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Load Truncation Approach for Development of Live Load Factors for Bridge Rating  1 

Sasan Siavashi1 and Christopher D. Eamon2  2 

Abstract 3 

Various local governments have developed state-specific vehicular live load factors for bridge 4 

rating. However, a significant computational demand is often associated with such an effort. This 5 

is due to the large size of the weigh-in-motion (WIM) databases frequently used in the procedure. 6 

In this study, a method is proposed that can significantly reduce the computational cost of the 7 

analysis, while still maintaining reasonable accuracy. The proposed approach develops 8 

approximate live load random variable statistics by truncating the WIM database based on gross 9 

vehicle weight, then a complete reliability analysis is conducted to develop new live load factors 10 

that meet AASHTO-specified rating standards.  Two WIM databases, one based on typically legal 11 

vehicles and another based on unusually heavy vehicles, are considered for evaluation.  Results of 12 

the proposed approach are compared to an exact assessment as well as to a simplified method 13 

suggested by AASHTO.  It was found that the proposed approach may provide very large 14 

reductions in computational cost with minimal loss of accuracy, whereas significant inaccuracies 15 

were found with the existing simplified approach.   16 
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Introduction  28 

In the US, bridge load rating is required by the US Department of Transportation (DOT) 29 

to assure that structures within each state inventory are sufficiently safe for vehicular traffic. 30 

Bridge rating procedures are specified in the Manual for Bridge Evaluation (MBE) (AASHTO 31 

2018), where rating for design, legal, and permit loads is discussed. Bridge rating has been based 32 

on an assessment of structural reliability since 2003 with the publication of the Manual for 33 

Condition Evaluation and Load and Resistance Factor Rating (LRFR) of Highway Bridges 34 

(AASHTO 2003). The MBE was later released in 2008, replacing the initial LRFR specifications 35 

as well as the alternative 1998 Manual for Condition Evaluation of Bridges (based on allowable 36 

stress and load factor rating (LFR), which was not reliability-based, but still allowed for use to 37 

assess structures designed under older, non-reliability based design provisions (AASHTO 1998).  38 

The purpose of the LRFR version was to provide a more consistent level of safety than that 39 

achieved under the previous LFR procedure. As part of LRFR calibration, the appropriate 40 

vehicular live load statistics used in the reliability assessment to establish live load factors for 41 

rating were developed. These factors were later again revised in 2011 (Sivakumar and Ghosn 2011) 42 

using weigh-in-motion (WIM) data from truck traffic collected in 2005 and 2006 from six states 43 

including New York, Mississippi, Indiana, Florida, and California. The recalibrated MBE rating 44 

process was formulated based on a 5-year return period for load rating to achieve a minimum target 45 

reliability index (β) of 1.5 for any particular girder, with an average target level of 2.5 across the 46 

bridge inventory. 47 

As expected, significant improvement in load modeling over previous versions was 48 

achieved due to the use of current (at the time) WIM data. However, the WIM data collected from 49 

the six states noted above does not necessarily well-represent traffic data in other states that were 50 
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not included in the MBE calibration effort. Therefore, various states have initiated efforts to 51 

develop unique live load models that better represent traffic data specific to their region. Some of 52 

these states include Oregon (Pelphrey and Higgins 2006), New York (Ghosn et al. 2011; Anitori 53 

et al. 2017), Michigan (Eamon et al. 2014; Eamon and Siavashi 2018), Missouri (Kwon et al. 54 

2010), and Illinois (Fu et al. 2019) where the live load factors for bridge design and rating were 55 

developed based on state-specific WIM data. Similar efforts to better characterize vehicle load 56 

effects based on WIM data were conducted by Lee and Souny-Slitine 1998 (Texas) and Tatabai et 57 

al. 2009 (Wisconsin).  58 

Although substantially conservative load modeling can be conducted with minimal effort, 59 

the cost associated with conservatively rating existing bridges is significantly higher than 60 

conservatively designing new structures. While conservative designs may lead to slightly larger 61 

component sizes or reinforcement levels, conservative rating may lead to unnecessary posting, 62 

rehabilitation, or replacement. Posted bridges that restrict traffic limit commercial vehicles from 63 

fully utilizing the transportation network, which may negatively affect local economies. Therefore, 64 

DOTs prefer to limit bridge posting as much as possible while not jeopardizing the level of safety.  65 

 Various models have been proposed to develop load models for bridge design and rating 66 

(Miao and Chan 2002; O'Brien et al. 2010; Nowak and Rakoczy 2013, etc.). Although these 67 

various methods of live load model development using WIM data may differ substantially in 68 

approach, they each share a significant drawback if accurate results are desired: high 69 

computational cost. This is primarily a result of the large database of vehicle records typically used 70 

for load effect assessment, which can often range from tens to hundreds of millions of vehicles 71 

(Sivakumar and Ghosn 2011, Nowak and Rakoczy 2013; Eamon et al. 2014, Eamon and Siavashi 72 

2018). Each truck record in the database, representing a unique multi-axle configuration, is 73 
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typically analyzed for the maximum load effects that it causes across multiple bridge spans and in 74 

some cases different bridge types. At present, a considerable amount of WIM data is available 75 

from numerous states. Although utilizing a large database may increase load modeling accuracy, 76 

it correspondingly increases computational cost. Although not theoretically problematic, this 77 

computational cost may render WIM-based solutions undesirable, if not practically inaccessible, 78 

depending on the time and resources available. 79 

Various studies has proposed the use of gross vehicle weight (GVW) as a surrogate for a 80 

more rigorous analysis of vehicular load effects, such as for development of simplified methods to 81 

estimate load factors (Fu and Hag-Elsafi 2000; Moses 2001), as well as an indicator of the 82 

magnitude of load effect (O'Brien and Enright 2012), among others. In this study, a different 83 

approach is proposed, where the objective is to develop an approximate live load random variable 84 

based on selectively eliminating the large majority of vehicles from the WIM database based on 85 

GVW.  Using the approximate live load random variable, a full reliability assessment is then 86 

conducted to establish live load factors for rating.  To illustrate the proposed approach, an example 87 

state-specific analysis is conducted to determine live load factors for the Strength I limit state (i.e. 88 

normal use vehicles, such as legal and routine permit) within the framework of the AASHTO 89 

MBE.  90 

WIM Data Considered 91 

Prior to load effect analysis, a WIM database for consideration must be identified. For 92 

evaluation of the method proposed in this study, data from twenty WIM stations in the State of 93 

Michigan were used. The WIM stations selected record data at a frequency of 1,000 Hz, a sampling 94 

rate that can accurately capture vehicle configurations and relative vehicle positioning. Data were 95 

collected with quartz piezoelectric sensor systems permanently embedded in and flush to the 96 
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roadway surface.  The system consists of weight sensors and inductive loops placed on either side 97 

of the sensors.   The loop before the sensors detects a vehicle and activates the WIM system, while 98 

the loop after the sensors tracks the time that vehicle axles cross between the loops, information 99 

which is used to determine vehicle speed and axle spacing.  Each lane has its own sensor system, 100 

which are linked together to record simultaneous multiple lane events.   WIM stations are 101 

monitored and periodically calibrated to test vehicles of known axle weight and configuration by 102 

DOT personnel to ensure accuracy. During this calibration process, possible dynamic effects are 103 

removed such that the pseudo-static axle weights are captured.  Sixteen of these sites are on major 104 

interstate routes (I-94, I-69, I-75, and I-96) while four are on lower-volume state highways (US-105 

127, US-2, and M-95). The data were collected for 34 months from February 2014 to January 2017 106 

