
UCC Library and UCC researchers have made this item openly available.
Please let us know how this has helped you. Thanks!

Title Classifier-based constraint acquisition

Author(s) Prestwich, Steven D.; Freuder, Eugene C.; O'Sullivan, Barry; Browne,
David

Publication date 2021-04-17

Original citation Prestwich, S. D., Freuder, E. C., O’Sullivan, B. and Browne, D. (2021)
'Classifier-based constraint acquisition', Annals of Mathematics and
Artificial Intelligence, (20 pp). doi: 10.1007/s10472-021-09736-4

Type of publication Article (peer-reviewed)

Link to publisher's
version

https://link.springer.com/article/10.1007/s10472-021-09736-4
http://dx.doi.org/10.1007/s10472-021-09736-4
Access to the full text of the published version may require a
subscription.

Rights © The Author(s) 2021.
http://creativecommons.org/licenses/by/4.0/

Item downloaded
from

http://hdl.handle.net/10468/11237

Downloaded on 2021-11-27T16:39:31Z

https://libguides.ucc.ie/openaccess/impact?suffix=11237&title=Classifier-based constraint acquisition
https://link.springer.com/article/10.1007/s10472-021-09736-4
http://dx.doi.org/10.1007/s10472-021-09736-4
http://creativecommons.org/licenses/by/4.0/
http://hdl.handle.net/10468/11237

Annals of Mathematics and Artificial Intelligence
https://doi.org/10.1007/s10472-021-09736-4

Classifier-based constraint acquisition

S. D. Prestwich1 · E. C. Freuder2 ·B. O’Sullivan2 ·D. Browne2

Accepted: 1 March 2021
© The Author(s) 2021

Abstract
Modeling a combinatorial problem is a hard and error-prone task requiring significant
expertise. Constraint acquisition methods attempt to automate this process by learning con-
straints from examples of solutions and (usually) non-solutions. Active methods query an
oracle while passive methods do not. We propose a known but not widely-used application
of machine learning to constraint acquisition: training a classifier to discriminate between
solutions and non-solutions, then deriving a constraint model from the trained classifier. We
discuss a wide range of possible new acquisition methods with useful properties inherited
from classifiers. We also show the potential of this approach using a Naive Bayes classi-
fier, obtaining a new passive acquisition algorithm that is considerably faster than existing
methods, scalable to large constraint sets, and robust under errors.

Keywords Constraint acquisition · Classifier · Bayesian · Boolean satisfiability

Mathematics Subject Classification 2010 68T99 · 68Q32 · 68R99

1 Introduction

A constraint satisfaction problem (CSP) has a set of problem variables, each with a domain
of possible values, and a set or network of constraints imposed on subsets of the variables.
A constraint is a relationship that must be satisfied by any solution, though it can be violated

� S. D. Prestwich
steven.prestwich@insight-centre.org

E. C. Freuder
eugene.freuder@insight-centre.org

B. O’Sullivan
barry.osullivan@insight-centre.org

D. Browne
david.browne@insight-centre.org

1 Insight Centre for Data Analytics, School of Computer Science & Information Technology,
University College Cork, Cork, Ireland

2 School of Computer Science & Information Technology, University College Cork, Cork, Ireland

http://crossmark.crossref.org/dialog/?doi=10.1007/s10472-021-09736-4&domain=pdf
http://orcid.org/0000-0002-6218-9158
mailto: steven.prestwich@insight-centre.org
mailto: eugene.freuder@insight-centre.org
mailto: barry.osullivan@insight-centre.org
mailto: david.browne@insight-centre.org

S.D. Prestwich et al.

in non-solutions. These are the ingredients of a constraint model of a problem, but in this
paper the term constraint satisfaction is used very broadly, and models might be formulated
as constraint networks, SAT formulae or mathematical programs.

In constraint-based reasoning the effort to bridge the gap between the current state of
the art and human-level Artificial Intelligence (AI) has been embodied in a long-standing
challenge to address the “Holy Grail” of computer science: the user simply presents a prob-
lem to the computer in a manner natural for the user, and the computer proceeds to solve
it [18]. The premise has been that Constraint Programming (CP) is well-suited to address
this challenge, as once a problem is expressed as a constraint satisfaction (or optimization)
problem there are general-purpose algorithms that can, in principle, proceed to solve it. Fur-
thermore, as such problems are ubiquitous within AI and have many practical applications
[17], progress in this direction will have broad implications.

The field of Constraint Acquisition (CA) [1, 2, 5–8, 25, 32, 42, 43, 47], also called Con-
straint Learning [36] and Constraint Synthesis [33], addresses the challenge of automating
the expression of the problem as a CSP. In CA we are given instances of solutions and
non-solutions or failures (positive and negative instances respectively) and the aim is to
learn a constraint model that represents them. Beside the general goal of automated prob-
lem modelling, the model might be used as an explanation of the problem, to classify partial
assignments, to show that a partial assignment cannot be placed in a class, to speed up the
solution of future problems, or to find instances that optimise some objective. CA has been
identified as an important topic in [32].

The CA problem is defined in [36] as follows. We are given: a space X of x instances
(assignments to variables V); a space of possible constraints C; an unknown target con-
straint theory T ⊆ C; and a dataset of training instances E, in which positive instances
satisfy T while negative instances do not. The task is to find a constraint theory H ⊆ C

such that all positive instances in E are satisfied, and none of the negative instances. A more
detailed formal definition and theoretical results are given in [6]. Active methods are guided
by interaction with a user or other oracle, while passive CA methods learn automatically.
Several CA systems have been devised (see Section 3) based on machine learning, inductive
logic programming and other methods, with a recent survey given in [36].

We propose a two-stage approach to CA that allows us to take advantage of machine
learning research: training a classifier to learn the difference between solutions and non-
solutions, then deriving a constraint model from the trained classifier. This has already been
done for neural network classifiers and decision trees (see Section 3) but this work is not
well known in the CA literature: it is mostly reported in other areas such as deep learning
and data science. Moreover, there are many classifiers with useful properties that have not
yet been used in this way. We conjecture that any classifier can, at least in principle, be used
to derive a constraint model, and that some will be useful for new CA applications. We call
this approach classifier-based constraint acquisition (CLASSACQ).

One aim of this paper is to link the CA and data science literatures more closely together
on this issue, for greater synergy between the two fields. Another aim is to present a specific
application of CLASSACQ using a Naive Bayes classifier, leading to a new CA method with
desirable properties. The paper is organised as follows. Section 2 presents the new Bayesian
method. Section 3 discusses related work. Section 4 tests the method on examples. Section 5
concludes the paper and discusses other classifiers that might be useful for CA. The paper
is an extension of [11] which is mostly contained in Sections 3 and 5.1.

Classifier-based constraint acquisition

2 Constraint acquisition by Naive Bayes classifier

The CLASSACQ idea of learning constraints from a trained classifier is not new. It is known
that decision trees can be transformed into constraint models [10, 29, 45], as can artifi-
cial neural networks [4, 27, 29]. Some neural networks can also be transformed to integer
programs [15, 37, 40]. However, these methods are not generally used for CA, and other
classifiers have been neglected in this context. In this section we derive a new CA method
from a Naive Bayes classifier.

