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Radiotherapy has an important role in the curative and palliative treatment settings for
bladder cancer. As a target for radiotherapy the bladder presents a number of technical
challenges. These include poor tumor visualization and the variability in bladder size and
position both between and during treatment delivery. Evidence favors the use of magnetic
resonance imaging (MRI) as an important means of tumor visualization and local staging.
The availability of hybrid systems incorporating both MRI scanning capabilities with the
linear accelerator (MR-Linac) offers opportunity for in-room and real-time MRI scanning
with ability of plan adaption at each fraction while the patient is on the treatment couch.
This has a number of potential advantages for bladder cancer patients. In this article, we
examine the technical challenges of bladder radiotherapy and explore how magnetic
resonance (MR) guided radiotherapy (MRgRT) could be leveraged with the aim of
improving bladder cancer patient outcomes. However, before routine clinical
implementation robust evidence base to establish whether MRgRT translates into
improved patient outcomes should be ascertained.

Keywords: adaptive radiotherapy, bladder cancer, MR guided radiotherapy, MR-linac, MRI

INTRODUCTION

Bladder cancer is the ninth most common cancer diagnosis globally with over 390,000 new cases
and over 150,000 deaths occurring each year (1). Muscle invasive bladder cancer (MIBC) makes up
approximately 20% of patients at presentation. For these patients, cure is achieved through both
effective local treatment and systemic treatment (2, 3).

Radical cystectomy has been the internationally accepted main stay of local treatment for MIBC
(4). This requires removal of the bladder, which then necessitates a urinary diversion. Most
commonly, this is in the form of an incontinent stoma (ileal conduit). Continent stomas and
orthoptic neo-bladder reconstructions are feasible options for some patients. Despite this,
continence and sexual function impact significantly on quality of life post-operatively (5–8). A
highly selected proportion of patients may be suitable for partial cystectomy by virtue of having a
unifocal tumor in a region of the bladder which then permits an adequately safe margin to be
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obtained without compromise to the bladder capacity. As less
than 5% of patients meet these stringent criteria, removal of the
whole bladder will be necessary for almost all patients. The clear
absence of comparable functional organ substitutes following
surgery means that bladder preservation with radiotherapy offers
opportunity for cancer cure with organ preservation (3, 9, 10).

Concerns about oncologic equivalence and absence of
randomised control data have driven underutilization of
radical radiotherapy for the treatment of MIBC (11–13).
However, when radiotherapy is used as part of a multi-
modality strategy, it achieves similar survival outcomes to
radical cystectomy (14, 15). The 5-year cancer-specific survival
ranges from 50% to 82% (depending on initial stage), with 5-year
overall survival of approximately 50%. Long-term bladder
preservation is successfully achieved in up to two-thirds of
patients (9). As a result, it would be accepted that patients
should be offered opportunity to consider both modalities
when either radical treatment would be suitable (3, 10, 16).

The aetiological association of bladder cancer with smoking
means patients often have multiple comorbidities on a
background of increasing frailty with advancing age that may
restrict opportunity for either radical treatment options (17). For
these patients, hypofractionated radiotherapy offers prospect for
long-term disease and symptom control (18, 19).

In both the radical and palliative bladder radiotherapy
settings, there remains opportunity to improve clinical outcomes
further by overcoming some of the challenges that bladder
radiotherapy poses. In this article, we examine the technical
challenges of bladder radiotherapy and explore how magnetic
resonance (MR) guided radiotherapy (MRgRT) could provide a
solution for geometric and biologically adapted treatment delivery.

CURRENT ROLE OF MR IMAGING IN
BLADDER CANCER

The tumor staging of bladder cancer is contingent on accurately
determining the presence of muscle invasion. Given the different
treatment approaches for NMIBC and MIBC, establishing the
correct tumor stage is critical in deciding the correct treatment
strategy (3, 20). Although CT provides high spatial resolution
allowing visualization of extra-vesical spread, it is not a reliable
means of determining the extent of muscle involvement (21). It is
limited both by inter-observer variability and inability to
distinguish the muscle layers of the bladder (22, 23). As a
result, the current standard means of diagnosing and staging
MIBC remains performing a TURBT with the aim of ensuring
bladder muscle is included in the specimen so that its
involvement can be ascertained (3, 20, 24). However, TURBT
remains imperfect as it risks under staging in 25%–50% of
patients (25–27).

