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Abstract: This paper presents a new fully-automated adaptation strategy for structural topology 
optimization (TO) methods. In this work, TO is based on the SIMP method on unstructured 
tetrahedral meshes. The SIMP density gradient is used to locate solid-void interface and h-
adaptation is applied for a better definition of this interface and, at the same time, de-refinement 
is performed to coarsen the mesh in fully solid and void regions. Since the mesh is no longer 
uniform after such an adaptation, classical filtering techniques have to be revisited to ensure 
mesh-independency and checkerboard-free designs. Using this adaptive scheme improves the 
objective function minimization and leads to a higher resolution in the description of the optimal 
shape boundary (solid-void interface) at a lower computational cost. This paper combines a 3D 
implementation of the SIMP method for unstructured tetrahedral meshes with an original mesh 
adaptation strategy.  The approach is validated on several examples to illustrate its effectiveness. 
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1 Introduction 

Topology optimization (TO) of continuum structures [1, 2] is a powerful tool that gradually 
becomes a key step in the design process of many products and structures. It consists in 
calculating the optimal distribution of material, with respect to a given objective, in a design 
domain under sets of constraints. It is becoming a very attractive and important tool in practical 
engineering [3-5] since it allows producing significantly superior designs and greater savings, 
than when using parametric optimization or trial and error approaches. Over the past decades, the 
most widely used TO techniques are the Solid Isotropic Material with Penalization (SIMP) 
method [6], homogenization based methods [7, 8], level sets based methods [9, 10] and 
Evolutionary Structural Optimization (ESO) methods [11, 12]. 

In general terms, the SIMP method consists in determining whether or not a point located inside 
a given design domain should be solid material. In the SIMP method, the volume fraction is 
prescribed as an input, and is kept constant throughout optimization iterations. Although 
optimization results are likely to be enhanced through mesh refinement, this refinement is only 
required close to its boundary, while interior (fully solid) and exterior (fully void) material can 
be defined using a coarse discretization. These remarks suggest, as pointed out by Aremu et al. 
[13], that an adaptive mesh improvement strategy could be incorporated in the SIMP 
optimization process. This paper develops a new adaptive TO scheme which performs both mesh 
refinement and de-refinement for 3D optimization problems. The mesh adaptation strategy only 
refines elements at the boundary of the optimal shape and coarsens elements when moving away 
from it. Using such an adaptive process improves the boundary shape extraction and reduces 
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subsequent post-processing for the interpretation of TO results. Furthermore, by coarsening the 
mesh inside and outside the optimized domain, the computational cost of SIMP iterations is 
expected to considerably decrease. Another potential gain that can be foreseen is increasing the 
achievable geometric complexity of optimal designs. Indeed, a better definition of the boundary 
and more geometric complexity are attractive when using TO methods along with additive 
manufacturing. Moreover, as mentioned in [14], improving the quality of TO results at the 
design stage, even by a very modest amount, may have a huge impact on the overall cost of 
products when considering the entire lifespan. It is, for example, the case in aerospace 
applications, for which a tiny loss in weight induces very important fuel savings along the use of 
these products.  
 
The paper is organized as follows. In the next section (section 2) we present and discuss previous 
work related to adaptive TO. Section 3 starts with a short overview of the SIMP method and 
introduces the concepts on which our mesh adaptation scheme is based. It also shows that 
classical filtering techniques, that have proven efficiency in preventing numerical instabilities of 
the SIMP method on uniform meshes, have to be adapted in the context of using highly non-
uniform unstructured meshes. Section 3 ends with an analysis of the influence, on optimization 
results obtained, of the main parameters of our adaptation scheme. In section 4, the effectiveness 
of our approach is validated through sets of numerical examples. Conclusions are drawn and we 
sketch some directions for future work in the last section.  

2 Related work  

Although a limited number of approaches can be found in the literature towards implementing 
adaptive TO of 3D structures, setting up adaptive schemes to improve optimal solutions is not a 
new idea. In 1995, Maute and Ramm [15] indeed proposed a method for adapting optimization 
results in 2D. This methods starts with roughly extracting iso-density curves, which is followed 
by refining the mesh around these curves and ends with considering this new mesh as a new 
optimization problem, with the same boundary conditions and loads. By reducing, at each new 
optimization, the finite element mesh size and increasing the considered value in iso-density 
curves extraction, several optimization cycles are applied, until reaching a result with satisfying 
quality. However, this technique is restricted to 2D optimization problems and the overall 
domain is refined (no de-refinement is carried out). Later, based on the geometrical discretization 
error, Ramm et al. [16] proposed an h-adaptive strategy for shape optimization. As an extension 
of their method to topology optimization, they were the first, to our knowledge, to introduce the 
idea that the spatial gradient of material distribution can be used as a refinement criterion in 
topology optimization. Costa and Alves [17] refined an initially coarse triangular mesh after a 
certain number of optimization steps. In their work, the refinement strategy is based on 
estimating the error on stress distribution. After each refinement, a constrained Laplacian 
smoothing is applied on the mesh to improve elements quality. Still, both solid and boundary 
elements are refined and no de-refinement is applied. Roman Stainko [18] first considered only 
refining the mesh at the solid-void interface and applying it to tetrahedral meshes. In his 
approach, new elements are inserted only at the boundary of the optimal design and fully solid 
and void regions are not refined. A filter is introduced in the refinement process to control the 
number of elements around the solid-void interface and refinement is performed through partial 
re-meshing. However, no de-refinement is performed. Few years later, Sturler et al. [19] and 
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Wang et al. [20] introduced the AMR (Adaptive Mesh Refinement) concept to achieve the 
design that would be obtained on a uniformly fine mesh. Their dynamic mesh refinement and de-
refinement is performed continuously throughout the optimization process, but refinement and 
de-refinement are not carried out simultaneously. Moreover, both solid-void interface and solid 
volume are refined, which is likely to refine the mesh where it doesn’t necessarily need to be. 
Bruggi et al. [21] propose a modified version of this approach that is driven by two error 
estimators and for which de-refinement is only performed inside the void region and at the last 
adaptive step. In this approach, the first error estimator used is related to the amplitude of 
intermediate regions (solid-void interface) and the second one is related to the FEA error itself.  
 
More recently, Duan et al. [22] introduce an adaptive mesh refinement strategy for TO applied to 
computational fluid dynamics (CFD) for which refinement is driven by distance to the boundary. 
Wang et al. [23] propose using two separate discretizations along TO : one discretization for 
approximating the relative density field and the other one for FEA. The relative density mesh is 
refined with respect to optimization results while the analysis mesh is refined with respect to 
FEA error estimation. The advantage is that it guarantees that refinement based on the relative 
density field does not degrade analysis results. However, the method does not feature any de-
refinement process and requires using non-conventional finite elements (so-called level-one mesh 
incompatibility [20]). Being able to use conventional finite elements is indeed an advantage since 
it basically allows using any FEA solver. Lin et al. [24] performed a two-stage TO algorithm for 
homogenization methods where the optimal design obtained at the end of the first optimization 
stage is projected on a refined uniform mesh, which is then used as the initial topology for the 
second stage of the optimization. Another alternative to improve TO results by combining 
adaptive meshing strategy and (Bi)directional ESO (so-called BESO) scheme is proposed by 
Aremu et al. [25] to solve a standard cantilever beam. During the re-meshing process, elements 
are refined using two refinement templates by bisection and mesh coarsening is performed 
through edge collapsing. However, this strategy degrades mesh quality and it may not be 
straightforward to extend it to 3D optimization problems. Similarly, Liu et al. [26] couples an 
adaptive moving mesh method (also called r-adaptivity scheme) with a level set TO scheme. 
Unlike previous re-meshing and updating procedures, they updated mesh grid points following 
topology changes to better approximate the optimal shape without changing the mesh topology. 
Furthermore, large deformation problems with meshfree analysis in TO design have been 
addressed by He et al. [27]. They have obtained good optimal solutions without mesh difficulties 
and numerical instabilities by using an element-free Galerkin method, which represents a 
promising and interesting alternative to FEA based optimization. 
 
