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Abstract 4 

In assembly process, non-rigid parts in free-state may have different shapes compared to the 5 

designed model due to geometric variations, gravity load and residual stresses. For non-rigid parts 6 

made by multi layered fiber-reinforced thermoplastic composites, the assembly process becomes 7 

much more complex due to the nonlinear behavior of the material. This paper presented an inverse 8 

procedure for characterizing large anisotropic deformation behavior of four-layered, carbon fiber 9 

reinforced polyphenylene sulphide, non-rigid composites parts. Mechanical responses were 10 

measured from the standard three points bending test and the surface displacements of composite 11 

plates under flexural loading test. An orthotropic hyperelastic material model was implemented in 12 

the user-defined material subroutine of Abaqus for finite strain shell elements to analyze the behavior 13 

of flexible fiber-reinforced thermoplastic composites. Error functions were defined by subtracting 14 

the experimental data from the numerical mechanical responses. Minimizing the error functions 15 

helps to identify the material parameters. These material parameters were validated for the case of 16 

an eight-layered composite material.  17 
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1. Introduction 23 

One important element in the quality control of products is to analyze whether the post-assembly 24 

shape fulfills the designer’s geometric specifications. This task is performed by evaluating the 25 

component’s shape after having mounted it into the final assembled configuration. Large non-rigid 26 

parts in free-state, such as aerospace panels may have deviations from their nominal (CAD) shape 27 

caused by geometric variations, gravity load and residual stresses. It makes the assembly process 28 

difficult, even impossible when the deviation is out of tolerance. To solve this problem, a non-rigid 29 

part must be mounted on special fixtures to simulate the assembly-state. Then, the mismatches 30 

between its real geometry and its target nominal geometry are evaluated. This process is usually 31 

carried out by using coordinate measuring systems or laser scanners. Figure 1 shows an example of 32 

an aerospace panel restrained by known forces (weight) on its inspection fixture before the 33 

measurement process. This inspection task is generally laborious and time-consuming. Therefore, 34 

there is a great interest in the industry towards developing virtual inspection methods, which can 35 

significantly reduce inspection time and cost.  36 

 37 

Figure 1.  An aerospace panel restrained by known forces on its inspection fixture [1] 38 
Some researchers [2-5] proposed virtual inspection methods based on numerical approaches by 39 

building a finite element (FE) model of the non-rigid part considerd in free-state. Boundary 40 

conditions were then imposed on this FE model to constrain the part to its working shape. The virtual 41 

restrained part was compared to the nominal CAD model to evaluate profile deviation. Obviously, 42 

the accuracy of numerical simulation is one of the most important aspects of a virtual inspection 43 

process. The deformation of non-rigid parts must be simulated accurately by finite element analysis 44 

which requires good material models and an appropriate characterization method for assessing 45 

material parameters associated with these models. For a non-rigid composite part, this work becomes 46 
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highly challenging because of its complicated anisotropic nonlinear behavior. Thin orthotropic 47 

materials, such as fiber reinforced composites, can be described by a lamina constitution with four 48 

independent in-plane elastic parameters (longitudinal Young’s modulus 1E , transverse Young’s 49 

modulus 2E , in-plane shear modulus 12G  and Poisson’s ratio 12 ) [6-8]. However, during its 50 

assembly process, a non-rigid part undergoes large deformation, which makes that material 51 

constitutive properties change considerably. As a consequence, this model is no longer valid for 52 

assembly processes. Instead, hyperelasticity provides a framework for modelling large anisotropic 53 

deformation. According to the Lagrangian description, the constitutive properties of the material 54 