Magnetic resonance imaging (MRI) staging accuracy exceeds
those reported for TURBT in terms of distinguishing between
MIBC (≥T2) and NMIBC (≤T1) (28, 29). Three meta-analyses
have evaluated the performance characteristics of multi-
parametric MRI (mpMRI) for local tumor staging across

approximately 5,000 patients. These studies reported similar
results, with pooled sensitivity of 0.87 (95% Confidence
interval, CI 0.82–0.91), 0.90 (95% CI 0.83–0.94), and 0.92 (95%
CI 0.88–0.95), and specificity of 0.79 (95% CI 0.72–0.85), 0.87
(95% CI 0.78–0.93), and 0.88 (95% CI 0.77–0.94) (28–30).

A mpMRI examination for bladder cancer staging usually
consists of a T2-weighted image (T2W) with diffusion-weighted
image (DWI), or dynamic contrast enhancement (DCE) image
(28–31). There is suggestion however that mpMRI using DWI is
the optimal protocol for tumor staging of bladder cancer (29, 30).
Figure 1 illustrates example image of a localized MIBC as
evaluated on 1.5T MRI.

In order to standardize the image acquisition, interpretation,
and reporting of mpMRI for newly diagnosed bladder cancer, the
Vesical Imaging-Reporting and Data System (VI-RADS) was
developed in 2018 (31). This is a five-point qualitative scoring
system of bladder tumors as seen on T2W, DWI, and DCE
imaging, to determine the likelihood of muscle invasion. The
final score is based on T2W imaging because of its high spatial
resolution to evaluate the integrity of the muscle layer. Definitive
muscular invasion is decided by the assessment of DWI and
DCE. However, as DWI improves the accuracy of distinguishing
MIBC, it is relied upon particularly when there is discordant
scoring between T2W and DCE sequences (29, 31–33).

Multi-institutional studies applying VI-RADs scoring (1-5) to
mpMRI interpretation to determine local staging demonstrates
high sensitivity and specificity when a cut off score of ≥3 is used
to describe likelihood muscle invasion (34–38). VI-RADS
scoring also reflects good to excellent interobserver reporting
agreement, with indices of agreement ranging between 0.73 and
0.92 (34–37). Despite this evidence, mpMRI has not yet
established its place as recommended and preferred standard
imaging for local bladder cancer staging in clinical guidance (3).

In prostate cancer mpMRI has been shown to identify those
men who could safely avoid unnecessary biopsy with the aim of
enabling detection of clinically significant disease (39). In
bladder cancer, it is also hypothesized that mpMRI may also
serve as a triage test prior to TURBT (40). The advantage this
presents for MIBC patients is that it would potentially reduce
delays to definitive treatment, avoids under staging on initial
TURBT, and minimizes the risk of systemic circulating cancer
cell dissemination occurring as a result of bladder perforation
with TURBT (25, 26, 41, 42). The possibility that the TURBT
may be completely avoided when suspicion of MIBC is high on
mpMRI is being explored in a randomized phase 2/3 trial
(BladderPath, ISRCTN reference number 35296862) (43). This
trial aims to compare the standard diagnostic pathway consisting
of flexible cystoscopy and biopsy, with imaging followed by
TURBT versus a risk stratified imaging directed pathway
whereby if on flexible cystoscopy there is clinical suspicion of
possible MIBC, a biopsy is taken and patients proceed to
mpMRI. If the mpMRI supports likelihood of NMIBC, patients
then proceed to TURBT otherwise if the mpMRI supports
likelihood of MIBC patients proceed to directly to treatment.
Initial feasibility to randomize possible MIBC patients to a
TURBT directed diagnostic pathway or mpMRI directed
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diagnostic pathway has been successfully demonstrated. The trial
is ongoing to investigate how a mpMRI-driven diagnostic
pathway impacts on time to correct therapy for MIBC and
NMIBC and clinical progression-free survival (43).

RATIONALE FOR MR-GUIDED ONLINE
ADAPTIVE BLADDER RADIOTHERAPY

MRI Improves Target Visualization
The uncertainties of using CT for bladder tumor staging also
impact on the ability to reliably define the outer bladder wall and
gross tumor volume (GTV) within the bladder. As a result, use of
CT leads to significant inter-observer target delineation
variability particularly at interfaces with neighboring structures
such as small bowel or prostate, and in the presence of extra-
vesical spread (44–47). Poor target delineation is a major source
of systematic inaccuracies in radiotherapy (45). The improved
soft tissue contrast of MRI may help address this.