Topology optimization capabilities have been successfully implemented in several commercial 
systems [28, 29]. TOSCA is a commercial TO solution that features an adaptive mesh refinement 
during the TO process. However, this commercial implementation is limited [14]. In the current 
version, the adaptive process is limited to two refinement iterations and mesh refinement is 
implemented using templates based on 2D quad elements that are not straightforward to extend 
to the general context of unstructured tetrahedral meshes.  
 
As a conclusion, the aforementioned methods are either limited to 2D optimization problems 
and/or do not feature a de-refinement process. It also appears that, since mesh density strongly 
influences both the computational cost of TO and the smoothness and accuracy in the description 
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of the optimal shape, mesh adaptation is a potentially very useful tool in the improvement of TO 
results. This is why, in this paper, we present a fully-automated adaptive TO scheme that 
includes simultaneous mesh refinement and de-refinement and that applies on 3D unstructured 
tetrahedral meshes.  

3 A new adaptive topology optimization process  

As introduced in the previous section, our objective is simultaneously refining and de-refining 
specified regions of finite element meshes used in TO to improve accuracy in the definition of 
optimal shape boundary at a low computational cost. 

3.1 The SIMP Method  

3.1.1 Basic principles 

The SIMP (Solid Isotropic Material with Penalization) method is based on considering an 
artificial solid isotropic material with power-law penalization of intermediate densities to steer 
the optimal solution to a discrete 0-1 design (0 density stands for void and 1 density for full 
material). Thus, from SIMP results (a distribution of density across the mesh that represents 
design material) the optimal design shape is obtained from sets of finite elements with a density 
that is close to 1. In this paper, the implementation of the SIMP method used consists in 
optimizing the distribution of a fixed amount of material inside the design volume towards 
minimizing its global compliance (or flexibility), which generally means maximizing its 
stiffness. The distribution of material inside the design volume is represented by a relative 
density distribution 𝜌(𝑥, 𝑦, 𝑧), which is updated along finite element iterations. Convergence of 
SIMP iterations is achieved when the relative difference in global compliance between two 
successive iterations is less than a given threshold. 

In classical implementations of the SIMP method, 𝜌(𝑥, 𝑦, 𝑧) is a scalar that is constant per 
element (𝜌𝑒 in  element 𝑒). This relative density distribution is related to the distribution of a 
virtual elastic modulus 𝐸 according to the penalization law: 

𝐸̃(𝑥, 𝑦, 𝑧) = 𝐸 ∙ (𝜌(𝑥, 𝑦, 𝑧))𝑝     (1) 
Where 𝑝 is a penalization coefficient (𝑝 = 3 in this work). 

In the following equations, as for the elastic modulus 𝐸̃(𝑥, 𝑦, 𝑧), all objects that are affected by 
the relative density field 𝜌(𝑥, 𝑦, 𝑧) are noted using a ~. For example, if [𝐾𝑒] is the local stiffness 
matrix of element 𝑒, [𝐾̃𝑒] will be the local stiffness matrix [𝐾𝑒] affected by the relative density 
field 𝜌(𝑥, 𝑦, 𝑧). Once 𝐸̃(𝑥, 𝑦, 𝑧) is calculated from 𝜌(𝑥, 𝑦, 𝑧), the global stiffness matrix [𝐾̃] is 
assembled from local stiffness matrices [𝐾̃𝑒] (for 𝑁 finite elements 𝑒): 

[𝐾̃] = 𝛢𝑒=1
𝑁 [𝐾̃𝑒] = 𝛢𝑒=1

𝑁 (𝜌𝑒(𝑥, 𝑦, 𝑧))
𝑝 ∙ [𝐾𝑒]    (2) 

 
where 𝛢𝑒=1𝑁 refers to the finite element assembly operator (scattering and adding elementary 
matrices)  
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𝜌𝑒 is the relative density inside element e 
 
The TO problem is classically formulated as follows: 
 

{
  
 

  
 𝑚𝑖𝑛 𝐶̃ ={𝑈̃}

𝑡
∙ [𝐾̃] ∙ {𝑈̃}

𝑠. 𝑡.  

{
 
 

 
 

[𝐾̃] ∙ {𝑈̃} = {𝐹} 
𝑉̃

𝑉𝑑
= 𝑓

𝐸̃(𝑥, 𝑦, 𝑧) = 𝐸 ∙ (𝜌(𝑥, 𝑦, 𝑧))
𝑝

0 < 𝜌𝑣𝑜𝑖𝑑 ≤ 𝜌 ≤ 1

   
    (3) 

 
It consists in minimizing the compliance 𝐶̃ while maintaining constant the volume fraction 𝑓. 
The volume fraction is defined as the ratio between volume 𝑉̃ (affected by 𝜌(𝑥, 𝑦, 𝑧)) and the 
initial design volume 𝑉𝑑. {𝑈̃} is the global displacement vector (affected by 𝜌(𝑥, 𝑦, 𝑧)) and the 
global load vector is {𝐹}.  
 
For each SIMP iteration, the relative density field 𝜌 is updated modified using the Optimality 
Criteria (OC) algorithm. Thus, 𝜌𝑒 is modified using:    
 

𝜌𝑒
𝑛𝑒𝑤 = {

max (𝜌𝑣𝑜𝑖𝑑, 𝜌𝑒 −𝑚) 𝑖𝑓 𝜌𝑒𝛽𝑒
𝜂
≤ max (𝜌𝑣𝑜𝑖𝑑, 𝜌𝑒 −𝑚)

𝜌𝑒𝛽𝑒
𝜂

     𝑖𝑓 max(𝜌𝑣𝑜𝑖𝑑, 𝜌𝑒 −𝑚) < 𝜌𝑒𝛽𝑒
𝜂
< min (1, 𝜌𝑒 +𝑚)

min (1, 𝜌𝑒 +𝑚) 𝑖𝑓min(1, 𝜌𝑒 +𝑚) ≤  𝜌𝑒𝛽𝑒
𝜂

}   

where 𝜌𝑒 is the previous relative density inside element e and 𝜌𝑒𝑛𝑒𝑤 is the updated (or new) 
relative density inside element e 
𝑚 is a threshold on the variation of 𝜌𝑒 and consequently |𝜌𝑒𝑛𝑒𝑤 − 𝜌𝑒| ≤ 𝑚 (practically, we used 
𝑚 = 0.2 for the examples presented in this paper  
𝜂 =

1

2
 is a damping coefficient  

𝜌𝑣𝑜𝑖𝑑 corresponds to a “numerical” void (for the results presented, the practical value of 𝜌𝑣𝑜𝑖𝑑 
is 10−3). It is used to avoid numerical singularities. 
 
e is calculated using the following equation: 

𝛽𝑒 =
−
𝜕𝐶̃
𝜕𝜌𝑒

𝜆
𝜕𝑉̃
𝜕𝜌𝑒

 

𝜕𝐶̃

𝜕𝜌𝑒
  is the global compliance’s sensitivity with respect to 𝜌𝑒, calculated from:  

𝜕𝐶̃

𝜕𝜌𝑒
= −

𝑝

𝜌𝑒
. {𝑈̃}

𝑡
. [𝐾̃𝑒]. {𝑈̃} 

 
Practically, {𝑈̃}

𝑡
. [𝐾̃𝑒]. {𝑈̃} is provided by FEA results, using the total strain energy inside 

element e, 𝑊̃𝑒 : 



6 
 

 𝑊̃𝑒 =
1

2
. {𝑈̃}

𝑡
. [𝐾̃𝑒]. {𝑈̃}  

Consequently: 
𝜕𝐶̃

𝜕𝜌𝑒
= −

2. 𝑝. 𝑊̃𝑒
𝜌𝑒

 

