 53 

MBE calibration effort. However, a number of states initiated efforts to develop unique live load 54 

models to better represent local traffic data.  Some of these include Missouri (Pelphery et al. 55 

2006), Oregon (Kwon et al. 2010), and New York (Ghosn et al. 2011; Anitori et al. 2017), where 56 

state-specific WIM data were used to develop new live load factors for bridge design and rating.  57 

Similar work includes that implemented by Texas (Lee and Souny-Slitine 1998) and Wisconsin 58 

(Tatabai et al. 2009), which used WIM data to better characterize vehicle load effects. 59 

More recently, Eamon and Siavashi (2018) revised the Michigan DOT (MDOT) bridge 60 

rating procedure based on a reliability-based analysis of WIM data.  It was found that use of 61 

existing rating vehicles produced significant inconsistencies in reliability.  That is, for a given 62 

rating factor, one structure had a significantly different level of reliability than another.  This 63 

inconsistency varied depending on bridge geometry, girder material type, and mode of failure.  64 

One way to resolve this problem would be to vary the live load factor on the rating vehicle as 65 

necessary to match the required reliability level.  However, this approach would be impractical, 66 

requiring many hundreds of different load factors, one for each bridge type and geometry.   An 67 

alternative possible solution is to simply apply the largest live load factor required across all 68 

cases, such that the minimum specified reliability level is always achieved.  From the perspective 69 

of the DOT, this simpler approach is highly undesirable, as it would result in a large number of 70 
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under-rated structures, potentially leading to unnecessary traffic restriction.  Because the pattern 71 

of required load factor variation is complex, the development of an appropriate live load model 72 

for rating is not obvious.  For such problems, reliability-based design optimization (RBDO) may 73 

be an appropriate solution approach. 74 

In a typical RBDO procedure, geometric (or material) design parameters are taken as  75 

design variables (DVs), where an optimal set is determined that best meets specified 76 

performance criteria when subjected to reliability-based constraints. Various research efforts 77 

have used this approach to optimize hypothetical bridge designs for different performance goals, 78 

such as cost minimization (Thoft 2000; Turan and Yanmaz 2011; Behnam and Eamon 2013; 79 

Saad et al. 2016; Garcia-Segura et al. 2017); weight (Nakib 1991; Yang et al. 2011; Thompson et 80 

al. 2006), and resistance to extreme loads (Negaro and Simoes 2004; Basha and Sivakumar 2010; 81 

Kusano et al. 2014). 82 

In this study, rather than taking design variables as geometric characteristics of a bridge 83 

to develop an optimal design, DVs are taken as representative parameters of the rating model 84 

itself. That is, RBDO is not used to develop an optimal structural design, but rather an optimal 85 

live load model to be used for bridge rating.  As such, the first objective of this study is to 86 

examine the viability of using RBDO to develop a rating live load model, with the objective to 87 

minimize the inconsistencies in rating factor and corresponding reliability level among many 88 

different types of bridge girders.  Kamjoo and Eamon (2018) recently proposed a similar 89 

approach for development of a load model for design. 90 

 Although an RBDO result may represent a theoretically ideal solution, it is accompanied 91 

by several notable drawbacks: high computational cost, a somewhat complex problem 92 

formulation, and a resulting load model that may bear little resemblance to any realistic vehicle 93 
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configuration.  Thus, the second, and primary objective of this study is to evaluate the 94 

effectiveness of a simple and much less costly alternative approach which provides not an 95 

optimal solution, but the best solution available based only on measured actual vehicle 96 

configurations.   97 

 98 

Traffic  Data Collection 99 

As noted above, various agencies have collected state-specific WIM data and have used 100 

those data to refine bridge rating models. To evaluate the viability of the two approaches for 101 

rating load model development considered in this study, traffic data collected from Michigan are 102 

considered as an example.  The WIM data used here were obtained from consideration of 103 

approximately 40 Michigan stations with high-speed (1000 Hz) sampling necessarily to 104 

accurately record vehicle configurations and positioning. Of these sites, a selection of 20 105 

representative locations throughout the State were chosen in different average daily truck traffic 106 

(ADTT) categories ranging from approximately 400 to 16000. These stations are generally on 107 

major routes (State and Interstate roadways).  The WIM data used were collected over 34 months 108 

from February 2014 to January 2017, excluding April and May 2014, which were unavailable. 109 

Since WIM data is often associated with collection errors, data filtering criteria were employed 110 

to eliminate unrealistic records from the 101 million vehicle database, such as feasible 111 

limitations on axle spacing, weight, speed, and length (for example, truck axles spaced closer 112 

than 1 m; heavy trucks with speeds over 160 kph; axle weights over 312 kN, etc.; see Eamon et 113 

al. 2016 for a complete description of these criteria). To further confirm the reasonableness of 114 

the WIM data, several checks were implemented as recommended in NCHRP 683, such as 115 
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comparison of the gross vehicle weight (GVW) frequency histograms, mean and modal axle 116 

spacing, GVW, and axle weights to generally expected values (Eamon and Siavashi 2018). 117 

The database was then further reduced to consider only legal and routine (annual) permit 118 

vehicles, which MDOT groups together for Strength I limit state evaluation (i.e. normal use of 119 

the bridge) within the legal load rating framework. A summary of the criteria used to categorize 120 

a record as a legal or routine permit vehicle is given in Table 1. After applying the filtering 121 

criteria, about 89 million vehicle records remained and were considered for later load effect 122 

analysis, as described below.  123 

 124 

Reliability-Based Design Optimization 125 

Probability theory is most commonly used to model uncertainty in reliability-based design 126 

optimization. Correspondingly, an RBDO problem defines a set of NDV design variables 127 

 

Y = Y1,Y2,...,YNDV 
T
 to be determined that minimizes or maximizes given performance criteria, as 128 

well as a set of n random variables 

 

X = X1, X2,..., Xn 
T

that describe load, resistance, and other 129 

uncertainties.  Given a probabilistic limit state function ( )YX ,g  for consideration, failure can be 130 

defined as ( ) 0, YXg , and correspondingly, ( ) 0, YXg   implies safety while ( ) 0, =YXg  131 

represents the boundary between the failed and safe regions.   132 

Various methods of formulating and solving RBDO problems have been proposed 133 

(Enevoldsen and Sorensen 1995; Tu et al. 1999; Rais-Rohani and Xie 2005; Kharmanda and 134 

Olhoff 2007; Aoues and Chateauneuf 2010, etc), including numerous approximate methods for 135 

assessing probabilistic constraints to reduce computational effort (Enevoldsen and Sorensen 136 

1995; Tu et al. 1999; Du and Chen 2004; Qu and Haftka 2004).  In this study, an RBDO 137 

approach is used to develop a live load rating model that should result in a requirement for traffic 138 
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restriction to occur on any structure when it reaches a minimum specified level of reliability.   In 139 

other words, the variation in reliability level among different structures, at the point at which 140 

traffic restriction is imposed,  is minimized (ideally zero). 141 

 With this approach in mind, the optimization problem is described as: 142 

 min 

 

f (X,Y)  143 

   144 

 s. t. pi Ni ,1;min =                                                       (1)  145 