The GTV visibility in bladder cancer however can be
hampered after TURBT and good response to neo-adjuvant
chemotherapy (46). Insertion of radio-opaque markers at
cystoscopy to demarcate the visible tumor extension has been
explored (48). Surgical clips or gold fiducial markers can be
inserted at the borders of visible tumor or tumor bed via
cystoscope (49–51). Although they provide excellent visualization
on CT, these markers are prone to migration and fall out in up to
50% of cases following implantation (49, 52). Diathermy post
insertion or gold seeds with micro-tines further improve
retention rates but net marker losses (up to 18%) are still seen
(50, 51). Metallic fiducial markers do not yield a signal on MRI and
appear dark. By using T2*weighted sequences, the signal loss can be
emphasized such that their position can be identified allowing them
to be used to guide localization on MRI (53).

Iodized oil contrast (Lipiodol®), 0.25–0.50cc injected sub-
epithelially into the bladder wall has also been used as an
alternative fiducial marker (54–57). Its use is limited to
patients with no history of contrast medium sensitivity or
active thyroid disease (54, 58). It is not subject to the same
frequency of marker loss, but the liquid nature of the contrast
medium means intra- and extra-vesical spillage can occur (54–
56). In circumstances of high concentration, this can lead to
streak artefacts on CT (59, 60). Lipiodol is not visible on MRI.

Novel radiographic gel-like markers (BioXmark®) that are
liquid, with low initial viscosity prior to and during injection but
transforms into a highly viscous liquid to form a 3D gel-like
shape have also been investigated (61). It produces signals void
on MRI in phantom studies (62). Further work is in progress to
assess this marker when used clinically for bladder
MRI evaluation.

Adaptive Radiotherapy to Address Target
Motion
The bladder is relatively mobile target subject to filling variation
and deformation. It is fixed at the caudal pole and is abutted by
the rectum or uterus posteriorly. Therefore, as the bladder
volume increases non-uniform organ expansion generally
occurs which is more pronounced in the cranial and anterior
directions (47, 63–66). The magnitude of this change is rarely
consistent or predictable (67, 68). Patient interventions such as
drinking protocols, catheterization, dietary modifications, and
laxatives have been explored but do not consistently reduce
bladder target variation (60, 69, 70).

Inter-Fractional Motion Mitigation
In an attempt to compensate for both the variability of the
bladder shape, and size between treatments (inter-fraction),
historically large population-based margins (up to 1.5–2cm)
have been applied to create the planning target volume (PTV).

FIGURE 1 | Localized MIBC as evaluated on T2W and DWI with the associated parameter settings for 1.5T MRI. 70 year old male with known T3 N0 M0 bladder
cancer, tumour is present at the left ureteric orifice (extending posteriorlaterally) (A) contrast enhanced CT scan, axial slice through pelvis, (B) axial T2W (large field of
view) showing hypo intense lesion, (C) axial T2W small field of view (D) corresponding ADC map, (E) axial DWI at b-value 0, (F) axial DWI at b-value 750.
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Despite the use of such large margins to address the bladder
target positional uncertainties, without the adoption of soft tissue
image guidance, geographical misses will occur at treatment
delivery (71).

Pre-treatment, in-room three-dimensional volumetric soft
tissue imaging provides anatomical information that can
feedback into the plan and adapt dose delivery optimization
(72). The overall aim of these adaptive radiotherapy strategies is
to further improve the fidelity of dose delivered to target in order
to reliably reduce the PTV so dose to normal tissues can also be
reduced. In bladder cancer radiotherapy, two main adaptive
approaches based on the wide availably of cone bean CT
(CBCT) have seen drift into clinical practice based on reported
dosimetric gains (68, 73).

The composite volume method is an offline adaptive
radiotherapy approach that utilizes information from the
verification CBCT acquired for the first 3–5 fractions to
determine a patient specific internal target volume (ITV)
informed by the maximal excursions of the bladder actually
occurring. A smaller margin to account for remaining residual
uncertainties is then applied to create a new PTV and plan. This
solution adequately maintains bladder target coverage and
reduces the PTV by approximately 40%–50% compared to
population based PTV approach (74, 75). The main
disadvantage is that patients can only benefit from the adaptive
radiotherapy strategy after sufficient number of verification
CBCTS images has been acquired. This presents limitations in
its application to hypofractionated regimes because a significant
proportion of treatment course would already have been
delivered before a new plan can be created.