From 𝑉̃ = ∑ 𝑉̃𝑒
𝑁
𝑒=1 = ∑  𝜌𝑒 . 𝑉𝑒

𝑁
𝑒=1   we calculate 𝜕𝑉̃

𝜕𝜌𝑒
=

𝜕𝑉̃𝑒

𝜕𝜌𝑒
= 𝑉𝑒 which leads to 𝛽𝑒 =

2.𝑝.𝑊̃𝑒

𝜆.𝜌𝑒.𝑉𝑒
 

 is a Lagrange multiplier, which is calculated from applying bisection iterations. These 
iterations adjust the value of   so that the volume fraction constraint is satisfied: 

𝑉̃(𝜌) =∑ 𝜌𝑒
𝑛𝑒𝑤. 𝑉𝑒

𝑁

𝑒=1

= 𝑓. 𝑉𝑑 

3.1.2 Filtering sensitivity and density 

It is well known that to obtain macroscopic void-solid solutions for the optimized domain some 
sort of global or local restriction on the variation of density must be imposed in the TO problem 
[1]. Obtaining checkerboard-free solutions is classically achieved by using a mesh-independency 
filter, which consists in modifying the design sensitivity 𝜕𝐶̃

𝜕𝜌𝑒
 of element 𝑒 based on a weighted 

average of element sensitivities in its neighbourhood [30]:  

𝜕𝐶̃

𝜕𝜌𝑒
=

1

𝜌𝑒 𝑉𝑒⁄
∙
∑ 𝐻𝑣∙

𝜕𝐶̃

𝜕𝜌𝑣
∙𝜌𝑣 𝑉𝑣⁄

𝑁𝑒
𝑣=1

∑ 𝐻𝑣
𝑁𝑒
𝑣=1

     (4) 

 
Where 𝐻𝑣 is a weighting factor given by: 

𝐻𝑣 = 𝑟𝑚𝑖𝑛𝑐 − 𝑑𝑖𝑠𝑡(𝑒, 𝑣) ;   {𝑣 ∈ 𝑁𝑒 | 𝑑𝑖𝑠𝑡(𝑒, 𝑣) ≤ 𝑟𝑚𝑖𝑛𝑐}, 𝑒 =  1, … ,𝑁  (5) 

 
In this expression,  𝑟𝑚𝑖𝑛𝑐 is the sphere radius used to evaluate neighbourhood (𝑁𝑒 elements) 
around element 𝑒 and 𝑑𝑖𝑠𝑡(𝑒, 𝑣) is the distance between the centre of elements 𝑒 and 𝑣. This 
type of filter is purely heuristic but it has proven to be effective in many contexts [1, 21, 31]. 
Since the refinement process is based on the relative density gradient 𝑔𝑟𝑎𝑑⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  (𝜌), the relative 
density distribution around each element 𝑒 also needs to be filtered after each SIMP iteration. 
Indeed, we need 𝑔𝑟𝑎𝑑⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  (𝜌) to be as continuous as possible, which is achieved by filtering the 
relative density distribution 𝜌(𝑥, 𝑦, 𝑧) as classically used in some implementations of the SIMP 
method [1]. Filtering 𝜌(𝑥, 𝑦, 𝑧) is performed by computing a weighted average of element 
densities 𝜌𝑣 around element 𝑒.  Similar to 𝑟𝑚𝑖𝑛𝑐, this other neighbourhood around element 𝑒 is 
represented by sphere with radius 𝑟𝑚𝑖𝑛𝑑 and density 𝜌𝑒 is modified using [30]: 

𝜌𝑒̅̅ ̅ =
∑ 𝜔𝑣∙𝜌𝑣
𝑁𝑒
𝑣=1

∑ 𝜔𝑣
𝑁𝑒
𝑣=1

        with     𝜔𝑣 = 𝑉𝑣 ∙

𝑒𝑥𝑝[−
1

2
∙(
𝑑𝑖𝑠𝑡(𝑒,𝑣)
𝑟𝑚𝑖𝑛𝑑

3

)

2

]

2𝜋∙(
𝑟𝑚𝑖𝑛𝑑

3
)

   (6) 

 
Where 𝑉𝑣 is the actual volume of element 𝑣.  
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The effect of each filter can be independently controlled by enlarging or shrinking the associated 
radius. In this paper, values for 𝑟𝑚𝑖𝑛𝑐 and 𝑟𝑚𝑖𝑛𝑑 are taken around 1.25 times the prescribed local 
element size (𝑟𝑚𝑖𝑛𝑐 = 𝑟𝑚𝑖𝑛𝑑 = 𝑟𝑚𝑖 𝑛) and both filters (on the sensitivity and the density) are 
applied at each step of the SIMP iterative process. This process stops when the relative 
difference on the global compliance between two successive iterations ∆𝑖  =

𝐶̃𝑖−𝐶̃𝑖−1 

𝐶̃𝑖−1
 (𝐶̃𝑖 is the 

global compliance at iteration i) is less than a threshold ∆𝑐𝑜𝑛𝑣. The final compliance (the 
compliance at convergence of SIMP iterations) is noted 𝐶̃𝑓𝑖𝑛𝑎𝑙. 

As explained with details in [32], deriving an optimal shape from SIMP results (a relative density 
distribution 𝜌(𝑥, 𝑦, 𝑧)) is based on a density threshold 𝜌𝑡ℎ. Globally, the optimized shape is made 
with design material for which 𝜌(𝑥, 𝑦, 𝑧) > 𝜌𝑡ℎ. We implemented our own SIMP engine, based 
on previous work about the SIMP method [1, 31, 33-36] and based on equations 1 to 6.  More 
details about our implementation of the SIMP method can be found in [32]. 

3.1.3 SIMP results obtained on a sample part  

Figure 1a shows the initial geometry of a bike suspension rocker, which is used to illustrate our 
adaptive TO process, with boundary conditions (the 2 lower bores are fixed) and loads applied 
(on the 2 upper bores in the 𝑌 direction). The initial rocker overall dimensions are 390 𝑚𝑚 
(height), 240 𝑚𝑚 (width) and 32 𝑚𝑚 (thickness). Young’s modulus is 69 GPa  and Poisson’s 
ratio is 0,33. As seen in the SIMP result presented in Figure 1b, non-design material is 
distributed around the 4 bores. In this example, we used a uniform mesh size 𝑑𝑔 = 3,5 𝑚𝑚, and 
both filters were applied, using the same radius 𝑟𝑚𝑖𝑛 = 1,25 ∙ 𝑑𝑔. The volume fraction is 𝑓 =
0,3, the convergence criterion is 𝛥𝑖 < ∆𝑐𝑜𝑛𝑣= 0,5% and the optimal shape is based on the 
density threshold 𝜌𝑡ℎ = 0,45. This value of 𝜌𝑡ℎ is chosen with respect to the targeted volume 
fraction, which means to the targeted optimized design volume. In general, at the end of the 
SIMP process, we have observed, through many SIMP optimization cases, that the optimized 
design volume is close to the targeted design volume (defined as 𝑓. 𝑉𝑑 according to equation 3) 
when 𝜌𝑡ℎ is taken between 0,4 and 0,5.  

The raw SIMP result obtained (a relative density distribution 𝜌(𝑥, 𝑦, 𝑧) at the end of SIMP 
iterations) is illustrated in Figure 1b. From this distribution, the gradient of 𝜌(𝑥, 𝑦, 𝑧) is then 
computed, which is the base of the adaptive refinement process presented in the next section. 
The gradient reaches maximum values (which means high variations of the relative density) at 
the interface between void and solid material in the optimized shape and decreases with the 
distance to this interface (Figure 1c). Consequently, the relative density gradient is likely to be 
used as a base for mesh refinement and de-refinement around this interface. 
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Figure 1 : Bike suspension rocker model with (a) loads applied and boundary conditions, (b) 
relative density distribution at the end of SIMP iterations with a uniform mesh size 𝑑𝑔 = 3,5 𝑚𝑚 

and (c) gradient of the density derived: high values (light-blue) and zero gradient (dark-blue). 

