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Abstract: There is a gap in the conceptual framework linking genes to phenotypes (G2P) for non-
model organisms, as most non-model organisms do not yet have genomic resources readily available.
To address this, researchers often perform literature reviews to understand G2P linkages by curating
a list of likely gene candidates, hinging upon other studies already conducted in closely related
systems. Sifting through hundreds to thousands of articles is a cumbersome task that slows down
the scientific process and may introduce bias into a study. To fill this gap, we created G2PMineR, a
free and open source literature mining tool developed specifically for G2P research. This R package
uses automation to make the G2P review process efficient and unbiased, while also generating
hypothesized associations between genes and phenotypes within a taxonomical framework. We
applied the package to a literature review for drought-tolerance in plants. The analysis provides
biologically meaningful results within the known framework of drought tolerance in plants. Overall,
the package is useful for conducting literature reviews for genome to phenome projects, and also
has broad appeal to scientists investigating a wide range of study systems as it can conduct analyses
under the auspices of three different kingdoms (Plantae, Animalia, and Fungi).

Keywords: genotype; phenotype; G2P; literature review; literature mining

1. Introduction

The post-genomics era is an exciting time to conduct research. Lower-cost sequencing
technologies, candidate gene approaches, and genome-wide association studies (GWAS)
allow researchers to unravel the genomic basis of traits (i.e., genome to phenome research,
or G2P) across many organisms, which allows researchers to predict the responses of organ-
isms to a changing global landscape [1–6]. G2P studies have a wide range of applications,
such as studying cancer in humans [7], phenotypic variation in wild flora and fauna [4,8],
or genes associated to pathogenicity in disease-causing organisms [9]. While the number
of G2P studies in non-model organisms is increasing, there are challenges associated with
starting G2P research from the ‘ground-up’, as genomic resources are often not readily
available for non-model organisms [10–12]. This gap in the conceptual framework limits
our ability to address how non-model organisms are responding to a rapidly changing
world [12].

To address this gap, researchers often perform GWAS or outlier analyses using high-
throughput sequencing outputs to associate phenotypes of interest with a list of candi-
date genes, with the validation of these genes afterwards through a thorough literature
search [13,14]. While searching for genes is a popular choice for most researchers with rela-
tively few genomic resources available, others use a forward genetic approach by mining
genomes for known genes of interest, hinging upon other studies already conducted in
closely related systems [15]. For both approaches, a thorough literature review is essential
for understanding genes underpinning traits of interest within a taxonomic framework [15].
However, in the post-genomics era, with hundreds of thousands of articles to consider, this
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is a cumbersome task, which makes bridging the G2P gap difficult [15]. Furthermore, man-
ual curation of genes of interest can introduce bias into a study [16]. Automated text mining
soft offers a solution to this gap, however to our knowledge most available programs are
focused primarily on the social sciences (e.g., sentiments analyses [17]) or scientometrics
(e.g., bibliometrix [18]) and these do not work well within the G2P framework.

In this paper, we describe G2PMineR, a free and open-source R-package [19] literature
mining tool that we developed specifically for G2P research. Using automation, G2PMiner
makes the G2P review process of tens of thousands of studies (based on their abstracts,
which are easily retrieved and often the only freely available part of a study) efficient and
unbiased and presents hypothesized associations between genes and phenotypes within
a taxonomical framework. This allows the user to make testable G2P hypotheses more
quickly. Given that our research group studies plant genomics, we originally developed
G2PMineR using manually vetted plant reference datasets. To expand the applicability of
this tool, we also included pre-compiled datasets for animals and fungi. We anticipate that
these datasets can be refined through feedback from the scientific community as this tool is
disseminated and used in diverse applications (see Section 2.4 for more details).

2. Materials and Methods

The methods presented here are an abbreviated version. To see a full description
of each function in the package and its place in the pipeline, please see the G2PMineR
GitHub page at https://buerkilabteam.github.io/G2PMineR_Web/ (accessed on 2 Febru-
ary 2021). G2PMineR can be downloaded from GitHub at BuerkiLab/G2PmineR using the
install_github function from the R package devtools [20]. For each function implemented in
the package and referred to in the text: objects and arguments are underlined and column
names in a data frame are in “quotation”.

