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Abstract 
The aim of research work is to characterize the mechanical behavior of multi-layered carbon fiber 
reinforced polyphenylene sulphide (CF/PPS) composites with application to assembly process of 
non-rigid parts. Two anisotropic hyperelastic material models were investigated and implemented in 
Abaqus as a user-defined material. An inverse characterization method was applied to identify the 
parameters of these material models. Finite element simulations at finite strains of a flexible 
composite sheet were carried out. Numerical results of sheet deformation were compared to 
experimental results in order to evaluate the appropriateness of the material models developed for 
this application. 
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Introduction 
The quality control of products is one of the main aspects for manufacturing companies to 

consider in technological developments. At the end of a manufacturing process, the produced part 
must satisfy a level of required tolerance. In aerospace and automotive industries, manufactured non-
rigid (or flexible) parts feature large dimensions with respect to their thickness and they may have a 
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different form in free-state than the design model due to geometric variations, gravity loads and 
residual stress. For example, the skin panel of an aircraft can be slightly warped in free-state, making 
it possibly unacceptable for assembly.1 Therefore, one of the most important problems faced in 
quality control is inspecting the geometry of non-rigid parts prior to assembly. During geometric 
inspection, special fixtures in combination with coordinate measuring systems are needed to 
compensate for shape changes of non-rigid parts. This process is usually costly and very time-
consuming.2 For instance, Figure 1a and Figure 1b show an aerospace panel in free-state and 
constrained on its inspection fixture set before the measurement process. 

[insert Figure 1] 
Figure 1. An aerospace panel: (a) in free-state, and (b) constrained on its inspection fixture set.7  

For the time being, it is widely considered that a virtual inspection method, which is usually 
performed by numerical simulations to compensate for flexible deformation of non-rigid parts in free-
state, would significantly reduce the inspection time and cost.3. All inspection methods proposed so 
far are limited to linear elastic isotropic materials with well-known characteristics.1-7 Nowadays, the 
use of parts made of composite materials is progressively growing, especially in aerospace industry. 
However, up to now, there is no virtual inspection method that was developed for non-rigid composite 
parts, at least to our knowledge. The reason is that the anisotropic nonlinear deformation behavior of 
non-rigid composite parts is much more complicated than that of linear isotropic elastic materials. 
Therefore, the deformation of composite parts could not be simulated correctly by finite element 
analysis without an appropriate material model for this purpose. A deep understanding of the behavior 
of non-rigid composite parts is not only very challenging, but it is also very important for various 
applications such as developing specific virtual inspection methods for non-rigid composite parts.  

It is remarked that hyperelasticity gives an appropriate framework for numerical modelling of 
large deformation including the anisotropic effect. Several authors have implemented models of 
hyperelastic shell into finite element codes. Gruttmann and Taylor8 derived a rubberlike constitutive 
material model for membrane shells using principal stretches. Weiss et al.9 and Prot10 developed a 
generalized approach for transversely isotropic membrane shells. Itskov11 derived an orthotropic 
hyperelastic material model for membrane shells with application to biological soft tissues and 
reinforced rubber-like structures. Tanaka et al.12 succeed to implement shell element for woven fabric 
composite materials with two families of fiber. These proposed methods were developed for fiber-
reinforced composite materials or biological anisotropic materials that are generally characterized by 
low stiffness and large strains during the deformation. It was observed that the behavior of non-rigid 
composite parts in aerospace assembly process is quite different from the material types above-
mentioned. During assembly process, non-rigid part undergoes essentially large bending deformation 
due to geometric variations, gravity loads and residual stress. In the literature, there exist very few 
studies investigating the behavior of non-rigid composite parts in assembly process. Therefore, the 
determination of a material model together with its parameters which is capable of capturing the large 
anisotropic deformation of non-rigid composite parts is the main purpose in this current research. 

In this paper, two strain energy functions were studied for incompressible orthotropic 
hyperelastic material models able to capture the behavior of flexible fiber-reinforced thermoplastic 
composites (FRTPC). These models were implemented in the user-defined material subroutine of 
Abaqus for finite strain shell elements. The multi-layered CF/PPS composite material, in which each 
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layer is reinforced by two families of carbon fibers, was used in this study. In the modelling work, 
each layer was considered as an orthotropic material characterized by a strain energy function. 
Material characterization works were carried out in order to identify the parameters of strain energy 
functions. These material parameters were then used to simulate the deformation for the load test 
using a ball load applied on a large sheet of multi-layer FRTPC. The deflections of the composite 
sheet predicted by numerical simulations performed with Abaqus were compared with the 
experimental data obtained from the load test in order to evaluate the capability of each material 
model used in this study. 