(excluding April and May 2014, which were unavailable). The average daily truck traffic (ADTT) 107 

varied from approximately 360 to 16,500 with ten stations greater than 5,000, five stations with 108 

roughly 3,500, three near 1,500, and two with approximately 400 ADTT. Each WIM station 109 

automatically filters noncritical lightweight vehicles with GVW less than 67 kN from the database, 110 

resulting in approximately 101 million vehicle records. However, due to possible errors in WIM 111 

data collection, additional data filtering was used to remove potentially erroneous records from the 112 

database. These filtering criteria included feasible limitations on axle spacing, weight, speed, and 113 

length (Eamon and Siavashi 2018). A typical frequency histogram of GVW is primarily bi-modal, 114 

with peak frequencies at approximately 334 kN and 156 kN, which represent the most common 115 

loaded and unloaded 5-axle truck weights in Michigan. Nearly all sites are represented with similar 116 

multi-modal frequency plots, though peaks shift somewhat as a function of differences in local 117 

traffic density. Approximately 80% of trucks at all sites were of the five-axle (3S2) type. To further 118 

confirm the reasonableness of the WIM data, various checks were implemented as recommended 119 
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in NCHRP 683 (Sivakumar et al. 2011), such as comparing the GVW frequency histograms, mean 120 

and modal axle spacing, GVW, and axle weights to generally expected values (Eamon and 121 

Siavashi 2018). These quality checks reduced the database to approximately 89.5 million. The 122 

database was then further analyzed to consider only state (Michigan) legal and routine (annual or 123 

extended) permit vehicles which are used by Michigan Department of Transportation (MDOT) for 124 

Strength I limit state evaluation (i.e. normal use of the bridge) within the legal load rating 125 

framework. As discussed in further detail below, Strength I live load statistics are correspondingly 126 

based on this pool of legal and routine permit vehicles, although no specific limit is imposed on 127 

the probability density model and thus the possibility of sampling a vehicle exceeding the legal 128 

limit in the subsequent reliability analysis is maintained.  Following the MBE calibration approach, 129 

it is assumed that even heavier vehicles (i.e. special permit and potentially extreme illegal 130 

overloads) are to be accounted for in the Strength II limit state. A summary of the criteria used to 131 

categorize a record as MI-Legal or Extended Permit vehicles (MI-LEP) is given in Table 1. 132 

Approximately 88.9 million vehicles fell into this category. As Michigan has unusually high legal 133 

vehicle weights, up to approximately twice the Federal limit for some configurations, a vehicle 134 

pool representative of most other states that follow the Federal limit was also developed. This 135 

alternative database was created by imposing more restrictive limits based on the Code of Federal 136 

Regulations Part 658.17 (1994), which represents a simplified version of the axle weight and 137 

spacing rule commonly known as the “Bridge Formula”. This is labeled in Table 1 as the 138 

“Simplified CFR” category. Approximately 78.4 million vehicles fell into this group. From the 139 

different data pools as described above, load effects (maximum moments and shears) were 140 

calculated by incrementing the measured vehicles across hypothetical simple bridge spans (from 141 

6-60 m in length) in increments of 300 mm.  142 
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 143 

Correlation of Vehicle Parameters and Load Effect 144 

Once load effects are determined for the entire vehicle database of interest, the typical 145 

approach used for load factor development is to form the cumulative distribution function (CDF) 146 

for a particular bridge span and load effect of interest. Then, various approaches are available to 147 

estimate the statistical parameters (typically limited to the first two statistical moments; mean and 148 

standard deviation) from the CDF needed to characterize the maximum load effect as a random 149 

variable representing a return period of interest, which is taken as 5 years for Strength I rating in 150 

AASHTO MBE (AASHTO 2018). This live load random variable is then used in a reliability 151 

analysis to obtain the required rating live load factors, as described in more detail below. In most 152 

procedures used to develop the live load random variable statistical parameters, only the very upper 153 

tail of the load effect CDF is used, which might range from 20% to less than 1% of the data, 154 

depending on the approach (Moses 2001; Sivakumar et al. 2011; Nowak and Rakoczy 2013, 155 

Eamon et al. 2014, Eamon and Siavashi 2018). As such, the large majority of vehicle load effects 156 

that are calculated are not needed. This represents a considerable waste of computational effort. 157 

For example, to calculate vehicle moments for a single bridge span of 18 m using the database of 158 

89 million MI-LEP vehicle records discussed above required approximately 45 hours on a modern 159 

personal computer (Intel Core i7 2.7/3.6 GHz CPU with 32 GB of RAM). Realize this analysis 160 

must be repeated for various different bridge spans, different bridge types in some cases, and for 161 

shear effects as well, resulting in a rather substantial computational effort requirement. If the 162 

number of vehicles considered could be reduced to only those that will form the upper tail of the 163 

load effect CDF used for the live load model, say, to 1/10th of the original database, this time would 164 
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be similarly reduced to approximately 1/10th of that originally required, representing a substantial 165 

savings of computational effort.  166 

With regard to computational demand, here it should be noted that there are three types of 167 

vehicle positioning scenarios to be considered: a single vehicle on the bridge; multiple vehicles in 168 

a single lane (“following” vehicles); and vehicles in more than one lane (multiple-lane load 169 

effects). In practice, single and following vehicle effects are combined to construct a database of 170 

single lane load effects, then two types of load effect analysis are conducted: one for the single 171 

lane loaded case and the second for the multiple lane loaded case.  Although a bridge may have 172 

many lanes of traffic, the MBE calibration, and hence the comparisons presented in this study, 173 

consider up to two-lane effects, which encompass the most probable multi-lane events and for 174 

which most WIM data are available. Both analyses are required for all hypothetical structures 175 

considered to develop final live load factors as there is often no clear pattern, in terms of bridge 176 

span and girder spacing, as to which type of load effect (i.e. one-lane or two-lane) will govern. 177 

With regard to computational effort, the single-lane, single vehicle load effects are of most 178 

concern, as these typically make up the vast majority of load effects generated. Although 179 

proportions vary with bride span, ADTT, location, and classification method, various studies have 180 

found that single vehicle effects make up greater than 95% of load effects in most instances 181 

(Sivakumar et al. 2011, Eamon et al. 2014, Eamon and Siavashi 2018). For example, for the MI-182 

LEP database mentioned above, considering the 6-60 m span range, the ratio of multiple presence 183 

vehicles to single vehicles was approximately 1:70 to 1:1000 (with longer spans having a greater 184 

likelihood of multiple presence). Such results are typical. Therefore, this study is focused on 185 

reducing the computational effort only related to single vehicle load effects, although it would be 186 
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possible to apply the proposed method to multi-lane data as well in the same manner that it is 187 

applied here to one lane load effects. 188 

To reduce computational effort, the relationship between single vehicle load effect and 189 

directly available vehicle parameters within the WIM data can be studied, to determine if such a 190 

parameter can be used to include only the vehicles which will have significant impact on the load 191 

effect statistics. This approach could thus eliminate the need to compute load effects for the large 192 

majority of vehicles. An obvious parameter to consider is GVW. However, although it may appear 193 

intuitive that only the heaviest trucks are important, the effectiveness of using GVW as a direct 194 

surrogate for load effect is quantitatively unknown. One complication is the effect of vehicle 195 

length, where heavier vehicles are often longer, and may produce lower load effects than a lighter, 196 

shorter vehicle. Another factor is bridge span length, where the effect of vehicle length may be 197 

expected to become less important as span length increases. As such, the vehicle parameters 198 

selected for consideration were: GVW; length; number of axles; GVW/length; and GVW x length. 199 

These parameters are either directly available from the WIM data or readily calculated from two 200 

available parameters with minimal computational effort. The correlation coefficient (ρ) of each of 201 

these parameters to load effect was computed across various span lengths for the MI-LEP and 202 

Simplified CFR vehicle databases described above. Results for moment effects are shown in 203 

Figures 1 and 2. Shear results are nearly identical and are thus not shown. 204 

As shown in the figures, in general, as span length increases, the correlation between load 205 

effect and all considered parameters except GVW / length increases. GVW is shown to have the 206 

highest correlation, with values varying from about 0.9 to nearly 1.0 for both vehicle databases.  207 