2.1. General Structure

G2PmineR searches abstracts provided to it by the user for sets of species names
(abbreviated Ta), gene names (abbreviated G), and phenotype words (abbreviated P)
from pre-compiled reference data within the package and allows the user to visualize
intersections between the mined results (terms) both within and between sets (Figure 1).
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A G2PmineR analysis has three steps and seven modules. The first step has only one
module: conducting a literature search and assessing its efficiency (module 1). The second
step has five modules (Figure 1): mining Ta (module 2); mining G (module 3); mining P
(module 4); summarizing and inferring the consensus of Ta, G and P data (module 5); and
conducting internal network analyses for Ta, G and P data (module 6). The third step has a
single module, inferring bipartite graphs to link the three datasets (Ta, G, P; module 7).

G2PMineR uses abstracts from a given literature search for all downstream mining
applications. Abstracts were used intentionally as they are openly available, and most
studied species, genes, and phenotypes of most importance are described in the abstract.
We acknowledge that our package is not able to determine if species, genes, or phenotypes
are false positives, but after the extensive reading of abstracts and associated text, we
determined that false positives due to irrelevant information are rare (98% of 100 randomly
sampled abstracts were found to have been mined successfully by our pipeline).

2.2. Input Data

The package takes a csv file of abstract text (i.e., one abstract per row, with all text for
an abstract between quotes) and a csv file of unique identifiers for each abstract, which
can be derived from any scholarly database (e.g., PubMed [21], Scopus [22], or Web of
Science [23]). The analysis depends upon included pre-compiled reference data for Ta,
G, and P mining, however, the user can also add their own customed reference data (see
Section 2.4, Section 2.5, Section 2.6 for more details).

2.3. Step 1: Literature Search
Module 1: Conduct Literature Search and Assess its Efficiency (Optional)

The user can either perform their literature search in R [19] using easyPubMed, as
is done in our vignette, or they can supply the pipeline with abstracts (AbstractStrings
in our vignette) and unique identifications (referred to as IDs in the rest of the text) from
the scholarly database of their choice (see Section 2.2). In our vignette, we used the
EutilsSummary function from the RISmed package [24] to conduct the query and produce
IDs. This approach allowed retrieving the PubMed IDs of matching publications and our
AbstractsGetteR function was then used to download a vector of abstract text corresponding
to the PubMed IDs, outputting AbstractsStrings. AbstractsGetteR relies on the easyPubMed
package [25] to perform the retrieval of abstracts.

As an optional first assessment of the efficiency of the literature search, we propose
to conduct a preliminary grouping analysis to determine if the abstracts are adequately
reflecting the expected search conducted by the user and will therefore be suitable for G2P
research: i.e., the fewer groups there are, the more they share in common and therefore
the more likely it is that the topics they discuss are relevant to what is being studied. If
the user has several groups, they may need to refine their search terms such as adding
more precise words (e.g., substituting “monocot” for the more general “plant”). To achieve
this, we used two functions here: AbstractsClusterMakeR and MembershipInvestigatoR.
AbstractsClusterMakeR defines clusters of abstracts using text2vec [26], qgraph [27], and
igraph [28] R packages. We recommend only taking a random sample of AbstractsStrings
and IDs (<1000) to run this optional analysis, as it requires a large amount of random
access memory (RAM) to run (therefore we do not recommend running this function on
a laptop). To delineate a group of abstracts, we used the relaxed word movers’ distance
algorithm to calculate similarity scores [26] between abstracts (comparing their whole text)
set with a cluster walktrap analysis, which was set at four steps to delimit groups [28].
MembershipInvestigatoR investigates the membership of each group of abstracts by look-
ing at the non-stopwords, which are shared between abstracts. The main output of this
function is an object called meminv, a data frame whose columns are “Group” (i.e., group
number), “NumberNonStopWords” (i.e., number of non-stopwords shared), “Number-
NonStopWordsOverThreshold” (i.e., number of non-stopwords shared over a proportion
of abstracts over the user threshold), “WordsOverThreshold” (i.e., non-stopwords shared
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over a proportion of abstracts over the user threshold, comma separated), “WordsOver-
ThresholdAbstractCounts” (i.e., number of abstracts sharing non-stopwords over the user
threshold), and “NumberWordsUnderThreshold” (i.e., number of non-stopwords shared
over a proportion of abstracts under the user threshold).