 
NDV,1; = kYYY u

kk

l

k  146 

 147 

where f(X, Y) is an objective function quantifying variability in structural reliability among the 148 

different bridge girders considered for rating, as described below;
  
βi is the reliability index 149 

constraint for girder i among Np structures considered; βmin is the minimum acceptable reliability 150 

index; and Yk is the kth design variable among NDV design variables, with lower and upper 151 

bounds given as 

 

Yk
l  and 

 

Yk
u . 152 

As discussed earlier, objective functions for bridge-related RBDO problems have been most 153 

commonly expressed in term of weight or cost, such that these performance measures can be 154 

minimized.  Here, the desire is to minimize variation in reliability among different girders, and 155 

thus  f(X, Y) must be formulated to quantify this variation.  It follows that if all girders match the 156 

desired reliability index at the same reference value for rating factor, variation from the target 157 

reliability level (βT) is zero and an ideal solution results.  Variation from a target level can of 158 

course be quantified in numerous ways, such as mean squared error, root mean squared error, R-159 
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squared, mean absolute error, and many others.  Mean squared error is used in this study, which 160 

results in an objective function formulated as: 161 

𝑓(𝑋, 𝑌) = ∑
(𝛽𝑖 − 𝛽𝑇)2

𝑁𝑝

𝑁𝑝

i=1

                                                                         (2) 162 

 163 

Reliability Analysis 164 

Random variables X used for reliability assessment are girder resistance (R) and load 165 

effects, the latter of which include vehicle live load (LL), dynamic load (IM), and dead load from  166 

prefabricated (Dp) and site-cast (Ds) components, as well as from the deck wearing surface (Dw).  167 

Uncertainty in the distribution of vehicular live load to an individual girder is also considered 168 

(DF).  Bias factor (ratio of mean to nominal value) and coefficient of variation (COV) for 169 

random variables are given in Table 2.   With the exception of live load (LL), which is calculated 170 

from Michigan-specific data, all random variable statistical parameters are based on those used 171 

in the AASHTO LRFD (Nowak 1999) and MBE calibrations (AASHTO 2018).  For reliability 172 

assessment, girder resistance is considered lognormal whereas the sum of load effects is taken as 173 

normally distributed, as assumed in previous calibrations for consistency (Nowak 1999; 174 

Sivakumar et al. 2011). 175 

As reported by Eamon and Siavashi (2018), vehicular live load statistics were developed 176 

from the 89 million records of WIM data collected from Michigan as described above, where 177 

load effects were calculated by incrementing trains of measured vehicles across various 178 

hypothetical bridge spans from 6-60 m and recording maximum moment and shears.  In this 179 

process, the total load effect to a girder caused by the actual vehicle locations relative to one-180 

another in single and adjacent lane placements were maintained.  Live load effects were 181 
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proportioned to the girder based on mean values of DF, where nominal values are specified in 182 

AASHTO LRFD as a function of bridge geometry.  Vehicle live load is then projected to an 183 

assumed 5-year rating period as specified in the MBE (corresponding to the maximum assumed 184 

time between inspections) for legal and routine permit rating, using an Extreme Type I 185 

extrapolation, which was found to well-fit the Michigan data (Eamon et. al 2016).  These live 186 

load effects were found to have significant variation from the existing Michigan as well as MBE 187 

rating models, as shown by the varying bias factor and COV for LL in Table 2. In particular, a 188 

bias factor of unity and COV of zero would indicate that the mean maximum value for live load 189 

exactly matches the load effect caused by the existing (Michigan) rating model with no 190 

uncertainty. As noted earlier, this difference was identified as the cause of the significant 191 

discrepancy in girder rating reliability on Michigan bridge structures (Eamon and Siavashi 192 

2018). 193 

Once random variables are defined, the general limit state function g for each bridge 194 

girder i can be written as: 195 

 gi = R – (Dp+Ds+DW) – DF(LL+ IM)     (3) 196 

with random variables R, Dp, Ds, Dw, DF, IM, and LL defined above.  Limit states are 197 

formed for simple span load effects (moment and shear) for prestressed concrete I-shaped 198 

girders, composite steel girders, reinforced concrete girders, and spread and side-by-side 199 

prestressed concrete box beams. Bridges are assumed to support a reinforced concrete deck and 200 

have a wearing surface and additional items such as barriers and diaphragms relevant for dead 201 

load calculation. Dead loads are based on those used in the MBE calibration (NCHRP 683).  202 

Bridges are taken as two lane, with span lengths from  6-60 meter in increments of 6 m (limited 203 

to 30 m for reinforced concrete). Girder spacing varied from 1.2 to 3.6 meter at 0.6 m 204 
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increments, while for side-by-side box beams, two widths (0.9 meters and 1.2 meters) were 205 

considered.    Thus, considering all combinations of length (10) and girder spacing (5) 206 

increments results in 50 geometries each for prestressed concrete, steel, and spread box beam 207 

bridge types; 25 for reinforced concrete; and 20 side-by-side box beams, for 195 cases.  The 208 

range of these geometries and types covers nearly all girder bridges in the state inventory.  209 

The target reliability index associated with the MBE is βT = 2.5, which represents the 210 

average required reliability level across all girders considered (AASHTO 2018).   Although 211 

during the MBE calibration the reliability index of any particular girder was allowed to fall as 212 

low as 1.5, this represents a very low level of nominal reliability that not all DOTs may be 213 

comfortable with (β=2.5 corresponds to failure probability pf  ≈ 1:160 whereas β=1.5 214 

corresponds to pf ≈ 1:15, an order of magnitude of difference; however, these reliability targets 215 

are notional values and corresponding failure probabilities should not be taken literally).  In this 216 

study, a higher minimum level is imposed such that the minimum (βmin) as well as the target (βT)  217 

indices are taken as 2.5, although this creates  a more challenging problem for the solution 218 

methods considered to address.   219 

To establish nominal values for girder resistance for use in the reliability analysis, the 220 

minimum requirements of acceptability must be identified, to avoid biasing reliability results 221 

upward by analyzing conservatively-designed components.  For example, in the case of design, 222 

for LRFD in general, this criteria is expressed as:  Rn = ∑γiQi, (where γi are load factors and Qi 223 

are load effects), and thus the minimum acceptable value for Rn, which is to be used in the 224 

reliability analysis, can be established if load effects Q are known.   225 
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In the case of rating, acceptability is expressed in terms of rating factor, for which the 226 

minimum acceptable value (i.e. without requiring traffic restriction) is 1.0. Rating factor (RF) is 227 

given in the MBE by: 228 

       
)(

5.125.1

IMLL

DWDCR
RF

LL

n

+

−−
=




      (4) 229 

In this expression, resistance factor   varies as a function of girder type and failure mode;  Rn is 230 

the nominal resistance of the component; DC  and DW are the dead loads of the structure and 231 

the wearing surface, respectively; IM is specified as 1.33, LL is the rating vehicle live load effect, 232 

and γLL is the rating vehicle load factor.    233 

To meet the required reliability level, the rating vehicle must produce a live load effect 234 

