
Washington University School of Medicine Washington University School of Medicine 

Digital Commons@Becker Digital Commons@Becker 

Open Access Publications 

2021 

High-fat diet activates liver iPLA2γ generating eicosanoids that High-fat diet activates liver iPLA2  generating eicosanoids that 

mediate metabolic stress mediate metabolic stress 

Sung Ho Moon 

Beverly Gibson Dilthey 

Xinping Liu 

Shaoping Guan 

Harold F. Sims 

See next page for additional authors 

Follow this and additional works at: https://digitalcommons.wustl.edu/open_access_pubs 

https://digitalcommons.wustl.edu/
https://digitalcommons.wustl.edu/open_access_pubs
https://digitalcommons.wustl.edu/open_access_pubs?utm_source=digitalcommons.wustl.edu%2Fopen_access_pubs%2F10320&utm_medium=PDF&utm_campaign=PDFCoverPages


Authors Authors 
Sung Ho Moon, Beverly Gibson Dilthey, Xinping Liu, Shaoping Guan, Harold F. Sims, and Richard W. Gross 



High-fat diet activates liver iPLA2γ generating eicosanoids
that mediate metabolic stress

Sung Ho Moon1, Beverly Gibson Dilthey1, Xinping Liu1, Shaoping Guan1, Harold F. Sims1, and
Richard W. Gross1,2,3,4,*
1Division of Bioorganic Chemistry and Molecular Pharmacology, Department of Medicine, 2Department of Developmental
Biology, and 3Center for Cardiovascular Research, Department of Medicine, Washington University School of Medicine,
Saint Louis, MO, USA; and 4Department of Chemistry, Washington University, Saint Louis, MO, USA

Abstract High-fat (HF) diet–induced obesity pre-
cipitates multiple metabolic disorders including insu-
lin resistance, glucose intolerance, oxidative stress, and
inflammation, resulting in the initiation of cell death
programs. Previously, we demonstrated murine germ-
line knockout of calcium-independent phospholipase
A2γ (iPLA2γ) prevented HF diet–induced weight gain,
attenuated insulin resistance, and decreased mito-
chondrial permeability transition pore (mPTP) open-
ing leading to alterations in bioenergetics. To gain
insight into the specific roles of hepatic iPLA2γ in
mitochondrial function and cell death undermetabolic
stress, we generated a hepatocyte-specific iPLA2γ-
knockout (HEPiPLA2γKO). Using this model, we
compared the effects of anHFdiet onwild-type versus
HEPiPLA2γKO mice in eicosanoid production and
mitochondrial bioenergetics. HEPiPLA2γKO mice
exhibited higher glucose clearance rates thanWT con-
trols. Importantly, HF-diet induced the accumulation
of 12-hydroxyeicosatetraenoic acid (12-HETE) in WT
liver which was decreased in HEPiPLA2γKO. Further-
more, HF-feeding markedly increased Ca2þ sensitivity
and resistance to ADP-mediated inhibition of mPTP
opening in WT mice. In contrast, ablation of iPLA2γ
prevented the HF-induced hypersensitivity of mPTP
opening to calcium and maintained ADP-mediated
resistance to mPTP opening. Respirometry revealed
that ADP-stimulated mitochondrial respiration was
significantly reduced by exogenous 12-HETE. Finally,
HEPiPLA2γKO hepatocytes were resistant to calcium
ionophore-induced lipoxygenase-mediated lactate de-
hydrogenase release. Collectively, these results
demonstrate that anHFdiet increases iPLA2γ-mediated
hepatic 12-HETE production leading to mitochondrial
dysfunction and hepatic cell death.

Supplemetary key words eicosanoids • phospholipases A2 • diet
and dietary lipids • obesity • mitochondria • mitochondrial
respiration • mitochondrial permeability transition pore •
hydroxyeicosatetraenoic acids • hepatocyte • cell death

Obesity is a major health threat to modern societies
through facilitating multiple pathologic processes such

as hypertension, congestive heart failure, and type 2
diabetes mellitus (1). Murine models of dietary-induced
obesity have been extensively studied to understand the
pathophysiological effects of human obesity. However,
responses to different high-fat (HF) diets are often
variable and mouse-strain dependent (2–5). Saturated
fatty acid-enriched diet–induced obesity commonly
results in nonalcoholic fatty liver disease, hyper-
insulinemia, impaired glucose tolerance, hypertension,
and hepatic cell death through chronic disorders of
lipid metabolism. Further, oxidative stress in the early
stages of the obese state is known to contribute to the
accumulation of toxic oxidized lipids, uncontrolled
opening of the mitochondrial permeability transition
pore (mPTP), the synthesis of proinflammatory cyto-
kines, and initiation of cell death programs (6–8).

Growing evidence suggests that biologically active
oxidized arachidonic acid (AA) metabolites (i.e., eicosa-
noids) are generated upon cellular oxidative stress
causing the metabolic dysfunction in disease states such
as nonalcoholic fatty liver disease, cardiovascular dis-
ease, and diabetes (9–11). For example, Zhang et al. (10)
have demonstrated that 12-hydroxyeicosatetraenoic
acid (12-HETE), which is produced by 12-lipoxygenase
(12-LOX), was generated during hepatic ischemia/
reperfusion injury resulting in inflammation that could
be attenuatedby inhibitionof 12-LOXenzymatic activity.
Other studieshave reported the significant accumulation
of eicosanoids during cardiac ischemia/reperfusion
leading to progression of heart failure (12–15). In addi-
tion, hydroxyeicosatetraenoic acids (HETEs) have been
identified by a number of studies as proinflammatory
signaling molecules to regulate the innate immune
response by activation of mature cytokine release
through G-protein–coupled receptors (9, 16, 17).