2.4. Step 2 Attribute Mining and Internal Interactions
2.4.1. Module 2: Mining Taxonomy (Ta)

In order to provide context to the G2P interactions studied, we mine the abstracts for
taxonomy (Ta) to infer which organisms the authors were investigating (Figure 1). This
module relies on one function: SpeciesLookeR. This function takes the abstracts strings
(AbstractsStrings), unique IDs (IDs), the kingdom of interest (Kingdom, either “P” for
Plantae, “A” for Animalia, or “F” for Fungi), and pre-compiled data that are provided with
the package based on species from the Global Biodiversity Information Facility (GBIF) [29]
that were taxonomically curated using taxize [30] and Taxonstand [31] (this which varies
according to the kingdom the user chooses). The user can also decide to add any of their
own data as a supplement to the pre-compiled data, in the form of a one-column data
frame containing the taxa they wish to add (e.g., “Genus species”) using the flag Add
in our package documentation. This function outputs a data frame called AbstractsSpp
whose columns are “Genus”, “Species”, and “Matches” (i.e., IDs of abstracts containing
species, comma separated). A list of species abbreviations for each taxon found is created
by passing AbstractsSpp through SpeciesAbbreviatoR. This module produces a vector
of species abbreviations (SppAbbr, e.g., At for Arabidopsis thaliana), which is used in the
quality-control steps within the GeneLookeR function.

There are some taxa that have names matching English words. These latter taxa are
generally from the genera Cotyledon, Codon, and Unigenes for plants, though it could be
Data or others for animals. The user can also perform manual taxonomical curation on
their results if they wish to ensure that only accepted nomenclature is used. If the user
desires to do this, they can take the species column of the AbstractsSpp object and pass it
through their taxonomical curator of choice.

2.4.2. Module 3: Mining Genes (G)

We mine the abstracts for a set of genes (G) to infer which genes the author is in-
vestigating (Figure 1). This module uses two functions: GenesLookeR to perform the
mining itself and SynonymReplaceR to harmonize results based on gene nomenclature
(since our mining analysis also searches for synonymous names). GenesLookeR takes the
arguments abstracts strings (AbstractsStrings), unique IDs (IDs), the kingdom of interest
(Kingdom, either “P” for Plantae, “A” for Animalia, or “F” for Fungi), abbreviated species
names (SppAbbr), and pre-compiled data that are provided with the package contain-
ing the names, families, and ontologies for all of the SwissProt genes for the kingdom
of interest as of August 2020 [32]. As in module 2, the user can also decide to add any
of their own data as a supplement to the pre-compiled data. In this case, the user has
to provide a data frame with three columns: “gene name”, “gene family”, and “gene
ontology” (this user-supplied object is called Add in our package documentation). The
function outputs a matrix (called GenesOut in our vignette) whose columns are “Gene”,
“InOrNot” (i.e., Boolean in at least one abstract or not), “Matches” (i.e., IDs of abstracts
containing gene, comma separated), “InSitus” (i.e., exact matches in abstract text), “Family”
(i.e., gene family from SwissProt [32]), and “Ontology” (i.e., ontologies from SwissProt [32],
comma separated). Note that the “InSitus” column contains original matches and thus
may be different to the gene name associated to it (found in the “Gene” column). The
functionSynonymReplaceR function takes as arguments GenesOut and Kingdom and re-
places occurrences in the “Gene” column with the accepted gene names and combines their
outputs if the accepted name was found elsewhere. We chose to restrict our pre-compiled G
data to SwissProt curated genes because they are associated with a known ontology and are
correctly spelled [32]. After the synonyms are replaced, the user restricts GenesOut so that
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it only includes abstracts that contain gene term matches as is shown in our vignette. The
object created by this restriction is named Genez in our vignette. It has the same column
names as GenesOut.

There are two optional functions the user can employ as part of this module: Gene-
NamesGroupeR creates artificial groups based on numerically stripped gene names, and
GeneFrequencySifteR, which excluded genes with a frequency below the threshold chosen
by the user. Information about their inputs and outputs can be found in the vignette
and manual.