2.1 Naive Bayes classifiers

Given a vector x = 〈x1, . . . , xN 〉 of values xi to be classified, Naive Bayes classifiers
usually select a class using the maximum a posteriori rule to choose the most likely class:

argmaxk

(
Pr(Ck)

N∏
i=1

Pr(xi |Ck)

)
(1)

This rule selects the class k that is the mode of the posterior distribution. To train the classi-
fier we must estimate the prior class probabilities Pr(Ck), and the conditional probabilities
Pr(xi |Ck) of observing xi in class Ck . These are estimated simply by counting values in the
dataset, so training these classifiers is fast and scalable.

An assumption is that the xi are values of independent variables or features. Although
this is often unrealistic, Naive Bayes classifiers often give surprisingly good results, are
provably optimal for some cases [14], and are a standard tool for some applications includ-
ing spam detection. They are also robust under noise and errors, because corrupted data can
be neutralised by sufficient correct data.

The properties of speed, scalability and robustness make Naive Bayes an interesting
candidate for the CLASSACQ approach.

2.2 A linear model using constraints as features

At first glance the Naive Bayes assumption of independence between variables seems to
make them unsuitable for learning constraints between variables. However, to learn binary
constraints (involving two variables) we can combine pairs of variables into single features,
which is essentially how a Pairwise Naive Bayes classifier works [3]. More generally, we
could consider variable tuples of arbitrary size to learn non-binary constraints. We use this
constraints-as-features idea as follows.

Suppose the dataset is a set of instances of the form x = 〈x1, . . . , xN 〉, where each value
xj can in principle be taken from any domain, and each instance is in class C+ (solutions)
or C− (non-solutions). Our method requires a set of candidates, called the bias, that may
or may not be constraints of the model we are trying to learn. We define binary features
cj : for any instance, cj = 1 iff constraint j is violated by that instance. This transforms
the dataset into a set of binary vectors, each bit or feature corresponding to a candidate
constraint. Hence the dataset can be represented by a 2-dimensional array cij of bits, with
rows i corresponding to instances and columns j to candidates.

Because the features are binary we use the Bernoulli Naive Bayes classifier. Following
the CLASSACQ approach we train the classifier on the transformed data, then derive a con-

S.D. Prestwich et al.

straint model from the trained classifier. In our application the classes are k ∈ {+,−}, and
an instance is classed as a solution if and only if:∏

j

Pr(cj = 1|C−)

Pr(cj = 1|C+)
<

Pr(C+)

Pr(C−)

In general we do not know Pr(C−) or Pr(C+) because there is no guarantee that these prob-
abilities are reflected in the training data. For example, given a tightly constrained problem
we might generate training data with 1000 solutions and 1000 non-solutions to facilitate
learning. Moreover, we rarely know how tightly-constrained an unknown constraint model
is. We therefore assume an uninformed prior Pr(C+) = Pr(C−) so that an instance is classed
as a solution if and only if:∏

j

Pr(cj = 1|C−)

Pr(cj = 1|C+)
< 1 or

∑
j

ln

(
Pr(cj = 1|C−)

Pr(cj = 1|C+)

)
< 0

From this we can derive a linear constraint∑
j

cj ln

(
Pr(cj = 1|C−)

Pr(cj = 1|C+)

)
< 0 (2)

that mimics a Naive Bayes classifier given cj values: given any previously unseen instance,
we can compute the cj then test the linear constraint; if it is satisfied then the instance is
classified as a solution; if it is violated the instance is classified as a non-solution. However,
the constraint can also be used to check whether a partial assignment to the cj can be
completed to obtain a solution, or to find an assignment that optimises some objective, by
enumerating combinations of values for the unassigned cj .

2.3 A simplifying approximation

We have used Naive Bayes to learn a linear model. However, a single linear constraint on
binary variables is not the constraint model we desire. Instead we would like to learn which
candidates j (expressed on the original problem variables) should be in the model. Fortu-
nately, in practice the coefficients (in constraint (2)) of cj for actual constraints are quite
large positive values, while those for non-constraint candidates have positive or negative
values close to 0. We therefore force cj = 0 for candidates j with large coefficients, thus
insisting that they are satisfied. We also adopt the simple approximation of ignoring all other
candidates j because there is insufficient evidence that they are constraints.

We can now discard Naive Bayes and the cj leaving a simple CA method: for each can-
didate j compute Kj = Pr(viol(j)|C−)/ Pr(viol(j)|C+) where viol(j) denotes violation of
candidate j . If Kj is greater than some threshold κ then learn candidate j as a constraint,
otherwise ignore it. Discarding the cj can save a great deal of memory, because we no longer
need to store a number for every candidate and instance. Instead we need only store the orig-
inal dataset and test violations on the fly. This becomes important in Section 4.4 in which
the largest example has 1000 problem variables and over a billion candidates (features).

2.4 Probability estimation

To compute Kj we use a standard definition of conditional probability:

Kj = Pr(viol(j)|C−)

Pr(viol(j)|C+)
= Pr(viol(j), C−)/ Pr(C−)

Pr(viol(j), C+)/ Pr(C+)

Classifier-based constraint acquisition

which under the uninformed prior reduces to Pr(viol(j), C−)/ Pr(viol(j), C+). The con-
ditional probabilities can be estimated by counting occurrences in the training data:
n(viol(j), C−)/n(viol(j), C+) where n(viol(j), C) denotes the number of instances in
class C that violate candidate viol(j).

To avoid infinities we prevent zero probabilities via additive smoothing (also called
Lidstone or Laplace smoothing) which modifies the ratios slightly: this technique is com-
monly used with Naive Bayes and in statistical language modelling [30]. Suppose we have
n instances, m of which have some property. Instead of estimating the probability of this
property as m/n we use (m + α)/(n + αd) where the pseudocount α > 0 is a smoothing
parameter. The estimated probability will then be between m/n and 1/d . In our application
the denominators n + αd cancel out leaving:

Kj = n(viol(j), C−) + α

n(viol(j), C+) + α

2.5 Bayesian hypothesis testing interpretation

We now provide an alternative derivation of the method, by characterising it as Bayesian
hypothesis testing (BHT). Recall that Kj is the ratio of (i) the probability Pr(viol(j)|C−)

that candidate j is violated by a non-solution, and (ii) the probability Pr(viol(j)|C+) that
candidate j is violated by a solution. This corresponds to a Bayes factor, which plays a
similar role in BHT to a p-value in frequentist hypothesis testing (see for example [23]).
In our application the violation of candidate j is the observed data, non-solutionhood of an
instance is the null hypothesis H0, and solutionhood is the alternative hypothesis H1. So Kj

measures the relative plausibility of hypotheses H0 and H1 on observing the violation of
candidate j . If H0 is much more plausible, this fits the definition of a constraint: a relation
that is true in any solution, so that its violation implies non-solutionhood.

An advantage of BHT over the frequentist approach is that it can find evidence in favour
of the null hypothesis, as well as against it. However, the data might provide stronger
evidence for one hypothesis than the other, leaving the latter inconclusive. Our applica-
tion has the same asymmetry: the satisfaction of a single constraint is very weak evidence
that an instance is a solution, but a single constraint violation is strong evidence of non-
solutionhood. So we learn that candidate j is a constraint if Kj is large, otherwise the
evidence is inconclusive so we learn nothing about candidate j .