(LL) that produces βT = 2.5 when RF = 1.0.   Thus, setting RF = 1.0 and solving for the required 235 

Rn results in: 236 

))(5.125.1)(/1( IMLLDWDCR LLn +++=        (5) 237 

which is the minimum nominal resistance for consideration in reliability rating.  Here it should 238 

be noted that Rn from Eq. 5 represents a notional, or theoretical resistance, used for evaluation of 239 

the reliability level associated with the rating process, and does not necessarily represent the 240 

resistance of an actual girder.  This is analogous to the standard practice of evaluating 241 

components with resistance set just equal to the design limit for reliability assessment of design 242 

code specifications, even though actual components are typically over-designed (Nowak 1999).    243 

Considering Eq. 5, if dead load and live load effects are known, Rn can be established.  244 

With Rn, known, the mean value �̅� of the girder resistance random variable R can be determined 245 

using the bias factors λ shown in Table 2 (�̅� = λ x Rn), and then the reliability index of the limit 246 
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state in Eq. 3 computed.    In this study, however, for which an optimal live load model is to be 247 

determined, the total live load effect produced by the rating model (γLL(LL+IM)) is unknown. It 248 

can be found by setting βT = 2.5, then determining the minimum value of γLL(LL+IM) needed to 249 

produce an Rn (and in particular, the mean value of R) that will satisfy the reliability target.  For 250 

convenience, in this study, the quantity γLL(LL+IM)  is referred to as the required load effect 251 

(RLE); i.e. the total load effect required by the live load rating model such that β = 2.5 when 252 

RF=1.0.    253 

 In summary, the reliability process is as follows.  First, nominal and mean (using the bias 254 

factors given in Table 2) values for dead load random variables (Dp, Ds, Dw)  and live load 255 

distribution factor (DF) are calculated from a selection of typical bridge designs used in previous 256 

reliability-based calibration efforts as described above. Next, the mean value of R, needed for 257 

reliability analysis, is expressed as the function: �̅� = λ x Rn, where Rn is given by Eq. 5 and bias 258 

factor (λ) given in Table 2 for the type of girder and failure mode considered.  Note that Rn, and 259 

hence �̅�, remains a function of the unknown RLE (γLL(LL+IM)). Then, reliability index is set to 260 

the target level (2.5), and its evaluation is expressed as a function of the random variables (R, Dp, 261 

Ds, Dw, DF, IM, and LL) discussed above, considering the limit state function given by Eq. 3.   In 262 

this calculation, mean girder resistance �̅� remains a function of the unknown RLE.   In the 263 

calculation of β, since reliability index is preset to a known value, the only unknown is the RLE, 264 

which is solved for.    Thus, the live load effect needed to be produced by the rating live load 265 

model (RLE)  in order to meet the minimum reliability target can be determined. 266 

 A multitude of methods are available to assess the reliability index βi of the limit state 267 

function (Eq. 3), the result of which is used in Eqs. 1 and 2.  As optimization generally involves 268 

many iterations, the computational cost of each cycle becomes an important factor in the 269 
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feasibility of the RBDO process.  For the particular problem considered here, approximately 195 270 

reliability constraints for moment or shear must be evaluated at every optimization cycle (one for 271 

each bridge type and geometry considered, as given above).  Additionally, reliability index must 272 

be computed twice for each girder to determine whether the governing load effect is generated 273 

by vehicles in a single lane or in both lanes. This process thus requires nearly 800 calculations of 274 

reliability index for each optimization iteration.   275 

One approach that allows reliability index to be quickly computed is the First Order, 276 

Second Moment (FOSM) method, as a closed-form function of the means and standard 277 

deviations of random variables.    Although its small computational demand is ideal for RBDO, 278 

FOSM does not provide exact solutions for limit state functions that are algebraically nonlinear 279 

or composed of non-normal random variables.  This is problematic in this study because girder 280 

resistance R is taken to be lognormal, which will produce a conservative estimate of β if FOSM 281 

is used.  The degree of conservatism using FOSM with the limit state functions and random 282 

variables considered here was investigated by Eamon et al (2014), where it was found that the 283 

error in FOSM from the exact solution is consistent at a given level of reliability.  That is, 284 

regardless of bridge geometry or girder type, the FOSM approach produced a reliability index 285 

with a consistent level of conservativeness from the exact value.  For the target reliability index 286 

used in this study (βT =2.5), the ratio of the exact value to the FOSM solution was found to be 287 

approximately 1.04.  Therefore, in this study, the FOSM method is used with the modification 288 

suggested by Eamon et al. (2014), where the solution is adjusted by the factor of 1.04 when the 289 

target reliability index constraint of 2.5 is imposed in the optimization.  It should be emphasized 290 

that this adjustment is valid only for the specific limit state functions and random variable 291 

parameters used in this study.  For other reliability problems, either a more general but costly 292 



14 
 

approach must be used, such as FORM, the First Order Reliability Method (Rackwitz and 293 

Fiessler 1978), or a new FOSM adjustment factor developed.  For verification, a sample of girder 294 

reliability indices were computed with Monte Carlo Simulation (MCS) with 1x106 simulations at 295 

the completion of the RBDO.  It was found that the indices estimated with the modified FOSM 296 

approach described above were within 1% of the “exact” MCS values.   297 

Design Variables 298 

 As noted above, design variables within previous RBDO procedures applied to bridges 299 

were used to describe geometric and potentially material properties.   In this study, however, the 300 

optimization concerns a rating load model rather than a structural configuration. As such, design 301 

variables must describe critical parameters that define the load model.  The existing nominal 302 

vehicular load rating model given in the MBE is the governing case of three trucks (Types 3, 303 

3S2, and 3-3; see Figure 1), with a load factor of 1.35. As noted above, to account for local 304 

vehicle load requirements, which may higher than the federal standard, some states such as 305 

Michigan have increased this rating load. In particular, MDOT specifies 28 vehicles with 306 

different load factors for rating, which are meant to model possible legal configurations (MDOT 307 

2005). Of these rating trucks, those that provided the maximum load effects for the spans  308 

considered in this study are given in Figure 2. As noted above, use of this existing MDOT rating 309 

model, as well as that given by the MBE, produced highly inconsistent girder reliabilities in 310 

rating (Eamon and Siavashi 2018). 311 

 A simple way that design variables could be used to develop a live load model is to use 312 

these parameters to describe a particular rating truck configuration. That is, the number of axles, 313 

axle spacing, and axle weights could be taken as design variables in the optimization.   Although 314 

simple, this approach is somewhat constraining and does not fully utilize the potential of the 315 
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RBDO process, as a single rating truck may not provide a good representation of the actual load 316 

effects measured across all bridge spans.  That is, the load effects that can be generated by a 317 

rating truck are not nearly as flexible as load effects that can be generated by other means, such 318 

as various mathematical functions not necessarily linked to the physical representation of a 319 

single vehicle.  This increased flexibility is potentially important because the load effect 320 

generated by the rating model must not only account for the effects of single vehicles, but also 321 

for load effects caused by multiple following vehicles in one lane, as well as groups of side-by-322 

side vehicles in two lanes, all of which contributed to the development of the live load random 323 

variable (LL) statistics shown in Table 2.  Thus, the mean maximum live load effect used in the 324 

reliability analysis is the result of a complex pattern of traffic loads as a function of bridge span, 325 

which may be difficult to well-represent by a single rating vehicle. 326 

 Therefore, to allow the optimizer the greatest possibility to reach an ideal rating model 327 

with minimal variation in reliability (and thus minimize the objective function given by Eq. 2), 328 

design variables are not used to describe a physical representation of a rating vehicle, but rather 329 

to directly describe the required live load effect (RLE) caused by a rating vehicle, as a function 330 

of bridge span. As defined above, the RLE refers to the total live load effect that must be 331 

imposed on the structure in the rating process in order to meet the specified reliability target. 332 