Since production of eicosanoids is typically initiated by
phospholipases A2 which release AA fromphospholipids
for multiple oxygenases such as lipoxygenases (LOXs),
cyclooxygenases (COXs), and cytochrome P450 epox-
ygenases, modulation of cellular lipid oxidation by
cellular phospholipases has been a topic of substantial*For correspondence: Richard W. Gross, rgross@wustl.edu.
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interest. Previously, we reported that loss of calcium-
independent phospholipase A2γ (iPLA2γ) activity in the
germline iPLA2γ knockout mouse resulted in its resis-
tance to HF-induced weight gain and maintenance of
insulin sensitivity. However, the precise mechanisms and
mediators responsible for the observed mitochondrial
dysfunction were not identified. Additionally, we
demonstrated that global genetic ablation of iPLA2γ
prevented pathologic Ca2+-induced opening of the
mPTP concomitant with a decrease in apoptotic cyto-
chrome c release into the extramitochondrial space (18).
Furthermore,we identified the accumulation ofoxidized
AA metabolites after cardiac ischemia/reperfusion
injury (15). Importantly, these metabolites were able to
accelerate Ca2+-mediated dissipation of mitochondrial
membrane potential as determined using isolated
myocardial mitochondria. Remarkably, cardiac
myocyte–specific knockout of iPLA2γ reduced infarct
size with attenuation of toxic eicosanoid production
following ischemia-reperfusion (15). Collectively, these
studies suggested that pathologic iPLA2γ activation and/
or overexpression in a pathologic state facilitates pro-
duction of deleterious eicosanoids promoting apoptotic/
necrotic cell death and human heart failure.

In this study, we engineered tissue-specific gene
knockouts using the Cre/Lox system to generate a
hepatocyte-specific iPLA2γ knockout (HEPiPLA2γKO)
mouse which enabled us to investigate the specific roles
of iPLA2γ in liver and its impact on hepatic mitochon-
drial function. Herein, we demonstrate that hepatic KO
of iPLA2γ dramatically reduced 12-HETE production
induced by HF feeding resulting in the desensitization
of mPTP opening to Ca2+ activation and preservation
of ADP-dependent inhibition of mPTP opening. This
study collectively demonstrates that hepatic iPLA2γ is a
central regulator of diet-dependent production of lipid
mediators in hepatocytes and mitochondrial dysfunc-
tion during pathologic disease states contributing to
hepatocyte cell death pathways.

MATERIALS AND METHODS

Materials
Rotenone, ADP, antimycin A, L-glutamic acid, L-malic acid,

succinate disodium, fatty acid–free BSA, collagenase type IV,
Percoll®, and glucose were purchase from Millipore Sigma
Corp. Calcium ionophore A23187, N-(methylsulfonyl)-2-(2-
propynyloxy)-benzenehexanamide, nordihydroguaiaretic
acid (NDGA), ibuprofen, oligomycin, cell culture supple-
ments, thromboxane B2-d4, prostaglandin E2-d4, 12-HETE-d8,
and 2-[2-[4-(trifluoromethoxy)phenyl]hydrazinylidene]-pro-
panedinitrile (FCCP) were purchased from Cayman Chemical
Company. The lactate dehydrogenase (LDH)-cytotoxicity
assay kit, HepatoZYME-SFM, and other chemicals for prepa-
ration of buffers for mitochondrial isolation, respiration, and
swelling were obtained from ThermoFisher Scientific Inc. A
rabbit polyclonal anti-iPLA2γ antibody was generated in our
laboratory as described previously (15).

Animal diets and study protocols
Mice were maintained and used in strict accordance with

the National Institutes of Health guidelines for humane
treatment of animals. All protocols were reviewed and
approved by the Institutional Animal Care and Use Com-
mittee of Washington University. Mice were fed a normal-
chow (NC) diet (LabDiet, Cat. #5053). For HF feeding, mice
at the age of 3 months were fed a Western Diet with 42% kcal
from fat (Envigo, Cat. #TD.88137) for 12–14 weeks.

Generation of the hepatocyte-specific iPLA2γ
knockout mouse

To definitively identify the mechanistic importance of
iPLA2γ in hepatocytes, we engineered a mouse strain
bearing a liver-specific knockout of iPLA2γ. Because of the
presence of multiple transcriptional start sites in iPLA2γ,
our strategy was to flox exon 5 (encoding the iPLA2γ active
site) and ablate it by crossing with a transgenic mouse
expressing Cre recombinase under the control of a minimal
mouse albumin promoter (MMAP) (The Jackson Labora-
tory, Cat. # 003574). Hepatocyte-specific knockout of iPLA2γ
was confirmed by Western blot analyses to determine
iPLA2γ protein expression levels in mitochondria isolated
from WT and HEPiPLA2γKO liver, white adipose, and
skeletal muscle tissues. Western blot analysis in comparisons
with MMAP-Cre WT/WT nonfloxed mouse tissues
demonstrated the specific ablation of iPLA2γ in liver mito-
chondria but not in mitochondria from other tissues in the
HEPiPLA2γKO mouse (Fig. 1).

Isolation of Hepatic Mitochondria
Liver mitochondria were isolated by differential centrifu-

gation as previously described (18). Briefly, the excised liver
tissue from WT and HEPiPLA2γKO (∼6–7 month old) male
mice euthanized by cervical dislocation was immediately
washed in ice-cold mitochondrial isolation buffer (MIB: 0.21 M
mannitol, 70 mM sucrose, 0.1 mM potassium-EDTA, 1 mM
EGTA, 10 mM Tris-HCl, 0.5% BSA, pH 7.4) and cut into small
pieces with a razor blade. Pieces of liver tissue were homoge-
nized via 10 strokes of a Teflon homogenizer using a rotation
speed of 120 rpm at 4◦C ambient temperature. The homoge-
nate was centrifuged for 7 min at 850 g, and the resultant su-
pernatant was centrifuged at 12,000 g for 10 min. The pellet was
resuspended in mitochondrial isolation buffer without BSA
and centrifuged at 7,500 g for 10 min. The pellet was resus-
pended in MIB without BSA and stored on ice until use for
various experiments. Mitochondrial protein content was
determined using a BCA protein assay using BSA as a standard.