The logarithm of a Bayes factor is sometimes called weight of evidence, and Bayes
factors can be measured in decibans (following Turing [21]) by taking 10 log10(Kj) with
accepted characterisations of ranges of values shown in Table 1 (there are also other versions
of this table). From now on we shall measure Kj in decibans.

Table 1 Weight of evidence
Kj Decibans Weight of evidence

< 100 0 Negative

100–101/2 0–5 Barely worth mentioning

101/2–101 5–10 Substantial

101–103/2 10–15 Strong

103/2–102 15–20 Very strong

> 102 >20 Decisive

S.D. Prestwich et al.

In summary, we compute Kj for each candidate j and accept j as a constraint if and only
if Kj exceeds a deciban threshold κ . We call this method BAYESACQ. It has two parameters:
α and κ . For our experiments we use α = 0.01 and choose κ empirically (but see Section 4.6
for a discussion on choosing parameters).

2.6 Illustrative example

To illustrate BAYESACQ consider the following training data:

wealth gender height solution?

rich male medium yes
rich male tall no
rich female medium yes
comfortable female short yes
poor female medium no
comfortable male short yes
comfortable female medium yes

with variables wealth, gender and height, and domains:

variable domain

wealth poor, comfortable, rich
gender male, female
height short, medium, tall

As candidates we test all possible non-assignments (unary nogoods): wealth �=poor,
wealth �=comfortable, wealth�=rich, gender�=male, gender�=female, height�=short, height �=
medium and height�=tall: these are our bias. Estimating probabilities via additive smooth-
ing we obtain:

constraint Kj characterisation

wealth �=poor 20 decisive
wealth �=comfortable –25 negative
wealth �=rich –3 negative
gender�=male –3 negative
gender�=female –5 negative
height�=short –23 negative
height�=medium –5 negative
height�=tall 20 decisive

For example the Kj value for candidate wealth �=poor is calculated by noting that this
candidate is violated in one non-solution and no solution, so Kj = (1 + 0.01)/(0 +
0.01) = 101 or 10 log10(101) ≈ 20 decibans. Violation by at least one non-solution, com-
bined with a lack of violations by solutions, yields a decisive number of decibans even
on this small dataset, because of the small α value. On the other hand, any candidate
that is violated by solutions as well as non-solutions is unlikely to be learned as a con-
straint, because it yields a number of decibans that is barely worth mentioning or even

Classifier-based constraint acquisition

negative: for example wealth �=rich is violated by two solutions and one non-solution, so
Kj = (1 + 0.01)/(2 + 0.01) ≈ 0.5 or approximately −3 decibans. Hence there is a clear
gap between two candidates (wealth �=poor and height�=tall) and the rest, and we learn these
two as constraints. This is consistent with the training data: there are no poor or tall people
in the positive class but all other values are represented.

Note that there are two Kj values that are much less than zero, corresponding to candi-
date constraints that are violated only in solutions. This is an artefact of the small dataset:
if more data were added we would expect these candidates to be violated by at least one
non-solution. This is illustrated in Section 4.6.

We can also test all literals (single variable assignments) to learn backbone values
(assignments that must be true in all solutions). The above example has no backbone, but
let us introduce a new attribute “age” with domain {young, middle, old}. Suppose that in all
5 solutions age=young, with middle occurring in 1 non-solution and old in the other. Then
age=young is decisive while all others are negative. Again this is consistent with the data:
all solutions are young while non-solutions have other ages, so it is reasonable to assume
this literal is in the backbone.

2.7 Robustness under errors

Four types of error might occur in a training dataset: labeling a solution as a non-solution,
labeling a non-solution as a solution, recording a violation as a satisfaction, and recording a
satisfaction as a violation. A dataset might contain errors of each type. Current CA methods
are not designed to be robust under even one such error.

We now show that BAYESACQ is robust under errors in the following sense: any incorrect
data can be overwhelmed by sufficient correct data, whatever parameters α and κ are used.
(In Section 4.7 we show empirically that BAYESACQ is robust in a stronger sense.) Recall
that

Kj = n(viol(j), C−) + α

n(viol(j), C+) + α

and that candidate j is accepted as a constraint iff Kj > κ . Suppose the dataset is the
union of some “good” data Cg = C

g
+ ∪ C

g
− containing no errors, and some “bad” data

Cb = Cb+ ∪ Cb− containing an unknown number of errors. Then

Kj = n(viol(j), C
g
− ∪ Cb−) + α

n(viol(j), C
g
+ ∪ Cb+) + α

= n(viol(j), C
g
−) + n(viol(j), C

g
−) + α

n(viol(j), C
g
+) + n(viol(j), Cb+) + α

If we can obtain sufficient good data so that |Cg
−| 	 |Gb−| and |Cg

+| 	 |Gb+| then
n(viol(j), C

g
−) 	 n(viol(j), C

g
−) and n(viol(j), C

g
+) 	 n(viol(j), Cb+), hence the effect

of Cb on Kj can be made arbitrarily small.

2.8 Discussion

BAYESACQ is a simple CA method with several desirable properties. Firstly, it is robust
under noise (as shown in Section 2.7; see also Section 4.7). Secondly, its memory require-
ment is independent of the bias size (as noted in Section 2.3): we need only store the training
data in memory as each candidate can be generated and tested on the fly, so it is scalable to
large biases. Thirdly, it is fast (see Section 4).

An interesting aspect of BAYESACQ is that it requires a constraint to be violated in at
least one non-solution. A candidate that is satisfied in all instances, both solutions and

S.D. Prestwich et al.

non-solutions, will not be learned as a constraint because n(viol(j), C−) = α for such
candidates. This feature was not designed but emerged naturally from Naive Bayes. Very
weak constraints, which are unlikely to be violated unless we have a vast amount of data,
will not be learned. We consider this an advantage for the following reason. Suppose we
implement a CA system for use in the real world, and build into the bias a wide variety of
constraints, some of which are very weak. BAYESACQ would not learn these unless there
is sufficient data to observe violations. They would probably not exclude many solutions
in practice, and they would needlessly complicate the constraint model. Moreover, users
would notice that the system always learns the same list of spurious constraints that have
nothing to do with the application, leading to distrust of the method.

Another aspect of BAYESACQ is that it does not require each non-solution to violate at
least one learned constraint. Version space methods (see Section 3) do have this require-
ment, and their learned constraints explain every label in the dataset. Hence those methods
are solving a more difficult problem than ours, requiring the solution to a coNP-hard sub-
problem [6], which no doubt contributes to the difference in speed (see Section 4). Note
that it would be easy to extend BAYESACQ to output the set of non-solutions that violate no
learned constraint, indicating that the bias should be expanded.