3.2 A new adaptive refinement and de-refinement strategy 

The basic objective of mesh refinement and de-refinement in TO is reducing the size of the 
analysis model while improving accuracy in the definition of the optimal shape boundary. The 
method aims at refining the mesh around the solid-void interface only by using standard finite 
elements. Unlike [17, 19, 21] where both fully solid and boundary regions are refined, in this 
work only the solid-void interface is refined while void as well as fully solid regions are 
coarsened. Moreover, refinement/de-refinement is carried out at the same time for substantial 
efficiency.  

3.2.1 Automatic identification of the optimal shape boundary  

As introduced in section 2.1.2., boundaries of the optimal shape can easily be identified from the 
norm of relative density gradient ‖𝑔𝑟𝑎𝑑⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  (𝜌)‖. Since in SIMP results, as illustrated in Figure 1b, 
the relative density field 𝜌(𝑥, 𝑦, 𝑧) is discontinuous (it is a scalar field that is constant within 
each element), the gradient cannot be computed as is. Before computing the gradient, the 
discontinuous field 𝜌(𝑥, 𝑦, 𝑧) is transformed into a continuous field, referred to as 𝜌∗(𝑥, 𝑦, 𝑧), 
using a classical weighted average computation at each node. Then, the norm of the relative 
density gradient is practically obtained by calculating ‖𝑔𝑟𝑎𝑑⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  (𝜌∗)‖. Since this gradient decreases 
with distance to the boundaries, it can be used as a good criterion for mesh refinement and de-
refinement. As shown in Figure 1c, the gradient is close to 0 inside void and fully solid regions 
and reaches a maximum value at the solid-void interface. This gradient gives similar, but more 
accurate results in the detection of the solid-void interface than the user-specified transitional 
zone thresholds proposed in [23, 37], or with the radius used in [18, 20]. Moreover, alike filter 
radius 𝑟𝑚𝑖𝑛 used to obtain macroscopic discrete results (see sub-section 3.1.1), [23, 37] also 
introduce influence zones around computational points (so-called cut-off radius). These zones 
are adaptively refined through optimization iterations with the objective of reducing intermediate 
density zones and therefore improving quality in the representation of structural boundaries. This 
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refinement of density points is based on using square cells. In our work, this type of refinement 
is based on using 3D tetrahedral elements.  

3.2.2 Effect of the mesh size on optimization results and on the relative density gradient  

Using a finer mesh obviously increases accuracy in the definition of the optimal shape and leads 
to a lower final compliance 𝐶̃𝑓𝑖𝑛𝑎𝑙. This is due to a higher number of elements for describing the 
density distribution. Figure 2, shows the evolution of the final compliance obtained, for the 
example introduced in Figure 1, when using uniform meshes with increasing element size 
(𝑑𝑔varies from 3 𝑚𝑚 to 16 𝑚𝑚). It also shows 3 final relative density distributions at the end of 
the optimization process for 𝑑𝑔 = 3 𝑚𝑚, 9,5 𝑚𝑚 and 16 𝑚𝑚. For all these optimizations, the 
same value is considered for the convergence criterion (𝛥𝑖 < ∆𝑐𝑜𝑛𝑣= 0,5%). As expected, it 
appears that 𝐶̃𝑓𝑖𝑛𝑎𝑙 decreases with element size. 

 
Figure 2 : Evolution of the final compliance 𝐶̃𝑓𝑖𝑛𝑎𝑙 with the mesh size for uniform meshes. 

For the same meshes and on the same example (bike suspension rocker), Figure 3 shows the 
evolution of the maximum gradient obtained with increasing element size (𝑑𝑔 still varies from 
3 𝑚𝑚 to 16 𝑚𝑚). This figure reveals that the norm of the maximum gradient globally decreases 
with element size and that the global trend of this variation is exponential (the dashed line in 
Figure 3). Since an analogous variation has been observed on other topology optimization 
problems, this global trend can then be used to set up a refinement and de-refinement strategy 
that is based on the norm of the relative density gradient as presented in the next section.  
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Figure 3 : Relationship between the norm of maximum relative density gradient and element size 

for uniform meshes. 

3.2.3 Automatic and adaptive mesh refinement and de-refinement 

The refinement and de-refinement strategy presented in this paper is based on the computation of 
an adapted mesh sizing function 𝑑𝑗(𝑥, 𝑦, 𝑧) from the previous optimization results (at step 𝑗 − 1). 
The objectives underlying this adapted mesh sizing function is generating coarser elements 
inside solid and void material and finer elements at the solid-void interface. Moreover, the SIMP 
process requires meshes with reasonably good element quality, which imposes additional 
constraints on mesh refinement and de-refinement. Last but not least, the mesh adaptation 
process needs to be automatic and generic enough to avoid unpractical and time-consuming user 
interventions. In our adaptation approach, the relative density distribution at the end of a given 
SIMP optimization procedure is used as an input to generate the adaptive mesh for the next 
SIMP optimization. In fact, at the beginning of our adaptive strategy, the entire domain is 
initially uniformly meshed with relatively coarse finite elements and the first SIMP optimization 
is performed. Using the raw result (a distribution of the relative density 𝜌(𝑥, 𝑦, 𝑧) across the 
whole mesh) of the first SIMP optimization, norm of the relative density gradient ‖𝑔𝑟𝑎𝑑⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  (𝜌)‖ is 
computed in order to identify zones to be refined and zones to be de-refined. Thus, a new mesh 
sizing function is calculated and an adapted mesh is generated, according to this sizing function, 
across the whole domain. 

In following paragraphs, 𝑑𝑗(𝑥, 𝑦, 𝑧) refers to the mesh sizing function used at the jth refinement 
and de-refinement step. The refinement and de-refinement strategy proposed in this paper is 
based on the following guidelines:  

 The mesh sizing function used for the first SIMP optimization (step 0) is constant. It is 
noted  𝑑0(𝑥, 𝑦, 𝑧) = 𝑑𝑔.   
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 𝑑𝑗(𝑥, 𝑦, 𝑧) should be maximum and higher than the initial mesh size 𝑑𝑔 where the norm 
of relative density gradient, at step 𝑗 − 1, noted  ‖𝑔𝑟𝑎𝑑⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  (𝜌𝑗−1(𝑥, 𝑦, 𝑧))‖, is close to 0.  

 𝑑𝑗(𝑥, 𝑦, 𝑧) should be minimum where ‖𝑔𝑟𝑎𝑑⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  (𝜌𝑗−1(𝑥, 𝑦, 𝑧))‖ is maximum. 
 𝑑𝑗(𝑥, 𝑦, 𝑧) should vary smoothly enough so that a reasonable element quality is achieved. 

The refinement and de-refinement strategy is based on an exponential function to ensure that the 
prescribed element size never reaches null values. The targeted element size distribution  
𝑑𝑗(𝑥, 𝑦, 𝑧) at refinement and de-refinement step 𝑗 is obtained from the distribution 
‖𝑔𝑟𝑎𝑑⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  (𝜌𝑗−1(𝑥, 𝑦, 𝑧))‖ using: 

{
𝑑𝑗(𝑥, 𝑦, 𝑧) = 𝑑𝑔                                               𝑓𝑜𝑟  𝑗 = 0

𝑑𝑗(𝑥, 𝑦, 𝑧) = 𝐸𝑛𝑚𝑒
−µ‖𝑔𝑟𝑎𝑑⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗(𝜌𝑗−1(𝑥,𝑦,𝑧))‖     𝑓𝑜𝑟  𝑗 > 0

     (7) 

𝐸𝑛𝑚 stands for the maximum element size allowed and it is usually higher than the initial 
uniform mesh size used  𝑑𝑔. µ is a coefficient that controls refinement and de-refinement severity 
as illustrated in Figure 4 (with 𝐸𝑛𝑚 = 7 𝑚𝑚).  