Mitochondrial High Resolution Respirometry
Mitochondrial high resolution respirometry was per-

formed utilizing an OROBOROS® Oxygraph 2K respi-
rometer (Innsbruck, Austria). Isolated liver mitochondria
(100 μg) were resuspended into mitochondrial respiration
buffer (MiR05: 110 mM sucrose, 60 mM potassium lactobi-
onate, 20 mM taurine, 20 mM Hepes, 10 mM KH2PO4, 3 mM
MgCl2, 0.5 mM EGTA, 1% BSA (Fraction V), pH 7.1) in the
2-ml chambers of the respirometer. The oxygen concen-
tration and O2 consumption rate at each respiratory state
were monitored with sequential addition of substrates and
inhibitors in the order as indicated in the figures: 10 mM
glutamate/5 mM malate (state 2), 1.25 mM ADP (state 3),
5 mM succinate (state 3max), 1 μM rotenone, 1 μM oligomycin
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(state 4o, oligomycin-induced state 4), and 1 μM FCCP (state
3u, uncoupling). For the experiments with 12-HETE, mito-
chondria were placed into MiR05 buffer containing 5 μM
12-HETE in the respirometer chambers followed by
sequential addition of substrates and inhibitors. Oxygen
consumption was calculated as a time derivative of oxygen
concentration using DatLab 6.0 Analysis software (ORO-
BOROS®, Innsbruck, Austria).

Mass spectrometric analysis of lipids
Hepatic tissue from WT and HEPiPLA2γKO mice was

excised after euthanasia by cervical dislocation and immedi-
ately flash-frozen in liquid nitrogen. Lipids from hepatic tis-
sue and primary hepatocytes were extracted using a modified
Bligh and Dyer procedure. For the determination and quan-
titation of eicosanoids, the extracted eicosanoids were further
enriched by solid phase extraction, derivatized using a charge-
switch strategy with N-(4-aminomethylphenyl) pyridinium
(AMPP), and analyzed by LC-MS/MS with multiple-reaction
monitoring using an LTQ-Orbitrap mass spectrometer
(Thermo Scientific, San Jose, CA) as described previously (19).
Mass spectrometric analyses of phospholipids, triacylglycerols
(TAGs), and free fatty acid (FFA) present in isolated hepatic
tissues were performed utilizing a TSQ Quantum Ultra triple-
quadrupole mass spectrometer (Thermo Scientific, San Jose,
CA) equipped with an automated nanospray apparatus,
Triversa NanoMate (Advion, Inc., Ithaca, NY) as previously
described (20, 21). For the quantitation of FFAs, fatty acids
extracted from hepatic tissue using a modified Bligh and
Dyer procedure were derivatized with AMPP and analyzed by
a TSQ mass spectrometer in the positive-ion mode as previ-
ously described (21).

Isolation and culture of primary mouse hepatocytes
Murine hepatocytes were isolated by enzymatic digestion

via liver perfusion as described previously with minor modi-
fications (22). All media used for liver perfusion were kept at
40◦C using a water bath and delivered by peristaltic pump.
Mice were anesthetized by intraperitoneal injection of a ke-
tamine (100 mg/kg) and xylazine (10 mg/kg) mixture and
placed in a supine position on a tray. The cannula was inserted
into the portal vein of the liver site which was flushed with
warm perfusion medium I {500 ml PBS [pH 7.4], 5 ml of sterile
Buffer A [1 M Hepes (pH 7.4) and 5% KCl (w/v)], 2.5 ml of 1 M
glucose, 0.5 ml 200 mM EDTA} at 6 ml/min followed by cut-
ting of the inferior portal vein to allow drainage of the
perfusate while clamping the aorta from the heart. After
8 min of perfusion with perfusion medium I, perfusion media
II [500 ml PBS (pH 7.4), 5 ml of sterile Buffer A, 10 ml of 1 M
Hepes, 2.5 ml of 1 M sterile glucose solution, 1 ml of 500 mM
CaCl2] containing collagenase type IV (0.07–0.08 mg/ml) was
delivered at 6 ml/min for 4 min. The liver was then excised
after collagenase digestion and placed in cold perfusion me-
dium II. The lobes of the liver were gently torn apart to
release free hepatocytes into the media. Hepatocytes were
collected through a cell strainer (40 μm) and washed twice
with attachment medium [Williams' E medium containing 1%
(v/v) penicillin/streptomycin, 1% (v/v) 200 mM L-glutamine,
1% (v/v) nonessential amino acid, and 10% heat-inactivated
fetal bovine serum] by centrifugation at 50 g at 4◦C. The
cells were then resuspended in the media containing attach-
ment medium and 85% Percoll™ in PBS (1:1, v/v) and centri-
fuged at 200 g for 10 min. The supernatant with floating dead
cells was discarded, and the cell pellet was washed 3 times with

the attachment medium. Cell viability was monitored by try-
pan blue exclusion which routinely indicated >85% viability.
The hepatocytes in the attachment medium were plated on
cell culture dishes or well plates and incubated for 3 h before
exchanging this media with cell culture medium (serum-free
HepatoZYME-SFM containing 1% penicillin/streptomycin
and 200 mM L-glutamine). Primary hepatocytes were utilized
for experiments within 2 days after isolation.

Determination of mitochondrial swelling
Mitochondrial swelling assays were performed to deter-

mine mPTP opening as previously described (18). Briefly,
isolated intact hepatic mitochondria from WT and HEPi-
PLA2γKO mice were placed in mitochondrial swelling buffer
[3 mM Hepes buffer (pH 7.0) containing 0.23 M mannitol,
70 mM sucrose, 5 mM succinate, 1 μM rotenone and 1 mM
KH2PO4] and equilibrated for 10 min at 23◦C. Mitochondrial
swelling was initiated by adding Ca2+ at the indicated con-
centrations at 25◦C. For ADP inhibition experiments, ADP at
the indicated concentrations was added to the mitochondrial
swelling buffer containing mitochondria before initiating
swelling with Ca2+. For experiments examining the effect of
various HETEs, mitochondria were preincubated with puri-
fied commercially prepared HETEs at the indicated concen-
trations [delivered in DMSO vehicle (1%, v/v, final
concentration)] before initiating mitochondrial swelling by
addition of Ca2+. EGTA (10 μM) was used as a negative control
(without Ca2+) for Ca2+-induced mitochondrial swelling. In-
hibition of mitochondrial swelling with cyclosporin A (2 μM)
was used to determine mitochondrial swelling specific for
mPTP opening. Decreases in the absorbance (540 nm) of the
mitochondria were measured every 15 s using a SpectraMax
M5e microplate reader (Molecular Devices, Sunnyvale, CA).

