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Abstract

Objective: MAPT mutations typically cause behavioral variant frontotemporal

dementia with or without parkinsonism. Previous studies have shown that

symptomatic MAPT mutation carriers have frontotemporal atrophy, yet studies

have shown mixed results as to whether presymptomatic carriers have low gray

matter volumes. To elucidate whether presymptomatic carriers have lower

structural brain volumes within regions atrophied during the symptomatic

phase, we studied a large cohort of MAPT mutation carriers using a voxelwise

approach. Methods: We studied 22 symptomatic carriers (age 54.7 � 9.1, 13

female) and 43 presymptomatic carriers (age 39.2 � 10.4, 21 female). Symp-

tomatic carriers’ clinical syndromes included: behavioral variant frontotemporal

dementia (18), an amnestic dementia syndrome (2), Parkinson’s disease (1),

and mild cognitive impairment (1). We performed voxel-based morphometry

on T1 images and assessed brain volumetrics by clinical subgroup, age, and

mutation subtype. Results: Symptomatic carriers showed gray matter atrophy

in bilateral frontotemporal cortex, insula, and striatum, and white matter atro-

phy in bilateral corpus callosum and uncinate fasciculus. Approximately 20% of

presymptomatic carriers had low gray matter volumes in bilateral hippocampus,

amygdala, and lateral temporal cortex. Within these regions, low gray matter

volumes emerged in a subset of presymptomatic carriers as early as their thir-

ties. Low white matter volumes arose infrequently among presymptomatic car-

riers. Interpretation: A subset of presymptomatic MAPT mutation carriers

showed low volumes in mesial temporal lobe, the region ubiquitously atrophied

in all symptomatic carriers. With each decade of age, an increasing percentage

of presymptomatic carriers showed low mesial temporal volume, suggestive of

early neurodegeneration.

Introduction

Mutations in the microtubule-associated protein tau

(MAPT) cause behavioral variant frontotemporal demen-

tia (bvFTD) with or without parkinsonism, with some

patients meeting criteria for progressive supranuclear

palsy (PSP) or corticobasal syndrome.1 As in sporadic

bvFTD, in bvFTD due to MAPT mutations (bvFTD-

MAPT), patients show degeneration in the anterior cingu-

late cortex, insula, striatum, and the amygdala.2,3 In con-

trast to sporadic bvFTD, however, bvFTD-MAPT more

prominently targets the mesial temporal lobe and in par-

ticular, the hippocampus, a region less typically atrophied

in sporadic bvFTD.2,3

Less is known about the timing of brain volume

changes during the presymptomatic phase. Early studies

with small samples suggested that presymptomatic MAPT

mutation carriers did not have apparent gray or white

matter volume differences compared to controls.4,5 Stud-

ies with larger samples, however, have shown mixed

results. A study of 26 symptomatic and presymptomatic

MAPT mutation carriers revealed gray matter trajectories

that suggested that low hippocampus and amygdala vol-

umes arise years before expected symptom onset.6 A dif-

fusion tensor imaging study of 30 presymptomatic MAPT

mutation carriers found early loss of white matter integ-

rity.7 In contrast, a study of 23 presymptomatic MAPT

mutation carriers did not show significantly low gray

matter volumes, although there was a trend toward small

regions of low gray matter volume in mesial temporal

lobes.8

Most previous studies of presymptomatic MAPT muta-

tion carriers have reported only group comparisons whose

limitation is that they do not account for individual

anatomical variation, which could account for mixed

results across studies. To address this gap, we studied a

multisite cohort of 65 MAPT mutation carriers (22 symp-

tomatic and 43 presymptomatic) by analyzing structural

MRI scans with a voxelwise method that detects gray and

white matter differences in individual carriers. We

hypothesized that: 1) regions of low gray or white matter

volume in presymptomatic MAPT mutation carriers
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would resemble atrophy patterns seen in symptomatic

carriers, and 2) a subset of the presymptomatic carriers,

that is, those presumably closer to symptom onset, would

harbor low gray and white matter volumes beyond

expected of their age. Previous literature suggests that

specific MAPT mutations manifest different clinical syn-

dromes;1 therefore, we also explored whether different

MAPT mutation subtypes targeted distinct neuroanatomi-

cal regions.

Methods

Participants

Study participants were recruited from: the Memory and

Aging Center at the University of California, San Fran-

cisco (UCSF); Erasmus University Rotterdam; and two

multisite genetic FTD research projects, the Advancing

Research and Treatment for Frontotemporal Lobar

Degeneration (ARTFL) and Longitudinal Evaluation of

Familial Frontotemporal Dementia Subjects (LEFFTDS)

(Table S1). Clinical diagnoses were rendered by the

respective study sites.9

We studied 22 symptomatic MAPT mutation carriers,

43 presymptomatic MAPT mutation carriers and 107

healthy controls, comprised of 91 noncarrier genetic fron-

totemporal lobar degeneration family members and 16

unrelated controls (Table 1). These unrelated controls

were added to the noncarrier family members to create

an even distribution of ages that was similar to the age

range of the MAPT mutation carrier cohorts. Among the

22 symptomatic carriers, 18 had a clinical diagnosis of

bvFTD. Of the 18 with bvFTD, six carried secondary

diagnoses, including PSP syndrome (4); parkinsonism (1);

and depression (1). Of the four remaining symptomatic

carriers: two had an amnestic dementia syndrome, one of

which also had mild behavioral symptoms; one had

Parkinson’s disease (PD) with behavioral symptoms not

meeting bvFTD criteria; and one had mild cognitive

impairment with behavior and language symptoms. All

symptomatic carriers were recruited from UCSF, ARTFL,

or LEFFTDS (Erasmus University did not recruit symp-

tomatic patients).