 
Figure 4 : Evolution of the prescribed element size with ‖𝑔𝑟𝑎𝑑⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  (𝜌𝑗−1)‖ for different values of µ. 

Unlike alternative approaches such as coarsening by collapsing element edges as proposed in 
[25] or the application of refinement and de-refinement in two different steps as carried out by 
[20, 21], we propose a h-type adaptive process for which refinement and de-refinement are 
performed simultaneously. This is done by re-meshing the entire design domain after each SIMP 
process is completed. The major advantage in doing that is that it avoids substantial post-
processing and mesh incompatibility (as in [23]) and guarantees a much better mesh quality in 
the adaptation.   



12 
 

3.2.4 Numerical implementation  

The proposed adaptive TO strategy is implemented and integrated in the Linux based CAD-
FEA-TO research platform developed by our team [32]. This platform features integrated 
modelling, analysis and TO capabilities. It is based on C++ code, on Open CascadeTM [38] 
libraries and on the use of Code_AsterTM [39] as FEA solver. In all the figures shown in this 
paper, we use GmshTM [40] for visualizing meshes and SIMP results. All optimizations presented 
in this paper are performed on a desktop computer with a 3.40 GHz processor with 16 GB RAM. 
Each result at the end of SIMP iterations is presented as a relative density distribution 𝜌(𝑥, 𝑦, 𝑧), 
which is a scalar field that is constant within each finite element. 
 
The adaptive TO process starts with an initial CAD model on which material data, boundary 
conditions (BCs) and loads are applied. Design and non-design sub-domains are also defined on 
this initial CAD model. The non-design sub-domain refers to the material that should not be 
affected by the optimization process. A relatively coarse mesh (with constant mesh size 
𝑑0(𝑥, 𝑦, 𝑧) = 𝑑𝑔) is first generated on the initial CAD model and a first SIMP optimization is 
performed, based on  this initial mesh. As explained above in sub-section 3.2.3., a new mesh 
sizing function 𝑑1(𝑥, 𝑦, 𝑧) is computed from  𝜌0(𝑥, 𝑦, 𝑧), the result of this first SIMP 
optimization. A new adapted mesh is generated from 𝑑1(𝑥, 𝑦, 𝑧) and a new SIMP optimization is 
then performed using this mesh. As for the second SIMP optimization (after the first adaptation), 
the third SIMP optimization (after the second adaptation) is performed using a new adapted mesh 
sizing function 𝑑2(𝑥, 𝑦, 𝑧) computed from  𝜌1(𝑥, 𝑦, 𝑧), the result of the second SIMP 
optimization. This adaptive process continues and, by the way, the mesh is gradually and 
simultaneously refined and de-refined along SIMP optimizations (referred to using subscript j). 
Of course, each SIMP optimization itself involves FEA iterations (referred to using subscript i). 
One interesting aspect in the process is that, as suggested in [23], the convergence criterion 
∆𝑐𝑜𝑛𝑣evolves along successive SIMP optimization. Indeed, there is no need in achieving a very 
strict convergence in the first SIMP optimization since the process is adaptive. Thus the 
convergence criterion used for the jth SIMP optimization, noted ∆𝑐𝑜𝑛𝑣

𝑗 , decreases with j.  

Figure 5 shows SIMP solutions obtained (for the same part as in Figure 1 and for the same 
material and conditions) after different steps of mesh refinement and de-refinement. Figure 5a 
shows the SIMP result obtained from the initial uniform relatively coarse mesh (with 𝑑𝑔 =
3,5 𝑚𝑚). For all SIMP iterations, both sensitivity and density filters are applied with the same 
radius 𝑟𝑚𝑖𝑛 = 1,25 ∙ 𝑑𝑗(𝑥, 𝑦, 𝑧). The convergence criterion decreases along SIMP 
optimizations: ∆𝑐𝑜𝑛𝑣0 = 2 % for the first SIMP, ∆𝑐𝑜𝑛𝑣1 = 0,8 % for the second and ∆𝑐𝑜𝑛𝑣2 = 0,32 % 
for the last SIMP. Minimum and maximum values for the imposed mesh size distributions are 
1,82 𝑚𝑚 − 7 𝑚𝑚 for 𝑑1(𝑥, 𝑦, 𝑧) after the first mesh adaptation (Figure 5b), and 1,00 𝑚𝑚 −
7 𝑚𝑚 for 𝑑2(𝑥, 𝑦, 𝑧) after the second mesh adaptation (Figure 5c). As shown in Table 1 and 
contrary to what could be expected, the final compliance does not decrease along mesh 
adaptations. This suggests that the adaptive process degrades the optimal shape description 
instead of improving it. A closer look at Figure 5 confirms that mesh adaptation does not have 
the expected effect on optimization results since optimal shapes are completely different from 
one SIMP optimization to the next. 

 



13 
 

 
Number of 
tetrahedra 

Number of 
iterations 

Optimization 
time (s) 

SIMP 
convergence 
criterion (%) 

Compliance 
(Joules) 

Initial mesh 169 962 11 298 2,00 11,60 

1st adaptation 84 258 14 152 0,80 14,35 

2nd adaptation 75 859 16 147 0,32 13,39 

Total  41 597   

Table 1 : Adaptive topology optimization data results after three SIMP processes and two mesh 
adaptations for the bike suspension rocker shown in Figure 5.  

 
Figure 5 : Relative density distribution at the end of SIMP iterations obtained with (a) a uniform 

and relatively coarse mesh 𝑑𝑔 = 3,5 𝑚𝑚, and after (b) the first and (c) the second mesh 
adaptation. 

3.2.5 A new definition of neighbouring for sensitivity and density filters  

Investigations based on several sample parts with different sets of SIMP parameters made us 
understand that this problem comes from the fact that classical filtering schemes used for 
uniform or quasi-uniform meshes [31, 35, 36] do not apply anymore when using adapted meshes. 
The reason is that these adapted meshes locally feature strong variations in mesh size 
distribution. This implies that the classical neighbourhood used when filtering sensitivity and 
density, based on a sphere with radius 𝑟𝑚𝑖𝑛 around element e, does not apply in this context and 
must be revisited as explained in Figure 6.  
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Figure 6 : Neighbouring elements (in green) to element e as considered in sensitivity and density 
filtering (a) when using a circle on a uniform mesh, (b) when using a circle after mesh 

adaptation and (c) when using the first layer of neighbours as in this paper. 

Actually, as schematically illustrated in Figure 6 for a 2D quad mesh, neighbouring around 
element e based on a circle (with radius  𝑟𝑚𝑖𝑛) works well with uniform or quasi-uniform meshes 
(Figure 6a). When this type of neighbouring is used for highly graded meshes (Figure 6b) it 
clearly shows that an inconsistent set of elements around element e will be considered for 
filtering. Thus, non-uniform unstructured meshes require replacing neighbouring based on circles 
(in 2D) and spheres (in 3D) by neighbouring by element layers. We consider that two mesh 
elements are first neighbours if they share a face, an edge or a node. Thereby, a first layer of 
elements around a given element 𝑒, can be defined (referred to as the first neighbourhood of 
element 𝑒) by including all elements that are first neighbours of element 𝑒 (in green in Figure 
6c). This new definition of neighbouring around element 𝑒 is anisotropic if compared to using a 
radius, which makes it more consistent with highly graded meshes.  