Determination of hepatocyte cytotoxicity
Hepatocyte cellular cytotoxicity was measured by deter-

mining the catalytic activity of released LDH using a Cyto-
toxicity Assay Kit (ThermoFisher Scientific). Briefly,
hepatocytes isolated from WT and HEPiPLA2γKO mouse
liver as described above were allowed to attach to 12-well
plates (0.15 × 106 cells/well) for 2 days and then incubated in
serum-free and phenol red-free Williams' E medium for 3 h.
The attached cells were then exposed to DMSO vehicle alone
(0.1%, v/v) or 5 μM A23187 for the indicated times. After
stimulation with calcium ionophore, the cell media was
collected, briefly centrifuged, and the resultant supernatant
was collected for assay of LDH activity as described by the
manufacturer's instructions. Maximum LDH release from the
hepatocytes was determined by incubation of the attached
cells with media containing 0.5% Triton X-100 for 1 min fol-
lowed by measurement of LDH activity in the media.

Glucose tolerance test
Wild-type and HEPiPLA2γKO mice (6–7 months old) fed a

NC or an HF diet for 12 weeks were fasted overnight (16–18 h)
on wood chip bedding with ad libitum access to water. Blood
was drawn from the tail vein the following day before
intraperitoneal injection of glucose (2 mg/g body weight).
Blood from tail vein was then collected at 30, 60, 90, and
120 min after intraperitoneal glucose injection. Blood glucose
levels were immediately measured using a glucose meter with
test strips. The area under the curve was calculated by using
Prism version 8.4.1 purchased from GraphPad Software, LLC.

12-HETE mediates hepatic mitochondrial dysfunction 3



Statistical analyses
A unpaired Student t test was performed to determine the

significance of differences between two groups. A two-tailed
P-value less than 0.05 was considered significant. All data were
presented as means ± SEM.

RESULTS

Hepatocyte-specific iPLA2γ-knockout mice
exhibited higher glucose clearance rates after HF
feeding than WT controls

To gain insight into the specific roles of hepatic
iPLA2γ in the integration of organismal energy meta-
bolism, glucose utilization, and mitochondrial bio-
energetics after HF feeding, we engineered and
generated a HEPiPLA2γKO. To confirm the tissue-
specific deletion of hepatocyte iPLA2γ, Western blot
analyses to determine the expression levels of
different isoforms of iPLA2γ in multiple tissues
including adipose, skeletal muscle, and liver were
performed. Isoforms of iPLA2γ at 85, 74, 63, and
52 kDa were nearly completely absent in hepatic
mitochondria of the HEPiPLA2γKO mouse. In
contrast, there were no significant changes in the
expression levels of these iPLA2γ isoforms in adipose
and skeletal muscle tissues in comparison to WT,
thereby identifying the specificity of genetic knockout
of iPLA2γ in liver (Fig. 1A). Because iPLA2γ is known to
be localized to mitochondrial membranes, we next
determined if mitochondrial respiration was altered in
isolated HEPiPLA2γKO liver mitochondria. Mitochon-
drial oxygen consumption utilizing glutamate/malate
as substrate was modestly decreased in HEPiPLA2γKO
liver mitochondria in comparison to their WT coun-
terparts on a NC diet. In addition, liver mitochondria
isolated from HF-fed WT mice demonstrated a modest
decrease in state 3 respiration relative to NC-fed WT
controls, although overall mitochondrial respiratory
rates were not significantly altered by HF feeding
(Fig. 1B). Hepatic mitochondrial oxygen consumption
rates of HEPiPLA2γKO mice were not different from
those of WT littermates after HF feeding. Similar to
the global iPLA2γ KO mouse (20), HEPiPLA2γKO mice
notably exhibited improved glucose tolerance relative
to WT controls following HF feeding (Fig. 1C, D). In
contrast to the global iPLA2γ KO mouse (which is
resistant to an HF diet-induced weight gain) (20), the
body and wet liver weights of HF-fed HEPiPLA2γKO
mice were not significantly different from those of
WT controls on an HF diet (Fig. 1E, F).

HF feeding induced the accumulation of fatty acids
including AA, a precursor of eicosanoids, in WT
liver which was markedly attenuated in
HEPiPLA2γKO mice

Western diets rich in saturated fatty acids induce a
large accumulation of FFAs and TAGs containing
saturated fatty acyl groups, which eventually lead to

increased oxidative stress and dietary-induced obesity.
Mass spectrometric lipid analyses showed that an HF
diet led to the dramatic accumulation of TAGs in both
WT and HEPiPLA2γKO mouse livers. Furthermore, the
amounts of TAGs in HEPiPLA2γKO mouse liver were
not significantly different from those present in WT
controls (Fig. 2A). The major lipid components of
membrane bilayers (i.e., phospholipids including phos-
phatidylcholine and phosphatidylethanolamine molec-
ular species) were not significantly altered between
either WT versus HEPiPLA2γKO fed either a normal
diet or an HF diet (Fig. 2B, C). Importantly, the content
of hepatic FFAs in WT mice fed an HF diet was higher
than that present in NC-fed mice. In stark contrast,
genetic deletion of hepatic iPLA2γ in the HEPi-
PLA2γKO mouse effectively abolished HF
diet–induced increases in nonesterified fatty acids
(Fig. 2D, E). Similarly, the HF diet–induced elevation of
AA, a precursor of various signaling lipid metabolites,
in WT mice was completely absent in HEPiPLA2γKO
mouse liver.