Prior to the optimization, a preliminary evaluation was done by fitting various 333 

expressions to a selection of RLE values corresponding to different span lengths.   This goodness 334 

of fit should give a reasonable indication of how successful the curve could be used in the 335 

optimization, as if the sample of RLEs can be well matched, then variation in reliability index 336 

should be able to be well minimized in the RBDO.  The curves considered included polynomial, 337 

logarithmic, power, compound, logistic, growth, exponential, and sum of sines functions. Using 338 
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root mean square error as a metric, it was found that a sum of sines function, similar to a Fourier 339 

series, could best fit the required rating load effect, and is given as:  340 

𝑅𝐿𝐸 = ∑ 𝑎𝑖

𝑛

𝑖=1

𝑠𝑖𝑛(𝑏𝑖𝑥 + 𝑐𝑖)                             (6) 355 

  where for 𝑛 terms, constants 𝑎𝑖, 𝑏𝑖, and 𝑐𝑖 represent design variables to be determined in 341 

the optimization and 𝑥 is bridge span length. Because the variation in RLE with respect to 342 

moment was found to be substantially different from that of shear, the analysis was conducted 343 

separately for shear and moment load effects to maximize the goodness of fit that could be 344 

obtained in each case.  It was found that for both moment and shear, 3 terms are sufficient for 345 

describing required load effects, producing 9 design variables for load effects. Note that 346 

Equation 6 is not only significantly more flexible in generating RLE than a single rating truck, 347 

but it is also practically less complex in the RBDO.  For example, a single 5-axle rating truck 348 

would also require up to 9 design variables to describe axle weights and spacing (5 variables for 349 

axle weights and 4 for spacing), as well as accompanying expressions needed for conversion of 350 

the truck configuration to maximum moment and shear load effects on a given span.  Although 351 

this study is limited to simple span structures, it was found that the sum of sines function could 352 

similarly best fit the variation in RLE required for two-span continuous bridges.  However, this 353 

would likely require development of a separate optimized load model for best results. 354 

Lower (
l

kY ) and upper (
u

kY ) bounds for the design variables (i.e. constants within Eq. 6) 356 

are specified to be from  -100000  ≤ Yk ≤ 100000. Although not reached in the final results, the 357 

limits are important as they influence the  generation of design variable values during each 358 

iteration of the optimization, as discussed in the section below.  359 
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In the optimization, the RLE within Eq. 5 (i.e. the quantity γLL(LL+IM)) is taken as a 360 

function given by Eq. 6, with design variables 𝑎𝑖, 𝑏𝑖, and 𝑐𝑖 (i = 1-3).  Following the reliability 361 

procedure described above, Eq. 5 in turn determines Rn, which then affects the calculation of 362 

girder reliability.  Therefore, in one cycle of the RBDO, trial values for design variables ai-ci are 363 

found, then the RLE, Rn, and finally reliability index for all girders is computed.  The objective 364 

function (Eq. 2) is then evaluated.  Based on the results of Eq. 2, which quantifies the 365 

inconsistency in reliability for different girders, the optimizer determines new trial values of the 366 

design variables, in an attempt to minimize Eq. 2.   367 

Solution of RBDO Problem 368 

A simple RBDO approach typically requires two iterations; one iteration, the primary 369 

‘outer’ loop, involves the optimizer, while the ‘inner’ nested loop concerns the reliability 370 

algorithm.  In each cycle of the optimization, the objective function (Eq. 2) and reliability 371 

constraints (βmin = 2.5) are evaluated based on the current design variable (𝑎𝑖, 𝑏𝑖, 𝑐𝑖) values, and 372 

based on these results, design variable values are updated for use in the next iteration.  To update 373 

these values, each optimization iteration requires multiple evaluations of the objective function, 374 

while if an iterative reliability algorithm is used, multiple evaluations of the limit state function 375 

are also required.  Thus, the double-loop procedure demands high computational effort. 376 

The most common ways to reduce this effort are focused on modifying the interaction of 377 

the optimization and reliability algorithms (Kharmanda et al. 2002; Chen et al. 2002; Yang and 378 

Gu 2004; Mohsine et al. 2006), or directly increasing the efficiency of the reliability method by 379 

using approximate, direct methods in lieu of iterative-intensive approaches (Kirjner-Neto et al. 380 

1998; Grandhi and Wang 1998; Koch and Kodiyalam 1999; Choi and Park 2001; Young and 381 

Choi 2004; Zou and Mahadevan 2006; Agarwal et al. 2007).  As noted above, in this study, the 382 
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later approach is used where computational efficiency is improved by using a non-iterative 383 

reliability algorithm, modified for accuracy, thus eliminating the inner iterative loop in the 384 

RBDO. 385 

As with reliability algorithms, numerous optimization solution procedures are available. 386 

One approach is to use a gradient-based solver such as sequential quadratic programming or the 387 

modified method of feasible directions (Soler et al. 2012; Vanderplaats 1999).  With these 388 

methods, gradients of the objective function are taken with respect to the design variables, then 389 

this information is used to determine new design variable values for the next iteration cycle.  A 390 

different approach to optimization is represented by heuristic methods, which often use a form of 391 

probabilistic simulation in lieu of computing numerical derivatives. Some of these methods 392 

include Simulated Annealing  (Kirkpatrick 1984), Insect Colony Optimization (Karaboga and 393 

Georgiou 1994), Genetic Algorithm (Koumousis and Georgiou 1994), and Particle Swarm 394 

Optimization (Kennedy 2011).  In this study, a genetic algorithm (GA) is used, which the authors 395 

found to be an effective method in consideration of alternatives used in previous work (Behnam 396 

and Eamon 2013; Thompson et al. 2006; Rais-Rohani et al. 2010). 397 

The GA method does not require derivative information, but only direct evaluation of the 398 

objective function.  At each iteration, new design variable values are determined  with directed 399 

probabilistic simulation.  In general, the process starts with a large set of randomly generated 400 

possible solutions (i.e. sets of design variable values), which are refined at each cycle by 401 

evaluating how effectively the objective function is satisfied.  New potential solutions are 402 

generated from the most successful previous solutions until an optimal set is found.  To generate 403 

new solutions, for each successive iteration, two primary procedures, crossover and mutation, are 404 

used.  In the crossover procedure, subparts of two randomly selected previous solutions are 405 
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combined to form a new solution, whereas  the mutation procedure applies random changes to 406 

randomly selected individual solutions.  The purpose of these operators is to retain potentially 407 

effective solutions while avoiding convergence to a local rather than global optimum (Man et al. 408 