As these values of ρ are high, the use of GVW to eliminate a large portion of vehicles from 208 

consideration appears promising. In fact, a simplified method to estimate live load factors for 209 
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rating based on GVW is already given in the MBE, based on NCHRP 454 (Moses 2001), and is 210 

taken as (for single lane loading): 211 

𝛾𝐿 = 1.8 [
𝑊∗+𝑡(𝐴𝐷𝑇𝑇)𝜎∗

120
] ≥ 1.80        Eq. 1 212 

where 𝑊∗ and 𝜎∗ are the mean truck weight and standard deviation of the top 20 percent of the 213 

vehicle sample (kips), and 𝑡(𝐴𝐷𝑇𝑇) is a fractile value appropriate for the maximum expected loading 214 

event, taken as 4.9, 4.5, and 3.9 for ADTT values of 5000, 1000, and 100, respectively. The 215 

accuracy of this existing AASHTO method, however, is not clearly documented. The effectiveness 216 

of the AASHTO approach, as well as the alternative approach proposed in this study, is later 217 

quantified. 218 

To clarify the difference between the “exact”, AASHTO, and proposed approaches for live 219 

load factor development, first consider the exact procedure. In the exact method, load effects from 220 

all vehicles in the appropriate WIM database are first computed. As noted above, a different set of 221 

load effects is needed for each span length considered in the analysis. Once all load effects are 222 

computed for a given span, the CDF of load effects for that span is formed.  For rating, from this 223 

CDF, the mean maximum load statistics for a 5-year return period are developed. As noted above, 224 

alternative procedures are available to do this. An investigation of these various possibilities is 225 

beyond the focus of this study. However, a common method that was used in the reliability 226 

calibration of the MBE (Sivakumar and Ghosn 2011) as well as in subsequent studies (Sivakumar 227 

et al. 2011, Eamon et al. 2014, Eamon and Siavashi 2018) models the live load using extreme 228 

value theory. This model can be accurately used if the extreme (high) values of the load effect 229 

CDF well-fit a normal distribution. If so, the mean maximum load effect (�̅�𝑚𝑎𝑥) and its standard 230 

deviation (𝜎𝐿 𝑚𝑎𝑥) are given as: 231 
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�̅�𝑚𝑎𝑥 = 𝜇𝑁 +
0.5772157

𝛼𝑁
      Eq. 2 232 

𝜎𝐿 𝑚𝑎𝑥 =
𝜋

√6 𝛼𝑁
        Eq. 3 233 

where  234 

𝜇𝑁 = �̅� + 𝜎(√2 ln(𝑁) −
ln(ln(𝑁))+ln(4𝜋)

2√2 ln(𝑁)
)    Eq. 4 235 

𝛼𝑁 =
√2 ln(𝑁)

𝜎
        Eq. 5 236 

In these expressions, N is the total number of trucks expected during the return period (i.e. in 5 237 

years) and �̅� and σ within Eqs. 4 and 5 are found from the slope (m) and intercept (n) of a line fit 238 

to the upper tail of the CDF when plotted on normal probability paper (i.e. when the vertical axis 239 

is taken as the inverse standard normal CDF), where parameters �̅� and σ are given by �̅� = −
𝑛

𝑚
 and 240 

𝜎 =
1−𝑛

𝑚
− �̅�, respectively. For illustration, example CDFs for simple moments considering the 241 

very heaviest vehicles (top 0.1%) of the MI-LEP database for spans of 6-60 m and accompanying 242 

best-fit regression lines suitable for use in Eqs. 2-5 are shown in Figure 3.  The resulting vehicle 243 

load statistics (�̅�𝑚𝑎𝑥 and 𝜎𝐿 𝑚𝑎𝑥) are then used along with other load effect uncertainties, as 244 

discussed further below, to form a random variable for live load which can be used in reliability 245 

analysis to determine appropriate live load factors for rating. 246 

In contrast, the AASHTO approach (Eq. 1), represents a substantial computational savings 247 

from the exact approach, as no load effects need to be calculated, nor does any reliability analysis 248 

need to be conducted; only the mean and standard deviation of the top 20% of GVW of vehicles 249 

in the database are computed. As quantified later, however, as perhaps expected, some accuracy 250 

concerns exist with this simplified approach. Here it should be noted that although Eq. 1 appears 251 

in the MBE, it was not used in the latest calibration effort and does not necessarily produce load 252 

factors representing the currently intended level of reliability.  Rather, it was the exact procedure 253 
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(i.e. using “all” WIM data) that was used to determine target reliability levels and set 254 

corresponding load factors. As discussed in the MBE, although Eq. 1 is offered as an alternative 255 

to reduce computational effort for site-specific cases (as further discussed below), intended 256 

reliability targets are achieved with the exact approach, and it was thus recommended for state-257 

wide use (AASHTO 2018; Sivakumar and Ghosn 2011). 258 

The alternative approach proposed in this study follows the same framework of the exact 259 

approach. The only difference is the number of vehicles used to calculate load effects that are used 260 

to form the CDF. Rather than use the entire vehicle database, load effects are computed only from 261 

the heaviest vehicles. Here, regardless of the size of the reduced database, the fundamental 262 

requirements of the extrapolation procedure described above are maintained in all cases; i.e. a best-263 

fit regression line is fit to the upper linear tail of data (where the length of the tail may vary, 264 

depending on the proportion of data on the CDF that are linear in standard normal space), then 265 

Eqs. 2-5 are used to estimate vehicle load effect statistics. Because other vehicle characteristics 266 

such as vehicle length, axle spacing, and axle weight influence load effect, basing the load effect 267 

CDF only on maximum GWV vehicles is an approximation. The effectiveness of this 268 

approximation, based on what proportion of maximum GWV vehicles are considered, is quantified 269 

later in this study.  It should be noted that the reliability analysis (which requires a separate analysis 270 

for each girder type, spacing, and span length considered) used in the exact and proposed 271 

approaches actually involves an insignificant amount of effort, in terms of computational time, 272 

beyond the AASHTO approach (less than several seconds for the entire reliability analysis for all 273 

cases). Rather, it is the calculation of load effects needed to form the CDF which requires the vast 274 

majority of computational effort. 275 

 276 
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Reliability Analysis 277 

For the exact and proposed procedures, a reliability analysis is required to determine rating 278 

load factors. These factors, the ultimate product of interest, will be used to compare the accuracy 279 

of the three alternate methods considered (exact, AASHTO, proposed). For comparison, the 280 

analysis was conducted for bridges which make up the majority of most state inventories: those 281 

that are constructed of composite steel and prestressed concrete I-girders, prestressed concrete box 282 

beams (both spread and side-by-side), and reinforced concrete girders. Simple span structures of 283 

these girder types were analyzed with spans from 6 to 60 m at increments of 6 m for all girders 284 

except for reinforced concrete, which is limited to 30 meters. Girder spacing was varied from 1.2 285 

to 3.6 m at 0.6 m increments, while for side-by-side box beams, two widths (0.9 m and 1.2 m) 286 

were considered. Bridges were assumed to support a 230 mm thick reinforced concrete deck, 65 287 

mm wearing surface, and additional typical nonstructural items (primarily barriers and 288 

diaphragms) relevant to dead-load calculation. Thus, considering all combinations of length (10) 289 

and girder spacing (5) increments results in 50 geometries each for prestressed concrete, steel, and 290 

spread box beam bridge types; 25 for reinforced concrete; and 20 side-by-side box beams, for 195 291 

cases. The range of these geometries and types covers nearly all girder bridges in the state of 292 