3 Related work

A number of methods are reported in the CA literature. The ModelSeeker system [5]
requires only a few positive instances, and finds high-level descriptions in terms of global
constraints. Tacle [25] learns functions and constraints from spreadsheets. CONACQ [6, 7]
is based on version spaces and has passive and active versions. QUACQ [8, 9] is an active
system, extended to MULTIACQ [2]. T-QUACQ [1] uses time-bounding to reduce QUACQ

runtimes. MQUACQ [42] greatly improves QUACQ and MULTIACQ by reducing the num-
ber of generated queries and the complexity of each query. Valiant’s method [44] learns
SAT formulae from instances and requires no non-solutions. It has been extended to first
order logic using inductive logic programming [34, 35], which was also used by [26]. The
framework of [47] learns several types of CP model by expressing CA as a constraint prob-
lem. The Matchmaker agent [19] interacts with a user who diagnoses why an instance is
not a solution. There is also work on learning soft constraints, preferences and SAT modulo
theories.

Some existing work is related to CLASSACQ. In [4] hard-to-describe parts of problems
are modelled via neuron global constraints, embedded in a larger model designed by an
expert. In [27] decision trees and neural networks (NNs) are transformed into solvers called
“consistency checking classifiers” which build propagators and answer partial queries. In
[10, 29] decision trees and NNs are embedded into CP, integer programs and other optimi-
sation models. In [15, 40] NNs are mapped to integer programs to find inputs that optimise
some objective, such as finding optimal adversarial examples or proving that none exist. In
[37] NNs are mapped to integer programs to solve planning problems with continuous action
spaces. Thus decision trees and NNs have been mapped several times to various optimisa-
tion models, but usually not for CA. In [28] the use of machine learning methods to boost
combinatorial problem modelling is surveyed, including the representation of such meth-
ods within optimisation problems. They view CA as an extreme case in which a machine
learning model completely replaces an optimisation model. In our view, as the aim of CA

Classifier-based constraint acquisition

is to learn a constraint model that is compatible with given data, using classifiers to learn a
complete constraint model is a form of passive CA.

A particularly interesting work from our point of view is that of [33], who learn mod-
els from noisy training instances, containing linear, quadratic and trigonometric constraints.
Their constraint synthesis method models and solves the CA problem as mathematical pro-
grams, using parameters to control features such as the number of allowed constraints, and
their models are human-readable. They discuss the possibility of an approach similar to
CLASSACQ, and mention that converting a trained neural network to a mathematical pro-
gramming model requires the introduction of auxiliary variables and additional constraints,
but they criticise this idea in two ways. Firstly, they mention a curse of dimensionality
associated with CA: that the number of required instances grows exponentially with the
number of variables in the instances. However, some classifiers are explicitly designed for
very small datasets (as discussed in Section 5.1.1). Secondly, they mention the possibility of
using classifiers such as SVMs and Naive Bayes to generate constraints representing deci-
sion boundaries between positive and negative instances, but criticise this approach on the
grounds of transparency. We argue that constraint models need not be transparent for all
applications, for example for testing whether a partial assignment can be extended to a posi-
tive instance, for finding optimal adversarial instances, or for verifying classifier properties.
We also avoid the problem of a hard-to-understand linear constraint by learning constraints
of whatever form the user provides in the bias, via the approximation in Section 2.3.

BAYESACQ applied to SAT is similar to Valiant’s method [44] in the sense that it is a
generate-and-test algorithm: it generates all possible clauses of permitted length, and tests
each against the training data. However, there are important differences. BAYESACQ has
the advantage of robustness under noise, while Valiant’s method has the advantage of not
requiring negative instances. Also, whereas BAYESACQ tests each candidate in isolation,
Valiant’s algorithm first generates the set of all candidates then prunes them using each
training instance in turn. This makes Valiant’s method impractical when the bias is very
large. A final difference is that Valiant’s method will learn any clause that does not con-
tradict the training data. In contrast BAYESACQ does not learn clauses (or constraints) that
are satisfied by all instances. Hence Valiant’s method learns the most specific model while
BAYESACQ is less specific: we discuss a consequence of this in Section 2.8.

4 Experiments

We now test BAYESACQ on examples.1 Unless stated otherwise we use a bias of {≤, �=,≥}
constraints as in [7]. Note that these subsume {<,=,>}-constraints: if we learn x ≤ y

and x ≥ y we can deduce x = y, while if we learn x ≤ y and x �= y we can deduce
x < y. The runtimes shown are not averaged over multiple runs because BAYESACQ is a
deterministic algorithm. It is implemented in the C programming language and executed on
a 2.8 GHz Pentium 4 with 512 MB RAM. We use α = 0.01 and κ = 20 for all experiments.
For most problems we used 10,000 instances which is typical: several CA methods used
6,000–21,000 in [27].

We shall cite runtimes from other papers using different machines, so they are not directly
comparable to ours. However, the machines have similar clock rates: [1] used an Intel(R)
Xeon(R) a© 3.40 GHz, [42] used an Intel(R) Core(TM) i5-4690K CPU a© 3.50 GHz with

1Source code and examples are available on request from one of the authors (Prestwich).

S.D. Prestwich et al.

8Gb of RAM, [6] used an Intel Core i7 a© 2.9 GHz with 8 Gb of RAM, and [2] used
a 1.6 GHz Intel Core i5 with 4GB of RAM. Crucially, the improvement in speed due to
BAYESACQ is significantly larger than any likely difference in machine performance.

4.1 Latin squares

This example was used in [1, 2, 8, 42]. An N ×N Latin square has variables xi,j (0 ≤ i, j ≤
N) each with domain {0, . . . , N − 1} and disequality (�=) constraints between each pair
of variables in the same row or column. For N = 3, . . . , 10 we used 5,000 solutions and
5,000 non-solutions. Solutions were generated by randomly permuting the rows, columns
and values of a single solution, while non-solutions were generated by randomly choosing
a value for each variable. Rejection sampling was implemented to filter out any of the latter
instances that were solutions, but this is very unlikely and did not occur in our experiments.

In each case the correct disequalities were found to be decisive while all other candi-
dates were less than substantial. Runtimes are shown in Table 2. Runtimes for QUACQ

were not given in [8] but were reportedly a few milliseconds for N = 5, and MULTI-
ACQ was faster in [2] (total runtimes were not given). An improved version of QUACQ

called T-QUACQ [1] took 120 seconds to learn a 10 × 10 Latin square, compared to 7,200
seconds for QUACQ. A comparison of six CA methods was made in [42], and the fastest
was MQUACA+FINDSCOPE 2 MAXB which took 114 seconds with N = 10. BAYESACQ

is approximately two orders of magnitude faster than any reported method on the largest
instance.

4.2 Sudoku

This example was used in [1, 2, 7, 8, 42]. Sudoku is similar to a Latin square, but with
the additional constraints that smaller squares of variables must also take all different val-
ues. We used 5,000 solutions and 5,000 non-solutions, generated in the same way as Latin
squares (except that not all rows and columns can be permuted).