Presymptomatic carriers were diagnosed as clinically

normal by each respective study site. These participants

were required to have a Mini-Mental State Examination

(MMSE) score ≥ 27, and if the participant did not have

an MMSE score available, participants had a Montreal

Cognitive Assessment (MoCA)10 score ≥ 21. We chose

this threshold for the MoCA score because in participants

tested with both measures, an MMSE score of 27 corre-

sponds to a MoCA score of 21.11 We included three

presymptomatic carriers with a Clinical Dementia Rating

Scale (CDR�) plus Behavioral and Language Domains

from the National Alzheimer’s Coordinating Center

(NACC) FTLD module (CDR� plus NACC FTLD)12 glo-

bal score of 0.5, as this score may not necessarily be

indicative of incipient phenoconversion to disease. Never-

theless, we repeated each analysis without the three

presymptomatic carriers who had a CDR� plus NACC

FTLD global score of 0.5.

Healthy controls were also required to have a MMSE

score ≥ 27 or a MoCA score ≥ 21, a CDR� plus NACC

FTLD global score of 0, and no significant history of neu-

rological disease. All participants in the study were

required to have a MRI brain scan free of structural

lesions and prominent white matter disease.

Participants underwent neuropsychological tests at each

site.4,13,14 The CDR� plus NACC FTLD scale was avail-

able for the UCSF and ARTFL/LEFFTDS cohorts. Neu-

ropsychological tests were administered within 90 days of

a participant’s MRI scan. We calculated z-scores for each

measure for each participant based on scores of the

healthy controls. For variables with skewed distributions,

we reflected and log transformed the data to improve the

normality of the distribution prior to fitting multiple

regression models. Because these z-scores were not

adjusted for demographic characteristics, we compared

Table 1. Demographics of presymptomatic and symptomatic MAPT mutation carriers.

Presymptomatic Symptomatic Healthy Controls

n 43 22 107

Age at MRI scan, years 39.2 (10.4) 54.7 (9.1) 48.9 (13.2)

M:F, n 22:21 9:13 51:56

Education, years 16.1 (2.4) 15.1 (2.4) 15.9 (2.3)

Education, Dutch 7-point scale1 4.8 (1.7) n/a 5.3 (1.1)

Age at symptom onset n/a 45.6 (8.3) n/a

CDR� plus NACC FTLD, global score (0-3) 0.05 (0.15) 1.75 (0.98) 0 (0)

CDR� plus NACC FTLD, sum of boxes (max = 24) 0.07 (0.22) 9.73 (6.13) 0 (0)

Unless otherwise indicated, mean values are reported followed by the standard deviation in parentheses.
1Erasmus participants were categorized into levels from 1 = less than 6 years of education to 7 = completed a university degree.

ª 2020 The Authors. Annals of Clinical and Translational Neurology published by Wiley Periodicals LLC on behalf of American Neurological Association 97

S. A. Chu et al. Brain Volumetric Deficits in MAPT Mutation Carriers



the z-scores of these cognitive measures for the presymp-

tomatic, symptomatic, and control groups using multiple

regression with age, education, and sex as covariates of

no interest. We compared each MAPT mutation carrier

group to controls using post hoc group-wise compar-

isons.

The Institutional Review Boards at each site approved

this study, and participants or their surrogates provided

informed consent to participate.

Genetic analysis

Participants were screened for pathogenic MAPT muta-

tions.15 All MAPT mutation carriers in the study also

tested negative for GRN mutations and for the C9orf72

repeat expansion.

Image acquisition and preprocessing

Each participant underwent a T1-weighted structural MRI

scan on a 3T scanner. Participants from UCSF were

scanned on a Siemens Tim Trio or a Siemens Prisma

scanner (Table S1). All T1-weighted images were prepro-

cessed with SPM12 (https://www.fil.ion.ucl.ac.uk/spm/).

T1-weighted images were preprocessed using standard

spatial normalization in the SPM12 segment module,

using the six standard tissue probability maps with a light

clean up. Standard affine regularization with the Interna-

tional Consortium for Brain Mapping European brain

template and warping regularization with the default

parameters were used. Images were then segmented into

gray and white matter images, which were smoothed

using an 8-mm full width at half maximum isotropic

Gaussian kernel.