Michigan as well as other state inventories.  Although the consideration of alternative designs, 293 

such as non-girder type bridges, longer spans, curved or skewed decks, and other features are 294 

important, such structures represent somewhat unique cases not directly considered in the MBE 295 

calibration, and are thus beyond the scope of the comparisons presented here. Moreover, it is not 296 

currently possible to assess potential differences between the methods compared in this study 297 

considering many of these bridge features, since WIM data are generally taken from stations placed 298 

on the roadway rather than directly on bridge decks.  Thus, the effects that many interesting 299 
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features of bridge geometry (such as curvature, skew, etc.) might have on traffic pattern are 300 

typically not available.  However, the authors would currently propose no adjustment to the 301 

method proposed in these circumstances. 302 

Random variables used for reliability assessment are girder resistance (R), dead load, and 303 

live load. Dead load includes prefabricated (Dp) site-cast (Ds) and deck wearing surface (Dw) 304 

components, while live load consists of vehicle live load (Lmax) and dynamic load (IM). In addition, 305 

uncertainty in the distribution of vehicular live load to an individual girder is considered (DF). 306 

Bias factor (ratio of mean to nominal value) and coefficient of variation (COV) of these random 307 

variables are presented in Table 2.  308 

The live load random variable statistical parameters are not only a function of the 309 

uncertainty in projected maximum vehicle load effect, characterized here by coefficient of 310 

variation Vprojection, with parameters determined by Eqs. 2 and 3 (where 𝑉𝑝𝑟𝑜𝑗𝑒𝑐𝑡𝑖𝑜𝑛 =
𝜎𝐿 𝑚𝑎𝑥

�̅�𝑚𝑎𝑥
), but 311 

other uncertainties as well. These uncertainties include those of site location (𝑉𝑠𝑖𝑡𝑒), characterizing 312 

the variation in mean maximum load effect from one site to another; the dynamic load effect, (𝑉𝐼𝑀), 313 

taken as 9% for one lane effects (Sivakumar et al. 2011); the uncertainty in WIM data collection 314 

at a particular site (𝑉𝑑𝑎𝑡𝑎), taken as 2% for the database considered (Eamon and Siavashi 2018); 315 

and uncertainty in vehicular live load distribution to the girder (𝑉𝐷𝐹), which varies as a function 316 

of girder type as shown in Table 2 (Sivakumar et al. 2011). The resulting COV of total live load 317 

effect can be thus approximated as: 318 

𝑉𝑚𝑎𝑥 𝐿 = √𝑉𝑝𝑟𝑜𝑗𝑒𝑐𝑡𝑖𝑜𝑛
2 + 𝑉𝑠𝑖𝑡𝑒

2 + 𝑉𝑑𝑎𝑡𝑎
2 + 𝑉𝐼𝑀

2 + 𝑉𝐷𝐹
2   Eq.6 319 

This final value was found to vary from 0.16-0.30, depending on the bridge type and vehicle 320 

database considered. 321 
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With the exception of live load, all random variable statistical parameters used in the 322 

AASHTO LRFD (Nowak 1999) and MBE calibrations (Sivakumar and Ghosn 2011) are used in 323 

this study. To be consistent with the reliability model used in these previous calibration efforts, it 324 

is also assumed that girder resistance is lognormal whereas the sum of load effects is taken as 325 

normally distributed.  326 

Once random variables are defined, the general limit state function gi for each bridge girder 327 

i can be written as: 328 

gi = R – (Dp+Ds+Dw) – DF(𝐿𝑚𝑎𝑥+ IM)   Eq. 7 329 

with random variables Dp, Ds, Dw, DF, IM, and Lmax defined above. Limit states are formed for 330 

simple span load effects for moment and shear. 331 

 The minimum requirements of acceptability need to be identified in order to establish 332 

nominal values for girder resistance R to be used in the reliability analysis. In the case of rating, 333 

the rating factor is the metric used to determine the minimum level of acceptability (i.e. if rating 334 

factor is ≥1.0, no traffic restriction is required). In the MBE, rating factor (RF) is defined as: 335 

)(

5.125.1

IMLL

DWDCR
RF

LL

n

+

−−
=




    Eq. 8 336 

 In Eq. 8, resistance factor   varies as a function of girder type and failure mode; Rn is the 337 

nominal resistance of the component; DC and DW are respectively the dead loads of the structure 338 

and the wearing surface; LL is the rating vehicle live load effect; IM is specified as 0.33*LL; and 339 

γLL is the rating vehicle load factor.  Note that the parameters given in Eq. 8 can be calculated 340 

according to the MBE specifications based on the bridge geometry and other code-specified 341 

factors.  The uncertainties in these parameters are represented as random variables in the limit state 342 

function.  In particular, uncertainties in nominal resistance Rn and weight of the wearing surface 343 
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DW in Eq. 8. are represented by directly corresponding random variables  R and Dw in Eq. 7.  The 344 

remaining dead load effect DC in Eq. 8 is represented as the sum of two random variables Dp and 345 

Ds, and the live and dynamic load effects on the girder LL and IM are represented by random 346 

variables Lmax and IM, respectively, in addition to a random variable accounting for the uncertainty 347 

in load distribution to the girder, DF. 348 

 Considering legal and routine permit vehicles, the MBE considers two limits for target 349 

girder reliability index β: a minimum of β =1.5 for any girder as well as an average of β =2.5 across 350 

all girders in the inventory. Both limits are applied to the specific case when RF = 1.0 which 351 

represents the boundary of acceptability (i.e. just before traffic requires restriction). Therefore, by 352 

setting RF = 1.0 in Eq. 8 and solving for Rn, the required nominal resistance at these target 353 

reliability levels can be determined as follows: 354 

))(5.125.1)(/1( IMLLDWDCR LLn +++=       Eq. 9 355 

In Eq. 9, Rn can be found from the dead load (DC, DW) and live load (γLL, LL, IM) effects. 356 

Once Rn is found, using the bias factors λ shown in Table 2, the mean value �̅� of the girder 357 

resistance random variable R can be calculated (�̅� = λ x Rn). As a result, the reliability index 358 

associated with the limits state given by Eq. 7 can be computed.  Note that, as typical for code 359 

calibration efforts, the target reliability indices developed for the MBE (i.e. β = 1.5, 2.5) are 360 

notional values calculated based on various simplifying and often highly conservative 361 

assumptions, and are used for calibration purposes only.  That is, the corresponding theoretical 362 

failure probabilities (i.e. pf = Ф(-β)) should not be thought to represent actual bridge girder safety 363 

levels. 364 
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As mentioned earlier, this study concerns reducing the computational effort required to 365 

develop a live load model using WIM data while maintaining an acceptable level of accuracy. 366 

Developing a live load model may involve forming a new nominal rating vehicle and associated 367 

load effect (LL), new live load factors for existing rating vehicles (γLL), or both. Regardless of the 368 

approach taken, in this process, the total live load effect needed to be produced by the rating model 369 

(γLL(LL+IM)) begins as an unknown. However, since the target reliability index limits are known 370 

(minimum of 1.5 and average of 2.5), the minimum value of γLL(LL+IM) needed to produce an Rn 371 

(and in particular, the mean value of R) that will satisfy the reliability target can be established. 372 

For convenience, the quantity γLL(LL+IM) is referred to as the required load effect (RLE) in this 373 

study. In other words, RLE is the total load effect required by the live load rating model such that 374 

for any girder, when RF = 1, a minimum reliability index of 1.5 for any girder, with an average of 375 

2.5, is met. Note that the RLE is a deterministic factor used to represent the total live load effect 376 

in the AASHTO rating equation (Eqs. 8, 9); it is not itself a random variable nor does it appear in 377 

the limit state function (Eq. 7), although uncertainties in load components LL and IM within the 378 

RLE are represented by individual random variables Lmax and IM in the reliability analysis. 379 

The reliability process is summarized as follows. First, based on values used for similar 380 

bridges considered in the previous reliability-based AASHTO code calibration efforts, nominal 381 

and mean (using the bias factors given in Table 2) values for dead load random variables (Dp, Ds, 382 