The first neighbourhood (Figure 6c) is used for filtering sensitivity and density in Figure 7 for 
the same example as in Figure 5 and with the same parameters. Minimum and maximum values 
for the imposed mesh size distributions are 1,42 𝑚𝑚 − 7 𝑚𝑚 for 𝑑1(𝑥, 𝑦, 𝑧) (Figure 7b), and 
0,71 𝑚𝑚 − 7 𝑚𝑚 for 𝑑2(𝑥, 𝑦, 𝑧) (Figure 7c). As shown in  
Table 2, like in the previous case, the convergence criterion decreases along SIMP 
optimizations: ∆𝑐𝑜𝑛𝑣0 = 2 %, ∆𝑐𝑜𝑛𝑣1 = 0,8 % and ∆𝑐𝑜𝑛𝑣2 = 0,32 %. The results presented in Figure 
7 shows that this new neighbourhood solves the inconsistency in filtering sensitivity and density.  
Table 2 also shows that the final compliance always decreases along successive SIMP 
optimizations and that it converges, after two mesh adaptations to 10,25 Joules (compared to 
13,25 Joules). If compared to the results obtained with a constant size mesh in Figure 1b, 
although the optimal topologies are similar, the quality in the definition of the optimal shape 
boundary is significantly improved after two levels of mesh adaptation. This adaptation enables a 
better distribution of the normalized material density at the solid-void interface, which thereby 
increases accuracy in the description of the optimal shape boundary. Results obtained are similar 
to those presented in [23, 37] for 2D cases and without de-refinement. The CPU time is related to 
computational cost of FEA and optimization iterations. As shown in the table, less CPU time is 
required after the first mesh adaptation, despite a higher number of SIMP iterations. Indeed, 
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thanks to mesh de-refinement, the mesh features substantially less elements than the initial 
uniform mesh. More CPU time is required after the second mesh adaptation because this 
adaptation essentially induces mesh refinement and because the convergence criterion ∆𝑐𝑜𝑛𝑣2 =
0,32 % is lower compared to ∆𝑐𝑜𝑛𝑣1 = 0,8 %. 
 
 

 
Number of 
iterations 

Optimization 
time (s) 

SIMP 
convergence 
criterion (%) 

Compliance 
(Joules) 

Initial mesh 11 287 2,00 12,18 

1st adaptation 17 151 0,80 10,75 

2nd adaptation 36 390 0,32 10,25 

Total 64 828   

 
Table 2 : Adaptive topology optimization data results after three SIMP processes and two mesh 

adaptations for the bike suspension rocker shown in Figure 7. 
 

 
Figure 7 : Relative density distribution at the end of SIMP iterations obtained (a) using a 

uniform and relatively coarse mesh (with 𝑑𝑔 = 3,5 𝑚𝑚) (b) and (c) after the first and second 
mesh adaptations with µ = 9. 

 

3.2.6 Effect of mesh adaptation on mesh quality  

Our meshes are made with 3D unstructured tetrahedral elements, and the numerous FEA 
calculations involved in SIMP optimization are very sensitive to mesh quality. Automatic mesh 
generation and adaptation is based on the advancing front method [32, 41]. The quality of 
tetrahedrons is classically measured using [41]:  
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𝑄𝑒 = 𝛼 ∙
𝑟𝑖𝑛𝑠
𝑙𝑚𝑎𝑥

 

 
Where 𝑙𝑚𝑎𝑥 is the longest element edge and 𝑟𝑖𝑛𝑠 the radius of the inscribed sphere. Taking 𝛼 =

2. √6 makes that 𝑄𝑒 = 1 for an equilateral element and 0 for degenerate elements. Figure 8 
illustrates meshes used to carry out the three optimizations introduced in Figure 7 and statistics 
about mesh quality in terms of elements shape and the respect of the sizing function are given in 
Table 3. 

 
Figure 8 : Meshes used in SIMP results presented in Figure 7 (a) the initial uniform mesh (b) 

and (c) meshes after the first and second adaptations.  

 
Number of tetrahedra Errorglobal 

(%) 

% elements quality 

predicted actual 𝑸𝒆≤0,1 0,1<𝑸𝒆≤ 0,2 0,2<𝑸𝒆≤ 0,5 𝑸𝒆> 0,5 

Initial mesh 201 398 169 962 15,61 0,02 0,04 19,88 80,06 

1st adaptation 90 350 75 051 16,93 0,05 0,11 27,71 72,13 

2nd adaptation 130 973 100 028 23,63 0,05 0,08 29,73 70,13 

Table 3 : Respect of the size map and mesh quality associated with Figure 8. 

It shows that the percentage of very good quality elements decreases from 80% to 70% with 
mesh adaptation while the number of bad quality elements slightly increases. Mesh quality could 
be further improved by applying mesh transformation techniques but, since the design domain is 
entirely re-meshed at each adaptation, the expected gain on mesh quality is marginal. However, 
the effect of applying mesh quality improvement methods could be investigated in future work. 
Another potential improvement of the adaptive approach proposed in this paper when setting up 
sizing functions 𝑑𝑗(𝑥, 𝑦, 𝑧) is limiting the gradient 𝑔𝑟𝑎𝑑⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  (𝑑𝑗). In fact, if sizing functions feature 
very steep variations, badly shaped elements cannot be avoided, which is likely to have 
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substantial negative effects on the quality of FEA solutions involved in the optimization process 
and indirectly on the quality of the optimization process itself. 

Figure 9 provides a better illustration of the ability of our mesh generation algorithms to respect 
the imposed sizing function along the mesh adaptation process. Figure 9a shows the prescribed 
sizing function associated with the second mesh adaptation in Figure 8, while Figure 9b shows 
the actual distribution of element size after re-meshing. The relative difference between these 
two distributions (in %) is shown in Figure 9c. The actual minimum and maximum values for 
mesh sizes are 0,79 𝑚𝑚 − 10,7 𝑚𝑚 , while targeted minimum and maximum sizes were 
0,71 𝑚𝑚 − 7 𝑚𝑚. That is due to unavoidable small deviations in the respect of the prescribed 
size map during automatic mesh generation. In fact, as illustrated in Figure 9c, the imposed 
sizing function is globally well respected and the deviations are limited and quite local.  

 

Figure 9 : Illustration of the (a) imposed size distribution (b) actual size distribution (c) relative 
error (in %) after the second adaptation in Figure 8. 

3.3 Effect of µ and initial mesh size on optimization results 

The previous section introduced our new adaptive topology optimization scheme. In this section, 
we illustrate the effect, on the process, of two main parameters of the approach. These 
parameters are µ and the initial mesh size. 

3.3.1 Effect of µ  

In this sub-section, we investigate the effect of parameter µ on the mesh adaptation process. We 
perform the adaptive SIMP optimization on the same example as in Figure 7 with different 
values of µ. Figure 10 shows the solution obtained with an initial uniform mesh size 𝑑𝑔 =
3,5 𝑚𝑚 (Figure 10a) and results, after two levels of adaptation, for µ = 5 (Figure 10b), µ = 7 
(Figure 10c) and µ = 9 (Figure 10d). In all cases, 𝐸𝑛𝑚 = 7 𝑚𝑚, which means that the maximum 
mesh size, as prescribed, is the same for all adaptations. Therefore, the size variation increases 
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when µ increases, which makes that boundaries between solid and void are better defined. As a 
matter of fact, when µ = 5, the minimum size (3,52 𝑚𝑚) is almost equal to the initial uniform 
size (3,5 𝑚𝑚) and nearly only de-refinement is applied. For comparison, when µ = 7 and µ = 9, 
the mesh is simultaneously refined and de-refined (minimum and maximum sizes are 
respectively 1,41 𝑚𝑚 − 7 𝑚𝑚 and 0,71 𝑚𝑚 − 7 𝑚𝑚).  

 

Figure 10 : Effect of parameter µ. Relative density distribution at the end of SIMP iterations 
obtained (a) using a uniform and relatively coarse mesh with 𝑑𝑔 = 3,5 𝑚𝑚, (b), (c) and (d) after 

two mesh adaptations with µ = 5, µ = 7 and µ = 9. 

