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Summary 

 

Methods used to generate movement and couple it with the environment are strongly integrated 

within GIScience. This study explores how systematically altering the conceptualisation of 

movement, environmental space, and temporal resolution affects the results of habitat selection 

analyses using both real-world case studies and simulated data. Only segment conceptualisations 

modelled the expected movement-environment relationship with increasing linear feature resistance. 

This suggests that spatial statistics employed to investigate movement-environment relationships 

should advance beyond conceptualising movement as the (relatively) static conceptualisation of 

vectors and moves and replace these with (more) dynamic aggregations of longer-lasting movement 

processes such as segments and areal representations. 
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1. Introduction  

 

Movement data are becoming ubiquitous in GIScience, and this spatiotemporal geographic information 

has improved our understanding of many of the geographic processes we study. Laube (2017) recently 

described six semantic levels of quantifying movement in a GIScience context (Figure 1) that range 

from an instantaneous level, to an interval aggregated level, and finally to a global aggregation. These 

varied conceptualisations of the moving object all represent slightly different movement processes and 

different conceptualisations have all been used within spatial analysis and modelling. This choice of 

movement conceptualisation and environmental space can potentially have long-lasting implications 

on any management strategy resulting from these spatial statistics; however, no formal analysis has 

investigated how the conceptualisation of movement in relation to the movement space influences 

movement-environment inferences.  

 

Subsequently, the aim of this study is to explore how systematically altering the conceptualisation of 

movement and environmental space affects the results of spatial-temporal analyses using both real-

world case studies and simulated data.  This study explores three main questions: 1) does the 

conceptualisation of the moving object and environmental space influence a) the model performance 

and b) the environmental preference of habitat selection? 2) does the habitat selection methodology 

correctly identify environmental preferences of animal movement using a virtual ecologist approach? 

and 3) does systematically varying the temporal resolution of the virtual data used in the statistical 

model change the environmental preference identified? 
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Figure 1 Diagram to illustrate the different conceptualisations of movement along a single movement 

trajectory  

2. Methods  

 

Habitat selection is defined simply as the probability that a specific habitat will be used by an animal 

when it encounters it (Lele et al. 2013). Habitat selection analysis develops a function that is 

proportional to the probability of the use of a resource unit by an organism (Manly et al. 2002). The 

‘used’ observations are compared to a set of ‘alternative’ observations that the object theoretically could 

have selected, with a set of environmental variables that characterise ‘selection’ identified from the 

statistical model (Figure 2). Habitat selection has been implemented across multiple conceptualisations 

of movement, including ‘fixes’ (Figure 2a; resource selection analysis – RSA), ‘vectors’ and ‘moves’ 

(Figure 2b; step selection analysis – SSA), and ‘segments’ and ‘areas’ (Figure 2c; path selection 

analysis – PathSA). 

 

 

Figure 2 Habitat selection analyses that compare an observed (black) movement observation to a set 

of alternative (grey) movement observations that an individual could have theoretically taken. 



Using conditional logistic regression, habitat selection �̂�(𝑥) is defined as: 

�̂�(𝑥) = exp(𝛽1𝑥1 +  𝛽2 𝑥2 +  … + 𝛽𝑛𝑥𝑛)         (1.0) 

where βn is the coefficient estimated by the conditional logistic regression for the variable 𝑥𝑛. 

Observations with higher �̂�(𝑥) values have a higher likelihood of being chosen by the individual, 

meaning such an approach can identify the influence the environment can have on habitat selection and 

movement. In habitat selection studies, land cover has predominantly been measured as a binary 

variable recorded at the exact coordinate of the vector. Linear features have been incorporated in 

statistical models more sporadically, despite the potential that these features could have important 

implications on movement in natural and urban settings. Table 1 outlines six methods of incorporating 

linear features (LFs) used in this study, the justification for use as an environmental covariate, and the 

movement conceptualisation that the method can be coupled with. Land cover was incorporated in a 

consistent manner across all six models in Table 1 following the predominant method used in habitat 

selection studies: value or proportion of land cover along or within the movement conceptualisation. 

 

Table 1 Outline of the six models that investigate the relationship between movement and linear 

features (LFs). 