1996; Tang et al. 1996; Konak et al. 2006;  Hao and Xia 2002).  409 

 In this study, a possible solution refers to a set of design variable values that represent 410 

the values of the constants (𝑎𝑖, 𝑏𝑖, 𝑐𝑖) given in Eq. 6.  The optimization starts by determining 411 

1x106 possible solutions with Monte Carlo Simulation (MCS), using uniform distributions bound 412 

by the limits 
l

kY  and 
u

kY  given above.  This solution set size remains constant for all iterations.  413 

Once this initial set of solutions is generated, the objective function (Eq. 2) is evaluated using all 414 

of the potential solutions, and these results are recorded.  The next iteration begins by generating 415 

a refined set of solutions from several different sources: 1) 80% are obtained by randomly 416 

choosing two solutions from the previous set and producing a new solution by taking a weighted 417 

average of these two solution values, such that the more effective solution (that with the lowest 418 

objective function value) is given proportionally more weight (crossover); 2) the top 10% of 419 

most effective solutions are retained from the previous iteration; 3) 9.8% are obtained from 420 

MCS, as with the initial set; 4) 0.2% are obtained by randomly choosing a solution from the 421 

previous iteration, then randomly choosing one of its design variables and replacing that value 422 

with a new, randomly generated value using the MCS process (mutation).   423 

 The objective function is then evaluated with this new set of potential solutions, and the 424 

process repeats during subsequent iterations until the solution converges.  Here, convergence 425 

implies that additional iterations cannot produce a more optimal solution than that found in 426 

previous iterations; i.e. that the objective function cannot be further minimized.   427 

 428 
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Best Selection Approach 429 

As will be discussed in the Results section, the optimization procedure described above 430 

can produce an excellent load model with very low variation in required load effect across the 431 

different bridge spans.  However, although an RBDO result may represent a theoretically ideal 432 

solution, it is accompanied by several notable drawbacks: high computational cost, a somewhat 433 

complex problem formulation, and a resulting load model that may bear little resemblance to a 434 

realistic vehicle.  In this study, an alternative approach is examined where rather than generate an 435 

idealized load model by optimization, a set of truck records from the WIM data that produce the 436 

least variation from the RLE across all spans and bridge types is formed.  Then, an appropriate 437 

load factor is chosen for each record in the set such that the RLE is provided for all bridge spans, 438 

ensuring that the imposed minimum required reliability requirement of βmin = 2.5 is met.  The 439 

resulting vehicle that has the least variation in RLE once the load factor is applied is then chosen;  440 

i.e. the ‘best’ available selection. This best selection approach represents a simpler and vastly 441 

less computationally costly solution than that obtained from the RBDO.  The implementation 442 

details and effectiveness of this approach are discussed below. 443 

The first step in this process is to select a set of initial trucks for further consideration.  444 

The amount of WIM data available for load model development is typically large.  The database 445 

used for this study, for example, as noted above, contains 89 million legal and routine permit 446 

vehicle records, and full consideration of all vehicles in this set is costly.  A much smaller subset 447 

of these vehicles can be selected for further consideration by comparing the range of ratios of  448 

load effect produced by the vehicle to that required (RLE) across the bridge spans considered.  449 

Vehicles are selected based on a range of provided to required load effect ratios.  This selection 450 

limit can be expressed as: 451 
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(

𝑉𝐿𝐸

𝑅𝐿𝐸
)

𝑚𝑎𝑥
−(

𝑉𝐿𝐸

𝑅𝐿𝐸
)

𝑚𝑖𝑛

(
𝑉𝐿𝐸

𝑅𝐿𝐸
)

𝑚𝑖𝑛

< 𝑘      (7) 452 

where (
𝑉𝐿𝐸

𝑅𝐿𝐸
)

𝑚𝑎𝑥
 and (

𝑉𝐿𝐸

𝑅𝐿𝐸
)

𝑚𝑖𝑛
 are the largest and smallest ratios of the vehicle load effect (VLE) 453 

to the required load effect (RLE), respectively, found across the bridge spans considered, and k is 454 

the fractional range limit imposed.  It was found that a VLE/RLE range of approximately 10% 455 

(i.e. k = 0.10) provides a reasonable selection of vehicles for further consideration.  In this study, 456 

using k=0.10 reduced the initial database of 89 million to about 2.2 million.  457 

Although it may appear intuitive to do so, this first step does not simply select the vehicle 458 

with the single lowest range of (VLE/RLE); i.e. that which would seemingly produce the lowest 459 

discrepancy in reliability across the bridge spans considered. The reason for this is that the 460 

appropriate load factors are not yet known for the initial vehicles considered.  Any  vehicle taken 461 

from the WIM data, such as that which initially shows the lowest variation in VLE/RLE ratio, 462 

will require a load factor such that its total load effect at least meets the RLE across all bridge 463 

spans.  However, when this load factor is imposed, it alters the range of (VLE/RLE) ratios, 464 

sometimes substantially. This frequently results in a vehicle which initially had the lowest 465 

(VLE/RLE) range to no longer having the lowest (VLE/RLE) range after the load factors are 466 

applied.  This occurs because imposing higher load factors (such as required on lighter vehicles) 467 

magnifies the range of (VLE/RLE).  This was found to be a nearly linear effect, where imposing 468 

a load factor of 2 would generally double the (VLE/RLE) range.  This can be seen in Figure 3, 469 

which shows two trucks taken from the WIM data used in this study.  Before load factors are 470 

applied, Truck 2 has the lowest range of (VLE/RLE) from spans of 6-61 m.  However, after 471 

applying the required load factors to meet the RLE (1.60 for Truck 1 and 15.01 for Truck 2), the 472 

(VLE/RLE) range of Truck 1 is lowest.  As noted above, setting the selection limit k at 0.10 473 
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provided best results as a balance between computational effort and potential for selecting the 474 

best solution.  Increasing k beyond about 0.1 was found to result in too many unnecessary 475 

selections that are highly unlikely to be the optimal solution, needlessly increasing computational 476 

effort.  Conversely, lowering k much more than about 0.1 was found to eliminate potentially 477 

optimal solutions. 478 

After required load factors are applied, the next step is to determine the metric used for 479 

best selection. One possible metric would simply be the range of factored vehicle load effect 480 

(VLEf)  to RLE: (VLEf/RLE), where the vehicle with the lowest range would be selected.  481 