(stiffness) varies with the gradient of deformation and the anisotropic effect is characterized by the 55 

fiber’s reorientation. This framework was successfully used in characterizing the behavior of fiber-56 

reinforced composites. Pham et al. [9], Aimene et al. [10], Peng et al. [11] and Gong et al. [12] 57 

proposed hyperelastic constitutive material models and demonstrated their suitability for modelling 58 

large anisotropic deformation of fiber reinforced composites in manufacturing processes. Therefore, 59 

a hyperelastic constitutive model in the form of a strain energy function could be an appropriate 60 

approach to characterize the anisotropic behavior of flexible fiber-reinforced thermoplastic 61 

composites (FRTPC) during assembly processes.  62 

Even if a very well-suited constitutive model is chosen, determining accurate material parameters 63 

is also one of the most important prerequisites in order to obtain reliable results from an assembly 64 

process simulation. Therefore, parameters of the constitutive model considered must be estimated by 65 

the most appropriate method. Simulation-based inverse characterization is a powerful and efficient 66 

tool to characterize the mechanical behavior of materials. This procedure is based on an optimization 67 

process that minimizes a multi-objective function that expresses discrepancies between experimental 68 

data of characterization tests and computed responses for these tests. Here, the computed responses 69 

are used as “function evaluation” and the material parameters employed in the numerical model are 70 

the variables to be determined in this optimization process. Over the past decades, a number of 71 

researchers used the inverse procedure to get the constitutive material behaviors from standard tests 72 

such as tensile tests, compression tests, bending tests, torsion tests, etc. [13-18]. However, the 73 

deformation fields generated from the standard tests in many cases cannot represent the complex 74 

deformation fields of some particular applications. In a previous study [19], the bending properties 75 
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of multi-layered carbon fiber reinforced polyphenylene sulphide (CF/PPS) were obtained from three-76 

point bending tests, but results showed that this approach needs to be improved to better characterize 77 

the behavior of non-rigid composite parts during the assembly process. To overcome this problem, 78 

non-standard experiments were developed by some researchers to be able to more accurately capture 79 

real deformation behaviors. Wang et al. [20] proposed an inverse method to determine elastic 80 

constants using a circular aluminum disk. Pagnotta [21] identified the elastic properties of materials 81 

from displacements of a thin, simply supported isotropic square plate. Bruno et al. [6] presented a 82 

method for identifying the elastic properties of aluminum and unidirectional Graphite/PEEK 83 

laminate from measurements of the displacements of plates under loading configurations. It can be 84 

seen that the selection of a test type greatly affects the accuracy of characterization. During assembly, 85 

the complexity of a non-rigid composite part behavior cannot be well characterized using a single 86 

experimental test. Obviously, the combination of results obtained from both standard and non-87 

standard tests could lead to a more realistic description of material behavior. 88 

In this study, in order to characterize the large bending behavior of multi-layered CF/PPS during 89 

the virtual assembly process, an inverse multi-objective optimization process combining standard 90 

and specific non-standard tests was developed. Four-layer CF/PPS sheet specimens were used for 91 

characterization. Three-point bending tests with two different stacking sequences  4
0,90 and  4

45  92 

were performed as the standard method. Flexural loading tests with a large multi-layer composite 93 

sheet in different support configurations were carried out as non-standard tests. These non-standard 94 

tests were chosen because the deformation state in these tests is close to that in the assembly process. 95 

Therefore, the characterized material properties obtained from the combination of experimental data 96 

from the three-point bending test and flexural loading tests is more appropriate to represent the 97 

behavior of non-rigid composite parts during the assembly process. For the optimization procedure, 98 

numerical simulations were performed using an orthotropic hyperelastic shell formulation, which is 99 

available in ABAQUS. In this work, the anisotropic hyperelastic material model developed by Vu et 100 

al. [19] was used and implemented in ABAQUS as a user-defined material model (UMAT). The 101 

material parameters obtained from the inverse characterization procedure were validated for the case 102 

of an eight-layered CF/PPS material. 103 
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2. Experimental work 104 

In this study, the thermoplastic composite used for the experimental works was a pre-consolidated 105 

plate of 4 layers of CF/PPS commercialized by Royal Tencate Corp. In each layer, a polyphenylene 106 

sulphide (PPS) matrix was reinforced by two orthogonal families of carbon fiber (CF). The fiber 107 

volume fraction (
f

V ) was of 50%. The total thickness of the four-layer laminate was approximately 108 