The alternative and more widely adopted method currently
employed is to generate a library of patient specific treatment
plans with varying PTV sizes (73). Using the CBCT acquired
prior to each fraction, the anatomy is assessed to select the most
appropriate plan that covers the bladder target with minimal
normal tissue exposure. The library of plans can be created by
applying either variable margins or by modeling the patient’s
own bladder filling pattern using either serial planning CT scans
or the verification CBCTs from the initial fractions (76–78). This
solution also successfully maintains target coverage, and reduces
the PTV by approximately 40% with subsequent reduction in
normal tissue irradiation (79). The main disadvantage is that a
discrete library created to cover the spectrum of interfraction
variation means the individual conformity of the selected plan to
the imaged bladder on the day can be relatively poor (80). It is
also possible in some circumstances that none of the plans in the
library encompass the imaged bladder target on the day (78, 80).

Modeled approaches in bladder cancer radiotherapy illustrate
that by adopting an online replanning adaptive radiotherapy
process, whereby the patient’s treatment plan is produced based
on the actual anatomy seen while they are on the treatment
couch would further improve target coverage and OAR sparing
(81, 82). In work comparing standard single plan, with different
adaptive strategies the volume of normal tissue receiving more
than 95% of the prescribed dose was reduced to 66% (range 48%–
100%) with library approach and to 41% (range 33%–50%) with

daily re-optimization (81). Considerable normal tissue sparing
potential therefore exists for bladder cancer patients with online
re-optimization.

The availability of hybrid systems that incorporate both MRI
scanning capabilities and linear accelerator (MR-Linac) allows
an in-room, real-time MRI scan to be obtained immediately
prior each fraction (83–85). As MRI yields superior soft-tissue
contrast compared to CBCT it would be preferred means for
accurate bladder target delineation and organs at risk (OARs),
i.e., rectum and bowel identification to inform re-optimization at
each fraction (86). Feasibility of these platforms to deliver an
MR-informed fully online re-optimized new bladder plan at each
fraction has been demonstrated (87, 88).

Intra-Fractional Motion Mitigation
Stochastic variation in the organ filling, deformation, and
peristaltic motion means that changes will occur in the bladder
target and OARs within the time scale of pre-treatment imaging
and delivery of each individual treatment fraction. This
necessitates additional consideration to determine the best
means of accommodating for this motion in order to minimize
risk of geographical miss.

The most common strategy in bladder cancer radiotherapy is
to treat on an empty bladder and passively manage intra-
fractional change by the application of a margin that will
encompass the magnitude of motion likely to occur within the
time frame of the workflow. For treatment delivery based on the
CBCT adaptive solutions described above, intra-fraction margins
ranging from 2 mm to 7 mm have been suggested (76, 77, 79, 81,
89, 90). This margin may also be influenced by treatment
technique, as intensity modulated arc therapy (IMAT) is
associated with faster delivery times than fixed field IMRT so
facilitating use of smaller intra-fraction margins (91).

In a patient population who had serial MRI scans acquired at
2 minute intervals for up to 10-min post voiding, it was possible
to demonstrate that the application of anisotropic margins
(14 mm cranially and anteriorly, 9 mm posteriorly, and 5 mm
in all other directions) successfully maintained target coverage as
evaluated on the 10-min MRI scan for the entire treatment
course (82). Target under dosing (≥D1cc <95% of the prescribed
dose) was seen in 4% of fractions compared to 20% when a 5 mm
isotropic margin was used (82).

Currently, treatment workflow times for utilization of an
MRgRT online reoptimization approach are in the region of
approximately 30–40 min (87, 92, 93). It has been successfully
shown that an anisotropic margin of 15 mm applied cranially
and anteriorly, 1 cm posteriorly, and 5 mm in all other directions
will successfully maintain target coverage in 96.6% of fractions as
assessed on the post treatment MRI scan (87). The mean
conformity of the 95% isodose to the post treatment bladder
target is 2.4 (range 1.5–3.6), suggesting the intra-fraction margin
could be reliably reduced in some instances (87). While
maintenance of target coverage throughout the fraction
delivery is a priority, the potential gains of online re-
optimization would be mitigated by the use of over-generous
intra-fraction margins.
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The alternative approach is to actively manage intra-fraction
change with MR guided motion management. During beam on
period, continuous MR imaging can be acquired for real-time
motion monitoring, tracking, and or gating. A tracking slice is
positioned to include a cross-sectional axis at the target volume
of interest. A minimum tracking boundary or motion monitoring
structure is set such that if a pre-specified proportion of the
tracked target leaves this boundary, the beam will turn off (10).
This allows extremes of anatomical changes to be detected while
the target is being irradiated to minimize the risk of a geographical
miss (10, 94).