2.4.3. Module 4: Mining Phenotypes (P)

We mine abstracts to infer the phenotypes (P) investigated by the authors (Figure 1).
This module is using one function: PhenotypeLookeR. This function takes the abstracts
strings (AbstractsStrings), unique IDs (IDs), the kingdom of interest (Kingdom, either “P”
for Plantae, “A” for Animalia, or “F” for Fungi), and pre-compiled data that are provided
with the package and that vary according to the kingdom chosen. The plant phenotypic
words are a manually curated and expanded library of phenotypic words derived primarily
from the glossary from the Missouri Botanical Garden website [33]. The animal phenotypic
words were derived from the University of California Museum of Palaeontology’s glossary
of zoological terms [34]. Finally, the fungi phenotypic words were derived from the Uni-
versity of Adelaide’s glossary of mycological terms [35]. PhenotypeLookeR outputs a data
frame called AbsPhen in our vignette whose columns are “PhenoWord” (i.e., phenotypic
words), “NumberAbs” (i.e., number of abstracts in which that phenotypic word appeared
at least one), “1stWordPair” (most common bigram (i.e., two-word combination) contain-
ing this phenotypic word), “2ndWordPair” (second most common bigram containing this
phenotypic word), “3rdWordPair” (third most common bigram containing this phenotypic
word), and finally “AbsMatches” (i.e., IDs of abstracts containing phenotypic word, comma
separated). Considering the first, second, and third most-common bigrams is important
to determine the directionality/variety of the phenotypes mined (e.g., root growth vs.
root death).

2.4.4. Module 5: Summarizing and Inferring Consensus of Genes, Taxonomy, and
Phenotypes Data

We calculate the proportion of abstract matches to see whether the proportion of ab-
stracts that have at least one species, gene, and/or phenotype match is suitable to the user
(Figure 1). We use the function AbstractsProportionCalculator to calculate this proportion
for each of the mined datasets (Ta, G, P). This function takes as its first argument one of
the mining results outputs (AbstractSpp, GenesOut, or AbsPhen). The overall output is
a proportion ranging from 0 to 1, representing the proportion of abstracts that have at
least one match for this set. Then, the user uses the functions MakeAbstractsSppLongform,
MakeGenesOutLongform, and MakeAbsPhenLongform to modify the mined datasets to fit
their consensus analysis (for instance, the user can make Ta, G, and/or P datasets that con-
tain only abstracts with at least one match from two or all of the datasets). These functions
take their eponymous objects as their single argument (i.e., AbstractsSpp, GenesOut, and
AbsPhen, respectively) and they output the long-form versions of them (i.e., versions with-
out concatenating the information; AbstractsSppLong, GenesOutLong, and AbsPhenLong,
respectively; see vignette and documentation for more details). The consensus analysis is
done using the ConsensusInferreR function. This function takes in the longform datasets
inferred in module 5 as well as the native datasets inferred in modules 2, 3, and 4. The
user sets whether just two or all of the matches must be present in the finalized consensus
data through the arguments of the consensus function itself. For example, if the user
wanted to include abstracts that have Ta and G matches but they do not want to include P
matches, then they would include Ta = AbstractsSppLong, G = GenesOutLong, P = NULL,
AbstractsSpp = AbstractsSpp, GenesOut = GenesOut, and AbsPhen = NULL. The function
returns a list where the first object is a data frame with a side-by-side consensus of the
inputs (ConsensusMatrix, with the columns “Matches” (the unique IDs of the consensus),
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and the following two or three columns being the matches of the two or three sets to
which the consensus data are restricted), the second object is a Venn diagram showing the
abstract-wise intersection of the input datasets built using the package VennDiagram [36],
their third through fourth or fifth objects are the original short form matrices but these
are restricted to only abstracts meeting the consensus criteria (we called them TaxoCon,
GenesCon, and PhenoCon in our vignette, they have the same column names as their origi-
nal counterparts), and the last object is a vector of abstract IDs in the consensus intersection
(ConsensusIDs). The user can either use the raw data or the consensus data for the rest of
the analysis. In our vignette we used the raw data.

2.4.5. Module 6: Internal Network Analyses for Ta, G, and P Data

We visualize matching terms using bar graphs to unveil the most heavily used terms
within the mined datasets. We use one function here: MatchesBarPlotteR. This function
takes the terms (e.g., AbstractsSpp$Species), matching IDs (e.g., AbstractsSpp$Matches),
and n which denote the number of matches to show a decreasing order of occurrence (we
recommend n = 25 for visual clarity). The function returns a data frame whose first column
is in the top 25 most common terms and the second column is the number of unique
abstracts to which they are matched. Base R—or the user’s graphical package of choice—is
then used to produce a barplot graph using this data frame as an input.

