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Abstract. We study thesextremal properties of a stochastic process z; defined by
the Langevin equation’z; = /2Dy & in which & is a Gaussian white noise with
zero mean and D, is a stochastig "diffusivity", defined as a functional of independent
Brownian motion B;. We focus on three choices for the random diffusivity D;: cut-off
Brownian motion] Dy O(B;), where ©(x) is the Heaviside step function; Geometric
Brownian Motion, D} ~lexp(—B;); and a superdiffusive process based on squared
Brownian motion, D; ~ Bf. For these cases we derive exact expressions for the
probability density funetions of the maximal positive displacement and of the range of
the process z;fon the time interval ¢ € (0,7"). We discuss the asymptotic behaviours
of the associated probability density functions, compare these against the behaviour
of the corrésponding properties of standard Brownian motion with constant diffusivity
(D = Dy) and, alsp analyse the typical behaviour of the probability density functions
whichds ebserved for a majority of realisations of the stochastic diffusivity process.

1. Introduction

The statistics of extreme values (EVs) of stochastic processes has been in the focus of
extensivejyresearch in the mathematical (see, e.g., [1-3]) and physical (see, e.g., [4-15])
literature qver several decades. More recently, EV properties have also received attention
in the areas of mathematical finance [18,19] in which stochastic processes represent one
of the main components in the modelling of the dynamics of asset prices, of computer
sciencer[20,21], as well as of the analysis of "records" of different kinds [19,22,23|. Apart
from "simple" EV problems asking for the maximum behaviour of a variable, "dual"
EVs of the min-max and max-min families are relevant in game theory [24] or reliability
engineering [25], for which a universal Gumbel limit law emerges [26,27].
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Typically, one computes several types of EVs, which are either interrelatedsor
independent of each other, and hence, provide complementary information about the
process z; under consideration. Commonly considered EVs are, for“instancejthe
persistence probability for not crossing the initial value x of the process [10]; therelated
probability that the process does not reach a given threshold or a givenppoint in space
up to time ¢ (i.e., the "survival" probability) [5], or the first-passage timento a given
threshold or spatial location [4-10, 13-15]. For one-dimensional processes, one often
considers the maximal positive M or negative M displacements andithe range R (also
called the span or the extent) of x; (here and henceforth we asSume that o = 0) on a
given time interval:I

Mg = Orgtzg%{xt} >0, My = — min {z,;} >0, Rrs=Mp+ My >0. (1)

0<t<T

Here T represents the length ("observation time'")mof the“time series z; under
consideration. When a random process x; evolvespon a ome‘dimensional lattice, the
range R defines another important property, namely, themumber of distinct visited sites
up to time 7" [28]. We also note that complementaryieharacteristics of extremal values
of Brownian motions such as the distribution of times between minima and maxima has
been evaluated recently [29,30].

Knowledge of the EV statistics is conceptually important for the understanding of
various facets of the stochastic progess @, andyis relevant for diverse physical phenomena
and also in applications in finance, socigphysics and biology, since EVs often trigger
a particular response of the gystem. A prominent application is molecular chemical
reaction kinetics, in which a diffusing molecule hits a reaction centre [31]. For instance,
during gene regulation a protein needs/to diffusively search a specific binding site on
the cellular DNA [32]. Recentyresearch demonstrated that for typical biochemical
situations with extremely low reactant concentrations knowledge beyond mean chemical
rates [31] is essential, dueto the significant separation of relevant time scales even in
simple geometries [33,34]. Notably, geometry-control of reaction time scales in gene
regulation [35, 36 isseloselyirelated to the most likely reaction time [33,34]. We also
mention that the knowledge of EVs is often very beneficial for a non-perturbative analysis
of complicated functionals of z;, permitting for a construction of convergent bounds and,
hence, for obfalning\non-trivial exact results [37-42].

Most of the ayailable analyses pertain to the paradigmatic process of Brownian
motion, ¢r to lattice random walks. In particular, the exact probability density function
Pr(M) of the maximal positive displacement M of a one-dimensional Brownian motion
has dlready been derived exactly in the early work by Lévy [1]: Denoting the diffusion
coefficient as Dy and supposing that ¢t € (0,7") one has

B = o (- 2T) | )

1 Note that these quantities are related to the caliper size or spanning diameter in polymer physics,

where these extension parameters, obtained from projection to a given axis, are used as a proxy for the
radius of gyration [16,17].
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normalised to the positive semi-axis M > 0, compare figure 1. Subsequentlygmthe
probability density function Pr(R) of the range of Brownian motion was obtained [2|
(see also [43-45])

4 & . m?R?
PrR) = o S 1y (<150

16DyT = [ 27%(2m + 1)2DyT m2(2m + 1)2DT
= Z( 72 —1|exp | — 72 .