Material model implementation 

Generalized orthotropic hyperelastic material model for incompressible thin 
shells 

[insert Figure 2] 
Figure 2. Motion of a continuum body 

In the present study, each point of the solid bodyB in the reference configuration 0 is determined by 
the position vector 0 X , and in the current configuration  by the position vector  x (Figure 
2). The deformation gradient F is defined by /  F x X . For thin shell-like sheet which has a plane 
stress state, the deformation gradient F  has the following form: 
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For incompressible materials, det 1 FJ .  Hence, the following expression reads: 
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 F F F F F     (2) 
The right Cauchy–Green deformation tensor is defined as TC F F and the left Cauchy–Green 
deformation tensor is defined as Tb FF . The concept of hyperelasticity modeling is based on the 
existence of an energy potential, which is appropriate for the description of a large deformation 
including the anisotropic effect. In this study, the behavior of a thermoplastic reinforced by two 
families of fiber can be represented by the superposition of one isotropic model and two transversely 
isotropic models, and given by:     
        1 2

iso trans transΨ Ψ Ψ Ψ           (3) 

Herein, isoΨ  denotes the isotropic stored energy,  1
transΨ and  2

transΨ  denote the transversely isotropic 
stored energy for the first and second fiber, respectively. The directions of the first and second fiber 
at point X  are represented by unit vectors  0a X  and  0g X  respectively in the reference 

configuration. For orthotropic materials, the initial directions of two fibers are orthogonal, i.e. 0 0a g
. During deformation, the vectors 0a and 0g are mapped into the related current configuration such as 

0a Fa and 0g Fg . The vectors 0a , 0g ,a and g  can be expressed in the basis  1 2 3, ,e e e  as follows: 
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where 1 denotes the angle between 1e  and the fiber direction 0a , 2  denotes the angle between 2e  
and the fiber direction 0g . For orthotropic materials, o

2 190   . The strain-energy function Ψ  in 
Eq.(3) for orthotropic materials can be expressed as a function of C  and the fiber unit vectors 0a  and 

0g  by: 

             1 2
iso trans 0 trans 0Ψ Ψ Ψ , Ψ ,  C C a C g    (6)  

The mechanical behavior of the material is determined by the relationship between the second Piola–
Kirchhoff stress tensor S  and the right Cauchy–Green deformation tensor C  as follows: 

      Ψ2 


S
C

     (7) 

For incompressible orthotropic materials, the strain energy function in Eq.(6) can be stated as a 
function of invariants of C ,13 and given by: 

       1 2 4 6 3

1Ψ Ψ , , , 1
2

  I I I I p I     (8) 

where the scalar p serves as an indeterminate Lagrange multiplier and five different invariants are 
defined by: 

         
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where 4I and 6I represent the square of the stretching of fiber along their initial directions 0a  and 0g , 
respectively. Then, the second Piola–Kirchhoff stress tensor can be derived from Eq.(7), and given 
by: 
     1

1 2 1 4 0 0 6 0 02 2 2 2        S I I C a a g g C   I p   (10) 
where the symbol   denotes the tensor product, I  is the second-order identity tensor and: 
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In the case of plane stress, the stress component 33S vanishes. Therefore, the scalar p is obtained as 
follows: 
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where 11C , 22C , 33C are the components of right Cauchy–Green tensor C . On the other hand, the 
material elasticity tensor is determined by: 
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where: 
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and I  is the fourth-order identity tensor defined as: 

       ik jl il jkijkl

1
2

 I          (15) 

Strain–energy functions for CF/PPS materials 

In this study, the mechanical response of CF/PPS material is represented by orthotropic 
incompressible hyperelastic models. Polyphenylene sulphide material is characterized as an isotropic 
matrix, in which carbon fibers are embedded. Carbon fibers are characterized by an exponential-type 
stress–strain behavior in the fiber direction. Two strain energy functions were proposed and 
implemented for the incompressible CF/PPS material based on the polyconvexity conditions 
proposed by Balzani et al.14. The first proposed model is a modified function of Holzapfel–Gasser–
Ogden (HGO) model.15, 16 The neo-Hookean model was used to determine the isotropic response of 
the matrix part. For the mechanical response of two families of carbon fibers, two exponential 
functions in terms of invariants were used. The strain energy function of this model has the following 
form: 
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where 1M , 1k , 2k , 3k , 4k  are the parameters of the strain energy function in Eq.(16). The second 
proposed model uses the same energy function for the anisotropic part as in the first model and the 
isotropic part is a function in terms of the invariants 1I  and 2I 17 as follows:  

            
2 2

2 4 4 61 1
1 1 2 2 3 1 2 1 3 3

1Ψ 3 3 3 3 e 1 e 1 1
2

                
   

k I k IM I M I M I I k k p I (17) 

where 1M , 2M , 3M , 1k , 2k , 3k , 4k are the material parameters of the strain energy function in Eq.(17).  