For the 4 × 4 puzzle BAYESACQ tests 360 candidates and learns the correct 56 dis-
equalities in 0.03 seconds, and for the 9 × 9 puzzle it tests 9,720 candidates and learns
the correct 810 disequalities in 0.4 seconds. On the 9 × 9 puzzle passive CONACQ took
15.6 seconds to generate background knowledge and approximately 2 seconds for acqui-
sition [6]. QUACQ took approximately 800 seconds and MULTIACQ approximately 900

Table 2 Results for 10,000
N × N Latin square examples Constraints

N Tested Learned Seconds

3 108 18 0.02

4 360 48 0.03

5 900 100 0.06

6 1,890 180 0.10

7 3,528 294 0.16

8 6,048 448 0.25

9 9,720 648 0.37

10 14,850 900 0.54

Classifier-based constraint acquisition

Table 3 Results for 1,000
random 3-SAT instances with V

variables and 5 clauses
Tested clauses with � literals

V � = 3 � = 2 � = 1 Seconds

50 156,800 4,900 100 1.8

100 1,293,600 19,800 200 16

150 4,410,400 44,700 300 56

200 10,507,200 79,600 400 123

250 20,584,000 124,500 500 243

seconds [2]. In [1] QUACQ took 2,810 seconds and T-QUACQ 69 seconds, while in [42]
MQUACA+FINDSCOPE 2 MAXB took 85 seconds and beat five other methods. On the larger
puzzle BAYESACQ is approximately two orders of magnitude faster than any reported
method.

4.3 Golomb rulers

This example was used in [1, 2, 6]. A Golomb ruler is a set of N marks at integer positions
along an imaginary ruler such that no two pairs of marks are the same distance apart. The
smallest number is 0 and the largest is the ruler length. A problem description and constraint
models are described in [38]. We generated 5,000 solutions and 5,000 non-solutions in the
same way as Latin squares and Sudoku, except that solutions were generated by permuting
several known optimal rulers. The problem is modelled by integer variables x1, . . . , xN−1
with domains {0, . . . , L}. To our usual bias we add quaternary constraints |xi − xj | �=
|xi′ − xj ′ | (i < j , i′ < j ′, i < i′, j �= j ′).

For N = 12 BAYESACQ tests 198 binary and 1,485 quaternary candidates, and cor-
rectly learns 66 disequalities and all the quaternaries as constraints in 0.07 seconds. In [2]
QUACQ took 2,257 seconds while MULTIACQ took 2,335 seconds. In [6] CONACQ took
2,193 seconds on a smaller instance (N = 8). In [1] QUACQ took 11,972 seconds while T-
QUACQ took 1,184 seconds. BAYESACQ is more than four orders of magnitude faster than
any reported method.

4.4 Random 3-SAT

The benchmarks used above were learned very quickly by BAYESACQ so we now tackle
a larger problem. We generated random 3-SAT instances with V variables, C clauses and
E randomly-generated instances. We use several values of V and choose E = 1000, and
C = 5 so that approximately half of the instances are solutions. The bias is the set of all
possible clauses with 1, 2 or 3 literals. The results are shown in Table 3 with the number of
clauses tested in the tested column and the learning runtime in the seconds column. For the
largest instance the bias contains over 20 million clauses, which is considerably larger than
biases used in other CA papers.

BAYESACQ learns the correct clauses, but sometimes it also learns a few additional
clauses. This is not an error: if there exists a 1-, 2- or 3-literal clause that can be derived by
resolution from the original C clauses then it will also be learned. This is the SAT equiv-
alent of an implied constraint, and BAYESACQ tries to learn learn any candidate that is a
valid constraint, whether implied or part of the original model.

S.D. Prestwich et al.

We also generated a 1000-variable random 3-SAT example with a bias of 1.3 billion
clauses and 1000 instances. We increased the size of the target to 50 clauses, obtaining
an approximately balanced dataset via rejection sampling (only accepting non-solutions
with probability 0.0013). BAYESACQ took 16,259 seconds to learn the correct clauses. This
shows that it can learn from biases that are much larger than those used in most CA papers.

4.5 Redundant and implied constraints

For CA systems based on version spaces, redundant constraints can prevent learning. We
take a small example from [7] which was designed to illustrate the problem. The training
data is:

x1 x2 x3 solution?

4 3 1 yes
2 3 1 no
3 1 2 no

For this example we use a bias of {<,>, ≤,≥, �=}-constraints. Some of these are made
redundant by others, for example x1 < x2 makes x1 �= x2 redundant. This prevented
CONACQ from eliminating some hypotheses such as x1 �= x2, and a special technique
(redundancy rules) was added to handle such cases. The target constraints are x1 > x2,
x1 > x3 and x2 > x3. This example causes no problems for BAYESACQ, which learns the
constraints x1 > x2, x2 > x3, x1 ≥ x2 and x2 ≥ x3. It does not learn x1 > x3 because in this
small dataset it is not violated anywhere, but it is made redundant by x1 > x2 and x2 > x3.
Those also make x1 ≥ x2 and x2 ≥ x3 redundant. If we eliminate these we have a minimal
set of constraints x1 > x2 and x2 > x3. If more instances were added to the training data
we would also expect to learn x1 > x3 (and x1 ≥ x3).

In [7] a further example is designed to show that redundancy rules do not always work,
necessitating a more complex technique based on higher-order redundancies. The training
data is:

x1 x2 x3 solution?

2 2 2 yes
3 3 4 no
1 3 3 no

This time the target constraints are x1 = x2, x1 = x3 and x2 = x3. BAYESACQ learns
these plus x1 ≥ x2, x1 ≥ x3 and x2 ≥ x3, which are redundant and can be eliminated. In
future work we aim to address this issue, but it is orthogonal to the CLASSACQ approach.

4.6 Choosing parameters

When applying BAYESACQ we must choose values for the additive smoothing parameter α

and threshold κ . Setting α = 1 is reasonable and can be justified using Laplace’s rule of
succession and the principle of indifference, in which case additive smoothing corresponds
to add-one smoothing. A value of 1

2 corresponds to the Jeffries prior. But a lower value

Classifier-based constraint acquisition

such as 0.01 is often chosen, and it has the advantage of yielding a significant weight of
evidence, even with only one observed non-solution violation. We therefore use a small α

value, though if the data is noisy then it might be safer to use a larger value, thus requiring
several non-solution violations before accepting that a candidate is indeed a constraint.

Choosing an appropriate κ is critical. A threshold of (say) very strong should work for
most applications given sufficient data, but we would like BAYESACQ to yield reasonable
results even on small datasets. Fortunately we can exploit the fact that weights of evidence
tend to be clustered around 0 for non-constraint candidates, and around some higher value
for constraints. To illustrate this property, we generate scatterplots of the Kj values for the
�= version of the Latin square problem in Section 4.1, using datasets of different size: 10
samples per class in Fig. 1, 100 in Fig. 2 and 1000 in Fig. 3. It can also be seen that the
more instances are used, the clearer the separation between constraints and non-constraints.
Taking more samples also increases confidence in a learned constraint: with 10 samples per
class we find the highest Kj values are around 20–23; with 100 they are around 20–30,
and with 1000 they are around 33–37. Taking more samples also reduces error: with 1000
instances per class all 100 constraints have high Kj , but the number of learned constraints
reduces with fewer samples. The graphs also illustrate a point made in Section 2.6: that with
small datasets we observe some large negative Kj values, corresponding to non-constraints
that are violated only in non-solutions, but these vanish as the data grows because non-
constraints tend to be violated in solutions.