(3)

m=0

These two series representations are exact and thus equivalent{ The,series in the first
line highlights the asymptotic behaviour in the limit R — oo, while the gne in the second
line is appropriate for the analysis in the small-R (or long-7") limit. Note also that while
Pr(M = 0) is finite for any finite 7', the probability density, function Pr(R) abruptly
drops to zero when R — 0, see the entire shape in figuredipFurther on, more complicated
multivariate joint distributions of maxima, minimafand thewange were evaluated [7],
while correlations between maxima or between values of the range achieved on different
time intervals were studied in [46-49]. A remarkable result has recently been obtained for
the distribution of the time instant at which, the range of Brownian motion first reaches
a prescribed value [50]. Concurrently a varietyyof first-passage phenomena associated
with Brownian motion have been analysed using exact approaches [4-13]. On top of this
several accurate approximation schemes havesbeen analysed, permitting one to consider
first-passage events in rather complicated, experimentally-relevant geometries [51,52].
However, the progress in the, theoretical analysis of EV statistics for more general
processes, in particular, other than standard Brownian motion and especially non-
Markovian processes, remains limitedsahd typically only the behaviour of the expected
values of the EVs is known [4-10y13].

In this paper we derive exact compact expressions for the probability density
function Pr(M) of the maximaldisplacement and for the probability density function
Pr(R) of the range for three random-diffusivity stochastic processes introduced recently
in [53|. In these medels, the®process x; evolves in a one-dimensional system according
to the Langevin equation

dx
d—tt = \/2DoV (B,) & 10 = 0, (4)

where ¢, i§'standard white Gaussian noise with zero mean and covariance &£ = 0(t—t'),
Dy is a gonstant scale factor, and V(B;) is a dimensionless random diffusivity defined
as afunctional of independent Brownian motion B;:

Bt:() - A 0, <Bt> = O, <BtBt’> = 2DB min{t, t,}, (5)

with'the diffusivity Dp. Here and henceforth, angular brackets denote averaging
with respect to all possible realisations of the Brownian motion B;, while the overline
corresponds to averaging over realisations of the white noise process &. We note that
different versions of the model in (4) corresponding to different choices of the functional
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Figure 1. Probability density functions of /the extremal behaviour of standard
Brownian motion. Panels (a,b) showithe Gaussian law (2) for the maximum M on
linear and log-log scales. Panels (cyd) showsthe probability density (3) for the range.
In all panels we depict thesfunctions for the observation times 7' =1 and T = 2. We
chose Dy = 1.

V(B:) have been extensively studied in recent years within the context of diffusion
in complex heterogeneous enyironments [54-65|, dynamics of particles involved in
polymerisation processes [66,67\which can be anomalous in the non-Stokesian limit [68],
as well as in the mathemagi€al finance literature (see, e.g., [69]). We also mention that
stochastically varying diffusivities were identified in simulations of diffusing proteins
with fluctuating shapef|70],“@nd switching between low and high mobility states was
observed in simulations ofyprotein-crowded membranes [71] and the motion of tracer
particles in the cytoplasm of mammalian cells [72].

Following [58]we define the three random diffusivity models under study here as
follows:

(I) In Medel I we consider the choice V(B;) = O(B;) for the functional V', where
O(z) is the» Heawiside step function with the property ©(z) = 1 for x > 0 and zero
otherwise. In this model, the process x; undergoes standard Brownian motion once
B; >0 andyit pauses at its current location whenever B, is negative. Here, the mean-
squared displacement (:c_tz) = Dyt shows Brownian behaviour, however, the diffusion
coefficient(is smaller by a factor of two than the diffusion coefficient of standard Brownian
motion with V = 1.