MR guided tumor tracking has been successfully used on the
MR-Linac for treatment of tumors of the upper abdomen and
prostate (95–97). However, the challenge this presents for
bladder cancer radiotherapy is that tracking alone is not
necessarily a universal solution if the target is increasing in
overall volume as occurs with whole bladder radiotherapy
(65, 66). It raises the question then, could the tumor itself be
tracked and could this region be safely prioritized over the
uninvolved bladder.

Enabling Tumor-Focused Partial Bladder
Irradiation
Tumor-focused partial bladder radiotherapy is attractive for two
main clinical reasons: firstly, the reduced high dose opens the
possibility that treatment-related toxicity could be reduced; and
secondly, it opens the possibility for dose escalation to the tumor
beyond limits currently determined by the whole bladder
tolerance of 64-65Gy in 2Gy per fraction (98–100).

Whole bladder radiotherapy has been the accepted convention
even in the presence of unifocal disease possibly because of the
difficulty in identifying the tumor within the bladder on CT and
the historical inaccuracies of treatment delivery described above.
Nevertheless, evidence to date supports that partial bladder
irradiation is likely to be safe (3, 101–103).

Bladder brachytherapy has been used for a highly select patient
population with unifocal small lesions (≤50mm) achieving similar
outcomes to a matched population undergoing radical cystectomy
(104). It is not widely accepted or recommended as an organ-
conserving treatment option mainly because technical expertise is
confined to highly specialized centers and no randomized control
data is available (3, 101).

Randomized control trials of whole bladder versus tumor-
focused partial bladder external beam radiotherapy have
successfully demonstrated that tumor-focused partial bladder
radiotherapy could be utilized with no adverse effect on local
control (103, 105). However, these randomized controlled trials
failed to show decrease treatment related toxicity (103, 105). A
number of technical aspects are likely to have mitigated any
benefit from a reduced high dose volume. Treatment was
planned and delivered on an empty bladder. In addition,
delineation of the tumor within the bladder using a planning
CT scan would have invariably led to overestimating the GTV
size (44–46). The subsequent isotropic 1.5 cm expansion margin
around the GTV to generate the PTV boost volume from which a
3D conformal treatment plan was created would then leave very

little additional normal tissue sparing compared to whole bladder
treatment. Setup in the era of these trials was either to skin or bone
and preceded soft tissue verification, so it can be assumed that
with 1.5 cm margin target coverage may have only been
approximately 60% (71). Dose unsuccessfully delivered to target
would have resulted in unwanted normal tissue irradiation.

Many investigators have sought to overcome these challenges
by using library of plans to deliver tumor-focused high dose
radiotherapy on filled or partially filled bladder (80, 106, 107).
The advantage of striving for a fuller bladder in these
circumstances is that it reduces dose to the uninvolved bladder
and provides greater opportunity for normal bladder sparing.
Treatment delivered in these trials used either fixed field IMRT
or IMAT. This improves conformity of radiation fields around
the target volume, relative to 3D conformal techniques (91). In
comparisons of clinical outcomes of bladder cancer
radiotherapy, IMRT has been reported to significantly reduce
acute CTCAE grade ≥2 diarrhoea compared to 3D conformal
radiotherapy (56% versus 30%; p = 0.008) (108). Whether using
library of plans to escalate tumor-focused dose translates into
clinically meaningful outcomes will be evaluated in an international
randomised phase II trial (RAIDER, NCT02447549) (109).

Dosimetric analysis of library of plans to deliver tumor-
focused high dose radiotherapy reveals that although excellent
target coverage can be achieved meeting normal bladder and
bowel constraints, the high mean conformity of the 95% isodose
of the selected plan to the tumor boost as seen on CBCT is 5.0
(SD 2.2, range 2.1–21.4) and the whole bladder is 3.5 (SD 1.0,
range 1.7–8.9). This suggests large volume non-target irradiation
is still occurring (80). The MR-Linac may therefore open
opportunity for an online re-optimized tumor-focused partial
bladder approach.