High-fat feeding induced the accumulation of 12-
HETE in WT liver which was markedly attenuated
in HEPiPLA2γKO mice

Oxidized AA metabolites are well known to be
generated during oxidative stress acting as a pathologic
insult to multiple organ systems. To assess whether he-
patic oxidized AA metabolic profiles are influenced by
an HF diet, we determined the levels of multiple eicosa-
noids inWTandHEPiPLA2γKOmouse liver after NCor
HF feeding for 12 weeks. Eicosanoids extracted from
liverwere enrichedby solidphase extraction, derivatized
with AMPP and their quantities were determined by
high-resolution accurate-mass mass spectrometry as
described in “Materials and Methods.” During HF
feeding, various eicosanoids including HETEs, epox-
yeicosatrienoic acids (EETs), and prostaglandins were
found to increase to varying degrees (Fig. 3). Among the
identified eicosanoids, 12-HETE was the most abundant
eicosanoid molecular species in WT mice regardless of
the type of diet. Importantly, HF feeding induced the
accumulation of 12-HETE inWT liver by ∼2.5 fold when
compared with the NC-fed WT mouse. However, 12-
HETE levels in NC-fed HEPiPLA2γKO mouse liver
were only modestly higher than other HETE molecular
species (Fig. 3). Furthermore, HF feeding did not cause
accumulation of hepatic12-HETE in the HEPiPLA2γKO
mouse in comparison to WT. These results indicate that
hepatic iPLA2γ plays a predominant role in determining
HF diet–induced increases in 12-HETE and other eicos-
anoids (e.g., 20-HETE, 14,15-EET, PGF2α, and throm-
boxane B2).

HETEs enhance Ca2þ-induced mPTP opening in
liver mitochondria

Previously, we reported that hepatic mitochondria
from the germline iPLA2γ KO mouse were resistant to
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Ca2+-induced mPTP opening (18). Because 12-HETE was
the most abundant eicosanoid increased by HF feeding,
the effect of 12-HETE on mPTP opening was investi-
gated using liver mitochondria isolated from NC-fed
mice. First, mitochondria were preincubated in the
absence or presence of various HETEs (5 μM final
concentration), including 5-, 8-, 12-, or 15-HETE. Next,
mitochondrial swelling was induced by addition of
20 μM Ca2+ (final concentration). The results indicated
that most of the HETEs tested (5-HETE, 8-HETE, 12-
HETE) markedly accelerated mitochondrial swelling

with the rank order of potency to activate mPTP
opening at 5 μM as: 5-HETE > 12-HETE ≅ 8-HETE
(Fig. 4A). 5-HETE was the most potent HETE to
induce mPTP opening; however, it should be noted that
5-HETE did not significantly accumulate in either WT
or HEPiPLA2γKO mouse liver during HF feeding
(Fig. 3). Notably, 15-HETE was not able to promote sig-
nificant mitochondrial swelling at early time points.
Next, because we and others have previously reported
that the level of 12-HETE in serum and/or tissues in
certain disease states was increased from
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(WT) versus hepatocyte-specific iPLA2γ KO (KO) mice fed a normal-chow or high-fat diet. A: Hepatocyte-specific iPLA2γKO
mice were generated as described in Materials and Methods, and iPLA2γ protein expression levels in mitochondria from multiple
organs were determined by Western blot analysis. Isoforms of iPLA2γ (i.e., 85, 74, 63, 52 kDa bands) were ablated specifically in liver
in comparison to adipose and skeletal muscle tissues. B: High resolution respirometry of hepatic mitochondria isolated from six WT
and six HEPiPLA2γKO mice (∼6–7 month-old) after normal-chow (NC) or high-fat (HF) feeding for 12 weeks. Mitochondrial
respiration states were observed by the sequential addition of substrates and inhibitors as indicated in the figure: Basal (mitochondria
alone), G M (glutamate/malate), ADP, Succ (succinate), Rot (rotenone), Oligo (oligomycin), and FCCP. Antimycin A was finally added
to determine oxygen consumption by nonoxidative phosphorylation reactions which was then subtracted from each prior condition
measured. *P < 0.05 when compared with WT on the same diet. C: Glucose tolerance test (GTT) results from WT and HEPiPLA2γKO
mice after 3 months of high-fat (HF) feeding which was started at 3 months of age. Mice were then challenged with a bolus
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these measurements are indicated in the brackets for each graph bar in the figure. HEPiPLA2γKO, hepatocyte-specific iPLA2γ-
knockout; iPLA2γ, calcium-independent phospholipase A2γ.
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submicromolar to low micromolar concentrations (9, 15,
23), we performed a dose-response profile of the
sensitivity of Ca2+-induced mitochondrial swelling at
low micromolar (1–5 μM) concentrations of the most
abundant eicosanoid in murine liver, 12-HETE.
Calcium-dependent mitochondrial swelling was
enhanced by concentrations of 12-HETE as low as
2.5 μM (Fig. 4B). Next, since nucleotides including ADP
have been demonstrated to potently inhibit mPTP
opening, we examined whether 12-HETE was effective
at reversing the nucleotide-mediated inhibition of
Ca2+-induced mitochondrial swelling. As anticipated,
ADP dramatically inhibited Ca2+-induced mitochon-
drial swelling (Fig. 4C). Low micromolar concentration

(1.25 μM) of 12-HETE markedly reversed ADP inhibi-
tion of mPTP opening in concentration-dependent
manner (Fig. 4C). Importantly, the Ca2+-induced mito-
chondrial swelling mediated by 12-HETE was
completely reversed by cyclosporine A indicative of a
conventional cyclophilin D–mediated mPTP opening
process (Fig. 4C).

High-fat feeding markedly sensitizes WT, but not
HEPiPLA2γKO, hepatic mitochondrial PTP opening
to Ca2þ