Dw) and live load distribution factor (DF) are calculated for a selection of typical bridge designs.  383 

Second, the mean value of R, needed for reliability analysis, is expressed as �̅� = λ x Rn, 384 

where Rn is given by Eq. 9 and bias factor (λ) given in Table 2 for the type of girder and failure 385 

mode considered. Note that Rn, and as a result �̅�, is a function of the unknown RLE value 386 

(γLL(LL+IM)).  387 
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Then, by setting the required reliability target to 1.5 for a given girder and considering the 388 

limit state function given by Eq.7, reliability index becomes a function of random variables R, Dp, 389 

Ds, Dw, DF, IM, and Lmax within Eq. 7 (where the precise relationship depends on the specific 390 

reliability analysis method chosen) Note that the mean girder resistance �̅� remains a function of 391 

the unknown RLE. Finally, since the reliability index is known in the calculation of β, the RLE, 392 

which is the only unknown, can be solved for. Therefore, the live load effect that meets the 393 

minimum reliability target and needed to be produced by the rating live load model (RLE) can be 394 

established. From all results, the average reliability index is then computed to check this second 395 

requirement (βave ≥ 2.5).  396 

Due to the large number of bridges considered in this study, the reliability analysis was 397 

conducted using the closed form first-order, second moment (FOSM) procedure, such that 398 

reliability index (β) can be computed directly. The FOSM method assumes all random variables 399 

are normal, which typically produces conservative assessments of reliability when resistance is 400 

lognormal as in this study. However, Eamon et al. (2016) found that when reliability index 401 

approaches 1.5, no significant difference exists between the FOSM and exact solution when the 402 

limit state function and random variable parameters discussed above are considered. For 403 

verification, a sample of girder reliability indices were computed with Monte Carlo Simulation 404 

(MCS) with 1x106 simulations. It was found that the indices estimated with the FOSM approach 405 

within 1% of the “exact” MCS values. For other problem types, alternative efficient reliability 406 

algorithms can be considered (e.g. Acar et al. 2010). 407 

 Using this typical process for rating live load model development, the effect of reducing 408 

the size of the vehicle database based on GWV; i.e. the proposed approach, will be compared to 409 
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results of the exact approach using all vehicle data, as well as results of the AASHTO simplified 410 

procedure.  411 

Effect of Data Reduction on Live Load Random Variable Statistical Parameters 412 

The purpose of the proposed approach is to reduce computational effort by computing load 413 

effects for only a portion of the total vehicle database. A key issue to be addressed is how much 414 

of the database can be practically removed while maintaining acceptably accurate results. 415 

As discussed earlier, reducing the amount of data used to generate load effects will alter the 416 

statistics of the live load random variable used in the reliability analysis needed to develop live 417 

load factors for rating. Altering the data pool will affect the following statistical parameters: the 418 

mean maximum live load effect (�̅�𝑚𝑎𝑥); coefficient of variation of the mean maximum load 419 

(𝑉𝑝𝑟𝑜𝑗𝑒𝑐𝑡𝑖𝑜𝑛); and the coefficient of variation with respect to WIM site location (𝑉𝑠𝑖𝑡𝑒); see Eqs. 6 420 

and 7.  421 

 Using the two databases described earlier (MI-LEP and Simplified CFR), various portions 422 

of vehicle data were removed such that the top 50, 20, 10, 5, and 1 percent of single vehicle records 423 

by GVW were retained. The load effects from these reduced single vehicle pools were then 424 

calculated, and combined with all load effects constituting multiple vehicles in the same lane (i.e. 425 

the “following” vehicle effects) to produce reduced databases of single lane load effects, as is 426 

typically done. Recall from the discussion above that the following vehicle load effects, as well as 427 

multiple-lane load effects generally account for only a very small proportion of the total load 428 

effects, and thus these are not of interest in this study for consideration of alteration to reduce 429 

computational effort. Once the reduced single lane load effects were calculated, the three affected 430 

live load random variable statistics (�̅�𝑚𝑎𝑥, 𝑉𝑝𝑟𝑜𝑗𝑒𝑐𝑡𝑖𝑜𝑛, 𝑉𝑠𝑖𝑡𝑒) were similarly recomputed and used 431 

to determine Vmax L (Eq. 6), the total variation in live load effect. Vmax L results for the reduced 432 
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datasets are shown in Figures 4 and 5 for MI-LEP vehicles and are compared to the unreduced 433 

database (“All”). Note that for construction of these figures (but not in subsequent reliability 434 

calculations, where the exact values are used), from the range of possible values for 𝑉𝐷𝐹 given in 435 

Table 2, 𝑉𝐷𝐹 is taken as the minimum possible in all cases (0.11, which actually only corresponds 436 

to the shortest 6 m span which allows for the resulting Vmax L value to become most sensitive to 437 

changes in the potentially altered parameters 𝑉𝑝𝑟𝑜𝑗𝑒𝑐𝑡𝑖𝑜𝑛 and 𝑉𝑠𝑖𝑡𝑒. 438 

 As shown in the figures, for all data considered, Vmax L decreases as span increases. This 439 

result is typical (Nowak 1999, Sivakumar and Ghosn 2011, Kamjoo and Eamon 2018), and occurs 440 

because load effects on smaller spans are more sensitive to variations in truck axle spacing and 441 

weights. Consistent across all span lengths, however, for both moment and shear, Vmax L was found 442 

to slightly increase as the dataset is reduced. This is a result of a combination of a decreasing 443 

𝑉𝑝𝑟𝑜𝑗𝑒𝑐𝑡𝑖𝑜𝑛  and increasing 𝑉𝑠𝑖𝑡𝑒  as the data are reduced, with the increase in 𝑉𝑠𝑖𝑡𝑒  slightly 444 

dominating. Here Vprojection decreases for a particular site because there is less variability in the 445 

remaining data as the wider range of (lighter) load effects are removed.  Conversely, Vsite increases 446 

because removing these lighter vehicles, which are common to all sites, emphasizes differences in 447 

the remaining heavy vehicles between sites due to local traffic patterns (for example, one site may 448 

be close to a gravel pit or an industrial center, resulting in a certain type of heavy vehicle and 449 

accompanying load effects not reflected at another site). However, the resulting difference in Vmax 450 

L is so small (with a typical increase factor in Vmax L of 1.01 and maximum increase factor of 1.04) 451 

that it is inconsequential. Similar results were observed for the simplified CFR dataset (not shown 452 

for brevity). 453 

 More significant is the effect of data reduction on mean maximum load effect, �̅�𝑚𝑎𝑥 (Eq. 454 

2). The ratio of �̅�𝑚𝑎𝑥 for a reduced dataset to the exact case using all data (�̅�max 𝑟/�̅�max 𝑒) for the 455 
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MI-LEP and Simplified CFR databases for moment and shear are given in Figure 6. As shown in 456 

the figure, for all cases, reducing the data set results in an over-estimation of �̅�𝑚𝑎𝑥. This is not 457 

surprising, as the reduced database becomes more severely biased towards heavier vehicles as it is 458 

reduced. In general, the degree of over-estimation increases as span length increases. As shown in 459 

the figure, for both databases and load effects, depending on span length, the �̅�max 𝑟/�̅�max 𝑒 ratio 460 

ranged from 1.0-1.02 when reducing the data to 50%; 1.0-1.04 when reduced to 20%; 1.0-1.06 461 

when reduced to 10% and 5%; and 1.0-1.07 when reduced to 1%. Thus, when using only 1/100th 462 

of the original database, at most, a 7% overestimation of mean maximum load effect was found. 463 