(IT) In Model II we choose V(B;) = exp(—B;/a), where a is a scale parameter of
dimension length. This choice for V' (B;) corresponds to Geometric Brownian motion, as
assumed for the time evolution of an asset price in the paradigmatic Black-Scholes
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model [73]. In this model, diffusion is strongly anomalous and the mean squased
displacement has an exponential time dependence, <x_t2) ~ exp(t).

(ITT) In Model IIT we choose V(B;) = B?/a®. Here, the process x; aéeelerates Sghen
B; goes away from the origin in either direction, and we are thus facing a superdiffusive
behaviour as the process z; in (4) exhibits a random ballistic growth with time.

We focus here on the generalisation of expressions (2) and (3), deriyed forBrownian
motion, to the above defined three models of random diffusivity. [ We thus’seek the
exact expressions for probability density functions of the maximumjand of the range,
respectively, defined as

Pr(M) = (Pr(M)) , Pr(M)=0(M — Mr) (6)
and
Pr(R) = (Pr(R)), Pr(R)=0d(R—TRr), (7)

where Pr(M) and Pr(R) denote the probability density functions calculated for a given
realisation of B; (and thus a given realisation of diffusivity). We note that the latter
realisation-dependent distributions are evidently given by expressions (2) and (3) with
DoT replaced by the integral Dy fOT V(B:)dt, implying that Pr(M) and Pr(R) are,
respectively, a Gaussian function op‘an infinite sum of Gaussians with random variances.
As we proceed to show, the averaging over, realisations of B; can be performed exactly for
the three models under study and requires only the knowledge of the moment-generating

function Y(7; \) of the randém ¥ariable Dy fOT V(By)dt,

Y(T;\) = <exp (—)\Do /OT V(B,) dt)> . (8)

This function can indeed[bg’ calgulated exactly for many cases (see, e.g., [3,21] and
references therein) andyin partieular, for the models we study here. We proceed to show
that the averaged distributions, i.e., Pr(M) and Pr(R), exhibit a markedly different
behaviour, as comparedyto the distributions in (2) and (3). We will compare these
predictions againstithe estimates of the "typical" behaviour of these distributions (see,
e.g. [74,75]),

PP (MY pNor exp ((n(Pr(M) /p))) | 9)
P{P(R) & p N exp (In(Pr(R)/p))) . (10)

whefe Nz and Ny are normalisation constants, while p is an irrelevant auxiliary
parameter/of inverse length that is introduced to deal with dimensionless quantities
under the logarithm but cancels anyway. We will demonstrate that their functional
formis'supported by some atypical realisations of the process B;.

The paper is organised as follows. In section 2 we briefly summarise our main
tesults. In two subsequent sections 3 and 4, we present the details of the derivations
of our main results, analyse their asymptotic behaviour and their moments, and also
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estimate their effective broadness by calculating the coefficients of variation efsthe
respective distributions. Additionally, we compare our analytical predictions with the
results of numerical simulations. Section 3 is devoted to the maximum, in seetion
4 we consider the range. Next, in section 5 for the example of the distribution of the
maximum, we will discuss its "typical" shape which should be observed for a majority of
realisations of the process B, (or for small statistical samples) and demonstrate that the
exact form obtained for Pr(M) (and for Pr(R)) defined in (6) stemsffrom seme atypical
realisations of the stochastic diffusivity process. Concluding remarks are’provided in
section 6.

2. Main results

In this section we summarise our main results for the, probability density functions
Pr(M) and Pr(R), (6) and (7), for the three models under,study. The parameters
entering these results were defined above in the descriptien of our models.

2.1. Model T
For Model I we find that

POGE) = — L exp [~ AN (11)
T = VoDl P\ 8D *\8D,T )

where Ky(z) is the modified/Bessel function of the second kind of the zeroth order.
In turn, the exact probability density function P}I)(R) can be written in either of two

equivalent forms: (i) as we progeed toshow, the analysis of the short-R behaviour (i.e.,
the behaviour of the left tailef thegprobability density function Pr(R)) can be realised
from the following expression,

2 (2m41)?
d2 7r2(2m + 1)2D0T 7r2(2m + 1)2D0T
X TP <Rexp (— 52 ) Iy ( 52 )) , (12)

where Iy(z) isythe modified Bessel function of the first kind; (ii) in turn, the behaviour
of the righttail is"conveniently given by an alternative series expansion,

i )™ tm? exp i Ky mR : (13)
vV 7T3D0T 8DOT SD()T

=1

PY(RY=

Expressions (12) and (13) are related to each other through the Poisson summation
formula.
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2.2. Model 11