Gray and white matter w-score maps

For each MAPT mutation carrier, we created gray matter

and white matter w-score maps (w-maps) which represent

the difference between the participant’s actual gray or

white matter values in each voxel and the expected value

based on a group of healthy controls.16 A map of w-

scores can be conceptualized as a z-score map of the gray

or white matter residuals after adjustment for covariates

of no interest via regression. To calculate a w-score, vox-

elwise linear regressions were performed on healthy con-

trol gray and white matter maps to determine the

standard deviation of the residuals. Next, the w-score for

each individual participant was calculated voxelwise using

the following formula: w = [(participant’s value – value

predicted for participant age)/SD of residuals of the

healthy control group]. Covariates of no interest included

age, sex, total intracranial volume, site, scanner model,

and scan acquisition protocol. Since the w-score control

group is utilized to build a reference range for brain vol-

ume, we selected controls to cover the age distribution of

the mutation carriers. We prioritized selecting 91 available

mutation-negative family members for our control group

and also included 16 unrelated healthy controls because

of the importance of an even age distribution in our

models.

Gray and white matter relationships with age or
symptom severity

We created group mean w-maps for 1) presymptomatic

and 2) symptomatic carriers by averaging participants’ w-

scores voxelwise and thresholded the maps at w≤-2.16,17

To create frequency gray and white matter w-maps, we

determined the percentage of participants with gray or

white matter values of w≤-2 voxelwise. For presymp-

tomatic carriers, we created group frequency w-maps

binned by age (in decades) to visualize gray and white

matter relationships with age. For symptomatic carriers,

group frequency w-maps were binned by symptom sever-

ity, defined by the CDR� plus NACC FTLD global score.

Hemispheric symmetry analysis

Previous studies suggest bilateral and symmetric involve-

ment in symptomatic MAPT mutation carriers.2,3,6 To

determine whether atrophy or low brain volume in symp-

tomatic and presymptomatic MAPT mutation carriers is

symmetric at an individual-subject level, we calculated the

difference between each participant’s mean left and right

hemisphere w-scores for gray or white matter.

Correlations between memory measures and
hippocampal volume

We performed two analyses to explore associations

between memory measures and the volume of the hip-

pocampus, selected as an a priori region because of its

importance in memory recall. First, we calculated for each

participant the mean gray matter w-scores for the left and

right hippocampi (defined by the Automated Anatomical

Labeling atlas18). Verbal memory z-scores were based on

either the California Verbal Learning Test II (CVLT-II)

10 minute delayed recall (UCSF; ARTFL/LEFFTDS) or

the Rey Auditory Verbal Learning Test delayed recall tri-

als (Erasmus). Spatial memory z-scores were based on the

Benson figure recall (UCSF; ARTFL/LEFFTDS). We per-

formed Spearman’s correlations between participants’ hip-

pocampal w-scores and memory z-scores. Second, we

selected the voxel most frequently showing reduced gray

matter across all carriers and created a 4-mm sphere
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around that voxel (and its contralateral homolog) to

determine whether gray matter volume in this MAPT-tar-

geted region correlates with verbal and visual memory

measures. For these analyses, we correlated left hippocam-

pus w-scores with verbal memory scores and right hip-

pocampus w-scores with spatial memory z-scores given

the importance of the left hippocampus for verbal mem-

ory19 and the right hippocampus for spatial memory.20

Next, we searched voxelwise to identify brain regions

where lower memory performance was associated with

lower gray matter volume by correlating verbal then spa-

tial memory z-scores with gray matter w-maps thresh-

olded at P < 0.05 corrected for family-wise error.

The above correlations were performed in all carriers

combined, symptomatic carriers, and presymptomatic

carriers.

MAPT mutation subgroup analysis

Our cohort consisted of participants carrying 13 different

MAPT mutations. Because some mutations had low num-

bers of participants, we examined MAPT mutation sub-

types categorized into five groups by either clinical

(bvFTD-type; amnestic-type; PSP/PD-type) or neu-

ropathological (four repeat-type (4R); and Pick bodies

type) similarity to explore whether different types of

MAPT mutations may target distinct neuroanatomy. The

bvFTD group was comprised of carriers with the V337M

mutation, a missense mutation located on exon 12 which

typically causes bvFTD.21 The amnestic-type group con-

sisted of carriers with R406W, a missense mutation on

exon 13 which typically manifests with an amnestic syn-

drome reminiscent of an Alzheimer’s-like syndrome

rather than a bvFTD syndrome.22,23 The PSP/PD-type

group consisted of carriers with mutations in N279K,

S305N, and S305S, all exon 10 missense mutations which

increase the ratio of 4R to three repeat (3R) tau; these

mutations most often cause bvFTD with PSP or parkin-

sonism.24–28 The 4R-type group consisted of P301L,

S305I, IVS10 + 16C>T, and IVS9-10G> T, a combination

of exonic and splicing mutations which typically present

with bvFTD; these mutations increase exon 10 transcrip-

tion, which increases the ratio of 4R to 3R tau.15,29,30 The

fifth group was the Pick bodies type group which con-

tained G389R, G272V, S320F, and L315R mutations, all

characterized by the inclusion of Pick body or Pick body-

like pathology.31–34 Each group consisted of fewer than 10

symptomatic and presymptomatic carriers combined, with

the exception of the 4R-type group, which had 31 carri-

ers. To protect participant anonymity, we chose not to

report the specific number within each group. We created

mean w-maps for these five mutation subgroups to assess

whether different mutation subtypes target distinct

anatomical regions. Due to the limited number of partici-

pants in each mutation subgroup, we assessed gray and

white matter volume using mean w-maps instead of fre-

quency w-maps.