Effect of Data Reduction on Required Load Effect and Girder Reliability 464 

Of primary concern is how using a GVW-reduced database will affect the ultimate product 465 

of interest, the required live load effect (RLE) to be used for rating; i.e. the quantity γLL(LL+IM) 466 

in Eq. 9, and the corresponding computed reliability levels of the bridge girders. Using the revised 467 

live load random variable statistical parameters discussed above, RLE values were recomputed for 468 

the reduced data set cases. Ratios of the RLE for the reduced data to the exact (i.e. all data) case, 469 

(RLEr / RLEe), are given in Table 3. Note that if the vehicle model itself is left unchanged, as is 470 

typical, the (RLEr / RLEe) ratio represents the fractional increase in the live load factor (γLL). As 471 

seen in the table, the (RLEr / RLEe) ratios are all greater than unity. This implies that the RLE 472 

values, or practically, the live load factors γLL calculated using the reduced data sets produce 473 

conservative results. Given that both live load random variable statistics Vmax L and �̅�𝑚𝑎𝑥 increase 474 

for the reduced data sets, this result is inevitable. This is because increasing either parameter results 475 

in an under-estimation of the true reliability index, requiring an increase in live load factor γLL to 476 

restore reliability index to the minimum acceptable level.  477 
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 Table 3 provides values for the minimum, maximum, and mean ratios from the 195 bridge 478 

girder cases described earlier. As shown in Table 3, the average RLEr / RLEe ratio of all cases 479 

using datasets reduced to 10% varies from 1.02 – 1.07. Note that in some cases, the maximum 480 

ratio found from any of the cases is quite high; for example, again considering the 10% dataset, 481 

the Simplified CFR vehicles produces a maximum ratio of 1.19 (this occurs for the case of a 18 m 482 

reinforced concrete girder (3.6 m spacing); other high ratio cases that approach this value are a 54 483 

m prestress concrete I-girder (1.2 m spacing) as well as spread box beam spans greater than 30 m. 484 

Although few in number and conservative, these outlying cases appear to be significantly 485 

discrepancies, perhaps unacceptable. Due to how rating models are typically implemented in 486 

common practice, however, using load factors rather than girder-specific RLE values, the actual 487 

deviation from using the exact dataset is actually much smaller. This issue is discussed in further 488 

detail below. 489 

 The resulting minimum, maximum, and mean rating reliability indices of the girders are 490 

given in Table 4. These are computed using the RLEr values found from the GWV-reduced data 491 

pools to rate the girders, then assessing reliability using the exact live load statistics found from 492 

all of the data. Thus, the values in Table 4 indicate actual resulting rating reliability indices if the 493 

GVW-reduced data were used to develop the load model. As shown, as the data used to construct 494 

the live load random variable is reduced, results become more conservative and the actual 495 

reliability index increases. Also shown on the table is the resulting reliability index if the suggested 496 

AASHTO approach (Eq. 1) is used. That is, girders are rated by calculating the mean and standard 497 

deviation of the top 20% of GVWs and then the load factor (γLL) found from Eq. 1 is applied to 498 

develop the RLE (γLL(LL+IM)). As shown, results are extremely conservative, in most cases 499 

greatly exceeding the minimum required reliability target of 1.5. Here the “mean” results in Table 500 
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4 may appear problematic, as the MBE specifies a minimum reliability target of 1.5 for any case, 501 

but that the average of all cases should be no lower than 2.5. For the best comparison of the effect 502 

of the reduced data sets, this average limit was not imposed in the solutions presented in Tables 3 503 

or 4 (imposing the higher average limit would obscure the differences in results between the sets). 504 

A more practical comparison based on how rating models are commonly implemented is given in 505 

the section below, in which both the minimum and average MBE criteria are met. 506 

Effect of Data Reduction on Load Factors 507 

The previous comparisons shown in Tables 3 and 4 were based on theoretically ideal, 508 

girder-specific RLE values. That is, the effect of using the reduced database was compared to an 509 

exact case where different RLE values were specifically computed for each individual girder. In 510 

practice, this ideal result would amount to using a different load model or load factor that was 511 

developed specifically for each bridge girder. Although useful for theoretical assessment, in 512 

practice, this approach, and the corresponding resulting discrepancies, is unrealistic. Thus, rather 513 

than using ideal RLE values that are girder-specific, as in the previous comparisons, here the effect 514 

of reduced data sets on generalized rating live load factors is considered. In a typical DOT rating 515 

model, similar to design, a constant live load factor γLL is used to rate all girders in the bridge 516 

inventory. To determine the appropriate inventory-wide rating live load factor, first girder-specific 517 

live load factors are determined. These are found by calculating the rating vehicle load effect (LL) 518 

specific to each hypothetical girder considered, then determining the needed live load factor γLL to 519 

be used such that the RLE (γLL(LL+IM)) is met such that no girder has a reliability index less than 520 

1.5, and the average reliability index of all cases considered is no less than 2.5. The maximum of 521 

all girder-specific γLL values needed for any girder to meet β ≥ 1.5 is then chosen to be used with 522 

the rating vehicle(s) for all girders, provided that the required average βave ≥ 2.5 is met. 523 
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Clearly, imposing the single governing load factor on all girders will provide a conservative 524 

rating for all types of girders except the single governing case. Minimizing this conservatism can 525 

be accomplished by refining the rating vehicle model (LL) to better match the RLEs, a topic which 526 

has been addressed elsewhere (see Siavashi and Eamon 2019, for example). However, to examine 527 

results using the reduced datasets, the above procedure is followed to determine the required live 528 

load factor (γLL). In this analysis, existing rating vehicles are used for the live load effect (LL), 529 

which are taken to be those currently used by MDOT (Curtis and Till 2008, MDOT 2009) for the 530 

MI-LEP database and the AASHTO rating vehicles described in the MBE for the Simplified CFR 531 

database. These results are given in Figure 7. Note that the figure provides different required load 532 

factors for moment and shear, but the single governing factor for either would be used in practice. 533 

Also shown in the figure are the load factors found from using the suggested AASHTO procedure 534 

(Eq. 1). As expected based on previous results, it was found that a higher load factor resulted as 535 

the datasets were reduced. Reducing the dataset to 10% of the heaviest vehicles resulted in a ratio 536 

of reduced to exact live load factors (γLL r / γLL e) of 1.05 and 1.04 for moment and 1.04 and 1.03 537 

for shear for the MI-LEP and Simplified CFR databases, respectively. Only using 1% of the 538 

heaviest vehicles in the database resulted in (γLL r / γLL e) ratios of 1.10 and 1.06 for moment and 539 

1.06 and 1.05 for shear for the two respective databases. In contrast, the AASHTO procedure 540 

produced load factor ratios of 2.67 and 1.36 for moment and 2.06 and 1.03 for shear for the two 541 

databases. It should be again noted that the load factors shown in Fig.7 include results only from 542 

the single-lane load effects, and thus represent worst-case discrepancies using the reduced data 543 

sets. That is, because some of the bridge geometries considered are governed by two lane load 544 

effects, and the proposed reduction method does not affect two lane results, the final load factor, 545 

taken as the maximum of either the single lane or two-lane load effect, may in fact be completely 546 
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unaffected. Whether this may occur or not is database dependent. For example, considering the 547 

MI-LEP database, approximately 58% of the girder cases for moment and 13% of the cases for 548 

shear were dominated by two-lane effects. From these results, it was found that the two-lane 6 m 549 

side-by-side spread box (0.9 m width) load factor governed overall for shear and the one-lane 6 m 550 

side-by-side spread box (0.9 m width) governed for moment, resulting in maximum load factors 551 

of 1.07 for shear and 1.11 for moment, respectively. Also note that, although moment and shear 552 

load factors are separated for illustration in the figure, the single governing load factor for moment 553 

or shear would be used in practice (and thus in this case, the single-lane effect dominated overall). 554 