For Model IT we obtain the following exact expression for the probability density/ function
of the maximum,

2a a? Dp M
PID Ay = exp | — arcsinh? & : 14
4 ( ) \/7TT (DBM2 —|—4D0a2) P DBT DO 2a ( )

The detailed discussion of its rather unusual asymptotic behaviour(is presented in the

next section. In turn, the probability density function PF}H)(R) of the,range obeys the
exact expression

82
PIO(R) = 5 (R\If(” (1)),

16 1
IR =5 s
v (F) T = (2m + 1)

> DgT Tz 2n(2m'+ 1)a | Dy
: 0 (52) f 2 Ve [P,
X /0 exp < 10 ) cosh { ( 2 Dy z, (15)

where K;,(x) is the modified Bessel fun¢tien of the second type of purely imaginary

order. This latter form is suitable for the analysis of the short-R behaviour (see section
4). An alternative form appropriate for theyanalysis of the large-R behaviour follows
from (15) via the Poisson summation, formula and reads

e m+1 2 2 DrmR
P (H = m exp | — a arcsinh? Bt .
g Z “/( DBm2R2 + 4a%Dy) P DgT Dy 2a

(16)

2.8. Model 111

For Model III the probability demsity function of the maximum has the exact form
2

- , (17)

1 alM
- = _ IT'( = + o
/&0, D5 T <4 "1vDoDy T)

where I'(2) is the/Gamma function. The probability density function of the range admits

111
Pt (M) =

the exact expansion

(1179 _ 8 - 1 0* R
T S s

vVDoDpT ’
cosh'/? (27?(2m + 1)%)
a

which is suitable in the short-R limit, while the right tail of the distribution can be
accessed'via an equivalent expansion,

V2a > 1 maR
P(IH) R) = -1 m+1, 2 F( + )
r = SDDaT mzzl( i "WDiD5T

The rest of the paper presents the details of the derivations of our main results and a

2

(19)

discussion of their behaviour.
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3. Probability density function of the maximal displacement

We present the details of derivations of the exact expressions for the probability density
function Pp(M) summarised earlier in section 2. We find it expedient topbase ou
analysis here on the exact expressions for the first-passage time density| H (t| M)pthat
was derived for all three models under study in a recent paper [65]. "Amalternative
approach which takes advantage of the moment-generating function (8) will be used
later on in section 5 and will permit us to access the typical behaviour of the probability
density.

Let Sp(M) denote the survival probability, i.e., the probability that the process zy,
starting at the origin xg = 0 at ¢ = 0, does not reach a pointy)/ >«0 within the time
interval ¢ € (0,7"). This probability can be expressed as

Sy (M) = /T T H @M, (20)

where H(t|M) is the probability density functionief the event that the process z;
reached the point M for the first time af, the time instant ¢. As a consequence, the
desired probability density function Pr(M); which defines the probability density that
the maximal positive displacement of the process @y’ within the time interval ¢ € (0,7)
is exactly equal to M obeys

dsr(M) _ /°° dH (| M)

Pr(M) = 217
(M) o dM

dt’ 21
i (21)

In the case of standard Brownian metion (D; = Dy) the survival probability Sy (M) =
erf(M/\/4DyT), where erf(z) ‘is_the jerror function, H(t|M) is the celebrated Levy-
Smirnov distribution, and géventually, Pr(M) is given by (2).

3.1. Model I

For Model I the firgt-passage time density obeys [65]

M M2 M2
HO | M)yl oxp [~ 2 ) K, . 22
My e eXp( 8D0t) 0<8D0t) (22)

Differentiating ‘theflatter expression with respect to M, inserting the result into (21)

and integrating)it over ¢, we find our compact expression (11). Note that the density in
(22) resembles<but is not identical to—the density Pj(f)(M ).