 
Model Description Reasoning Conceptualisation 

LF_mean Measures the mean value to the LF from, 

along, or within the movement 

conceptualisation 

Used to identify movement towards 

(negative coefficient), away (positive 

coefficient), or in parallel to roads 

(equal to reference). 

Vector; Move; 

Segment; Area; 

Density 

LF_prop Measures the proportion of the movement 

conceptualisation that is within a buffer of 

the LF (distance to correspond with 

suggested movement step lengths and 

impact distances) 

Proportion of time within a LF buffer 

indicates usage of LF, proposed to 

overcome limitation of unlikely nature 

of movement step falling exactly on the 

one-dimensional line. 

Vector; Move; 

Segment; Area; 

Density 

LF_min Measures the minimum distance to the LF 

from the movement conceptualisation  

Used to identify movement towards 

(negative coefficient), away (positive 

coefficient), or in parallel to LFs (equal 

to reference). 

Move; Segment 

LF_cross Binary value representing whether the LF 

has been crossed by the movement 

conceptualisation 

Used to indicate whether animals will 

use or cross LF (1), or whether they 

avoid them (0). 

Move; Segment 

Non-

LF_agg 

Landscape reclassified into a binary space 

(linear or non-linear). The degree of 

aggregation of non-linear patches in the 

area., calculated from the adjacency 

matrix, which shows the frequency with 

which different pairs of patch types 

appear side-by-side in the landscape. 

prop.like.adjacencies in spatialEco 

(Evans 2017) 

Used as a measure of connectivity for 

non-linear landscapes in the study area. 

A higher aggregation indicates less LFs, 

with linear landscapes used more 

(negative coefficient) or less (positive 

coefficient) by animals.  

Area; Density 

Non-LF-

conn 

Landscape reclassified into a binary space 

(linear or non-linear). Metric describing 

the physical connectedness of the non-

linear patches. patch.cohesion.index in 

SpatilEco (Evans 2017) 

Used as a measure of connectivity for 

non-linear landscapes in the study area. 

A higher cohesion indicates less LFs, 

with linear landscapes used more 

(negative coefficient) or less (positive 

coefficient) by animals. 

Area; Density 

 

 

 



Telemetry data of oilbirds (Steatornis caripensis) in Venezuela and Burchill’s zebra (Equus quagga 

burchelli) in Botswana were obtained from Holland et al. (2009) and Bartlem-Brooks et al. (2013a) 

respectively via Movebank (Holland et al. 2012; Bartlem-Brooks et al. 2013b). Vectors, moves, 

segments, areas, and densities were all included in the spatial analysis, with model performance 

evaluated using Akaike Information Criterion (AIC). Fine-scale movement was simulated using a 

discrete-step process of one-minute time-steps over 24-hours on a 665 x 591 rectangular grid of 100m 

cells in the SiMRiv package (Quaglietta and Porto 2018). Land cover was generated by creating a 

random raster of three categories, with each land cover attributed a value representing resistance to 

movement of 0.75, 0.25, and 1.00. The decision to simulate one low resistance (0.25), one high 

resistance (0.75) and one completely avoidable (1.00) land cover mimics the inferences from the two 

case studies that animals have a primary, secondary, and an avoidable land cover preference. In total, 

500 simulations were run for the five landscape configurations of land cover and LF resistance, which 

resulted in 2500 simulations. These simulations were treated as the ‘observed’ movement features, with 

‘alternative’ movement features generated including vectors, moves, and segments using the same 

methodology as outlined for the real-world case studies. 

 

3. Results 

 

The MCP and KDE conceptualisations of movement reported lower AIC values when the landscape 

was parameterised as the aggregation (N-LF_agg) and connectedness (N-LF_conn) of the non-LF 

landscape (Figures 3a-b) compared with the LF_mean and LF_prop parameterisations within the same 

area. When coupled with the standardised coefficient results (Figures 4c-d), both species were more 

likely to select movement paths with a lower aggregation or connectivity than the alternative movement 

option. This suggests that both species are using landscapes that are fragmented by LFs more so than 

those that are not, inferring a preference for landscapes dominated by LFs. While similar preferences 

for movement towards LFs was identified across movement and environmental conceptualisations for 

oilbirds (with the exception of LF_min), both avoidance of LFs using LF_mean, LF_prop, and LF_min 

parameterisations, and attraction to LFs using LF_cross, N-LF_agg, and N-LF_conn was identified for 

zebras. 