Based on these observations, a reasonable approach would be to assume that the Kj -
values form a Gaussian mixture model with means at 0 (for non-constraints) and some
unknown higher value (for constraints). We could then use standard statistical techniques to
choose κ between the two means. An alternative would be a clustering algorithm such as
k-means (with k=2). However, a fast and simple method is sufficient for all our examples:
choose κ to be half the value of the greatest Kj value K̂ in the dataset, that is κ = K̂/2.

-25

-20

-15

-10

-5

 0

 5

 10

 15

 20

 25

 0 50 100 150 200 250 300

de
ci

ba
ns

candidate

Fig. 1 Latin square disequality Kj values (10 instances per class)

S.D. Prestwich et al.

-5

 0

 5

 10

 15

 20

 25

 30

 35

 0 50 100 150 200 250 300

de
ci

ba
ns

candidate

Fig. 2 Latin square disequality Kj values (100 instances per class)

4.7 Robustness experiments

The ability to recover from a small number of errors (see Section 2.7) is an advance in
CA, but this is a weak form of robustness. If the data source generating the instances has a
constant error rate then there might never be sufficient good data to overwhelm the bad.

We now perform experiments to test the ability of BAYESACQ to learn under constant
error rates. We corrupted the 250-variable SAT example by deliberately misclassifying a

-5

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0 50 100 150 200 250 300

de
ci

ba
ns

candidate

Fig. 3 Latin square disequality Kj values (1000 instances per class)

Classifier-based constraint acquisition

fixed percentage of the instances, randomly selected. With no misclassification the clauses
have K-values of approximately 40 decibans with other candidates are below 10, so our
default threshold κ = 20 works well. Adding errors and keeping the default value α = 0.01:

– With 1% misclassification the clauses have K-values of 18–41 decibans, while other
candidates have values as high as 9. The errors reduce the distinction between true
clauses and other candidates, but by choosing κ more carefully we can still learn the
instance.

– With 3% misclassification the clauses have K-values of 15–41, while other candidates
are again as high as 9. The distinction is more blurred but still significant.

– With 10% misclassification the K-values of clauses have a reduced range of approxi-
mately 8–12, while other candidates have values as high as 7. We still learn the instance
by choosing κ = 8 but the distinction is becoming very blurred, and we do not expect
all problems to be learned correctly.

– With 20% misclassification no value of κ learns the instance correctly.

We repeated the experiment with the 9 × 9 Sudoku problem. With no misclassification any
κ greater than 1 deciban learns the correct constraints. With 1% misclassification the range
reduces to 2–6 decibans, with 3% the range is 2–4, with 10% only κ = 2 works, and with
20% no κ value works.

These results show empirically that BAYESACQ can learn constraint models correctly
even when there is significant noise in the data. However, as the error rate increases more
care must be taken when choosing parameter values, thresholds classed as barely worth
mentioning become necessary, and too many errors defeat the method. (Note that changing
κ or α does not affect runtimes, so learning from noisy data does not take longer.)

5 Conclusion and future work

We proposed a general approach to CA called CLASSACQ based on classifiers. The motiva-
tion is to exploit existing classifiers to generate new CA methods with interesting properties.
Given the large number of classifiers, constraint models, and methods (existing or yet to be
found) for transforming classifiers into constraint models, CLASSACQ yields a rich land-
scape of new CA methods to explore. Only a small number of these have been explored
so far, mainly using decision trees and neural networks. In future work we shall explore
other combinations. We might even envision putting them into a portfolio for automating
the selection of a combination for specific tasks. We view all this as progress toward the
Holy Grail of computer science mentioned in Section 1.

As a first illustration of the potential of CLASSACQ we derived a new CA method
called BAYESACQ from a Bernoulli Naive Bayes classifier, which is applicable to SAT and
finite-domain CSPs. It inherits the simplicity, scalability and robustness of Naive Bayes.
In experiments it achieves state-of-the-art speed on several benchmarks, its low memory
requirement allows it to scale up to biases containing over a billion candidates, and it is able
to learn redundant constraints that cause problems for version space methods. The Bayesian
hypothesis testing connection mentioned in Section 2.5 has since been exploited to obtain an
even faster CA method, using the (non-Bayesian but related) Sequential Probability Ratio
Test [31].

S.D. Prestwich et al.

5.1 Future work

There are many other classifiers that have not yet been used for CA. For example, instead of
Naive Bayes we could use a classifier based on a less trivial Bayesian network. This might
give more accurate results while retaining robustness, though sacrificing some speed.

We now mention some practical problems arising in CA, and suggest classifiers that
might be used to derive new CA methods to tackle these problems. Though these are only
suggestions, we see this as a mapping out of an interesting programme of work, and as
a contribution of this paper. The derivation of BAYESACQ from a Naive Bayes classifier,
along with existing results from deep learning and decision trees, indicates the fruitfulness
of the idea.

5.1.1 Small datasets

In [33] the possibility of using classifiers to generate constraint models is discussed, but
criticised on the grounds that the number of required instances grows exponentially with
the number of variables in the instances. However, some classifiers are explicitly designed
for small datasets [39]. In few-shot learning the training dataset has only a small number
of instances from each class, or just one in the case of one-shot learning. Recent examples
of such classifiers are Prototypical Networks [39] and Matching Networks [46] which are
based on nearest-neighbour algorithms. Nearest-neighbour classifiers have been applied to
problems with both large and small datasets, including image classification, recommender
systems, document classification, medical diagnosis, facial recognition and theft prevention.

We can derive constraint models for such classifiers. A particularly simple example is the
basic nearest-neighbour algorithm. If we have just one solution and one failure, the classifier
reduces to a single constraint stating that an instance is closer to the solution than to the
failure. Depending on the distance metric, this might be expressed using a global distance
constraint. It can be generalised to multiple instances and weighted k-nearest neighbours.

5.1.2 Imbalanced datasets

In some CA applications it is impractical to obtain a large dataset of negative instances. For
example we might collect solutions automatically, but have no idea what failures look like.
For such problems we can adapt one-class classifiers which are surveyed in [24] and can be
used when the negative class is absent, poorly sampled or ill-defined. The aim of one-class
classification is to recognise instances from a class, rather than to discriminate between
classes. Its many applications include the detection of abnormal machine behaviour, auto-
matic medical diagnosis and authorship verification [24]. Proposed approaches include a
form of SVM, neural networks, decision trees, nearest neighbours, genetic algorithms and
Bayesian methods.

A simple example is the method of [12], which computes the convex hull of the training
data (actually a computationally cheaper approximation based on random projections). A
convex hull is a convex polytope which can be modelled exactly using a linear program. If
the data is integral then integrality constraints can be added to obtain an integer program or
finite-domain CSP.

The ModelSeeker CA system [5] also requires only positive instances, and has suc-
cessfully found global constraint models for several applications. However, applications
such as those above might not have a deep constraint structure to be discovered, and for
these a model based on a one-class classifier is an interesting alternative. Both are ideal

Classifier-based constraint acquisition

for historical data, but ModelSeeker requires a heuristic step to choose between alternative
models.