Implementation in Abaqus/Standard UMAT 
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Several authors were successful to implement strain energy functions into Abaqus through the 
user-defined material subroutine.10, 12, 18, 19  In this paper, the material models in Eqs.(16) and (17) 
were implemented in Abaqus/Standard by using the UMAT user-defined material procedure. Abaqus 
requires only components of the Cauchy stress and the tangent stiffness matrix. The Cauchy stress 
tensor is determined by the push-forward operation of the stress tensor S  to the current 
configuration20 as shown in Eq. (18). It is noted that for thin shell element, the stress component in 
the thickness direction is neglected. 

    T 2
1 2 1 4 62 2 2 2        σ FSF b b b a a g g II p     (18) 

Based on Abaqus/Standard 6.13 documentation21, the Green–Naghdi stress rate is used for shell and 
membrane elements. The elasticity tensor C related to the Green–Naghdi stress rate is required for 
Abaqus user-defined subroutine and is computed as: 
       o

iakl aj ia ajklijkl ijkl

   C C         (19) 

where   is a material-independent fourth-order tensor defined in Simo and Hughes22 and oC is the 
elasticity tensor related to Zaremba-Jaumann objective rate defined as: 
       o
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ˆ  C C          (20) 

The spatial elasticity matrix Ĉ  is defined by the push-forward operation of C  in Eq.(13) as: 
        iI jJ kK lL IJKLijkl

ˆ F F F F     (21) 

By replacing the formulation of C in Eq.(13) into Eq.(21), the spatial elasticity matrix Ĉ  is obtained 
as: 
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where the components of fourth-order tensor b b  has the following form: 

        
1
2 ik jl il jkjkl
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i

b b b b b b     (23) 

Material parameters identification  
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For materials whose stiffness is low and the large strain occurs during the deformation 
procedure, such as woven composites and biological tissues, the simple tensile test and/or biaxial test 
were usually used to characterize the material properties.9, 10 For assembly process, non-rigid 
composite parts undergo essentially the large bending deformation. Therefore, the three point bending 
test that is considered more appropriate to characterize the bending properties of composite sheets 
was used in this study. The material parameters 1M , 1k , 2k , 3k , 4k  of the strain energy function in 
Eq.(16) and 1M , 2M , 3M , 1k , 2k , 3k , 4k of the strain energy function in Eq.(17) for multi-layered 
carbon fiber reinforced material were respectively determined by curve-fitting by minimizing the 
discrepancy of loads between the experimental bending test data and numerical simulation using 
Abaqus. 

Three point bending test 

[insert Figure 3] 
Figure 3. Test specimens. 
[insert Figure 4] 
Figure 4. Three point bending test using the MTS machine. 

The composite material used in this study is a consolidated plate of 4 layers of CF/PPS. Each 
layer is composed of a polyphenylene sulphide (PPS) matrix and carbon fiber fabrics. The fiber 
volume fraction (

f
V ) is of 50%. The total thickness of the four-layer laminate is about 1.24 mm (0.31 

mm / layer). Specimens with dimensions 300 mm × 34 mm × 1.24 mm were fabricated with two 
different stacking sequences  4

0,90 and  4
45  as shown in Figure 3. Three point bending tests were 

performed on the MTS testing machine with displacement control as presented in Figure 4. Five tests 
were conducted for each configuration as summarized in Table 1. 

Table 1. Specimen and test parameters 

Parameters Value 

Material Carbon fiber-reinforced (CF/PPS)  

Stacking sequence  4
0,90 and  4

45  

Specimen dimension 300 mm × 34 mm × 1.24 mm 

Support span 140 mm 

Velocity 4 mm/min 

Max displacement at middle 
span 20 mm 
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Radius of loading noses and 
supports 25 mm 

Computational experiment 

Numerical simulation of the three point bending test is created in Abaqus using user-defined 
material (UMAT) subroutines developed for two strain energy functions, i.e. Eqs. (16) and (17). 
Specimen is meshed with four-node shell elements (S4R in Abaqus/Standard) with a four layers 
composite section. Each layer behaves like an orthotropic material. The computational model for the 
simulation of the three point bending test with displacement control is depicted in Figure 5  where 
frictionless contact between supports and specimen was defined.  