We visualize internal set results to see the common co-occurrence patterns of terms
within sets, i.e., which Ta terms are studied together, which G terms are studied to-
gether, and which P terms are studied together (Figure 1). We use two functions here:
InternalPairwiseDistanceInferreR and TopN_PickeR_Internal. InternalPairwiseDistan-
ceInferreR takes a vector of terms (e.g., AbstractsSpp$Species) and a vector of matches
(e.g., AbstractsSpp$Matches) of the results of one type of mining dataset and infers a
pairwise distance matrix between each term using the number of shared ID matches.
TopN_PickeR_Internal takes the output of InternalPairwiseDistanceInferreR and subsets
it to include only the most similar n (as defined by the user) pairs. The user can use the
qgraph function from the qgraph package [27] to create internal relations networks to
visualize the results (Figure 1). The overall output are matrices and networks for Ta, G
and P.

2.5. Step 3: Linking Ta, G, and P Interactions
Module 7: Constructing Bipartite Graphs

We integrate the results of the genes, species, and phenotypes analyses using the co-
occurrences of these terms so that gene–phenotype, gene–species, and species–phenotype
interactions can be visualized in the form of bipartite graphs and accessed more manually
through matrices (Figure 1). This module relies on two functions: PairwiseDistanceInferreR,
and TopN_PickeR. PairwiseDistanceInferreR takes the terms (e.g., AbstractsSpp$Species
and Genez$Gene) and matches (e.g., AbstractsSpp$Matches and Genez$Matches) of the
results of two mined datasets and infers a pairwise distance matrix between each term
using the number of shared ID matches (e.g., Ta2G, G2P, P2Ta). TopN_PickeR takes the
output of PairwiseDistanceInferreR (distance matrix objects that in our vignette are named
either PhenoGenes for G2P, GeneSpecies for Ta2G, or PhenoSpecies for P2Ta) and subsets
it to include only the most similar number of pairs (n), as defined by the user. The user can
then use the plotweb function from the bipartite package [37] to create bipartite graphs to
visualize the results. The overall output is a matrix whose row names and column names
reflect the inputs, which can be used to make the bipartite graphs (Figure 1).

2.6. Operating System and R Versioning

G2PmineR has been tested on a MacBook Pro (Cupertino, CA, USA) running MacOS
10.16 and 11.1 using R version 4.0.3 “Bunny-Wunnies Freak Out” [19] in December 2020. It
has also been tested on Linux (Ubuntu 18.04.5 LTS; R version 3.6.3 “Holding the Windsock”)
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(Dell Precision 7920, Round Rock, TX, USA), and Windows 10 (R version 4.0.2 “Taking Off
Again”) (Dell Latitude 5501, Round Rock, TX, USA).

3. Results

We applied this tool to conduct a literature review of drought tolerance in plants using
a subset of 1000 abstracts from the several thousand in PubMed [21] resulting from the
search “plant AND drought AND tolerance AND gene”. Overall, the analysis took roughly
3 h to run. The full complement of code, results, and graphs can be found on our website
(https://buerkilabteam.github.io/G2PMineR_Web/ (accessed on 2 February 2021)).

3.1. Step 1: Literature Search Results
Module 1: Conduct Literature Search and Assess its Efficiency Results

The preliminary clustering analysis revealed two unequally sized groups of words
shared between >50% of abstracts, indicating potential refinement required for the initial
search query (see Table 1). An evaluation of these word groupings revealed that 90% of
the words in the smaller group nested within those of the larger group. Because the word
groups were similar, we determined that the initial search terms used were sufficient and
could continue on with the analysis.

Table 1. A comparison of the words shared by over 50% of the abstracts in each group our module 1
analysis found. Words in italic are the search terms. Words with a star (*) next to them are shared
between both groups.