Next, we investigated whether HF feeding can alter
the Ca2+-sensitivity of mPTP opening in hepatic mito-
chondria because of the upregulated eicosanoid
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Fig. 2. Contents of total triacylglycerols, select phospholipids, and nonesterified fatty acids present in wild-type and hepatocyte-
specific iPLA2γ KO liver tissue after normal-chow or high-fat feeding. Liver tissue was excised from five wild-type (WT) and
five HEPiPLA2γKO (KO) mice (∼6–7 months of age after normal-chow or high-fat feeding for 12 weeks), and lipids were extracted
by a modified Bligh-Dyer procedure. Mass spectrometric analyses were performed as described in Materials and Methods to
determine the quantities of total triacylglycerol (TAG) (A), phosphatidylcholine (PC) (B), phosphatidylethanolamine (PE) (C) and free
fatty acid (FFA) (D) molecular species. The quantities of predominant liver fatty acid molecular species are shown in E. Mean values
are presented with SEM. *P < 0.05, **P < 0.01, and ***P < 0.001. HEPiPLA2γKO, hepatocyte-specific iPLA2γ-knockout; iPLA2γ, calcium-
independent phospholipase A2γ.
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content in liver. Accordingly, mitochondria were iso-
lated from the livers of WT and HEPiPLA2γKO mice
after NC or HF feeding, and mitochondrial PTP
opening was monitored by measuring the degree of
mitochondrial swelling at different concentrations of
Ca2+ (i.e., 10, 20, 40, and 80 μM) (Fig. 5A). Interest-
ingly, Ca2+-induced hepatic mitochondrial swelling
was markedly attenuated in HEPiPLA2γKO mouse in
comparison to WT controls regardless of whether the
mice were fed a NC or an HF diet. However, as ex-
pected, myocardial mitochondria from HEPiPLA2γKO
mice which contain normal amounts of iPLA2γ pro-
tein did not exhibit significant alterations in mPTP
opening upon calcium challenge when compared
with WT myocardial mitochondria (Fig. 5B). Impor-
tantly, wild-type hepatic mitochondrial swelling was
greatly sensitized to low concentrations of Ca2+ after
HF feeding such that these mitochondria were able
to maximally swell in the presence of 10 μM Ca2+. In
stark contrast, the Ca2+-sensitivity of the mPTP in
hepatic mitochondria from HEPiPLA2γKO mice fed
an HF diet was not significantly altered in the

presence of 10 μM Ca2+ in comparison to those iso-
lated from either WT or HEPiPLA2γKO mice fed a
NC diet. At higher concentrations of Ca2+ (20–40 μM),
mPTP opening in hepatic mitochondria from the
HEPiPLA2γKO was only mildly increased by HF
feeding when compared with NC-diet controls, thus
representing a dramatic attenuation of calcium
sensitivity in comparison to HF-fed WT liver mito-
chondria (Fig. 5A).

High-fat feeding makes Ca2þ-induced mPTP
opening less resistant to ADP inhibition

Nucleotides such as ATP and ADP are well-
established potent inhibitors of mPTP opening
through their binding to the adenine nucleotide trans-
locase (ANT) (24). Because we found that liver mito-
chondria from HF-fed mice are more sensitive to
mPTP opening at low concentrations of Ca2+, we hy-
pothesized that HF feeding would desensitize the
opening of mPTP to nucleotide inhibition. Based upon
this hypothesis, we next examined the sensitivity of
mPTP opening to ADP inhibition by measuring
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Fig. 3. Eicosanoid profiles in wild-type and hepatocyte-specific iPLA2γKO liver tissue after normal-chow or high-fat feeding. Ei-
cosanoids in wild-type (WT) and HEPiPLA2γKO (KO) mouse livers after normal-chow or high-fat feeding were extracted and
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mitochondrial swelling at different ADP concentra-
tions (Fig. 6). Interestingly, hepatic mitochondria
from HF-fed WTmice were nearly completely resistant

to ADP-mediated inhibition of mitochondrial
swelling even at high concentrations (up to 250 μM) of
ADP. By comparison, Ca2+-induced swelling of liver
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Fig. 4. HETE-facilitated Ca2+-induced opening of the hepatic mitochondrial permeability transition pore. Measurements of
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concentrations of 12-HETE (1.25, 2.5, or 5 μM). 12-HETE reversed ADP-inhibited mitochondrial swelling in a cyclosporine A-sensitive
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mitochondria from NC-fed WT mice was readily
inhibited at low concentrations (7 μM) of ADP. How-
ever, hepatic mitochondria from HF-fed HEPi-
PLA2γKO mice remained effectively resistant to
swelling in the presence of ADP. These results sug-
gested that iPLA2γ-mediated generation of HETEs,
which are greatly increased during HF feeding, de-
sensitizes mPTP opening to ADP inhibition.

Hepatic mitochondrial respiration is reduced in the
presence of 12-HETE resulting in a decreased
respiratory control ratio

Next, we investigated the effect of 12-HETE on hepatic
mitochondrial respiration. High resolution mitochon-
drial respirometry was performed utilizing liver mito-
chondria isolated from WT mice fed a NC diet. Oxygen
consumption at each respiratory state was monitored by
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sequentially adding glutamate/malate (state 2), ADP
(state 3), succinate (state 3max), oligomycin (state 4o), FCCP
for uncoupling (state 3u), rotenone for complex I inhi-
bition, and antimycin A in the absence or the presence of
12-HETE (Fig. 7). Hepatic mitochondrial respiration was
significantly reduced in the presence of 12-HETEatADP-
driven state 3 and state 3max. In contrast, oligomycin-
induced state 4 respiration (state 4o) was not signifi-
cantly changed by addition of 12-HETE. These results
demonstrate that the presence of 12-HETE partially in-
hibits ADP-stimulated mitochondrial oxygen consump-
tion resulting in lowered respiratory control ratios (state
3/state 4o and state 3max/state 4o) when compared with
nontreated controlmitochondria, thereby implicating 12-
HETE in mediating the observed disruption in mito-
chondrial respiratory function.

Cellular calcium overload by calcium ionophore
induces cytotoxicity in WT hepatocytes which is
attenuated in HEPiPLA2γKO hepatocytes