The reliability indices associated with the use of the inventory-wide load factors given in Figure 7 555 

are shown in Table 5. Notice in the table, that even using the exact procedure that considers all 556 

data, a large variation in reliability among the different girder cases exists. A large variation is not 557 

atypical (Nowak 1999, Kamjoo and Eamon 2018), and is due to an inadequacy of the existing 558 

rating live load model, via the load effects caused by the idealized rating trucks used (LL), to 559 

capture the actual load effects. Again considering the exact result using all data, note that either 560 

the minimum reliability index (for MI-LEP Moment and Shear, and for Simplified CFR Shear), or 561 

the average reliability index (for Simplified CFR Moment) will govern the load factor required. 562 

Which will govern is case dependent and depends on both the database and rating trucks used. 563 

Also notice as the size of the database is decreased, both the minimum and mean reliability index 564 

increase, due to the increased level of conservatism that results. Similar to the results of Figure 7, 565 

in general, only modest increases in conservatism result for rather large reductions in the database 566 

size. For example, reducing the database by an order of magnitude (i.e. to the Top 10%) causes an 567 

average increase in girder reliability index from 3.63 to 3.77 for moment and from 3.40 to 3.50 for 568 

shear considering the MI-LEP case, and from 2.50 to 2.60 for moment and 2.72 to 2.78 for shear 569 
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considering the Simplified CFR case. However, much larger discrepancies in reliability are found 570 

from the AASHTO procedure, as shown in the table. 571 

In fairness, although there are no specific limitations given to the use of Eq. 1, a suggested 572 

scenario for use of this expression given in the code commentary is to develop live load factors for 573 

a localized, low-volume road carrying heavy trucks. Therefore, to see if Eq. 1 might provide better 574 

results in this situation, rather than combine all traffic data to produce state-wide load factors, as 575 

done for all previous results presented, the analyses above were repeated individually for 14 576 

different WIM sites, with varying ADTT from 360-16,500. These results are shown in Figures 8 577 

and 9 for both the MI-LEP and Simplified CFR databases, respectively (note in these site-specific 578 

analyses, Vsite in Eq. 6 is set to zero). Although Eq. 1 suggests a minimum load factor of 1.80; this 579 

minimum is not directly imposed in the result of Eq. 1 in the figures, which would result in greater 580 

discrepancies. As shown in the figures, using site-specific data rather than state-wide data has little 581 

impact on the effectiveness of using the GVW-reduced dataset as proposed, as well as the larger 582 

discrepancy generally found from the AASHTO Method.  583 

Considering the Simplified CFR moment, assessing all 14 sites individually, the reduced 584 

to exact load factor ratio (γLL r / γLL e) varies from 1.02 to 1.11 considering the top 10% of data, 585 

with an average of 1.06 (reduced to ratios from1.01 to 1.06 with an average of 1.03 if the top 20% 586 

is considered), while the AASHTO simplified procedure produced ratios from 1.18 to 1.50 with 587 

an average of 1.34. Considering shear, the WIM site-specific (γLL r / γLL e) ratios varied from 1.01 588 

to 1.09 considering the top 10%, with an average of 1.05 (reduced to ratios from 1.00 to 1.04 with 589 

an average of 1.02 considering the top 20%) , while the AASHTO resulted in ratios from 1.02 to 590 

1.33 with an average of 1.23.  591 
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For the MI-LEP database, the effectiveness of the proposed procedure remains similar, 592 

while the results of the AASHTO method significantly worsened. Considering the Simplified CFR 593 

moment, assessing all 14 sites individually, the reduced to exact load factor ratio (γLL r / γLL e) varies 594 

from 1.04 to 1.10 considering the top 10% of data, with an average of 1.07 (reduced to ratios from 595 

1.01 to 1.07 with an average of 1.04 if the top 20% is considered), while the AASHTO simplified 596 

procedure produced ratios from 1.60 to 3.06 with an average of 2.50. Considering shear, the WIM 597 

site-specific (γLL r / γLL e) ratios varied from 1.03 to 1.11 considering the top 10%, with an average 598 

of 1.07 (reduced to ratios from 1.02 to 1.06 with an average of 1.04 considering the top 20%) , 599 

while the AASHTO resulted in ratios from 1.72 to 3.24 with an average of 2.66. 600 

Although the results given in Tables 3-5 concern Strength I vehicles associated with rating, 601 

a common concern for state DOTs, the method was also evaluated on a vehicle pool unfiltered 602 

with regard to GVW,  that would perhaps represent a combined Strength I/Strength II calibration 603 

for design (Eamon et al. 2016) containing the very heaviest vehicles, with an associated target 604 

reliability level of 3.5 (Nowak 1999).  It was found that the proposed method was equally effective  605 

in this case, where ratios of RLEr/RLEe  (i.e. values shown in Table 3) as well as differences in 606 

reliability index (i.e. Tables 4 and 5) were no greater than those presented for rating.  607 

Although only simple span results are presented, 2-span continuous bridges otherwise 608 

identical to the simple span cases were also investigated for the MI-LEP database.  In general, it 609 

was found that GVW is equally well correlated to continuous span shear and moment load effects.  610 

It was also found that differences in reliability when using the reduced datasets and the exact case 611 

(i.e. all data) were very similar to those found with the simple spans.  A few exceptions were: 612 

shears at the top 1% data reduction case for girder-specific load factors (per Table 4) were more 613 

conservative than for the simple spans; and for the single governing load factor analysis (per Table 614 
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5) for the top 5% case, continuous moments provided less discrepancy but continuous shears more 615 

discrepancy as compared to the simple span cases, while for the top 1% case, continuous moments 616 

provided more discrepancy and continuous shears less discrepancy than for simple spans. 617 

Conclusion 618 

In this study, the effects of using a GVW-based load truncation approach to develop State-619 

specific live load factors for rating was evaluated. Two different traffic datasets representative of 620 

unusually heavy as well as typically legal vehicles were considered. A strong correlation was found 621 

between GVW and load effects, with correlation coefficient varying from about 0.9 to nearly 1.0 622 

for both vehicle databases. Reducing the datasets to as little as 1% of the top GVW data generally 623 

resulted in insignificant increases in COV of mean maximum load effect, whereas reducing the 624 

data to as much as the top 10% resulted in an increase in mean maximum load effect from 1-6%, 625 

depending on span length. Reducing the data to the top 5% increased idealized (i.e. girder-specific) 626 

average required load factors to 4-5% considering the MI-LEP database and up to 8% for the 627 

Simplified CFR, with associated increases in mean minimum reliability index from 1.5 to 628 

approximately 1.6. This is in comparison to the suggested simplified AASHTO procedure, which 629 

produced mean minimum indices of about 3-5. 630 

If used as commonly implemented in DOT rating practice, when the same rating live load 631 

factor(s) is used for all girders in the bridge inventory, reducing the dataset to the top 10% 632 

increased live load factors from 3-5%, while only using 1% of the heaviest vehicles approximately 633 

doubled these discrepancies. In contrast, the simplified AASHTO procedure increased load factors 634 

by factors of 1.36 and 2.67 for moment and 1.03 and 2.06 for shear, depending on the database 635 

considered. Similar results were obtained for WIM site-specific rather than statewide consideration 636 

of traffic data. In all cases, use of the reduced databases produced conservative results. 637 
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It thus appears that the use of the load truncation approach to develop State-specific live 638 

load rating factors appears highly promising, where large reductions in computational effort can 639 

be achieved with minimal loss of accuracy. Although what amount of computational effort and 640 

error are acceptable must be determined by the analyst, using approximately the top 10% by GWV 641 

appears to be a reasonable starting point, where an order of magnitude of reduced computational 642 

effort consistently produced less than a 5% (conservative) discrepancy in inventory-wide load 643 

factor. 644 
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 745 

 746 

Table 1. Vehicle Filtering Criteria. 747 

 Vehicle Type Criteria 

 

 

 

 

 

 