Successful tumor-focused partial bladder irradiation is
dependent on ability to define GTV on both the planning CT
and CBCT. Although CBCT allows reasonable discrimination of the
bladder wall, visualization of the tumor itself is challenging (80,
110). As local recurrences occur most frequently at the original
MIBC tumor site, correctly identifying the GTV becomes increasing
critical particularly in the era of margin reduction (111). The
superior soft tissue contrast of MRI may therefore enable more
reliable tumor-focused partial bladder radiotherapy (Figure 2).

The MR-Linac may also provide greater opportunity to assess
how the tumor moves in relation to the filling status of the
bladder to determine the most appropriate intra-fraction
margins for partial bladder radiotherapy. Work to date
suggests that the bladder tumor is relatively rigid and non-
elastic compared to non-tumor-bearing bladder regions but
this is based on CT interpretation (112).

WORKFLOW CONSIDERATIONS FOR
BLADDER TREATMENT ON THE
MR-LINAC

An overview of the principal workflow components is presented
in Figure 3. For treatment of the whole bladder on the
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MR-Linac, workflow time pressures are critical because of the
anticipated intra-fraction volume increase. If workflow time
could be reduced, the margins currently applied to accommodate
for this change could also be reduced. Several considerations can
assist with achieving this.

Ideally as little time as possible should be spent re-optimizing
the daily treatment plan. This can be aided by generating a robust
planning class solution from the outset to minimize the need for
online modification and experimentation. This should be robust
to the expected daily changes in anatomy that will occur.

Prior to starting treatment, a reference plan is created. A
planning CT (CTplanning) and, or a simulation MR (MRplanning)
scan is acquired with an empty bladder. This is achieved by
asking the patient to void immediately prior to scanning. The

CTplanning is used for density information and it is deformably
registered to the MRplanning. It is also possible that at simulation
serial images over time are acquired to estimate a “patient
specific” intra-fraction bladder filling PTV margin.

When patients attend for treatment, they are asked to void
their bladder immediately prior to set up. A session or pre-
treatment MRI (MRsession) image is acquired on the MR-Linac
which is registered to the planning reference image (CTplanning or
MRplanning). The contours from the planning reference image are
propagated to the MRsession image using deformable registration
or segmented using artificial intelligence contouring algorithms
(113). The contours are reviewed and corrected if necessary. To
speed up the outlining time, more accurate delineation of OARs
is limited to a 2 cm region around the target. The consequence of

CBCT 

MR-Linac

Bladder 

Artifact from ureteric stent  

Bladder 

Tumour

a)

a)

b)

b)

c)

c)

FIGURE 2 | Online pre-treatment CBCT and MR (T2W) images. Bladder tumour at left bladder wall as seen on axial a), sagittal b), and coronal c) views of the pelvis
on corresponding CBCT and T2W taken on the MR-Linac, here urine appears bright and tumour dark/hypointense.

Off line On line 

Reference scan
Simulation MRI

Reference scan 
Planning  CT

Reference plan generated 
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FIGURE 3 | Overview of the principal workflow components of online reoptimization using MRgRT.
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having less accurate contours is that, although the dose distribution
will still be close to optimal, the reported dose statistics for these
OARs will be less reflective of actual dose to these structures. This
trade-off is made to balance the desire for accurate delineation and
the fact that the OARs underlying those contours are continuously
changing whilst they are being delineated.

A new plan with full re-optimization is created. For online
bladder planning dose-volume metrics do not have to be used,
instead focus can be placed on how rapidly the dose falls off away
from the target. Here, the optimizer only considers the dose
gradient in the region where the OAR abuts the target, and as
such is not dependent on the overall OAR volume. This approach
is also less sensitive to accurate delineation of the OARs, as only
the approximate region where they border the target is needed.

During the optimization process, a fast T2WMRI (MRverfication)
is acquired to confirm that appropriate target coverage is
maintained either by reviewing the PTV coverage of the bladder
or the isodose coverage of the bladder. If the bladder is not
optimally covered then the plan can be shifted relative to the
isocenter and dose recalculated on the MRsession (114, 115). If this
maneuver would also not sufficiently cover the bladder target then it
would be recommended that the patient is removed from the
couch, voids their bladder, and are treated with the reference plan.
Prior to the subsequent fraction patient factors contributing to
rapid bladder filling, i.e., pre-treatment diuretic or excessive
hydration should be explored and managed. It may also be
necessary to review and increase the intra-fraction margin.