Diet-induced obesity causes pathologic cellular al-
terations such as disrupted cellular signaling, abnormal

lipid metabolism, and mitochondrial dysfunction lead-
ing to cell death. Considering the marked iPLA2γ-
dependent elevation of 12-HETE in murine liver
following HF feeding and the ability of 12-HETE to
inhibit mitochondrial respiration and enhance mPTP
opening, we sought to test whether HEPiPLA2γKO he-
patocytes were resistant to cell death relative to WT
control hepatocytes. For this purpose, cytotoxicity was
determined by quantifying the activity of LDH which is
released into the media after induction of ER stress by
stimulation with calcium ionophore A23187. Control
WT primary hepatocytes obtained from NC-fed mice
readily released LDH following a relatively short (1 h)
incubation with A23187 (Fig. 8A). In contrast, HEPi-
PLA2γKO hepatocytes isolated from NC fed mice did
not significantly release LDH into the media after 1 h
incubation with A23187 when compared with non-
treated controls. Longer exposure (2–3 h) of HEPi-
PLA2γKO hepatocytes to A23187 resulted in
significantly lowered release of LDH activity in com-
parison to WT cells. Importantly, LDH release into
extracellular space by calcium overload from WT
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Fig. 7. Inhibition of hepatic mitochondrial respiration by 12-HETE. High-resolution mitochondrial respirometry was performed
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Fig. 8. Release of lactate dehydrogenase (LDH) from primary WT and HEPiPLA2γKO hepatocytes following treatment with
calcium ionophore. A: Primary hepatocytes from WT and HEPiPLA2γKO mice were isolated as described in Materials and Methods.
Hepatocytes cultured in 12-well plates were exposed to either DMSO vehicle alone (0.1%, v/v) or 5 μM A23187 in fresh serum-free
medium for the hours indicated followed by collection of the medium. LDH released into the cell medium (indicative of hepatocyte
cell death) was quantified by performing an enzymatic assay of LDH activity present in the cell medium. *P < 0.05, **P < 0.001, and
***P < 0.0001 when compared with WT stimulated with A23187 for the same incubation time. Values are the means of nine inde-
pendent preparations with SEM. B: Primary hepatocytes from WT mice were stimulated with either DMSO vehicle alone (0.1% v/v)
or 5 μM A23187 in serum-free media for the hours indicated in the presence of the following oxygenase inhibitors: 20 μM NDGA,
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hepatocytes was inhibited by the LOX inhibitor
NDGA but not by the cytochrome P450 epoxygenase
inhibitor N-(methylsulfonyl)-2-(2-propynyloxy)-benze-
nehexanamide nor by the COX-selective inhibitor
ibuprofen (Fig. 8B). Supporting the results from phar-
macologic inhibition assays, mass spectrometric ana-
lyses of intracellular eicosanoids showed that calcium
ionophore activated the predominant production of
various HETEs with modest increases in EETs, but not
in prostaglandins, in primary hepatocytes (Fig. 8C, D).
Treatment with NDGA nearly completely abolished
A23187-activated production of LOX-mediated metab-
olites of AA (i.e., 8-, 11-, 12- and 15-HETEs) (Fig. 8C).
Collectively, these results suggest that an iPLA2γ-LOX
lipid metabolic axis which upregulates hepatic HETE
production upon cellular stress during high fat
diet–induced obesity is likely involved in hepatocyte
cell death.

DISCUSSION

Previous work from our laboratory reported that
global genetic ablation of iPLA2γ resulted in multi-
component abnormal phenotypes which included
compromised mitochondrial ultrastructure and func-
tion, insulin hypersensitivity, the inability to gain
weight during HF feeding, impaired skeletal muscular
respiration and strength, and lower triacylglycerol
content in adipose tissue (20). Furthermore, liver mito-
chondria from the germline iPLA2γ−/− mouse dis-
played remarkable resistance to Ca2+-activated mPTP
opening resulting in the prevention of cytochrome c
release (18). Interestingly, our additional studies using
cardiomyocyte-specific transgenic iPLA2γ mouse heart
revealed that cardiac myocyte mitochondrial iPLA2γ
can be activated by divalent cations (i.e., Ca2+ and Mg2+)
(25). Moreover, cardiomyocyte-specific knockout of
iPLA2γ demonstrated decreased infarct size after
ischemia-reperfusion injury through attenuation of
eicosanoid production and mPTP opening (15). In this
study, we engineered and utilized a hepatocyte-specific
iPLA2γ knockout mouse to investigate the distinct roles
of hepatic iPLA2γ on cellular oxidized lipid metabolism
and hepatocyte cell death using an HF-induced obesity
model. By employing HF-fed HEPiPLA2γKO mice, we
demonstrated that genetic ablation of hepatic iPLA2γ
improved glucose tolerance and decreased production
of detrimental oxidized arachidonate metabolites

resulting in a decrease in Ca2+-induced mPTP opening.
Intriguingly, an HF diet increased 12-HETE production
in wild-type mice that subsequently amplified mPTP
opening by sensitizing it to lower concentrations of
Ca2+ and blocking ADP-mediated protection against
Ca2+-induced mitochondrial swelling. Remarkably,
hepatocyte-specific deletion of iPLA2γ resulted in
markedly lower amounts of 12-HETE which minimized
the deleterious effects of HF feeding. Finally, we
demonstrate that either the absence of iPLA2γ (in
HEPiPLA2γ KO hepatocytes) or pharmacological inhi-
bition of LOXs (by NDGA) attenuates Ca2+-mediated
cytotoxicity in hepatocytes emphasizing the importance
of these interconnected lipid metabolic pathways in
mediating responses to cellular stress.

The ability of eicosanoids to function as lipid second
messengers in diverse (patho)physiological conditions
has been extensively studied for decades (26). However,
to the best of our knowledge, the ability of eicosanoids
to mediate mPTP opening have not been previously
examined. Importantly, this study demonstrates that
the LOX product 12-HETE is the most predominant
oxidized AA metabolite in liver and that it was
dramatically elevated (∼2.5-fold) by an HF diet. A
number of previous studies have reported multiple
detrimental effects of LOX-generated HETE signaling
which include induction of oxidative stress during
cardiac ischemia/reperfusion and activation of proin-
flammatory effects via p38MAPK for immune re-
sponses by stimulation of cytokine and inflammatory
gene expression presumably through activation of G
protein-coupled receptor 31 (10, 27–30). Moreover, 12-
LOX expression levels and activity were demonstrated
to be upregulated in multiple cell types in various dis-
ease states (10, 31–33). Published studies utilizing 12-LOX
knockout mouse models and pharmacologic inhibition
of 12-LOX reported protective outcomes that resulted
from inactivation of 12-LOX, which include improved
glucose tolerance and insulin sensitivity following HF
feeding, resistance to the development of diabetes by
increasing islet resistance to inflammatory cytokines
such as tumor necrosis factor α and IL-1β, and reduction
of infarct size in ischemic damage (14, 33–37). In sup-
port of these previous observations, the use of cell
type–specific conditional genetic ablation of iPLA2γ in
conjunction with high-resolution respirometry of iso-
lated mitochondria and analysis of hepatic eicosanoids
suggest that HF feeding induces 12-HETE–mediated