Results

A subset of presymptomatic carriers harbors
low mesial temporal lobe volumes

In total, the presymptomatic and symptomatic cohorts

included 13 different MAPT mutation subtypes. For most

neuropsychological measures, presymptomatic MAPT

mutation carriers had no statistically significant differ-

ences compared to controls (Tables 2 and 3). The one

exception was that presymptomatic carriers had a signifi-

cantly lower but clinically negligible z-score of �0.39 on

the Multilingual Naming Test (Table 2). With the three

presymptomatic carriers with CDR� plus NACC FTLD

global score of 0.5 excluded, results were similar with

presymptomatic carriers largely showing no differences

across measures, with the exception of the Multilingual

Naming Test (z = �0.39, range �1.68, 0.38). Symp-

tomatic carriers showed clinically significant impairments

in verbal learning and memory as well as naming and

semantic verbal fluency, and borderline to low average

performance on most other measures, including attention,

executive functioning, and visual recall, while Benson Fig-

ure Copy was relatively preserved (Table 2).

We found that symptomatic MAPT mutation carriers

had severe bilateral mesial temporal atrophy as well as

frontotemporal and insula atrophy and white matter

involvement in the uncinate fasciculus, anterior corona

radiata, corpus callosum, and inferior longitudinal fasci-

culus (Fig. 1; Fig. S1). Frequency w-maps revealed that

each symptomatic carrier harbored prominent mesial

temporal lobe atrophy and about sixty percent had

involvement within frontotemporal white matter tracts

(Fig. 1). Although the mean w-maps for presymptomatic

carriers did not show any regions with low gray matter

(defined as w≤-2), we found that 20% of presymptomatic

carriers had low mesial temporal lobe volumes and low

white matter volume arose in approximately 10% (Fig. 1).

When calculating the difference between each partici-

pant’s mean left and right hemisphere w-score for gray or

white matter, we found that at individual level, both

symptomatic and presymptomatic participants had sym-

metric gray and white matter (maximum difference score

w = 0.78 for a symptomatic carrier).

We repeated these analyses with presymptomatic carri-

ers who had a CDR� plus NACC FTLD score of 0 only.

Gray matter and white matter frequency w-maps showed

similar results (data not shown), supporting that the three
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presymptomatic carriers with CDR� plus NACC FTLD

scores of 0.5 were not driving the overall results.

Mesial temporal lobe and relationships with
memory throughout the MAPT lifespan

To explore whether regions of low gray and white matter in

presymptomaticMAPT mutation carriers might worsen with

age, we created gray and white matter frequency w-maps for

each age decade represented within our data. We found that

approximately 20% of presymptomatic MAPT mutation car-

riers in their thirties showed low mesial temporal volumes

(Fig. 2). When examining carriers in their forties and fifties,

an increasing percentage of participants had low mesial tem-

poral gray matter with each additional decade. The white

matter frequency map (Fig. 1) suggested that low white mat-

ter volumes also arise in certain presymptomatic carriers,

but in contrast to the gray matter maps, the percentage of

participants with low white matter volumes did not clearly

increase with each decade.

For symptomatic carriers with CDR� plus NACC

FTLD global scores of 0.5, mesial and anterior temporal

lobe and anterior cingulate atrophy were most common,

followed by insula and regions in dorsolateral prefrontal

cortex (Fig. 3). With worsening symptom severity, atro-

phy within these regions grew increasingly more common

and extensive. All carriers with a CDR� plus NACC

FTLD global score of 1 had mesial temporal lobe atrophy

and all carriers with a global score of 2 had regions of

anterior cingulate and insular atrophy. By the time carri-

ers reached a global score of 3, all showed widespread

frontotemporal, insula, and uncinate fasciculus atrophy.

We examined relationships between memory measures

and the hippocampus, selected as an a priori region of

interest, and voxelwise gray matter maps. Verbal and spa-

tial memory z-scores were correlated with hippocampal

volumes across the whole MAPT cohort. Across symp-

tomatic and presymptomatic carriers combined, lower

scores in verbal recall (CVLT-II) were associated with

lower left hippocampal volume (rho = 0.70, P < 0.001)

and lower scores in visual recall were associated with

lower right hippocampal volume (rho = 0.44, P < 0.001).

To explore whether a MAPT-targeted gray matter region

is also associated with memory measures, we created a

Table 2. Neuropsychological testing of North American cohorts.