However, the upper value of this range, (VLEf/RLE)max,  may be governed by an outlier, a single, 482 

particularly high result generated by a single bridge span.  In this case, it may be more desirable 483 

to select a vehicle that minimizes the amount of discrepancy among all bridge spans.  Various 484 

metrics of this nature are available.  In this study, coefficient of variation (COV) is used for this 485 

purpose.  The final step is then to compute the selection metric for all vehicles in the set and 486 

select the best result.  In this case, COV of (VLEf/RLE) was computed for all vehicles in the set, 487 

and that with the lowest value was taken as the best selection. 488 

 In summary, the proposed approach is as follows: 489 

1. Select a target reliability index βT and compute corresponding required load effects 490 

(RLEs) needed to rate each of the bridge girders considered, using the procedure summarized in 491 

the “Reliability Analysis” section above.  Note that although setting up the problem for the first 492 

time may involve effort, once the process is programmed, obtaining the solution (i.e. the RLEs)  493 

requires negligible computational time. 494 

2. Compute the vehicle selection ratio given by the left side of Eq. 7 for all vehicle 495 

records in the WIM database.   Note that the vehicle load effects (VLEs) within Eq. 7 should be 496 
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readily available, since VLEs  are needed for development of any reliability-based load model, 497 

and would have been used to characterize vehicle live load as a random variable prior to the 498 

reliability analysis (for example, see Eamon et al. 2016).   Since Eq. 7 is very simple 499 

algebraically, it requires relatively small computational effort, even when many millions of 500 

vehicles are considered   501 

3. For the set of trial vehicles that have selection ratios less than k = 0.1 (i.e. that satisfy 502 

Eq. 7), for each vehicle, determine the load effect factor γF necessary for the VLE to match the 503 

RLE of each considered girder. This is simply the RLE divided by the VLE: γF = RLE/VLE.  504 

Then, apply the governing load effect factor γGF among all girders for that vehicle to its VLE to 505 

produce the factored VLE: VLEf = VLE x γGF.   506 

4. For each vehicle in the set of trial vehicles found in step 3, compute the COV of the 507 

(VLEf/RLE) ratios for each bridge girder considered.   The result with lowest COV represents 508 

the final, Best Selection vehicle to be chosen for the rating model.  Note that the actual live load 509 

factor required for MBE-based load rating (γLL) using this vehicle can be easily recovered by 510 

setting the total imposed load effect (VLEf) equal to the denominator of Eq. 4, and solving: γLL = 511 

(VLEf / (LL + IM)), where in this case LL represents the unfactored Best Selection vehicle load 512 

effect.  Since VLEf and LL vary with span, the maximum γLL  across all spans is chosen in 513 

practice. 514 

This process is summarized in Figure 4.  515 

 516 

Results 517 

Following the RBDO approach, because variation in girder reliability (as a function of 518 

spacing and span) with respect to moment was found to be substantially different from that of 519 
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shear, the analysis was conducted separately for shear and moment load effects to maximize the 520 

goodness of fit that could be obtained in each case. These results are calculated considering the 521 

database of 195 hypothetical girder bridge designs of prestressed concrete I and box-shapes, 522 

composite steel, and reinforced concrete, as discussed in the Reliability Analysis section above.  523 

This results in two rating vehicles (models) from the procedures considered (RBDO and Best 524 

Selection), one each for moment and shear effects, as compared to three existing AASHTO 525 

rating trucks and 28 existing MDOT rating trucks for both moment and shear.  For the RBDO, 526 

the optimal results were obtained with approximately 500 iterations. For each load effect result 527 

(moment and shear), the Best Selection approach was completed in approximately 17 minutes on 528 

a modern desktop computer (with an Intel i7 2.7 GHz processor and 32 GB of RAM), while the 529 

traditional RBDO process described requires approximately 14 hours of computational effort, an 530 

increase in computational effort of nearly 50 times. Note that further reductions in computational 531 

effort are likely possible with the use of more sophisticated algorithms and procedures.  For 532 

example, replacing the GA optimizer with a gradient-based solver may allow for greater 533 

efficiency.  However, such choices have possible drawbacks as well, such as finding local rather 534 

than global minimums and potential convergence difficulties. 535 

The final set of values obtained for the parameters of Eq. 6 are shown in Table 3, while 536 

the trucks obtained from the Best Selection Approach are given in Figure 5. In Figure 6, the ratio 537 

of the factored vehicle load effect to the required load effect (VLEf/RLE)  for rating moment 538 

effect is given. In the figure, results are shown for the RBDO solution, the Best Selection Truck, 539 

and the MDOT and AASHTO rating trucks, once required load factors are applied such that all 540 

truck models meet the minimum RLE (i.e. VLEf/RLE ≥ 1.0).  These load factors are 2.02, 1.35, 541 

and 1.93 for the Best Selection and governing MDOT and AASHTO Trucks, respectively. For 542 
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each model, the governing bridge (i.e. that which produced least reliability, governing the 543 

required minimum load factor) case was a side-by-side box beam bridge 6 m long; note that the 544 

values given in the Figure represents the governing case of all bridge girder types considered 545 

(steel, prestressed concrete, steel, side by side and spaced box beams) for a particular span. As 546 

shown, most consistency as well as closeness to the RLE, and thus target reliability index, can be 547 

obtained with the RBDO-developed model.  This is particularly so when compared to the MDOT 548 

rating trucks, which result in significant conservatism in rating for the shorter spans, where the 549 

highest  (VLEf/RLE) ratio reached approximately 1.85 at the 18 m span.  Although not as severe, 550 

the AASHTO trucks also showed significant discrepancy at the lower spans, with a (VLEf/RLE) 551 

ratio of about 1.20 at the 18 m span. Figure 6 also shows that the single Best Selection Truck is 552 

nearly as good as the RBDO model, producing discrepancies much less than existing MDOT and 553 

AASHTO models.  Results from all rating models shown in Figure 6 are quantified in Table 4, 554 

where the minimum (βmin) and maximum (βmax) reliability indices corresponding to the largest 555 

discrepancies shown in Figure 6 are given, as well as the coefficient of variation of reliability 556 

index (Vβ) from all girders considered across all bridge types and span is given. To fairly 557 

compare results, a best possible outcome is also given, provided that the same rating load model 558 

would be used for all bridge types, as is expected in rating practice. This is given as the “Exact 559 

(using RLE)” result.  For this case, the results presented in the table correspond to a (VLEf/RLE) 560 

ratio of 1.0 for all spans on Figure 6.  Notice that this best possible outcome does not produce 561 

identical reliability values across all cases, however, as the range of reliability index for the 562 

“Exact” case actually varies from 2.5 – 3.95, as shown in Table 4.    This occurs because there 563 

are multiple bridge types analyzed when each span is considered, and because different 564 

uncertainties in resistance and load distribution are associated with these different bridge types, a 565 
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different reliability index in rating will be achieved if the same load model is used to rate these 566 

different types of structures (Eamon and Siavashi 2018).  In the results shown, as noted above, it 567 

is assumed that the same rating truck will be used for all bridge types of a given span; i.e. the 568 

rating agency would not use one type of rating truck for steel girders, and a different rating truck 569 

for concrete girders, etc.  Because the same rating model is used for all bridge types, only one of 570 

these types will produce the largest RLE, and the others, with lower RLE, will be rated 571 

somewhat more conservatively.  It is this governing RLE case that is shown on Figure 6 as a 572 

function of span.  Thus, a variation in reliability index, as shown in Table 4, results even for the 573 

“Exact” case, which practically cannot be improved further.  574 

As shown in Table 4, the RBDO model produces results nearly identical to the Exact 575 

model, with only a slightly higher average reliability index among all cases (βave , Exact = 2.83;   576 