1.24 mm (0.31 mm / layer).  109 

2.1 Three-point bending test 110 

Specimens with two different stacking sequences  4
0,90 and  4

45  with dimensions 300 mm × 111 

34 mm × 1.24 mm were used for the three-point bending test. The tests were performed on the MTS 112 

testing machine. Table 1 shows the test parameters. Each specimen (5 pieces for each stacking 113 

sequence) was supported on two rollers and loaded in its center with displacement control (Figure 114 

2). The applied force and the displacement at the center of the specimen were then recorded. 115 

 116 
Figure 2. (a) Test specimens and (b) three point bending test using the MTS machine. 117 
 118 
 119 
 120 
 121 
 122 
 123 
 124 
Table 1. Test parameters 125 



6 
 

Parameters Value 

Specimen dimensions 300 mm × 34 mm × 1.24 mm 

Support span 140 mm 

Velocity 4 mm/min 

Max displacement at center 
of support span 20 mm 

Radius of loading noses and 
supports 25 mm 

2.2 Flexural loading test 126 

Figure 3 shows a schematic of the flexural loading test used. A plate with dimensions 930 mm × 127 

890 mm was supported by a system of four rigid spherical-head supports. Two different 128 

configurations of support systems were used in this test. This plate then underwent bending 129 

deformation imposed by a 3.63 kg ball applied at its center point.  Table 2 summarizes experimental 130 

parameters. 131 

D
D

L
W

R2
R1

 132 
Figure 3. Flexural loading test schematic 133 
 134 
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Table 2. Experimental parameters 135 

Composite plate 

Material CF/PPS  

Stacking sequence  4
0,90   

Plate dimensions L= 930 mm, W = 890 mm  

Support system  

Radius of sphere-head 
supports 1R = 6.35 mm 

Distance between supports  
Configuration 1: D = 762 mm 

Configuration 2: D = 660.4 mm 

Steel ball 

Radius of steel ball 2R = 49.5 mm 

Weight of steel ball 3.63 kg 

By using a Creaform HandyPROBE device, the displacement of the plate was measured at 110 points 136 

on the plate surface. Three measurements were performed for each support configuration to get 137 

average values. The HandyPROBE device consists of a tracking system equipped with a C-track and 138 

a handheld probe as shown in Figure 4. The triangulation obtained from two video cameras on the 139 

C-track device and the retroreflective target of the handheld probe were used to calculate the 140 

coordinates of each point.  141 

The accuracy of the measurement is limited by uncertainty of the support system as well as the 142 

measurement process.  In this work, uncertainty of the support system is approximately ±0.03 mm 143 

and ±0.02 mm for Configuration 1 and Configuration 2, while uncertainty of the measurement 144 

process is up to ±0.2 mm. 145 

 146 
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 147 
Figure 4. Experimental apparatus 148 

3. Modelling  149 

3.1 Material model 150 

The hyperelasticity modeling concept is based on the existence of a strain energy function using 151 

the Lagrangian variables, which are appropriate for the description of large deformations. The 152 

mechanical behavior of a thermoplastic reinforced by two families of fiber can be represented by a 153 

strain energy function of the right Cauchy-Green deformation tensor TC F F and the initial fiber 154 

directional unit vectors 0a  and 0g : 155 

  0 0Ψ Ψ , , C a g  (1)156 
  157 
where /  F x X  is the deformation gradient. X represents the position vector of each point of the 158 

solid body in the reference configuration, and x represents the position vector of the corresponding 159 

point in the current configuration. For an orthotropic hyperelastic model, the initial directions of the 160 

two fibers are orthogonal, i.e. 0 0a g  and the strain energy function in Equation (1) can be written 161 

in terms of invariants of C  as: 162 

  1 2 3 4 6Ψ Ψ , , , , I I I I I  (2) 163 
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where        
2 2

1 2 3 4 0 6 0 0
2 2

0

1tr , tr tr , det , . ,  .
2
      
 

  a gC C C a Ca g gC CI I I I I . Here, 164 

2a and 2g  are the square of the stretching of fibers along their initial directions 0a  and 0g .  165 