Test

Presymptomatic MAPT Symptomatic MAPT
Omnibus Model

Raw scores:

mean(SD) or

median[IQR]

z-scores:

mean(SD) or

median[IQR]

Raw scores:

mean(SD) or

median[IQR]

z-scores:

mean(SD) or

median[IQR] F (df)

Global Cognition4

MoCA, total score 28 [26, 29] 0.11 [�0.96, 0.64] 22 [11, 25] �3.10 [�8.97, �1.49] 11.24 (5, 79)1,2

Executive Functions/Processing Speed/Attention

Trails A, correct lines per minute 80.15 (24.58) 0.24 (0.94) 37.58 (20.11) �1.38 (0.77) 8.67 (5, 88)1,2

Trails B, correct lines per minute 34.42 (10.68) 0.33 (1.03) 16.65 (9.88) �1.39 (0.96) 8.00 (5, 88)1,2

Digit span forward 9.03 (2.31) 0.16 (0.98) 6.50 (2.85) �0.91 (1.21) 2.84 (5, 112)1,2

Digit span backward 8.00 (2.80) 0.21 (1.21) 5.24 (2.44) �0.99 (1.05) 3.45 (5, 113)1,2

Semantic fluency, animals in 1 min 24.21 (6.34) 0.08 (1.17) 12.12 (8.42) �2.14 (1.55) 12.79 (5, 113)1,2

Lexical fluency, words in 1 min 28.96 (7.04) 0.10 (0.91) 18.15 (12.73) �1.29 (1.64) 7.10 (5, 81)1,2

Memory4

Total recall (California Verbal Learning

Test, short form, four learning trials

total)

31 [29, 32.5] 0.23 [�0.28, 0.61] 18 [15, 24] �3.09 [�3.86, �1.56] 9.67 (5, 101)1,2

Delayed free recall (California Verbal

Learning Test, short form, 10 min

recall)

7 [6, 9] �0.35 [�0.95, 0.85] 0 [0, 5] �4.54 [�4.54, �1.54] 12.11 (5, 101)1,2

Benson figure 10 min recall, total score 14 [12, 16] 0.42 [�0.48, 1.31] 10 [4, 12] �1.37 [�4.05, �0.48] 6.45 (5, 114)1,2

Language4

Multilingual Naming Test, total score 29.5 [27, 31] �0.39 [�1.67, 0.38] 26.5 [22.5, 28.5] �1.92 [�3.97, �0.90] 7.56 (5, 80)1-3

Visuospatial4

Benson figure copy, total score 16 [15, 16] 0.09 [�0.99, 0.09] 16 [15, 16] 0.09 [�0.99, 0.09] 0.60 (5, 114)

Means and standard deviations (SD) or medians and interquartile ranges (IQR) are reported.
1Symptomatic cohort is significantly different from controls at P < 0.05.
2Presymptomatic cohort is significantly different from symptomatic cohort at P < 0.05.
3Presymptomatic cohort is significantly different from controls at P < 0.05.
4Z-scores estimated from reflected and log-transformed data were used to fit the regression models.
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spherical region of interest centered on a left hippocam-

pus voxel where carriers most frequently had low gray

matter. We also created its contralateral homolog. Lower

verbal recall scores were associated with lower volume

within this left hippocampal sphere (rho = 0.66,

P < 0.001), while lower scores in visual recall were

Table 3. Neuropsychological testing of Erasmus cohort.

Test

Presymptomatic MAPT
Omnibus Model

Raw scores:

mean(SD) or median[IQR]

z-scores:

mean(SD) or median[IQR] F (df)

Global Cognition1

MMSE, total score 29.5 [29, 30] 0.28 [�0.28, 0.85] 3.88 (4, 37)

Executive Functions/Processing Speed/Attention

Trails A, correct lines per minute 58.90 (21.66) 0.30 (1.08) 4.37 (4, 37)

Trails B, correct lines per minute 28.44 (11.99) 0.46 (1.29) 4.08 (4, 37)

Digit span forward 8.93 (2.56) �0.04 (1.32) 1.79 (4, 37)

Digit span backward 6.50 (1.74) 0.05 (0.89) 2.04 (4, 37)

Semantic fluency, animals in 1 min 26.93 (6.17) 0.52 (1.22) 1.94 (4, 37)

Lexical fluency, total D, A, and T words 36.57 (14.94) 0.25 (1.30) 0.72 (4, 37)

Memory

Total Recall (Rey Auditory Verbal Learning Test, total) 48.36 (8.95) 0.54 (0.96) 3.87 (4, 37)

Delayed Free Recall (Rey Auditory Verbal Learning Test) 9.79 (3.75) 0.34 (1.20) 2.34 (4, 37)

Language1

Boston Naming Test, total score 54.5 [50, 58] 0.07 [�0.92, 0.85] 1.08 (4, 37)

Visuospatial1

Clock drawing 12.5 [12, 13] �0.05 [�0.39, 0.29] 1.16 (4, 37)

Means and standard deviations (SD) or medians and interquartile ranges (IQR) are reported.

The Erasmus presymptomatic cohort did not differ from controls for any measure.
1Z-scores estimated from reflected and log-transformed data were used to fit the regression models.