Group 1 Group 2

Drought * Tolerance *
Tolerance * Drought *

Gene * Stress *
Stress * Plant *
Plant * Gene *

Expression * Expression *
Response * Response *

Under * Transgenic
Study * Protein

Analysis Result
Abiotic

Role
Study *
Under *

Acid

3.2. Step 2 Attribute Mining and Internal Interactions Results
3.2.1. Modules 2–4: Mining Results

The taxonomy mining revealed that the abstracts discussed 207 unique taxa as per
our database of species and their synonyms, representing 115 genera. Among the abstracts,
64.5% were found to mention at least one plant species. Gene mining revealed that the
abstracts discussed 606 unique genes, representing 417 unique gene families. Among
the abstracts, 64.4% were found to mention at least one gene in the pre-compiled gene
database. Phenotype mining revealed that the abstracts discussed 392 unique phenotype
words in our plant-specific database. Among the abstracts, 99.6% mentioned at least one
phenotype-associated word.

3.2.2. Module 5: Summarizing and Inferring Consensus of Ta, G, and P Term
Matches Results

Less than half (44.3%) of the abstracts had at least one match for all three data types
(Ta, G, and P; Figure 2). Among the abstracts, 19.9% had at least one G and P match, but
no Ta match. Two hundred (20.0%) abstracts had at least one P and Ta match, but no G

https://buerkilabteam.github.io/G2PMineR_Web/
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match. Only two (0.2%) abstracts had at least one Ta and G match, but no P match. while
all abstracts that had at least one G or Ta match matched at least one P as well, 153 (15.3%)
abstracts had only a Ta match.
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Figure 2. A Venn diagram showing the results of the consensus analysis (module 5) conducted on a subset of abstracts
related to drought tolerance in plants. Abbreviations: G = genes; Ta = taxonomy; P = phenotypes.

3.2.3. Module 6: Internal Network Analyses for G, Ta and P Data Results

The results of the quantitative analysis show that the top five species studied were
Arabidopsis (spp.), A. thaliana, Oryza sativa, Triticum aestivum, and Nicotiana tabacum. The
top five genes studied were OASC, CYSC, SODCC.1, LEA, and NSY (see website for more
details). The top five phenotype words studied were “drought”, “rot”, “growth”, “protein”,
and “salt” (Figure 3).
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tween Sorgum spp. and Phyllostachys edulis. The strongest gene connection (co-occurrence)
was between SODCC.1 and CDC25 (Figure 4). The second strongest was between SODCC.1
and ASR5, while the third strongest was between OASC and DREB2A (Figure 4). The
phenotype word “drought” was connected to many other words, but most strongly to
“salt”, “rot”, “cell”, “root”, “protein”, “growth”, “leaf”, and “abscisic acid” (see our website
for more details). There was also a strong connection between “rot” and “protein”, with
moderate connections to “salt”, and “growth”.

Genes 2021, 12, x FOR PEER REVIEW 11 of 16 
 

 

Figure 3. A. Bar plot showing the top 25 genes involved in drought tolerance in plants based on 

our subset of abstracts inferred using GenesLookeR and MatchesBarPlotteR B. Bar plot showing 

the top 25 phenotypes involved in drought tolerance in plants based on our subset of abstracts 

inferred using PhenotypesLookeR and MatchesBarPlotteR. 

The results of the internal interrelations network analysis showed that among taxa, 

A. thaliana often occurred with T. aestivum, and that A. thaliana also occurred somewhat 

commonly with Gossypium hirsutum and N. tabacum. There was also a strong connection 

between Sorgum spp. and Phyllostachys edulis. The strongest gene connection (co-occur-

rence) was between SODCC.1 and CDC25 (Figure 4). The second strongest was between 

SODCC.1 and ASR5, while the third strongest was between OASC and DREB2A (Figure 

4). The phenotype word “drought” was connected to many other words, but most 

strongly to “salt”, “rot”, “cell”, “root”, “protein”, “growth”, “leaf”, and “abscisic acid” 

(see our website for more details). There was also a strong connection between “rot” and 

“protein”, with moderate connections to “salt”, and “growth”. 

 

Figure 4. An internal relations networks showing the genes by number of abstracts with at least 

one occurrence of them shared with other species over a 50% threshold. Genes that appear to-

gether in abstracts more often have a wider and more deeply colored bar linking them. Internal 

relations networks were also produced for the taxonomical and phenotype results but are not 

shown here. This figure was produced by the functions InternalPairwiseDistanceInferreR and 

TopN_PickeR_Internal functions from G2PMineR and the qgraph function from qgraph. 