5.1.3 Mixed data types

CA systems typically generate discrete constraint models. However, many classifiers work
on continuous variables, for example support vector machines (SVMs) and deep learning
classifiers. They can also be applied to categorical variables via one-hot encoding (also
called binarisation or reification).

Decision trees and random forests handle combinations of categorical, discrete and con-
tinuous variables in a natural way. There are at least three known ways of transforming
a decision tree to a CP: a rule-based method using Boolean meta-constraints, table con-
straints, and decision diagram-based global constraints [10]. In [29, 45] a method similar to
the rule-based model is used for CP and integer programming. However, these are not gen-
erally thought of as CA methods, and their usual aim is to speed up solution methods by
learning part of a model.

5.1.4 Overfitting

Overfitting is a major problem in supervised learning, and occurs when a learner interprets
errors or noise as data, or places too much emphasis on errors. Current CA methods are not
robust in this sense: for example the algorithm of Valiant [44] is highly vulnerable to out-
liers. In contrast, many classifiers are designed to resist overfitting. For example soft-margin
SVM explicitly allows a small number of exceptions. Bayesian classifiers are particularly
robust as they are probabilistic in nature. Deep learning classifiers use the dropout tech-
nique to reduce overfitting by introducing noise, and often use a validation dataset to detect
its occurrence.

As an example we consider SVMs which are state-of-the-art for a vast range of applica-
tions, including medical diagnosis, fault detection and satellite data. The simplest version
learns a maximum-margin hyperplane, and we can impose a single constraint stating that an
instance lies on its positive side. This can be generalised to soft margins, and adding a ker-
nel leads to a nonlinear constraint. This possibility is mentioned in [33] but criticised on the
grounds that the resulting models are hard for humans to understand. We discuss this point
in Section 3.

5.1.5 Auxiliary variables and channeling constraints

In the CA literature the learned model is usually a set of constraints on the given variables.
However, it is well known in CP that better models are sometimes obtained by defining
extra auxiliary variables, on which it might be easier or more powerful to express certain
constraints. Auxiliary and given variables are connected to each other by adding channeling
constraints to the model [13]. However, improved filtering is not the only motivation for
creating auxiliary variables: for some problems they greatly reduce the size of the constraint
model, for example the problem of finding covering arrays [22] (see [20] chapter 11.8 for
a discussion of similar techniques for other problems). A similar result holds in SAT, where
auxiliary variables can be used to obtain Tseitin encodings that are exponentially smaller
than “flat” encodings [41].

Although auxiliary variables are an important modeling technique, their automatic dis-
covery has not been addressed in the CA literature. Constraint models derived from decision

S.D. Prestwich et al.

trees contain auxiliary variables, but they do not resemble the models generated by human
experts and are not introduced explicitly to reduce model size. Ideally we require a method
for discovering useful auxiliary variables, arranged in layers and connected by channeling
constraints, which lead to compact constraint models.

For this we propose Deep Learning (DL) classifiers which have recently swept the field
in many areas, including image and video analysis, bioinformatics and malware detection. It
is known in DL that, although feedforward networks with a single hidden layer are universal
approximators that can model any function with arbitrary accuracy, deep networks can be
much more compact. DL also has techniques for reducing network size [11, 16] which in
CLASSACQ leads directly to smaller constraint models. We therefore conjecture that CA
will be particularly powerful when based on deep learning to learn what we might call deep
constraint models. Compiling neural networks to optimisation models is well-known (see
Section 3) but its connection to CA and auxiliary variables has not been previously pointed
out, nor the use of network compression techniques to reduce model size.

Acknowledgements This material is based upon works supported by the Science Foundation Ireland under
Grant No. 12/RC/2289-P2 which is co-funded under the European Regional Development Fund.

Funding Open Access funding provided by the IReL Consortium.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included in the
article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is
not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

1. Asdi, H.A., Bessiere, C., Ezzahir, R., Lazaar, N.: Time-bounded query generator for constraint acquisi-
tion. In: Proceedings of the 15th International Conference on the Integration of Constraint Programming,
Artificial Intelligence, and Operations Research, Lecture Notes in Computer Science, vol. 10848,
pp. 1–17 (2018)

2. Arcangioli, R., Bessiere, C., Lazaar, N.: Multiple constraint acquisition. In: Proceedings of the 25th
International Joint Conference on Artificial Intelligence (2016)

3. Asafu-Adjei, J.K., Betensky, R.A.: A pairwise Naı̈ve Bayes approach to Bayesian classification. Intern.
J. Pattern Recognit. Artif. Intell. 29(7) (2015)

4. Bartolini, A., Lombardi, M., Milano, M., Benini, L.: Neuron constraints to model complex real-world
problems. In: Proceedings of the 17th International Conference on Principles and Practice of Constraint
Programming Lecture Notes in Computer Science, vol. 6876, pp. 115–129 (2011)

5. Beldiceanu, N., Simonis, H.: Modelseeker: Extracting global constraint models from positive examples.
In: Data Mining and Constraint Programming, Lecture Notes in Computer Science, vol. 10101, pp. 77–
95. Springer (2016)

6. Bessiere, C., Koriche, F., Lazaara, N., O’Sullivan, B.: Constraint acquisition. Artif. Intell. 244, 315–342
(2017)

7. Bessiere, C., Coletta, R., Freuder, E.C., O’Sullivan, B.: Leveraging the learning power of examples in
automated constraint acquisition. In: Proceedings of the 10th International Conference on Principles and
Practice of Constraint Programming Lecture Notes in Computer Science, vol. 3258, pp. 123–137 (2004)

http://creativecommons.org/licenses/by/4.0/

Classifier-based constraint acquisition

8. Bessiere, C., Coletta, R., Daoudi, A., Lazaar, N., Bouyakhf, E.H.: Boosting constraint acquisition via
generalization queries. In: Proceedings of the 21st European Conference on Artificial Intelligence,
pp. 99–104 (2014)

9. Bessiere, C., Coletta, R., Hebrard, E., Katsirelos, G., Lazaar, N., Narodytska, N., Quimper, C.-G., Walsh,
T.: Constraint acquisition via partial queries. In: Proceedings of the 23rd International Joint Conference
on Artificial Intelligence, pp. 475–481. AAAI Press (2013)

10. Bonfietti, A., Lombardi, M., Milano, M.: Embedding decision trees and random forests in constraint
programming. In: Proceedings of the International Conference on AI and OR Techniques in Constraint
Programming for Combinatorial Optimization Problems, Lecture Notes in Computer Science, vol. 9075,
pp. 74–90. Springer (2015)

11. Browne, D., Giering, M., Prestwich, S.D.: Pulse-net: Dynamic compression of convolutional neural
networks. In: Proceedings of the IEEE 5th World Forum on Internet of Things (2019)

12. Casale, P., Pujol, O., Radeva, P.: Approximate convex hulls family for One-Class classification. In: pro-
ceedings of the International Workshop on Multiple Classifier Systems Lecture in Notes Computer Sci,
vol. 6713, pp. 106–115 (2011)

13. Cheng, B.M.W., Choi, K.M.F., Lee, H.H.M., Wu, J.C.K.: Increasing constraint propagation by redundant
modeling: An experience report. Constraints 4, 167–192 (1999)

14. Domingos, P., Pazzani, M.: On the optimality of the simple bayesian classifier under Zero-One loss.
Mach. Learn. 29, 103–130 (1997)

15. Fischetti, M., Jo, J.: Deep neural networks as 0-1 mixed integer linear programs: A feasibility study.
Constraints 23(3), 296–309 (2018)

16. Frankle, J., Carbin, M.: The lottery ticket hypothesis: Finding sparse, trainable neural networks. In:
Proceedings of the International Conference on Learning Representations (2019). to appear

17. Freuder, E.C.: Constraints: The ties that bind. In: Proceedings of the 21st National Conference on
Artificial Intelligence, pp. 1520–1523. AAAI Press (2006)

18. Freuder, E.C.: Progress towards the holy grail. Constraints 23, 158–171 (2018)
19. Freuder, E.C., Wallace, R.J.: Suggestion strategies for Constraint-Based matchmaker agents. Int. J. Artif.