Figure 1. Gray and white matter frequency w-maps grouped by clinical stage. Frequency w-maps show the percentage of subjects within the

group, ranging from 1% (magenta) to 100% of subjects (red), who have low gray or white matter volumes with w≤-2 in a given voxel. Top row,

left: All MAPT mutation carriers within the symptomatic group have anteromesial temporal atrophy. Top row, right: Symptomatic carriers have

atrophy in the uncinate fasciculi, corpus callosum, and anterior corona radiata. Bottom row, left: Approximately 20% of presymptomatic MAPT

mutation carriers show low gray matter volume in the mesial temporal lobes. Bottom row, right: Few carriers show low white matter volume

before symptom onset. All maps are shown on the Montreal Neurological Institute template brain with the left side of the axial and coronal slices

corresponding to the left side of the brain.
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associated with lower right hippocampal sphere volume

(rho = 0.50, <0.001). Voxelwise, lower verbal recall was

correlated with lower hippocampal volume bilaterally,

while lower visual recall was associated with lower volume

in a small clusters of the left hippocampus and other scat-

tered voxels (Fig. 4). These three analyses (whole hip-

pocampus, hippocampal sphere, voxelwise) were repeated

with symptomatic and presymptomatic carrier subgroups

and showed no statistically significant correlations

between memory measures and gray matter.

We repeated each of these analyses by excluding the

three presymptomatic carriers with the CDR� plus

NACC FTLD score of 0.5 and results were unchanged.

Most MAPT mutation subtypes target
frontotemporal cortex

When mean w-maps were calculated for each MAPT sub-

type, we found that most of the symptomatic MAPT

mutation subtype groups (bvFTD-type, PSP/PD type, 4R-

type) shared a consistent pattern of fronto-insulo-

temporal atrophy (Fig. 5). Of those groups, the bvFTD-

type group showed the most severe gray and white matter

frontotemporal atrophy, while the PSP/PD type group

showed the most severe atrophy within the mesial tempo-

ral lobes (Fig. 5). One notable exception to the shared

frontotemporal atrophy pattern, however, was the R406W

mutation group, which typically results in an amnestic

presentation. R406W carriers lacked the frontal gray and

white matter atrophy that was characteristic of the other

MAPT mutation subtypes, and instead only showed bilat-

eral temporal and insular atrophy. Similar to the bvFTD-

type and 4R-type mutations, the PSP/PD group showed

frontotemporal atrophy, but additionally showed promi-

nent midbrain atrophy. The presymptomatic carriers with

PSP/PD-related mutations had low bilateral anterior cin-

gulate, insula and mesial temporal volumes and were also

the only presymptomatic group with voxels of low mid-

brain volume, albeit in sparse regions. We found no dif-

ferences in results when the three presymptomatic carriers

with a CDR� plus NACC FTLD score of 0.5 were

excluded.

Figure 2. Gray and white matter frequency w-maps of presymptomatic carriers grouped by age decade. Gray matter (left) and white matter

(right) frequency w-maps for presymptomatic carriers divided by age decade (rows). Color bar indicates the percentage of subjects within each

age decade with low gray or white matter volumes of w≤-2 in a given voxel. Low mesial temporal lobe volumes arise in about 20% of MAPT

mutation carriers as early as their thirties. All maps are shown on the Montreal Neurological Institute template brain with the left side of the axial

and coronal slices corresponding to the left side of the brain.
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Discussion

In this study, we took a comprehensive approach to iden-

tify individual-level variation in gray and white matter vol-

ume and their relationships with age or symptom severity

across the MAPT continuum. We also identified relation-

ships between memory performance and gray matter to

explore whether specific MAPT mutation subtypes were

associated with distinct atrophy patterns. We found that

presymptomatic MAPT mutation carriers have low mesial

temporal volumes that are topographically similar to the

atrophy pattern seen in symptomatic carriers. Low mesial

temporal lobe volumes arose in about 20% of the presymp-

tomatic carriers during their thirties, and regions with low

gray matter appeared more common in presymptomatic

carriers with each increasing decade. Fewer than 10% of

presymptomatic carriers had low white matter values in

affected regions. For symptomatic carriers, mesial temporal

cortex was ubiquitously atrophied in carriers with a CDR�
plus NACC FTLD global score of 1 or greater, with

widespread atrophy in frontotemporal cortex in those with

more advanced symptoms. In MAPT mutation carriers,

poorer memory performance was associated with lower

hippocampal volume. We found that atrophy in fron-

totemporal and insular cortex and the uncinate fasciculi,

inferior longitudinal fasciculi, and corpus callosum were

commonly observed across different MAPT mutations dur-

ing the symptomatic phase, with the exception of the

R406W mutation carriers who lacked the frontal atrophy

characteristic of otherMAPT mutation carriers.