3.3.2 Effect of the initial mesh size  

In Figure 11 we illustrate results obtained when solving the same optimization problem as in 
Figure 7 but starting with a coarser constant size mesh (𝑑𝑔 = 5,0 𝑚𝑚 if compared to 𝑑𝑔 =
3,5 𝑚𝑚 for Figure 7). Minimum and maximum mesh sizes are 2,48 𝑚𝑚 − 7 𝑚𝑚 for the first 
mesh adaptation (Figure 11b), 1,36 𝑚𝑚 − 7 𝑚𝑚 for the second (Figure 11c) and 0,71 𝑚𝑚 −
7 𝑚𝑚 for the third (Figure 11d). For the same values of µ and 𝐸𝑛𝑚, three steps of mesh 
adaptation (instead of 2 steps for 𝑑𝑔 = 3,5 𝑚𝑚 in Figure 7) were necessary to obtain similar 
optimum mesh sizes. As expected (see  

Table 4), the finer the initial mesh size, the lower the final compliance (10,57 Joules for 𝑑𝑔 =
5,0 𝑚𝑚 if compared to 10,25 Joules for 𝑑𝑔 = 3,5 𝑚𝑚).  
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Number of 
iterations 

Optimization 
time (s) 

SIMP 
convergence 
criterion (%) 

Compliance 
(Joules) 

Initial mesh 12 99 2,000 13,43 

1st adaptation 19 221 0,800 12,08 

2nd adaptation 37 503 0,320 11,10 

3rd adaptation 32 804 0,128 10,57 

Total 100 1627   

 
Table 4 : Adaptive topology optimization data results after four SIMP processes and three mesh 

adaptations for the bike suspension rocker shown in Figure 11. 
 
 

 

Figure 11 : Effect of the initial mesh size. Relative density distribution at the end of SIMP 
iterations obtained (a) using a uniform and coarser mesh with 𝑑𝑔 = 5,0 𝑚𝑚, (b), (c) and (d) 

after the first, second and third mesh adaptations with µ = 9. 
 

In Figure 12 we present a comparison between final SIMP results and optimal shapes derived for 
the cases in Figure 7 and Figure 11. Figure 12a and Figure 12d present SIMP results, and rough 
optimal shapes presented in Figure 12b and Figure 12e are obtained from it using  𝜌𝑡ℎ = 0,45. 
These rough optimal shapes are processed as explained in [42] (removal of non-manifold 
patterns followed by mesh smoothing), which leads to the final optimal shapes illustrated in 
Figure 12c and Figure 12f. It is worth mentioning that mesh smoothing is based on the algorithm 
presented in [43]. From these optimization results, it appears that changing the initial mesh size 
leads to quite significant differences in the final result. 
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Figure 12 : Comparison between optimization results obtained in Figure 7 and Figure 11. (a) 
and (d) Relative density distribution at the end of SIMP iterations (b) and (e) rough optimal 

shapes (c) and (f) optimal shapes after smoothing. 

4 Results and discussions  

The effectiveness of the adaptive TO process presented in the previous sections is demonstrated 
through the optimization of the 3D models of two mechanical parts (a connecting rod and a 
cantilever beam). In these two examples, Young’s modulus is 69 GPa  and Poisson’s ratio is 
0,33.  
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4.1 First example: connecting rod  

The next example presented is the adaptive optimization of a connecting rod. Figure 13a 
introduces the initial geometry of the connecting rod with BCs and loads applied. The initial 
connecting rod overall dimensions are 350 𝑚𝑚 (height), 150 𝑚𝑚 (width) and 25 𝑚𝑚 
(thickness).  Null displacements are imposed on the lower-half of the lower bore, and the load is 
applied (in the 𝑌 direction) on the upper-half of the upper bore. As seen in the SIMP result 
presented in Figure 13b, non-design material is distributed around the two connecting bores. This 
result is based on an initial uniform relatively coarse mesh (with 𝑑𝑔 = 4,5 𝑚𝑚) without adaptive 
refinement and the volume fraction imposed is  𝑓 = 0,3. The norm of relative density gradient 
derived from the SIMP result is presented in Figure 13c. In Figure 14, we introduce mesh 
adaptation on the same case as in Figure 13. Figure 14a illustrates a 2D view of the result 
obtained in Figure 13b with the initial uniform mesh (with 𝑑𝑔 = 4,5 𝑚𝑚). Then, Figure 14b, 
Figure 14c and Figure 14d show the effects of three successive mesh adaptations on SIMP 
results obtained. This adaptation considers 𝐸𝑛𝑚 = 9 𝑚𝑚 and µ = 11. Minimum element sizes 
are 2,40 𝑚𝑚, 0,65 𝑚𝑚 and 0,30 𝑚𝑚 respectively after the first, second and third mesh 
adaptation. From Figure 14 and  
Table 5, it is clear that higher resolution of the structural boundaries and better compliances are 
achieved along mesh adaptations. 

 

Figure 13 : connecting rod (a) model, loads and boundary conditions, (b) relative density 
distribution at the end of SIMP iterations using a uniform mesh (𝑑𝑔 = 4,5 𝑚𝑚) and (c) relative 

density gradient derived : high values (yellow-orange) and zero gradient (dark-blue). 
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Figure 14 : Relative density distribution at the end of SIMP iterations obtained on the 
connecting rod (a) using a uniform and relatively coarse mesh (with 𝑑𝑔 = 4,5 𝑚𝑚), (b), (c) and 

(d) after the first, second and third mesh adaptations with µ = 11. 
 

 
Number of 
iterations 

Optimization 
time (s) 

SIMP 
convergence 
criterion (%) 

Compliance 
(Joules) 

Initial mesh 11 160 1,000 0,051 

1st adaptation 14 59 0,100 0,043 

2nd adaptation 18 100 0,010 0,042 

3rd adaptation 22 206 0,001 0,042 

Total 65 525   

 
Table 5 : Adaptive topology optimization data results after four SIMP processes and three mesh 

adaptations for the connecting rod shown in Figure 14. 
 

Figure 15 shows the initial uniform mesh and the meshes obtained after the different steps of 
adaptation. Associated statistics about mesh quality and respect of the prescribed size map are 
summarized in Table 6. Like in the case of the bike suspension rocker, percentage of good-
quality elements decreases from 82% to 61,5% along mesh adaptation. The actual minimum and 
maximum values for mesh sizes are 0,285 𝑚𝑚 − 12,5 𝑚𝑚, if compared to the imposed values 
which are 0,3 𝑚𝑚 − 9,0 𝑚𝑚.  
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Figure 15 : Meshes used in SIMP results presented in Figure 14 (a) the initial uniform mesh 
(b),(c) and (d) meshes after the first, second and third adaptations.   

 
Number of tetrahedra Errorglobal 

(%) 

% elements quality 

predicted actual 𝑸𝒆≤0,1 0,1<𝑸𝒆≤ 0,2 0,2<𝑸𝒆≤ 0,5 𝑸𝒆> 0,5 

Initial mesh 126 744 114 544 9,63 0,00 0,03 18,03 81,94 

1st adaptation 36 006 33 014 8,31 0,05 0,06 27,52 72,37 

2nd adaptation 52 804 45 524 13,79 0,03 0,11 31,45 68,40 

3rd adaptation 150 441 100 720 33,05 0,03 0,13 38,42 61,42 

Table 6 : Respect of the size map and mesh quality associated with Figure 15. 

The optimal shape, as shown in Figure 16, is obtained using 𝜌𝑡ℎ = 0,45 and the same post-
processing operations are applied as for the example shown in Figure 12. It demonstrates the 
ability of the proposed approach to generate symmetrical designs with high-quality boundary 
description using asymmetric and unstructured tetrahedral meshes.  
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Figure 16 : Connecting rod (a) final relative density distribution at the end of SIMP iterations 
after 3 steps of adaptation with µ = 11 (b) rough optimal shape and (c) optimal shape after 

smoothing.  
 