βave , RBDO = 2.84).  The Best Selection Truck produces results nearly as good, with only a 577 

slightly higher βmax and βave than the Exact result (βmax; 3.96 vs 3.95 and βave; 2.88 vs 2.83).  578 

More notably, the COV of  reliability indices for all bridge cases is identical (to 2 decimal 579 

places) among the Exact, RBDO, and Best Selection results, of 0.13.  When the existing MDOT 580 

trucks are considered (with the required load factor (LF) applied), it can be seen that the 581 

maximum, average, as well as COV of reliability index are markedly greater than the ideal 582 

solution.  In comparison, as shown in Table 4, the AASHTO Trucks produced surprisingly good 583 

results for moment effect overall, while although worse than the RBDO and Best Selection 584 

solutions, results were relatively close, with  the AASHTO model (once the required minimum 585 

load factor of 1.93 was applied) producing βmax and βave only 5-7% higher than the ideal solution, 586 

and COV increasing from 0.13 to 0.15.  The relative accuracy of this model did not hold for 587 

shear results, however, as discussed below. In comparison, the MDOT model (with required load 588 
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factors) produced a much worse solution, with βmax , βave, and COV significantly higher than the 589 

alternative models.   590 

Shear results are given in Figure 7 and Table 5.  The same bridge that governs for 591 

moment did so for shear as well (6 m, side by side box beam), with minimum required load 592 

factors  of  1.79, 1.40, and 2.40 for the Best Selection, MDOT, and AASHTO Trucks, 593 

respectively.  In the figure, some interesting results are shown, where although for moment, the 594 

most conservatively rated span for the AASHTO and MDOT models is 18 m (prestressed 595 

concrete box beams with 3.6 m girder spacing) and a 24 m span of the same bridge type for the 596 

Best Selection truck, for shear, the most conservatively rated span is 30 m for all models. 597 

Moreover, discrepancies with the MDOT model decreased, where the maximum load ratio 598 

(VLEf/RLE)  dropped from about 1.85 for moment to 1.56 for shear, but discrepancies for the 599 

AASHTO model increased, with maximum load ratios changing from about 1.20 to 1.35.  600 

Similarly, results for the  Best Selection Truck worsened (where the maximum load ratio 601 

increased from about 1.03 to 1.10), whereas the RBDO solution for shear produced nearly the 602 

same accuracy as for moment, with discrepancies within 1%.  Note that although the Best 603 

Selection result worsened for shear, it remains a substantially better solution compared to the 604 

AASHTO and MDOT shear models.   605 

As shown in Table 5, the range of shear reliability index for the exact solution has 606 

increased somewhat from that of moment, with βmax and βave increasing from 3.95 to 4.20 and 607 

2.83 to 2.90, respectively.  The variance of all results has decreased, however, from 0.13 to 0.10, 608 

with both the RBDO and Best Selection models producing nearly identical solutions, although a 609 

slight increase in occurs βave with the Best Selection Truck, from 2.88 for moment to 3.00 for 610 

shear. As with moment results, COV for shear results for the Best Selection Truck (0.10) 611 
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matched that of the RBDO and exact solutions. For shear, the AASHTO model considerably 612 

worsened when compared to moment results, producing a substantially higher βmax, βave, as well 613 

as COV as compared to the exact solution, with values of 4.97, 3.33, and 0.14, respectively.   In 614 

this case, AASHTO results are similar to those found from the MDOT model, which again 615 

produced worst results overall. 616 

It should be noted that the reliability index and RLE results are not based on nor are 617 

significantly impacted by any single maximum WIM data vehicle load effect.  In fact, removing 618 

any single, or numerous single vehicles, including the best selection vehicle, from the WIM data 619 

will have no practical impact on the computed live load random variable (LL) parameters shown 620 

in Table 2.  Rather, these values are based on a load projection using hundreds to thousands of 621 

vehicle load effects, the governing of which are from multiple vehicles together (in following 622 

and side-by-side configurations; see Eamon and Siavashi 2018 and Eamon et al. 2016).   That is, 623 

the Best Selection vehicle does not represent a governing, nor even typical, load effect.  Rather, 624 

its configuration best-replicates the pattern of projected load effects across the different spans 625 

considered. 626 

Although results were shown for the specific traffic data described above (i.e. Michigan 627 

legal and routine permit vehicles), to verify the applicability of the Best Selection method, this 628 

approach and the RBDO procedure were repeated on a set of 78 million vehicles collected from 629 

Michigan that meet the Federal Bridge Formula (FHWA 2015).   Significantly more restrictive 630 

than the originally considered Michigan database of legal and extended permit vehicles, this new 631 

set of vehicles would meet the legal requirements common to many states.  Application of Eq. 7 632 

(with k = 0.10) reduced this set of vehicles to approximately 740,000 for further consideration.  633 
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Comparing the results of both vehicle databases, nearly identical results were found using the 634 

Best Selection approach in terms of closeness to the ideal RBDO solution.  635 

Although this Best Selection approach was found to be effective, several limitations 636 

should be noted.  First, as potential solutions are found within the collected vehicle database, a 637 

reasonably large pool of vehicles must be available.  Although 2.2 million vehicles were used in 638 

this study (i.e. after the application of Eq. 7) , it was found that nearly as good results (with a 639 

difference of a few percent) could be  obtained using only approximately 1/6th of this vehicle 640 

pool, or about 350,000 vehicles.   However, as the size of the database decreases, 641 

correspondingly worse solutions will result.   Second, the data set used in the Best Selection 642 

process should be representative of the entire pool for which the load model is to be developed.  643 

That is, conducting the best selection on data from a single WIM site rather than a series of sites 644 

throughout the state may be problematic, as results may be locally biased, potentially missing the 645 

most effective solutions.  Third, there is inherent uncertainty as to how close the Best Selection 646 

result will be to the ideal solution.  Fortunately, error is readily quantifiable by comparing results 647 

to the required load effects (RLE);  unacceptably large errors may indicate the need to implement 648 

the more costly RBDO method.  649 

Finally, further note that the RLE values can be readily determined using the relatively 650 

simple reliability analysis described in the corresponding section above.  Direct use of the RLE 651 

would not only allow for an exact reliability-based rating assessment for each structure, but 652 

would avoid any additional computational effort associated with further load model 653 

development.  Although theoretically ideal, this approach may be problematic in practice.  In 654 

particular, existing rating and posting procedures used by most state DOTs are based on a 655 

framework that uses representative vehicles.  This includes the use of specialized rating software 656 
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that requires vehicle configurations as inputs, the desire for compatibility with the vehicle-based 657 

format of  existing rating standards, as well as the desire to minimize the need to use different 658 

loads, vehicles, and/or factors for different spans and bridge types.  Thus, the direct use of RLE 659 

values may be difficult to implement in current practice, and hence the alternative vehicle-based 660 

alternatives considered here, which were recently proposed to MDOT and are currently under 661 

consideration. 662 

 663 

Summary and Conclusion 664 

The potential effectiveness of using RBDO and an alternative method to  develop a 665 

reliability-based load rating model considering state-specific traffic was studied.  666 