The second Piola-Kirchhoff stress tensor is derived directly from the hyperelastic strain energy 166 

function and given by:  167 

 61 2 4
1 2 4 6

Ψ2 2     
     

     
S

C C C C C
II I I

     (3) 168 

where 1
1

Ψ

I

 , 2
2

Ψ

I

 , 4
4

Ψ

I

 , 6
6

Ψ

I

 .  169 

The Cauchy stress tensor can be simply obtained by: 170 

 T

3

1
I

σ FSF . (4) 171 

The mechanical response of CF/PPS material used in this study is represented by an orthotropic 172 

incompressible hyperelastic model proposed by Vu et al. [19]. Its strain energy function has the 173 

following form: 174 

            
22 11 4 62 4

1 1 2 2 3 1 2 1 3 3

1Ψ 3 3 3 3 e 1 e 1 1
2

               
      

k Ik IM I M I M I I k k p I  (5) 175 

where 1M , 2M , 3M , 1k , 2k , 3k , 4k are the material parameters. Please refer to reference [19] for 176 

more details. 177 

3.2 Computational experiment 178 

The numerical simulations corresponding to the three-point bending test and flexural loading test 179 

presented in the previous section were performed using the commercial FE package 180 

Abaqus/Standard. Four-node shell elements (S4R) with a four layer composite section were used to 181 

model the specimens. Each layer behaves like an orthotropic material characterized by the 182 

constitutive model of Equation (5). A frictionless contact between the support system and the 183 

specimen was defined for both tests. For the flexural loading test, a 35.59 N concentrated force, 184 

which is equivalent to the weight of the steel ball, is set on the center point of the plate. The 185 
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computational models for the three-point bending test and flexural loading test are depicted in Figure 186 

5.  187 

 188 

 189 

Figure 5. Computational models: (a) Three-point bending test, (b) Flexural loading test 190 

4. Identification of constant material parameters 191 

 192 
Figure 6. Inverse characterization flowchart 193 
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The material parameters 1M , 2M , 3M , 1k , 2k , 3k , 4k  of the strain energy function in Equation (5194 

) for multi-layered carbon fiber reinforced material are identified by minimizing objective functions 195 

that represent discrepancy between experimental test data and numerical simulation results. The 196 

updated material parameters were performed with the Global Response Surface Method for multi-197 

objective optimization. As presented in (equation 6?) Figure 6, the difference of loads between 198 

experimental data and numerical results was taken into account for building the objective function 199 

associated with the three-point bending test while vertical plate displacements were used to build the 200 

objective function associated with the flexural loading test. These objective functions are as follows: 201 

  
2 2exp simu exp simuN Nb b

0i 0i 45i 45i
b exp exp

i 1 i 1
b 0max 45max

(1( )
2N

) ( )
 

      
      

   


 

p pp F F F Fr
F F

 (6) 202 

 
2 2exp1 simu1 exp2 simu2N Nf fzj zj zj zj

f exp1 exp2
j 1 j 1

f zj zj

u u u u1( )
2N max(

( ) ( )
) )u max(u 

      
         

     

p p
pr  (7) 203 

Herein, p  is the list of unknown parameters. The relative error values b ( )pr and f ( )pr  represent the 204 

objective functions of the three-point bending test and flexural loading test respectively. Nb is the 205 

number of displacement steps at which loads were measured in the three-point bending test. exp
0iF and 206 

simu
0iF  represent the experimental and computed loads respectively at step i for the stacking sequence 207 

 4
0,90 . exp

45iF and simu
45iF  represent the experimental and computed loads respectively at step i for the 208 

stacking sequence  4
45 . Nf is the number of measured points on the plate surface in  the flexural 209 

loading test. exp1
zju and simu1

zju denote the experimental and numerical vertical displacements at point j 210 

for  Configuration 1.  exp2
zju and simu2

zju denote the experimental and numerical vertical displacements 211 

at point j for Configuration 2. 212 

Convergence criterion is set to be reached when the updated parameter values are (difference ?) 213 

inferior to 0.5% of actual parameter values. The iterative process ended after 11 steps of the updating 214 

process. Table 3 shows the converged parameter values.  215 

Table 3. Optimized parameter values  216 
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 1M  (MPa) 2M  (MPa) 3M  (MPa) 1k  (MPa)  2k    3k  (MPa)  4k   