A subset of presymptomatic carriers shows
low mesial temporal volumes

As in previous studies, we found that frontotemporal cor-

tex is targeted in symptomatic MAPT mutation carriers.2,3

Compared to patients with sporadic bvFTD and those

with other FTLD mutations, prominent mesial temporal

atrophy is more prevalent in MAPT mutation carri-

ers,2,35,36 who feature correspondingly greater memory

Figure 3. Gray and white matter frequency w-maps of symptomatic carriers grouped by symptom severity. Gray matter (left) and white matter

(right) frequency w-maps for symptomatic carriers binned by symptom severity, as defined by the CDR� plus NACC FTLD global score (FTLD-

CDR). Color bar indicates the percentage of subjects within each symptom severity category with gray or white matter atrophy of w≤-2 in a given

voxel. Mesial temporal lobe atrophy becomes ubiquitous in those with an FTLD-CDR score of 1. With worsening severity, atrophy within temporal

and frontal lobes, insula and anterior cingulate are increasingly more common and extensive. All maps are shown on the Montreal Neurological

Institute template brain with the left side of the axial and coronal slices corresponding to the left side of the brain.
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impairment.23,37 Although mean group w-maps did not

identify regions of low matter in presymptomatic carriers,

frequency w-maps revealed that 20% of this group had

low mesial temporal volume. While early studies sug-

gested that gray matter abnormalities were undetectable

in presymptomatic MAPT mutation carriers,4,5 recent lar-

ger studies suggested that presymptomatic carriers have

low hippocampal and amygdalar volumes.6,8,17,38 Several

potential explanations may account for these varied

results. First, low gray matter volumes during the

presymptomatic phase are subtle and thus are likely to be

detectable only with larger cohorts. Second, previous

studies of presymptomatic carriers have performed group

analyses, which may be insensitive to low brain volumes

present in a minority of participants. By examining fre-

quency maps, we were able to identify the subset of carri-

ers with abnormally low gray and white matter volumes,

thus circumventing this limitation. Third, the presymp-

tomatic carriers in the present study and previous studies

could have differences in the number of years until actual

symptom onset. An individual’s age of onset and mean

familial age of onset are highly correlated, and perhaps

more strongly correlated for MAPT mutation carriers

compared to other FTLD mutations.6,39 Although the

mean age of the presymptomatic cohort in the present

study is similar to previous studies,5,8,39 age and mean

familial age of onset remain imperfect methods for esti-

mating the actual age of onset. Whether lower hippocam-

pal gray matter volumes portend earlier conversion to the

symptomatic phase remains an open question.

In contrast to sporadic bvFTD, memory impairment is

a feature of bvFTD due to MAPT mutations.40,41 Indeed,

we found that episodic memory, particularly verbal mem-

ory, was the most severely affected domain in symp-

tomatic carriers. Despite memory and language

impairments and lower than average executive perfor-

mance, visuoconstructional performance was similar to

controls. Our results showed that in all MAPT carriers

combined, poorer memory performance was correlated

with lower hippocampal volumes. Although hippocampal

atrophy has been reported in MAPT,2,3,6,8,17,36,38 to our

knowledge, previous studies have not directly correlated

memory performance with hippocampal volume in

MAPT mutation carriers. The hippocampus is well-estab-

lished for its importance in episodic memory19,20 and our

results support that this structure underlies the memory

impairment in MAPT. Our subgroup analyses of symp-

tomatic and presymptomatic carriers failed to identify sig-

nificant correlations between memory measures and

hippocampal volume. Smaller subgroup sample sizes,

floor effects in the symptomatic carriers’ memory scores,

and the limited dynamic range of presymptomatic carri-

ers’ memory scores serve as possible explanations for

these results.

Compared to gray matter, low white matter volume

arose less frequently among presymptomatic carriers.

One possibility is that gray matter decline precedes

white matter decline during the presymptomatic phase.

Consistent with this notion, a study of five presymp-

tomatic MAPT mutation carriers followed over four

years found that upon visual inspection, the extent of

gray matter loss appeared more pronounced than white

matter integrity loss.42 Although the present study

showed that low white matter volumes as assessed by

voxel-based morphometry were not prevalent in

presymptomatic MAPT, diffusion tensor imaging studies

have reported lower white matter tract integrity in

presymptomatic MAPT compared to controls.7,43 Voxel-

based morphometry may be less sensitive at detecting

white matter differences compared to diffusion tensor

imaging, thus future studies using multiple imaging

modalities are needed.

Regions of low gray and white matter may
reflect early neurodegeneration in
presymptomatic carriers

Certain presymptomatic carriers in their thirties showed

low mesial temporal volumes, consistent with a previous

Figure 4. Voxelwise correlations between memory measures and

gray matter. Maps show regions where verbal (top row) or spatial

(bottom row) memory z-scores were significantly correlated with

regions of low gray matter volume across all MAPT mutation carriers.

Lower scores on a verbal memory measure was associated with low

volume in bilateral hippocampi and inferior temporal regions. Lower

scores on a spatial memory measure was associated with low gray

matter in small scattered clusters including the left hippocampus,

right middle frontal gyrus, frontal pole, and left dorsal parietal lobe.

Maps were thresholded at P < 0.05, corrected for family-wise error.