At treatment delivery, cine MR can be used to monitor bladder
motion during beam on with the option that should the bladder
move out of the PTV or the pre-defined motion monitoring
structure, the treatment can be interrupted if required. A post
treatment T2W MRI (MRpost) is acquired immediately following
delivery for offline dose assessment of the treatment delivered. The
difference between planned dose on MRsession and delivered dose
as determined on MRpost could potentially be incorporated into
the online adaption strategy and compensated for at the
subsequent fractions, if clinically indicated.

Currently the time to deliver this workflow at best is between
15 and 27 min (personal communication, A Bertelsen & C
Nyborg, Odense University Hospital, Denmark) but we have
found the median total time for patients on the treatment couch
is 39 min (range 33–48) (87). We expect that this will be reduced
further with faster image acquisition, improvements in auto-
contouring, increased computational ability for plan
optimization and dose calculation, and the implementation of
IMAT delivery techniques.

BEYOND GEOMETRIC ADAPTION

MRI could be used to acquire biological information about the
bladder tumor. This could provide opportunity to develop MRI
informed biologically adapted radiotherapy approaches (116).

DWI is a functional imaging technique dependent on the
inhibitory effect of cell membranes to the random motion of
water molecules. The higher cellular density of tumors compared

to normal tissue means they demonstrate higher signal intensity,
i.e., restricted diffusion on MRI, reflected quantitatively in a low
mean apparent diffusion coefficient value (ADC). Per pixel ADC
throughout the tumor volume can be used to capture the regional
heterogeneity known to exist within tumors which may have
prognostic and predictive value (117–121). As the local relapse
site following radiotherapy is at the site of the MIBC tumor, it is
hypothesized that by escalating dose to the tumor region of
highest cellularity, local control rates could be improved (111).

Following successful treatment, the ADC value increases,
reflecting decrease in cellularity. In MIBC ADC change is an
independent predictor of pathological response (122, 123). Given
serial DWI acquisition on the MR-Linac is possible at each
fraction, there is potential for monitoring ADC change
throughout treatment with identification of early non-
responders who may benefit from change in treatment
approach (124). As such MRI offers opportunity for a response
adapted radiotherapy delivery.

Tumor hypoxia in MIBC is a potential predictor of radiotherapy
response with effective modification improving outcome (125, 126).
MRI can be used to measure and map tumor hypoxia in a number
of ways not otherwise possible on biopsy or serum surrogates (127,
128). Intrinsic susceptibility weighted or blood oxygenation level
dependent MRI (BOLD), exploits the difference in magnetic
susceptibility of oxyhaemoglobin and deoxyhaemoglobin to
generate contrast and identify regions of hypoxia (129).

Visualization of tumor blood flow can be used as a surrogate to
identify areas of hypoxia. DCE enables in vivo assessment of tumor
blood flow and permeability using paramagnetic contrast agents.
DCE has been shown to have ability to predict treatment response
in MIBC following chemotherapy (130). Experimental models
demonstrate the potential effectiveness of hypoxia informed boost
dose delivery to increase tumor control (126). Future partial
bladder radiotherapy approaches could therefore inform a
mpMRI derived biological target volume. Given this volume is
up to 45% smaller than an anatomically defined bladder GTV, it
opens the possibility of further normal tissue sparing (131). As the
volume of radiation influences the immunogenic potential of the
tumor microenvironment, defining alternative meaningful target
sub-volumes particularly with systemic immunotherapy warrants
further evaluation (132, 133).

CONCLUSION

MRgRT heralds a paradigm shift for bladder cancer patients
with potential gains to be had at the simulation, treatment
delivery, and response assessment stages. Whether the closer
integration of MRI into the bladder patient radiotherapy
pathway translates into clinical gains for our patient
population is still yet to be determined. A framework for
clinical evaluation of MR-Linac technologies has been
suggested (134, 135). We would strongly advocate
participation in clinical trials to generate robust evidence base
to prove our expectations (and hopes) of further improving
bladder cancer patient outcomes with MRgRT.
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