 

Figure 4 illustrates the coefficient values of the environmental covariates for the different movement 

conceptualisations and LF resistance values at each time-step derived from the virtual ecologist 

approach for the LF_mean model. The expected relationship for this model is for LF selection 

preference to increase positively as resistance increases (e.g., selection preference increases as the 

distance increases away from LFs). It was also expected that the land cover (LC1, LC2) coefficients 

would not change as the LF resistance was increased, as the resistance values for both LC1 and LC2 

were held constant. Given the resistance values of 0.75 and 0.25 for LC1 and LC2, it was expected that 

selection into both of these habitats would be positive to reflect selection over LC3 (the reference 

habitat). 

 

Segments were the only conceptualisation that accurately captured this expected pattern across all time-

steps for all models (Figures 4), while vectors and moves resulted in habitat selection that identified 

both attraction and avoidance for all LF resistance values between 0.00 (attraction) and 1.00 

(avoidance). For the vector and move conceptualisations, it was the shorter time-steps (1-minute, 2-

minutes) that incorrectly modelled the movement-environment relationship as attraction when LF 

resistance was specified as 1.00, and it was the longer time-steps (5-minutes to 120-minutes) that 

correctly modelled the expected relationship. As the virtual data was simulated at 1-minute time-steps, 

the assumption was that the shorter temporal resolution would reliably capture the underlying 

relationship. Coarser time-steps of vectors and moves are characteristic of simplified (albeit linear) 

segments, suggesting that movement-LF relationships are only observable at the more aggregated 

movement conceptualisations. Due to longer time-steps of vectors and moves covering more of the 

spatial variation in the overall movement trajectory, the conceptualisations are capturing the extreme 

relationship, but as a construct of the temporal resolution.  

  



 

Figure 3 Akaike Information Criterion (AIC) scores for the different movement conceptualisations and linear feature (LF) representations for a) oilbirds and 

b) zebras. Standardised coefficient values with standard errors for the different models parameterised on movement conceptualisations and LF representation 

for c) oilbirds and d) zebras. 

 

  



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4 Standardised coefficient values for land cover (LC) and linear features (LFs) with 95% confidence intervals for the LF_mean (mean distance to 

LFs) for the virtual species. Results include the movement conceptualisations of vectors, moves, and segments. Resistance values (0, 0.25, 0.5, 0.75, 1) 

correspond to the resistance of linear features to movement in the simulations, with the expected movement-LF relationship to increase in selection 

preference as resistance increases (e.g., selection preference increases as the distance increases away from LFs), while movement-LC relationships should 

remain consistent as LF resistance is increased.  For each variable, coefficient scores for 1-, 2-, 5-, 10-, 15-, 30-, 60-, 90-, and 120-minute time steps are 

reported left to right. 



4. Conclusion 

 

The relatively static treatment of movement in vectors and moves could explain the ability of segments 

to outperform these conceptualisations. When movement is represented as discrete entities, the 

underlying processes are masked as movement is not considered a process but an isolated event that is 

not directly informed by the movement decisions preceding or succeeding it. The ability of segments 

to correctly inform movement-environment (both land cover and LF) preferences (Figures 4) at all 

time-steps coupled with the inability of vectors and moves to inform on these preferences suggests that 

PathSA is required to effectively model the expected movement-environment relationships when 

investigating habitat selection. 

 

Systematically altering the resistance of movement to LFs in the simulations allowed for the movement-

environment relationship calculated from the conditional logistic regression to be examined. Expected 

movement-environment relationships were observed for segments when behaviour was complete 

avoidance (1.00) or attraction (0.00), yet inverted relationships were recorded across all resistance 

values for both vectors and moves as the time-steps were altered (Figures 4). These results suggest that 

vectors and moves are not suitable for modelling movement-LF relationships when individuals also 

made decisions on other land cover variables. This is particularly pertinent in landscapes where 

preference for LFs exists, but movement is not fixed to a LF network with discrete step choices based 

on other environmental factors masking movement-environment relationships at the individual 

aggregations in the statistical model. Subsequently, movement should be viewed at aggregated 

conceptualisations for the movement-LF relationships to be reliably modelled. Full results and 

discussion are available in Holloway (2019). 
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