703.3 915.0 512.0 1131.0 46.2 1131.0 46.2 

Good agreement was found between experimental and computed loads associated with the three-217 

point bending test versus displacement for the optimized parameters set (Figure 7). With the small 218 

value of relative errors b ( )pr = 0.0173, it turned out that the inverse procedure leads to a good fit 219 

between experimental and numerical loads. 220 

Figure 8 and Figure 9 show the residual difference between measured and calculated vertical 221 

displacement of composite plate for flexural loading tests. The average differences between 222 

experimental and numerical results were found to be 1.53 mm for Configuration 1, and 0.88 mm for 223 

Configuration 2. The relative error f ( )pr is 0.056. It demonstrated that a good match of the calculated 224 

and the measured vertical displacement was achieved as well for the flexural loading test. 225 

 226 

Figure 7 Comparison between numerical results and experimental data for three-point bending test 227 
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 228 

Figure 8. Residual difference between measured and calculated vertical displacement for 229 
Configuration 1 230 

 231 

Figure 9. Residual difference between measured and calculated vertical displacement for 232 
Configuration 2 233 
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5. Validation of material model 234 

In this study, the material used for validating the material model is a consolidated plate of eight 235 

layers of CF/PPS with 2.48 mm thickness (0.31 mm/layer). The stacking sequence of plates is236 

 s
(0,90) / 45 / 45 / (0,90)  . The flexural loading test for this plate of eight-layer laminate was 237 

performed using the same experimental set up as that used for the four-layer laminate in the previous 238 

section. Dimensions of the plate were 1200 mm x 1200 mm x 2.48 mm. Two validation cases with 239 

two different configurations were performed in this work (see Figure 10). Vertical displacement was 240 

measured at 169 points on the plate surface. 241 

 242 

Figure 10.  Validation test 243 
 244 

A FEA simulation procedure with Abaqus was applied to compute vertical plate displacements. The 245 

material parameters obtained from the inverse characterization procedure were used to simulate the 246 

deformation of this composite plate.  247 

Figure 11 and Figure 12 show the residual difference between measured and calculated vertical 248 

displacement of the composite plate for these two validation cases. The average difference between 249 

experimental and numerical results was found to be 1.42 mm and 0.55 mm respectively for validation 250 

case 1 and case 2. Small relative errors obtained ( 1r = 0.0582 for validation case 1 and   2r = 0.0283 251 

for validation case 2 demonstrated that the material model used here is appropriate for assessing the 252 
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mechanical behavior of this multilayered composite and that the identification procedure developed 253 

in this paper is suitable for the characterization of this composite material. 254 

 255 

Figure 11. Residual difference between measured and calculated vertical displacement for 256 
Validation case 1 257 

 258 
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Figure 12 Residual difference between measured and calculated vertical displacement for 259 
Validation case 2 260 
 261 

6. Conclusion 262 

In this paper, an inverse procedure was developed for characterizing the large bending 263 

deformation behavior of four layers of CF/PPS material. A three-point bending test with two different 264 

stacking sequences and a flexural loading test with two different configurations for boundary 265 

conditions were performed to study the mechanical responses. FEA modelling was performed using 266 

the Abaqus/Standard commercial FE package based on an orthotropic hyperelastic model for finite 267 

strain shell elements. Material parameters associated with this hyperelastic model were identified by 268 

minimizing discrepancy between experimental and numerical data. The material model parameters 269 

obtained from the inverse characterization were validated for the case of an eight-layer CF/PPS 270 

material. Results showed that the proposed method is appropriate for characterizing the behavior of 271 

multi-layered composites in large deformation.  The method presented in this paper can be applied 272 

to characterize and simulate the large anisotropic deformation behavior of non-rigid composite parts 273 

during the virtual assembly process.  274 
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