Intell. Tools 11(1), 3–18 (2002)
20. Gent, I.P., Petrie, K.E., Puget, J.-F.: Handbook of Constraint Programming. Elsevier, Amsterdam (2006)
21. Good, I.J.: Turing’s anticipation of empirical Bayes in connection with the cryptanalysis of the naval

enigma. J. Stat. Comput. Simul. 66(2), 101–111 (2000)
22. Hnich, B., Prestwich, S.D., Selensky, E., Smith, B.M.: Constraint models for the covering test problem.

Constraints 11(3), 199–219 (2006)
23. Kass, R.E., Raftery, A.E.: Bayes Factors. J. Amer. Stat. Assoc. 90(430), 773–795 (1995)
24. Khan, S., Madden, M.: One-Class Classification: Taxonomy of study and review of techniques. Knowl.

Eng. Rev. 29(3), 345–374 (2014)
25. Kolb, S., Paramonov, S., Guns, T., De Raedt, L.: Learning constraints in spreadsheets and tabular data.

Mach. Learn. 106, 1441–1468 (2017)
26. Lallouet, A., Lopez, M., Martin, L., Vrain, C.: On learning constraint problems. In: Proceedings of the

IEEE International Conference on Tools With Artificial Intelligence, pp. 45–52 (2010)
27. Lallouet, A., Legtchenko, A.: Two contributions of constraint programming to machine learning. In:

Proceedings of the European Conference on Machine Learning Lecture Notes in Artificial Intelligence,
vol. 3720, pp. 617–624. Springer (2005)

28. Lombardi, M., Milano, M.: Boosting combinatorial problem modeling with machine learning. In:
Proceedings of the 27th International Joint Conference on Artificial Intelligence, pp. 5472–5478 (2018)

29. Lombardi, M., Milano, M., Bartolini, A.: Empirical decision model learning. Artif. Intell.
244(Supplement C), 343–367 (2017)

30. Manning, C.D., Raghavan, P., Schütze, M.: Introduction to information retrieval. Cambridge University
Press, Cambridge (2008)

31. Prestwich, S.D.: Robust constraint acquisition by sequential analysis. In: Proceedings of the 24th Euro-
pean Conference on Artificial Intelligence, Frontiers in Artificial Intelligence and Applications, vol. 325,
pp. 355–362. IOS Press (2020)

32. O’Sullivan, B.: Automated modelling and solving in constraint programming. In: Proceedings of the
24th AAAI Conference on Artificial Intelligence, pp. 1493–1497 (2010)

33. Pawlak, T.P., Krawiec, K.: Automatic synthesis of constraints from examples using mixed integer linear
programming. Eur. J. Oper. Res. 261(3), 1141–1157 (2017)

34. De Raedt, L., Dehaspe, L.: Clausal discovery. Mach. Learn. 26, 99–146 (1997)
35. De Raedt, L., Dz̆eroski, S.: First Order jk-clausal Theories are PAC-learnable. Artif. Intell. 70, 375–392

(1994)

S.D. Prestwich et al.

36. De Raedt, L., Passerini, A., Reso, S.: Learning constraints from examples. In: Proceedings of the 32nd
AAAI Conference on Artificial Intelligence, pp. 7965–7970 (2018)

37. Say, B., Wu, G., Zhou, Y.Q., Sanner, S.: Nonlinear hybrid planning with deep net learned transition
models and mixed-integer linear programs. In: Proceedings of the 26th International Joint Conference
on Artificial Intelligence, pp. 750–756 (2017)

38. Smith, B.M., Stergiou, K., Walsh, T.: Modelling the Golomb Ruler Problem. In: Proceedings of the 16th
International Joint Conference on Artificial Intelligence (1999)

39. Snell, J., Swersky, K., Zemel, R.: Prototypical networks for few-shot learning. In: Proceedings of the
31st Conference on Neural Information Processing Systems (2017)

40. Tjeng, V., Tedrake, R.: Verifying neural networks with mixed integer programming. coRR (2017)
41. Tseitin, G.: On the complexity of derivation in propositional calculus. In: Siekmann, J., Wrightson,

G. (eds.) Automation of Reasoning: Classical Papers in Computational Logic, vol. 2, pp. 466–483.
Springer (1983)

42. Tsouros, D.C., Stergiou, K., Sarigiannidis, P.G.: Efficient methods for constraint acquisition. In: Pro-
ceedings of the 24th International Conference on Principles and Practice of Constraint Programming,
Lecture Notes in Computer Science, vol. 11008, pp. 373–388 (2018)

43. Tsouros, D.C., Stergiou, K., Bessiere, C.: Structure-driven multiple constraint acquisition. In: 25th Inter-
national Conference on Principles and Practice of Constraint Programming Lecture Notes in Computer
Science, vol. 11802, pp. 709–725 (2019)

44. Valiant, L.G.: A theory of the learnable. Commun. ACM 27(11), 1134–1142 (1984)
45. Verwer, S., Zhang, Y., Ye, Q.C.: Auction optimization using regression trees and linear models as integer

programs. Artif. Intell. 244, 368–395 (2017)
46. Vinyals, O., Blundell, C., Lillicrap, T., Kavukcuoglu, K., Wierstra, D.: Matching networks for one shot

learning. In: Proceedings of the 30th Conference on Neural Information Processing Systems, pp. 3637–
3645 (2016)

47. Vu, X.-H., O’Sullivan, B.: A unifying framework for generalized constraint acquisition. Int. J. Artif.
Intell. Tools 17(5), 803–833 (2008)

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

	Classifier-based constraint acquisition
	Abstract
	Introduction
	Constraint acquisition by Naive Bayes classifier
	Naive Bayes classifiers
	A linear model using constraints as features
	A simplifying approximation
	Probability estimation
	Bayesian hypothesis testing interpretation
	Illustrative example
	Robustness under errors
	Discussion

	Related work
	Experiments
	Latin squares
	Sudoku
	Golomb rulers
	Random 3-SAT
	Redundant and implied constraints
	Choosing parameters
	Robustness experiments

	Conclusion and future work
	Future work
	Small datasets
	Imbalanced datasets
	Mixed data types
	Overfitting
	Auxiliary variables and channeling constraints

	References