4.2 Second example: cantilever beam 

The second example considered is the optimization of a cantilever beam, which is a case that has 
been studied (mostly in 2D) by several authors [18, 20, 23, 25, 26, 37]. The initial beam features 
a square cross-section (50 𝑚𝑚 × 50 𝑚𝑚) and length 𝐿 = 250 𝑚𝑚. It is anchored at one end 
and loaded at the other end in the 𝑌 direction (see Figure 17a). As seen in the SIMP result 
presented in Figure 17b, non-design material is distributed around the anchor surface and around 
the load. In this case, the volume fraction is 𝑓 = 0,4. The solution obtained and the 
corresponding relative density gradient are shown respectively in Figure 17b and Figure 17c. 
This result is obtained with a uniform and relatively coarse mesh with 𝑑𝑔 = 4 𝑚𝑚. 

In Figure 18, we introduce mesh adaptation on this same case along with the details of material 
and void distributions inside the beam section (using a cutting plane for each case). Figure 18a 
illustrates two views of the result obtained in Figure 17b with the initial uniform mesh (with 
𝑑𝑔 = 4 𝑚𝑚). Then, Figure 18b and Figure 18c show the effects of two successive mesh 
adaptations on SIMP results obtained. This adaptation considers 𝐸𝑛𝑚 = 5 𝑚𝑚 and  µ = 7. The 
compliance finally converges to 0,063 Joules with a final convergence criterion ∆𝑐𝑜𝑛𝑣2 = 0,01 % 
after 41 iterations (see  

Table 7).  
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Figure 17 : Cantilever beam (a) model, loads and boundary conditions, (b) relative density 
distribution at the end of SIMP iterations using a uniform mesh size (𝑑𝑔 = 4 𝑚𝑚) and (c) 

relative density gradient derived : high values (light-blue and yellow) and zero gradient (dark-
blue). 

 

 
Number of 
iterations 

Optimization 
time (s) 

SIMP 
convergence 
criterion (%) 

Compliance 
(Joules) 

Initial mesh 12 122 1,000 0,079 

1st adaptation 14 216 0,100 0,068 

2nd adaptation 15 338 0,010 0,063 

Total 41 676   

 
Table 7 : Adaptive topology optimization data results after three SIMP processes and two mesh 

adaptations for the cantilever beam shown in Figure 18. 
 

The same trend as in the previous examples can be seen: the mesh adaptation significantly 
refines the definition of the optimal shape boundary. 
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Figure 18 : Relative density distribution at the end of SIMP iterations obtained on the cantilever 
beam (a) using a uniform and relatively coarse mesh (with 𝑑𝑔 = 4 𝑚𝑚) (b) and (c) after the first 

and second mesh adaptations with µ = 7. 
 

Figure 19 shows the initial uniform mesh and the meshes obtained after the different steps of 
mesh adaptation. Associated statistics about mesh quality and the respect of the prescribed size 
map are summarized in Table 8.  

 
Figure 19 : Meshes used in SIMP results presented in Figure 18 (a) the uniform mesh (b) and (c) 

meshes after the first and second adaptations.  
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Number of tetrahedra Errorglobal 

(%) 

% elements quality 

predicted actual 𝑸𝒆≤0,1 0,1<𝑸𝒆≤ 0,2 0,2<𝑸𝒆≤ 0,5 𝑸𝒆> 0,5 

Initial mesh 82 914 70 663 14,78 0,00 0,01 17,67 82,31 

1st level 133 511 102 608 23,15 0,00 0,03 24,67 75,30 

2nd level 212 306 148 708 29,96 0,00 0,02 25,90 74,09 

Table 8 : Respect of the size map and mesh quality associated with Figure 19. 

The optimal shape obtained is shown in Figure 20. It is also obtained using 𝜌𝑡ℎ = 0,45 and the 
same post-processing operations are applied as for the examples shown in Figure 12 and Figure 
16. This example is interesting, if compared to the previous ones, because material distribution 
moves to the boundaries of the initial volume along the adaptive SIMP optimization process. 
Indeed, as illustrated in Figure 18, material is concentrated around the square section and the 
interior volume is empty. 

 

Figure 20 : Cantilever beam (a) final relative density distribution at the end of SIMP iterations 
after 2 steps of adaptation with µ = 7   (b) rough optimal shape (c) optimal shape after 

smoothing.  
 

A closer look at the evolution of a cross section along the adaptive optimization process provides 
a good illustration and understanding of what happens. Figure 21 shows cross sections of the 
SIMP relative density and of the associated norm of gradient, for the uniform mesh (Figure 21a) 
and for the 2 steps of adaptive refinement and de-refinement (Figure 21b and Figure 21c) 
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illustrated in Figure 18. It clearly demonstrates that, in a given section along the beam, the 
optimization process increases upper and lower wall thicknesses while it decreases right and left 
wall thicknesses. This is consistent with the fact that the bending strength of the cantilever beam 
globally increases with the moment of inertia of the beam section. Theoretically, as illustrated in 
Figure 22 and as addressed by [44], with a given amount of material, the optimal moment of 
inertia corresponds to thickening to the maximum the upper and lower flanges (thickness ℎ) and 
decreasing the vertical thickness 𝑤 so that it tends to zero. The results shown in Figure 21 
demonstrate that our adaptive optimization process converges to a square hollow section as in 
Figure 22a. Standard sections based on a I profile (like in Figure 22b) are better, in this context, 
because the equivalent thickness 𝑤 of the vertical web is twice the wall thickness ( 𝑤

2
 ) of the 

equivalent square hollow section Figure 22a. Both sections feature the same moment of inertia 
𝐼𝑥𝑥 but the minimum web thickness is limited by localized buckling in the web. Of course, the 
SIMP method, as implemented in this work, is based on linear mechanics, which means that 
local buckling is not taken into account in the optimization process. In this context, these two 
sections are equivalent and it is consistent that the process converges to a square hollow section. 
It also appears that, with the adaptive SIMP optimization process, if we used a more refined 
mesh, the result would tend to get closer to the optimal section, which means tend to increase 
wall thickness ℎ and decrease wall thickness 𝑤

2
. 

 

Figure 21 : Evolution of the internal solid-void interface after (a) the first, (b) the second, and 
(c) the third SIMP process. Upper figures show relative density distributions at the end of each 

SIMP and lower figures show the relative density gradient derived : high values (yellow and 
orange) and zero gradient (dark-blue). 
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Figure 22 : (a) A square hollow cross-section (b) An equivalent I-profile cross-section. 

5 Conclusion  

In this paper, a new adaptive topology optimization method is presented for the optimization of 
continuum structures. The aim of this work is to converge towards higher resolution in the 
definition of optimal shapes obtained after optimization, but at a reasonable computational cost. 
This method is based on an implementation of the SIMP method that handles 3D optimization 
problems by using unstructured tetrahedral meshes. The mesh adaptation scheme proposed is 
fully automatic and it is based on the SIMP relative density gradient. The scheme features 
simultaneous mesh refinement and de-refinement. An important conclusion is that this adaptive 
process requires revisiting classical sensitivity and density filtering schemes. Even if the 
approach is very promising and applicable to other TO schemes, several enhancements of the 
method can easily be foreseen. Actually, it has been mentioned that no explicit limitation is put 
on the gradient of mesh sizing functions, which contributes to undermine mesh quality, and by 
the way, the quality of the optimization itself. We have seen that sensitivity and relative density 
filtering are very sensitive to mesh refinement. This suggests that the extension of classical 
filtering techniques, in the context of using adaptive meshes with steep mesh size variations, 
should be studied thoroughly. Moreover, our approach introduces several new parameters, which 
adds to numerous parameters that are associated with the SIMP method itself. Studying the 
influence of these parameters on optimization results is also a source of potential future work on 
the subject. Last but not least, the automatic (or at least assisted) creation of CAD models from 
optimization results is also clearly a natural perspective for further research work on the subject. 
This objective represents an important source of research interest but it is also an extremely 
complex and ambitious problem because building a good optimal shape from TO results is 
subject to numerous constraints (shape, mass, strength, vibrations, manufacturing, etc.) that, in 
many cases, are partly (or even completely) contradictory.  
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