40 μM MSPPOH, or 10 μM ibuprofen for selective inhibition of lipoxygenases, cytochrome P450 epoxygenases, or cyclooxygenases,
respectively. *P < 0.05 and **P < 0.001 when compared with the A23187 positive control. Values are expressed with means of the six
independent preparations with SEM. Maximum cellular LDH activity released into extracellular space was determined after cell
membrane disruption with 0.5% Triton X-100. C and D: Primary hepatocytes isolated from WT mice on a normal-chow diet were
stimulated with either DMSO vehicle alone (control) or 5 μM A23187 in serum-free media for 30 min in the absence or presence of
20 μM NDGA. Cellular eicosanoids including HETEs, EETs (C), and prostaglandins (D) were determined and quantitated by LC-MS/
MS as described under Materials and Methods. Values are expressed as the means of four independent preparations with SEM. *P <
0.05, **P < 0.01 and ***P < 0.001. EET, epoxyeicosatrienoic acid; HEPiPLA2γKO, hepatocyte-specific iPLA2γ-knockout; HETE,
hydroxyeicosatetraenoic acid; MSPPOH, N-(methylsulfonyl)-2-(2-propynyloxy)-benzenehexanamide; NDGA, nordihydroguaiaretic
acid.
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mitochondrial dysfunction which is initiated by the
activation of hepatic iPLA2γ to generate nonesterified
AA or arachidonoyl-lysolipids which serve as sub-
strate(s) for 12-LOX.

Mitochondrial membrane–associated calcium-
independent PLA2γ can be activated by divalent cat-
ions or loss of membrane potential producing free AA
and 2-AA-lysolipids (25, 38, 39). Recently, we have
found that a variety of oxygenases (COXs and LOX)
oxidize 2-AA-lysolipids as well as free AA, the products
of which (i.e., oxidized lysophospholipids) can be
further hydrolyzed by intracellular lysophospholipases
to nonesterified oxidized AA metabolites (38, 40). Thus,
in this context, iPLA2γ activation is a crucial step for
providing AA-containing lipid precursors for down-
stream oxygenase enzymes. Furthermore, our recent
study has demonstrated that production of 12-HETE/
12-HETE lysophospholipids mediated by the combined
actions of iPLA2γ and 12-LOX were increased in cal-
cium-ionophore–activated platelets (40). Importantly,
thrombin-activated platelets released nonesterified 12-
HETE exclusively among various oxidized AA metab-
olites, and 12-HETE at nanomolar concentrations was
demonstrated to induce the release of proin-
flammatory cytokines (i.e., tumor necrosis factor α and
interleukin-8) from THP-1 monocytic cells (41). In
addition, hepatic mitochondrial PTP opening as
measured using the germline iPLA2γKO mouse was
dramatically attenuated upon Ca2+ challenge prevent-
ing translocation of proapoptotic cytochrome c into the
cytosol (18). Similar observations reported in this study
utilizing the HEPiPLA2γKO mouse imply that iPLA2γ-
mediated 12-HETE production exerts deleterious ef-
fects specifically in isolated hepatocytes leading to the
progression of cell death likely via mPTP opening.

Established as one of the determinants for cell death,
themPTPhas been the focus of numerous investigations
to identify its protein composition, activation mecha-
nism, regulatory activators/inhibitors, and its physio-
logic and pathologic roles in cell survival and death (42,
43). While Ca2+ is a necessary component for opening
of themPTP, additional activators of this process include
inorganic phosphate, fatty acids, oxidative stress, car-
boxyatractyloside, adenine nucleotide depletion, and
high pH (44). Despite impressive advances in character-
izing the mPTP, the precise mechanism of pore opening
and the structure of the pore complex are still not
completely understood. One of the most intriguing ob-
servations in this study is that mitochondria from WT
HF-fed mice were nearly completely desensitized to
ADP-mediated inhibition of mPTP opening, which, in
marked contrast, was not observed in theHEPiPLA2γKO
mouse.More importantly, our finding that the inhibition
of mPTP opening by ADP was reversed by exogenous
12-HETE implicates hepatic iPLA2γ-mediated 12-HETE
production as a likely facilitator of cell death through
disabling cellular protective mechanism(s) against irre-
versible pathologic opening of the mPTP. ADP has been

demonstrated to bind to themitochondrial ANTon both
the cytoplasmic and matrix sides of the inner mito-
chondrial membrane thereby desensitizing the mPTP
channel to calcium ion (45). The ADP/ATP translocase
has also been shown to be one of the components of the
mPTP complex and can activatemPTPopening through
its interaction with mitochondrial matrix protein cyclo-
philin D (46, 47). Recently, Karch et al. (48) demonstrated
that genetic ablation of various isoforms of ANT (i.e.,
Ant1, Ant2, and Ant4) resulted in loss of mPTP opening
activity. Moreover, other studies have reported that the
cyclophilin D knockout mouse exhibited improvement
ofHF-induced glucose intolerance (49, 50). However, the
exact mechanism for the ADP-mediated inhibition of
mPTP channel opening via conformational changes
through the interaction between ANT and ADP is still
not clearly understood. Our results suggest that 12-HETE
regulates the affinity of ADP for the inhibitory binding
site of ANT in a similar manner as (carboxy)atractylate
antagonizes ADP-mediated inhibition of mPTP opening
through binding the c-conformation of ANT present in
the cytoplasmic mitochondrial membrane (51). This
proposed mechanism also suggests that inhibition
of ADP/ATP translocase activity by 12-HETE is
likely responsible for the attenuation of ADP-induced
state 3 mitochondrial respiration that we observed in
this study.

Collectively, the results of this study demonstrate
that hepatic iPLA2γ plays central roles in HF
diet–induced pathologic alterations by providing AA
and/orAA-lysophospholipids to 12-LOX for detrimental
12-HETE production that promotes the opening
probability of the mPTP and disrupts mitochondrial
bioenergetics leading to metabolic stress and the initia-
tion of cell death.
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