[insert Figure 5] 
Figure 5. Finite element modeling for three points bending test. 

Inverse characterization method 

The inverse characterization method allows identifying the material parameters of the strain energy 
functions by minimizing the difference of loads between the experimental test data and numerical 
simulation. For this fitting process, the following objective function was used together with the 
adaptive response surface optimization method: 

     
N

exp simu 2
i i

i 1
min ( )



    
Y F F     (24) 

Herein, N denotes the number of steps at which loads were measured, and exp
iF , simu

iF  respectively 
denote the experimental load and the computed load at step i. A good agreement was found between 
the predicted results and experimental data for both of strain energy functions in Eq.(16) and Eq.(17
) as well as for both stacking sequences  4

0,90 and  4
45  as depicted in Figure 6. The material 

parameters obtained from the curve-fitting for strain energy functions in Eq.(16) and Eq.(17) are 
presented in Table 2 and Table 3, respectively. In order to evaluate the accuracy of the curve-fitting, 
the relative error, denoted by r , is calculated as follows:  

      
N

2exp simu
i iexp

i 1max

1 1
N 

 r F F
F

   (25) 

where exp
maxF  denotes the experimental load at the last step.  

Results showed that the relative errors of the curve-fitting are small, with r = 0.0182 and r
= 0.0160 respectively for the strain energy functions in Eqs.(16) and (17). It turned out that the 
mechanical response of the composite reinforced by two families of carbon fiber was well modelled 
by the exponential function   

trans
HGOΨ  and globally, the strain energy function in Eq.(17) is more 

appropriate for the mechanical behavior of multi-layered CF/PPS in the three-point bending test.  

Table 2. Optimized parameters values for strain energy function in Eq.(16)  
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1M (MPa) 1k (MPa) 2k  3k  (MPa) 4k  Angle of fiber 

1420 1213.5 63.0 1213.5 63.0  4
0,90 and 4

45  

Table 3. Optimized parameters values for strain energy function in Eq.(17)  

 1M  (MPa) 2M  (MPa) 3M  (MPa) 1k  (MPa)  2k    3k  (MPa)  4k   Angle of fiber 

683.2 920.0 530.0 1120.0 58.0 1120.0 58.0  4
0,90 and 4

45  

[insert Figure 6.] 
Figure 6. Comparison between numerical results and experimental data: a) strain energy function in 
Eq.(16); b) strain energy function in Eq.(17). 

Model validation and discussion  
To validate the material models used in this study, a load test with a large sheet of multi-

layered FRTPC was performed. This test is chosen because the deformation in this load test is quite 
similar to that in assembly process. The bending displacement of the composite sheet predicted by 
numerical simulations using Abaqus was compared with the experimental results from the load test. 

Experimental test 

Table 4. Experimental parameters 

Composite plate  

Material CF/PPS  

Stacking sequence  4
0,90   

Plate dimension 930 mm × 890 mm × 1.24 mm 

Supports system   

Radius of sphere-head 
supports 6.35 mm 

Height of 4 supports 30.5 ± 0.32 mm  

Distance between supports 
(Figure 7) 660.4 ± 0.95 mm 

Steel ball  
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Radius of steel ball 49.5 mm 

Weight of steel ball 3.63 kg 

Deviation of ball position 
from the center point (Figure 
7) 

±2.15 mm 

Table 4 summarizes experimental parameters used in this work. The material used here is the 
same as the material used in the three point bending test presented above. The thickness of the four-
layer laminate is 1.24 mm (0.31 mm/layer) with the stacking sequence  4

0,90 . A plate with 
dimensions 930 mm × 890 mm ×1.24 mm was used. This plate lies on four rigid sphere-head supports 
and undergoes bending deformation imposed by a 3.63 kg ball applied at center point (see Figure 7). 
The vertical displacement of the plate was measured using a Faro arm at 110 points on the plate 
surface. Three measurements were performed to get average values. The deviation values of the 
measurement at these points are depicted in Figure 8. The maximum deviation value is about 1.24 
mm which corresponds to a maximum relative error of 5.42%. 

[insert Figure 7] 
Figure 7.  Bending load test set-up. 
[insert Figure 8] 
Figure 8. Measurement deviation of vertical displacement (mm). 