  

Figure 4. An internal relations networks showing the genes by number of abstracts with at least
one occurrence of them shared with other species over a 50% threshold. Genes that appear together
in abstracts more often have a wider and more deeply colored bar linking them. Internal relations
networks were also produced for the taxonomical and phenotype results but are not shown here. This
figure was produced by the functions InternalPairwiseDistanceInferreR and TopN_PickeR_Internal
functions from G2PMineR and the qgraph function from qgraph.

3.3. Step 3: Linking Ta, G, and P Interactions Results
Module 7: Constructing Bipartite Graphs Results

The results of the G2P bipartite graph (Figure 5) indicated that OASC is heavily
associated with the phenotype words “drought”, “protein”, “rot”, “growth”, “salt”, and
“abscisic acid” (Figure 5). The phenotype word with the most genes connected to it was
“drought”, followed by “rot”, “growth”, “protein”, and “salt” (Figure 5). Some phenotype
words were only associated with a single gene in the graph, such SODCC.1 with “oxygen”,
SCC3 with “salicylic acid”, and “cell”, seed”, and “root” with OASC (Figure 5).
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Figure 5. Genes and phenotypes involved in drought tolerance in plants based on our subset of abstracts inferred using the
functions PairwiseDistanceInferreR and TopN_PickeR functions from G2PMineR and the plotweb function from bipartite.

Regarding the G2Ta connections, the taxa Arabidopsis spp. and A. thaliana were
connected to all of the genes shown (see our website for more details). O. sativa is a very
distant third and Capsicum annuum, T. aestivum, and Chrysanthemum spp. tied for fourth.
OASC, CYSC, RD29A, and SODCC.1 were connected to the most species in our top 50
interconnections-restricted distance matrix.

Regarding the P2Ta connections, the taxa Arabidopsis sp. and A. thaliana were connected
to all of the phenotypes shown, and “drought” was the only phenotype word associated
to all of the species shown. There was considerable overlap in species studies between
“drought”, “salt”, “protein”, “rot”, and “growth”.

4. Discussion
4.1. Our G2P Analysis Produced Results Aligned with Current Knowledge on Plants
Drought Tolerance

Overall, we demonstrated how G2PMiner can perform a high-throughput review of
abstracts to gain an unbiased understanding of G2P interactions in a reasonable amount of
time on an average laptop (see Section 4.4 for more details). Furthermore, our application of
this research workflow to drought tolerance in plants provided G2P results (Figure 5) that
corroborated our current understanding of G2P interactions in this field [38–42] indicating
to us that this workflow is also effective. For example, OASC, one of the genes we found to
be most commonly associated to drought stress, codes for cysteine synthase, an enzyme
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whose transcription is known to be downregulated in drought-stressed plants [41]. On
the other hand, SODCC.1 is known to be upregulated in drought-stressed plants [42]. The
product of SODCC.1 is superoxide dismutase, an enzyme known to neutralize reactive
oxygen species, explaining the connection of that gene to oxygen as well as drought [42].
Many of the other genes found in our analysis also make sense within the known G2P
drought framework in plants. The taxonomical framework which our analysis unveiled
also makes sense as most of the species that co-occurred with drought genes include several
models and crop organisms (e.g., A. thaliana, C. annuum, T. aestivum, or O. sativa) that also
often co-occur with one another. This is logical given that much of our current knowledge
of plant–drought interactions is based upon highly studied organisms of human interest
such as crop species. We are currently working on a review of genes underpinning drought
tolerance in plants based on this package.

4.2. G2PMineR Is Applicable to Studying G2P in Plants, Animals, and Fungi

While our example used here delves into the plant kingdom, it is important to note
that the package can conduct analyses on data for three kingdoms (Plantae, Animalia,
and Fungi), and is therefore useful for a broad range of users. For example, it could be
used to investigate drought tolerance in plants, heat tolerance in salmon, and heavy-metal
tolerance in fungi.

4.3. From Literature Review to Hypothesis Testing

Results of G2PMineR analyses can be used in several ways by scientists at any point
in their learning journey. For example, scientists conducting G2P research can use the
hypotheses generated by the G2PMineR analysis to mine annotated genomes of their study
organisms, or validate their ongoing functional genomic studies using GWAS. On the other
hand, undergraduate or graduate students could use the G2PMineR analysis as a backbone
for a foundational literature review guiding their thesis research.