 

Legal, For axles spaced ≥ 2.75 m, axles ≤ 80 kN 

GVW > 356 kN For axles spaced from 1 – 2.7 m, axles ≤ 58 kN 

 
For axles spaced < 1 m, axles ≤ 40 kN 

2 ≤ Number of axles ≤ 11 

Vehicle Length ≤ 29 m   

Legal, Any individual axle ≤ 89 kN 

GVW < 356 kN 

Sum of tandem axles ≤ 151 kN 

2 ≤ Number of axles ≤ 11 

Vehicle Length ≤ 29 m 
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MI-Legal and 

Extended Permit 

(MI-LEP) 

Permit Any axle ≤ 107 kN 

GVW ≤ 667 kN 

2 ≤ Number of axles ≤ 11 

Vehicle Length ≤ 26 m 

(Construction)* 

 

 

Simplified CFR  
GVW ≤ 356 kN 

Any axle ≤ 89 kN 

For axles spaced from 1 – 2.4 m, Sum of tandem axles ≤ 151 kN 

*Various types of permits exist, depending on vehicle use category and cargo type. Permits for construction vehicles 748 
are generally most permissive and govern load effects. 749 
  750 
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Table 2. Random Variables. 751 

Random Variable  Bias Factor COV 

Resistance RVs R   

Prestressed Concrete, Moment  1.05 0.075 

Prestressed Concrete, Shear  1.15 0.14 

Reinforced Concrete, Moment  1.14 0.13 

Reinforced Concrete, Shear1  1.20 0.155 

Steel, Moment  1.12 0.10 

Steel, Shear  1.14 0.105 

Load RVs    

Vehicle Live Load, Moment Lmax 1.14-1.732           0.14-0.213 

Vehicle Live Load, Shear Lmax 1.14-1.642           0.15-0.193 

Vehicle Dynamic Load IM 1.134 0.09 

Vehicle Load Distribution Factor DF 0.72-0.79 0.11-0.16 

Dead Load, Prefabricated Dp 1.03 0.08 

Dead Load, Site-Cast Ds 1.05 0.10 

Dead Load, Wearing Surface Dw mean 89 mm 0.25 

1. Assumes shear stirrups present. 752 
2. Bias factor is given for the MI-LEP data as the ratio of mean load effect to the governing nominal Michigan legal 753 
rating truck load effect. For the Simplified CFR data, bias factor is 1.50-1.95 for moment and 1.59-1.90 for shear, and 754 
is given as the ratio of mean load effect to the governing nominal AASHTO legal rating truck load effect. 755 
3. Includes uncertainties from data projection, site, WIM data, impact factor, and load distribution. 756 
4. Bias factor is given as a multiple of static LL, such that the total vehicular load effect is LL*bias IM . 757 
 758 
 759 

 760 
 761 
 762 

 763 
 764 

 765 
 766 

 767 
 768 

 769 
 770 
 771 
 772 
 773 

 774 
 775 
 776 
 777 
 778 
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Table 3. Required Load Effect Ratios. 779 

Reduced  MI-LEP Simplified CFR 

Dataset RLEr/RLEe Moment Shear Moment Shear 

 maximum 1.04 1.04 1.07 1.09 

Top 50% mean 1.01 1.01 1.03 1.02 

 minimum 1.00 1.00 1.00 1.00 

 maximum 1.07 1.07 1.16 1.14 

Top 20% mean 1.03 1.03 1.06 1.04 

 minimum 1.02 1.01 1.00 1.01 

 maximum 1.08 1.08 1.19 1.18 

Top 10% mean 1.05 1.03 1.07 1.06 

  
minimum 1.03 1.01 1.01 1.02 

 maximum 1.09 1.10 1.21 1.23 

Top 5% mean 1.05 1.04 1.08 1.08 

 minimum 1.04 1.01 1.01 1.03 

 maximum 1.10 1.13 1.27 1.26 

Top 1% mean 1.06 1.05 1.10 1.10 

 minimum 1.04 1.01 1.01 1.03 

 780 

 781 
 782 
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 784 
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 790 
 791 
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 793 
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 798 
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Table 4. Reliability Results for Different Vehicle Database Sizes, Girder-Specific Load Factors. 799 

Reduced Reliability MI-LEP Simplified CFR 

Dataset Index (β) Moment Shear Moment Shear 

 maximum 1.56 1.59 1.64 1.67 

Top 50% mean 1.52 1.52 1.54 1.53 

 minimum 1.51 1.50 1.51 1.50 

 maximum 1.61 1.63 1.73 1.75 

Top 20% mean 1.57 1.54 1.57 1.56 

 minimum 1.52 1.51 1.51 1.51 

 maximum 1.67 1.69 1.81 1.84 

Top 10% mean 1.60 1.57 1.59 1.58 

 minimum 1.53 1.51 1.51 1.52 

 maximum 1.84 1.71 1.91 1.91 

Top 5% mean 1.62 1.58 1.60 1.59 

 minimum 1.53 1.52 1.52 1.53 

 maximum 1.95 1.74 2.03 1.97 

Top 1% mean 1.68 1.61 1.63 1.53 

 minimum 1.54 1.54 1.52 1.61 

 maximum 8.84 4.85 4.52 3.74 

AASHTO mean 4.95 3.65 3.25 2.78 

 minimum 6.89 2.78 2.70 1.63 
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Table 5. Reliability Results for Different Vehicle Database Sizes, Single Governing Load Factor.  814 

Reduced Reliability MI-LEP Simplified CFR 

Dataset Index (β) Moment Shear Moment Shear 

All 

maximum 4.91 4.75 3.01 3.64 

mean 3.61 3.40 2.50 2.72 

minimum 1.50 1.50 1.87 1.50 

 maximum 4.93 4.78 3.06 3.70 

Top 50% mean 3.63 3.42 2.53 2.75 

 minimum 1.52 1.53 1.91 1.57 

 maximum 5.03 4.82 3.15 3.72 

Top 20% mean 3.71 3.45 2.58 2.76 

 minimum 1.64 1.57 1.99 1.59 

 maximum 5.09 4.88 3.20 3.74 

Top 10% mean 3.77 3.50 2.60 2.78 

 minimum 1.72 1.64 2.03 1.61 

 maximum 5.19 4.91 3.24 3.76 

Top 5% mean 3.85 3.52 2.62 2.79 

 minimum 1.84 1.68 2.07 1.64 

 maximum 5.27 4.95 3.26 3.78 

Top 1% mean 3.92 3.56 2.63 2.81 

 minimum 1.94 1.73 2.10 1.66 

 maximum 8.80 6.82 4.58 3.87 

AASHTO mean 4.95 5.04 3.25 2.87 

 minimum 6.89 3.81 2.70 1.62 

 815 
 816 

 817 
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 818 
 819 

Figure 1. Correlation Between Vehicle Parameter and Moment, MI-LEP. 820 
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 836 
 837 

Figure 2. Correlation Between Vehicle Parameter and Moment, Simplified CFR. 838 
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 855 

Figure 3. Example CDF of 6-60 m Span Moments. 856 
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 870 
 871 

Figure 4. Effect of Database Reduction on 𝑉𝑚𝑎𝑥𝐿 for Moment, MI-LEP Vehicles. 872 
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 884 
 885 

Figure 5. Effect of Database Reduction on 𝑉𝑚𝑎𝑥𝐿 for Shear, MI-LEP Vehicles. 886 
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 895 
 896 

Figure 6. Effect of Database Reduction on Mean Maximum Load Effect. 897 
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 918 
Figure 7. Comparison between AASHTO and Proposed Procedure. 919 
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 929 
 930 

Figure 8. Comparison between AASHTO and Proposed Procedure, MI-LEP. 931 
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 942 
 943 

Figure 9. Comparison between AASHTO and Proposed Procedure, Simplified CFR. 944 
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