Test simulation and result discussion   

A finite element computational procedure which corresponds to the plate bending test 
introduced in the previous section is developed with Abaqus using a user-defined material with 
parameters shown in Table 2 and Table 3. The element type used in Abaqus is shell element (S4R) 
with a 4 layers composite section. The specimen lies on 4 rigid spheres which represent supports used 
in the experiment. Frictionless contact between the specimen and supports is defined. A 35.59 N load, 
which is equivalent to the weight of the steel ball, is applied on the plate at the same location as in 
the experimental test (at center point). The experimental data and simulated results were compared in 
terms of bending displacement along the ten paths shown in Figure 9. The comparison of 
experimental and simulated vertical displacement along these paths is presented in Figure 10. The 
maximum and minimum differences between experimental and numerical results are summarized in 
Table 5. 

[insert Figure 9] 
Figure 9. Path positions along Y axis.  

Figure 10 shows that at the middle of the plate (paths 4 - 8), the simulation gives better 
agreement with the experimental data than on the contour of the plate (paths 1 - 3 and paths 8 - 10). 
The maximum difference between simulation and experiment, 6.56 mm for strain energy functions 
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in Eq.(16) and 7.87 mm for strain energy function in Eq.(17) appears at the boundary of the plate 
(path 1) (see Table 5).  

The average discrepancies between experimental and numerical results are 3.64 mm and 3.39 
mm respectively for the strain energy functions in Eqs.(16) and (17), which are quite small in 
comparison to the dimensions of the composite sheet. It demonstrates that the simulations with two 
orthotropic hyperelastic models used in this study gave good agreements with the experimental 
results. It is remarked that the strain energy function of Eq.(17) provided better response than that of 
Eq.(16).  

[insert Figure 10] 
Figure 10. Result comparison ((a) Path 1, (b) Path 2, (c) Path 3, (d) Path 4, (e) Path 5, (f) Path 6, (g) 
Path 7, (h) Path 8, (i) Path 9, (j) Path 10).  
Table 5. Maximum and minimum difference in vertical displacement between experimental and 
simulation data on each path  

Path 

Strain energy function in 
Eq.(16)  

Strain energy function in 
Eq.(17)  

Min (mm) Max (mm) Min (mm) Max (mm) 

Path 1 1.53 6.56 0.31 7.87 

Path 2 1.34 5.44 0.04 6.56 

Path 3 1.43 4.56 0.17 5.36 

Path 4 1.14 2.81 0.24 3.39 

Path 5 0.47 2.78 0.16 2.92 

Path 6 0.79 2.73 0.38 2.15 

Path 7 1.66 2.84 0.26 3.55 

Path 8 1.43 4.57 0.15 5.17 

Path 9 1.191 5.22 0.27 6.10 

Path 10 0.50 4.62 0.08 5.86 

Conclusion 
This paper presents the implementation of two orthotropic hyperelastic models used for assessing the 
mechanical behavior of multi-layer FRTPC sheets. These models were developed based on the 
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polyconvexity condition of strain energy function and implemented in the user-defined material 
subroutine of Abaqus for finite strain shell elements. The material parameters were numerically 
identified by fitting numerical simulation results to experimental results obtained from three bending 
tests for both stacking sequences  4

0,90 and  4
45 . These models were then validated through the 

ball load test on a large composite sheet. Results showed that: 
 Both proposed orthotropic hyperelastic models are appropriate for the CF/PPS multi-layer 

composite material. 

 The parameters of these models can be well identified in three point bending tests with two 

different fiber orientation configurations. 

 The numerical simulation using shell element (S4R) with the composite section of 4 layers in 

Abaqus is good enough for the multi-layer FRTPC sheets. 

 These material models responded well the validation case of the ball load test on a large CF/PPS 

multi-layer composite sheet. 
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Fig. 11 An aerospace panel: (a) in free-state, and (b) constrained on its inspection fixture set. 
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Fig. 12 Motion of a continuum body 
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Fig. 13 Test specimens. 
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Fig. 14 Three point bending test using the MTS machine. 
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Fig. 15 Finite element modeling for three points bending test. 
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Fig. 16 Comparison between numerical results and experimental data: a) strain energy function 
in Eq.(16); b) strain energy function in Eq.(17). 
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Fig. 17  Bending load test set-up. 
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Fig. 18 Measurement deviation of vertical displacement (mm). 
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Fig. 19 Path positions along Y axis. 
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Fig. 20 Result comparison ((a) Path 1, (b) Path 2, (c) Path 3, (d) Path 4, (e) Path 5, (f) Path 6, 
(g) Path 7, (h) Path 8, (i) Path 9, (j) Path 10).  
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