It was found that the RBDO procedure could develop a load model more effective than 667 

the existing rating models suggested by AASHTO as well as the significantly more complex, 668 

state-specific DOT model.  In particular, a modest improvement was achieved over the 669 

AASHTO model for moment effects, while a significant improvement was made for shear, as 670 

well as a significant improvement for both moment and shear effects from the DOT model.  671 

However, for the RBDO process to be feasible, it was found that reduction of  computational 672 

effort as much as possible was essential.  This was effectively done using a slightly modified, 673 

non-iterative reliability approach to allow use of a single-loop RBDO procedure.  The RBDO 674 

solution produced final results nearly identical to a theoretically ideal solution. 675 

In comparison, a Best Selection Approach was studied, where it was proposed to select a 676 

vehicle directly from the WIM data that minimizes discrepancies in load effects.  It was found 677 

that this method produced nearly identical results as the RBDO solution for moment rating and 678 

only slightly worse results for shear rating.  It was further found that more complicated rating 679 
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models are not necessarily most effective. The most simple vehicle model studied, that 680 

developed from the Best Selection Approach, uses only a single rating vehicle for moment 681 

effects and another vehicle for shear effects, while it produced significantly more consistent 682 

results overall when compared to the multiple-vehicle AASHTO and MDOT alternative models.  683 

Given that the Best Selection Approach represents a large reduction in problem 684 

complexity and computational cost as the RBDO solution, as well as provides a realistic (actual) 685 

load rating vehicle, it is recommended for future consideration for state-specific load rating 686 

model development.   687 

  688 
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Table 1. Michigan Legal and Routine Permit Vehicle Filtering Criteria. 

Vehicle Type Criteria 

Legal, For axles spaced ≥ 2.75 m, axles  ≤ 80 kN 

GVW > 356 kN For axles spaced from 1 – 2.7 m, axles  ≤ 58 kN 

 
For axles spaced < 1 m, axles ≤ 40 kN 

2 ≤ Number of axles ≤ 11 

Vehicle Length ≤  29 m   

Legal, Any individual axle ≤ 89 kN 

GVW < 356 kN 

Sum of tandem axles ≤ 151 kN 

2 ≤ Number of axles ≤ 11 

Vehicle Length ≤ 29 m 

Permit Length ≤ 26 m 

(Construction)* Any axle  ≤ 107 kN 

 
GVW ≤ 667 kN 

2 ≤ Number of axles ≤ 11 

Vehicle Length ≤ 26 m 
*Various types of permits exist, depending on vehicle use category and cargo type.  Permits for construction                                                

vehicles are generally most permissive and govern load effects. 
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Table 2. Random Variables. 

Random Variable  Bias Factor        COV 

Resistance RVs R λ  

Prestressed Concrete, Moment  1.05 0.075 

Prestressed Concrete, Shear  1.15 0.14 

Reinforced Concrete, Moment  1.14 0.13 

Reinforced Concrete, Shear1  1.20 0.155 

Steel, Moment  1.12 0.10 

Steel, Shear  1.14 0.105 

Load RVs    

Vehicle Live Load, Moment LL 1.07-2.082             0.16-0.273 

Vehicle Live Load, Shear LL 1.0-1.642               0.16-0.303 

Live Load Impact Factor IM 1.13;1.104             0.09;0.0554 

Vehicle Load Distribution  Factor DF 0.72-0.99 0.11-0.18 

Dead Load, Prefabricated Dp 1.03 0.08 

Dead Load, Site-Cast Ds 1.05 0.10 

Dead Load, Wearing Surface Dw mean 89 mm 0.25 

1. Assumes shear stirrups present. 

2. Bias factor is given as the ratio of mean  load effect to the nominal Michigan legal rating truck load 

effect; varies as a function of span.  

3. Includes uncertainties from data projection, site, WIM data, impact factor, and load distribution; varies 

as a function of span. 

4. Bias factor is given as a multiple of  static LL, such that the total vehicular load effect is LL*bias IM .  

First values refer to single lane load effects; second values refer to two-lane load effects. 
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Table 3. Coefficients for Sum of Sines Model. 

Load Effect Parameter 

 𝑎1 𝑏1 𝑐1 𝑎2 𝑏2 𝑐2 𝑎3 𝑏3 𝑐3 

Moment 8556 0.015 -0.621 4879 0.022 2.07 295 0.053 1.91 

Shear 244 0.002 .021 113 0.002 6.30 4.59 0.062 -1.67 
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Table 4. Comparison of Moment Design Load Models. 

Design Load  
Load 

Factor 
βmin βmax βaverage COV 

Exact (using RLE) - 2.50 3.95 2.83 0.13 

RBDO Load Model - 2.50 3.95 2.84 0.13 

Best Selection Truck  2.02 2.50 3.96 2.88 0.13 

MDOT Trucks (current LF) varies1 2.13 5.52 3.74 0.20 

MDOT Trucks (required LF) 1.35 2.50 5.74 4.09 0.18 

AASHTO Trucks (current LF) 1.80 2.25 3.85 2.84 0.15 

AASHTO Trucks (required LF) 1.93 2.50 4.14 3.05 0.15 
1. See Figure 2 for load factors. 
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Table 5. Comparison of Shear Design Load Models. 

Design Load  
Load 

Factor 
βmin βmax βaverage COV 

Exact (using RLE) - 2.50 4.20 2.90 0.10 

RBDO Load Model - 2.50 4.25 2.91 0.10 

Best Selection Truck 1.79 2.50 4.20 3.00 0.10 

MDOT Trucks (current LF) varies1 2.10 4.67 3.22 0.14 

MDOT Trucks (required LF) 1.40 2.50 5.05 3.55 0.14 

AASHTO Legal Trucks (current LF) 1.80 1.70 3.85 2.67 0.13 

AASHTO Legal Trucks (required LF) 2.40 2.50 4.97 3.33 0.14 

1. See Figure 2 for load factors. 
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Figure 1. AASHTO Rating Trucks (kN, m).  
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Figure 2. Governing MDOT Rating Trucks (kN, m). 
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Figure 3.  Example Comparison of Load Effect Ratios Using Best Selection Method. 
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Figure 4. Best Selection Method Flowchart. 

 

 

 

 

Reliability Analysis

for all girder cases considered:

• Solve for RLE s.t. β = βT

when RF = 1.0

Select Vehicles

for all vehicles in database:

• If: 

• Then:  save vehicle

• Else:    discard vehicle

Determine VLEf

for all saved vehicles:

• VLEf = VLE x γGF

where γGF = max (RLEi/VLE)
i = 1 to n girder cases.

Assess Trial Models

for all saved vehicles:

• Compute COV(VLEf/RLEi)

where i = 1 to n girder cases

Choose Best Selection

from all saved vehicles:

• Select: min(COV(VLEf/RLEi))

• Required live load factor:
γLL = max(VLEf / (VLE + IM))
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Figure 5. Best Selection Approach Trucks (kN, m).  
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Figure 6. Vehicle to Required Load Effect Ratios for Moment. 
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Figure 7.Vehicle to Required Load Effect Ratios for Shear. 
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