The bar plots produced in module six (Figure 3) provide the user with broad context
as to the relative abundance of species/genes/phenotypes in the pool of abstracts that they
mined. This allows researchers to ascertain whether certain species, genes, or phenotypes
may be over-represented in their literature search. The networks produced in module six
provide deeper context and allow for hypotheses to begin to be drawn about intra-category
relationships (e.g., taxa, genes, phenotypes). For example, the network showing the internal
co-occurrence connections among the genes in the pool of abstracts (Figure 4) allows the
user to see what genes are commonly studied together, providing a hypothesis of genes
that may be expressed together. This hypothesis can be strengthened if two (or more) genes
are highly connected in this network and also show connections to the same phenotype(s)
in the gene–phenotype bipartite plot. The network showing the internal co-occurrence
connections among the phenotypes in the abstracts shows what phenotypes are most
commonly studied together, providing a hypothesis of similar underlying mechanisms.
This hypothesis can be strengthened if two phenotypes are highly connected in this network
and also show connections to the same gene(s) in the gene–phenotype bipartite plot. Finally,
the bipartite graphs produced during module seven (Figure 5) allow the user to make
hypotheses about inter-category relationships. For example, the gene–phenotype bipartite
graph (Figure 5) allows the user to infer the genes that have the strongest co-occurrence
connections with their phenotype(s) of interest. This graph also allows the user to see
what genes may be expressed together in response to a single (or several) phenotype(s), an
observation that can be corroborated by viewing the gene network produced in module
six. On the other hand, the genes–taxa bipartite graph allows the use to see in what taxa
genes have been studied and may allow for cladistical gene hypotheses to be made.

While abstracts are a valuable source of information to reveal G2P mechanisms, they
can be sometimes misleading. For instance, it could be difficult to distinguish whether the
noted co-occurrence of gene names and phenotypic traits imply a functional connection
or lack of it. Based on our preliminary study, we confirmed this connection by manually
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inspecting a subset of publications; however, this remains a potential bias of our approach.
We are aiming at implementing an additional approach, which would download full texts
from freely available publications. This will allow the confirmation of hypotheses generated
by G2PMineR.

4.4. G2PMineR Was Designed with Diverse Users in Mind

The package also allows for the user to add their own taxonomic, genetic, or pheno-
typic reference data. This means that the analysis can be customized by each user, and
this can allow for the internal compiled databases to be improved iteratively through
user–developer interaction. The user can easily access the reference data implemented in
the package to evaluate their adequacy in regard to their research question (see website
for more details). If the user feels that a specific species/gene/phenotype ought to be
included in one of the built-in reference data for broad use, they can submit their addition
for consideration by emailing J.M.A.W.

The function LookeRBringeR will return a vector of the unique IDs of the abstracts
associated to a term or vector of terms input by the user based on the results of the “-
LookeR” functions. The function CoOccBringeR will return a vector of the unique IDs of
the abstracts associated to a pair of terms (or two vectors of paired terms) input by the user
based on the results of the PairwiseDistanceInferreR function. The user can then use the
unique IDs to look at the abstracts or to investigate whether they can access the full papers.

The user does not necessarily have to use all of the functions in the package during
their analysis. For example, if they want to mine a set of abstracts (or any other text)
for species, genes, or phenotypes they can use one of the “-LookeR” functions to do
that. However, one must keep in mind that when running GenesLookeR it requires
SpeciesAbbrvs, which means that SpeciesLookeR must be run beforehand. They could
then use the results of that function for their own purposes without completing the rest of
the analysis.

All of the functions in the package are built to be acceptable for parallelization. This
allows the user to analyze large datasets that may take an inordinate amount of time to
process serially. This parallelization capability also opens the possibility of the package
being hosted remotely and accessed by the user through a web interface, which is made
possible by the licensing of the package under the AGPL v. 3.

5. Conclusions

G2PMineR is an openly available, iteratively improvable, and useful tool for literature
reviews, hypotheses generation, and the successful linking of G2P for plant, animal, or
fungi researchers. It is our aspiration that it will become a standard tool in the literature
review of G2P projects.
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