Color bars show t-value ranges. All maps are shown on the Montreal

Neurological Institute template brain with the left side of the axial

and coronal slices corresponding to the left side of the brain.
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study suggesting that gray matter trajectories indicate low

hippocampal and amygdalar volumes arising 15 years

before estimated symptom onset.6 While regions with low

gray matter could in part reflect neurodevelopmental dif-

ferences as has been suggested for the C9orf72 repeat

expansion,44,45 our data indicate that presymptomatic car-

riers more frequently had low volumes within canonical

regions that are targeted in MAPT mutations with each

age decade. This finding suggests that a subset of

presymptomatic carriers may be undergoing incipient

neurodegeneration, with more carriers following suit as

symptom onset approaches. Interestingly, the frequency

of low mesial temporal lobe volumes appeared to outpace

other regions with increasing age, underscoring the

notion that the mesial temporal lobe is targeted early in

MAPT mutation carriers and becomes increasingly ubiq-

uitous with age and throughout the symptomatic phase.

A recent study of 14 presymptomatic MAPT mutation

carriers studied over a median of 9 years revealed that the

rate of temporal lobe gray matter decline outpaced the

rate of decline in the frontal and parietal cortices, suggest-

ing that low temporal gray matter volumes in presymp-

tomatic carriers may represent early neurodegeneration.46

Most MAPT mutation subtypes converge on
frontotemporal atrophy

Despite the different mechanisms of each mutation on

tau protein biology and neuropathology, patients with

different MAPT mutation subtypes converged on a highly

similar pattern of frontal and anterior, mesial and lateral

temporal atrophy with a corresponding predominance of

bvFTD diagnoses.15,47,48 Another study found that six

MAPT mutation subtypes shared anterior temporal gray

matter atrophy.41 IVS10 + 16, IVS10 + 3, N279K, and

S305N additionally showed mesial temporal atrophy,

while P301L and V337M had lateral temporal regions tar-

geted, with relative sparing of the mesial temporal lobe.41

In contrast, our V337M symptomatic carriers showed

mesial temporal involvement. Both the present study and

Figure 5. Atrophy patterns by MAPT mutation subtype —mean w-maps. Mean w-maps show the mean w-score in gray and white matter across

all subjects grouped by clinical stage. Rows reflect five different mutation subtype groupings. Frontotemporal atrophy patterns are similar across

mutation groups, except for the amnestic type R406W mutation group, which lacks frontal atrophy. Mutation subtypes associated with

progressive supranuclear palsy or parkinsonism distinctly show midbrain atrophy for both the symptomatic and presymptomatic groups. The

decade of the mean age for each group is indicated rather than the specific mean age in order to protect participant anonymity. Group maps are

thresholded from w≤-13 to �2. All maps are shown on the Montreal Neurological Institute template brain with the left side of the axial and

coronal slices corresponding to the left side of the brain. DD: disease duration.
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previous studies have investigated small numbers of par-

ticipants for each mutation subtype, such that clinical

heterogeneity may influence results.

Two notable exceptions arose when studying MAPT

mutation subtypes. R406W is the only knownMAPT muta-

tion that causes an amnestic syndrome rather than a behav-

ioral syndrome,22,23 and it typically causes mesial temporal

atrophy while sparing the frontal lobes relative to other

MAPT mutations.22,23,49,50 We found that R406W carriers

exclusively showed mesial and lateral temporal atrophy, but

lacked frontal atrophy, which may explain why these carriers

develop an amnestic rather than a bvFTD syndrome. Among

theMAPTmutations we studied, N279K, S305N, and S305S

cause PSP and parkinsonism. Interestingly, this group was

the only MAPT group which had midbrain atrophy, and

midbrain atrophy has been associated with patients with

PSP.51 An important caveat to our findings is that variability

in age and disease duration within the subtype groups may

be contributing to differences in atrophy because the partici-

pant numbers are limited for each group. Remarkably, the

average disease duration ranged from 2.7 (� 2.7) years for

the 4R-type mutation group to 19.5 (� 10.1) years for

V337M carriers, yet despite this wide range, the magnitude

of atrophy among the four mutation groups was similar.

This long disease duration and relatively old average age of

onset suggests that V337Mmight have a more indolent, pro-

tracted disease course compared to the other mutations.

Limitations

This study examined one of the largest MAPT cohorts to

date, but sample sizes were still small within most mutation

subtypes and larger cohorts are needed to study individual

MAPTmutations. To maximize power, we combined differ-

ent mutation subtypes based on clinical or neuropathologi-

cal similarity. Although we examined relationships of gray

and white matter with age, this study had a cross-sectional

design and longitudinal analyses are needed to map disease

trajectories. The extent to which focal regions with low gray

and white matter in presymptomatic mutation carriers may

be due to neurodevelopmental differences versus early neu-

rodegeneration remains unknown. Yet, the present study

and current literature support the notion that low gray and

white matter volumes in presymptomatic MAPT mutation

carriers represent early neurodegeneration. Longitudinal

studies will clarify these questions by mapping trajectories in

MAPT mutation carriers from early life through the symp-

tomatic phase.
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Symptomatic carriers have atrophy in frontotemporal cor-

tex, insula, uncinate fasciculus, anterior corona radiata,

corpus callosum, and inferior longitudinal fasciculus.

Maps are thresholded from w≤-13 to �2. All maps are

shown on the Montreal Neurological Institute template

brain with the left side of the axial and coronal slices cor-

responding to the left side of the brain.

Table S1. Participants by Site
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