Moreover, due to the presence of Ky(z), the distribution of the maximum exhibits
a different’ asymptotic behaviour in the limits of small and large M as compared to
behaviour (2) of Brownian motion. From (11) the asymptotic limit M — oo produces
to leading order

POG) ~ 2 exp (=22} (0 = o) (23)
T = o TP\ T, T ’

Page 8 of 32
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that is, the probability density decreases with M faster, due to the additional faetor
1/M, than expression (2). For the opposite limit M — 0 we find that

PO (M) ~ ﬁ (m (%) _ 7) (M = 0), (24

where 7 & 0.5772 is the Euler-Mascheroni constant. Expression (24)“mplies that
P}I)(M ) logarithmically diverges in this limit, while expression (2)/reémains bounded.
Overall we observe that the probability density function (11) is shifted towards smaller
M values compared to the distribution (2). In particular, the expécted (with respect to
the distribution in (11)) value of the maximal displacement of thé progess z; in Model
I obeys

(Mr) = %\/ DT, (25)

i.e., it grows with 7" exactly at the same rate as théexpectéd maximum of Brownian
motion, MEM = 2./DiT, but has a slightly smaller prefactor (4/7%2 ~ 0.72 while

s

2/7'/2 ~ 1.12). The expression in (25) can,be génenaliged to derive the moments of the
maximum of the process x; for Model I of arbitrary, not necessarily integer order ¢ > 0,

T2 <ﬁ)
ME) = —S— 22 (4D,T) ¥4} (26)

q
r(3+1)
s 2+

From this expression we also derive the coefficient of variation v](\? of the distribution

(11):

oD \/<M%‘> - <MT>2 y w16

M (M) N 16

By definition, this property measures the relative weight of fluctuations around the mean

~ 0.968. (27)

value. Hence, for ModelI these fluctuations are of nearly the same order as the expected
value itself, such ghat P}I)(M ) is effectively broad [11,12]. Note that the distribution of

the maximum of a standard Brownian motion, (2), appears to be somewhat narrower;

there, the coéffigient) of variation UJ(V]IBM) = +/(m—2)/2 ~ 0.756 is smaller than UJ(VII).

3.2. Model 11

For Medel'Tlithe exact expression for the probability density function of the first-passage
time is given by [65]

gUDtM) = %arcsinh (%)
LB a

V Dy/Dp

a? M
x exp | ——— arcsinh? [ — —— . 28
p( DBt (2&\/DQ/DB>> ( )
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Again, differentiating (28) over M and integrating the resulting expression overstywe
arrive at our result in (14). The small-M asymptotical behaviour of expression (14)

obeys
1 M?
PUD (A1) ~ — M — 0). 29
v (M) =—m=mexp | =y | (M= 0) (29)

Rather surprisingly, this limiting behaviour is exactly the same as/that of (2) for the
maximum of standard Brownian motion. In contrast, the large- M asymptotic behaviour
is very different from that of standard Brownian motion and follows

2a a? D M
Py~ 22 - m? |/ 222 M. 30
T ( ) \/WM eXp DBT n DO a ( — OO)? ( )

i.e., the right tail of the distribution P}H)(M ) is that of ‘aplog-normal distribution. In
view of such a "heavy" tail one expects that higher values of /M are more likely than in

case of a standard Brownian motion.
The moments of the distribution P}H)(M ) ofarbitrary order ¢ > 0 can be obtained
by a straightforward integration of expressiom,(14),leading us to

(ML) = % (4‘gf°)q/2 /Ooo exp (727 [sinh (*/?x)rdx

(L S ()

n=0

(O -

where (Z) denotes the binomial coefficient. Naturally, when ¢ is an integer the series is

truncated at n = ¢, as can be observed directly from the expression in the first line of
(31). From (31) we have, in particular,

e (4Df ) " ep /et (v 72)
) M ) e 1) (1 e (7)),
o = (4DD )/ exp (9r/4)

x (erf (3v/7/2) = Bexp (~27) exf (V7/2) ), (32)

andiso on/ Here we used the notation 7 = DpT/a?. We observe that in the case of
Model T there is no unique time scale, in contrast to Model I (and also to Model IIT
below)y" This is a direct consequence of the fact that the right tail of P}H)(M ) decreases
with M slower than an exponential function, which gives rise to the behaviour specific
to_the so-called strongly anomalous superdiffusion for which a growth of the moments
with time is not characterised by a unique exponent (see, e.g., [76-78]).

Page 10 of 32
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The first two expressions in (32) permit us to evaluate the coefficient of variation
UJ(VI[I) of the probability density function P}H)(M ) in (14):

i 1 —2exp (—7/2) erf?(\/7/2) — exp(—7
o _ (1200 ) ) 3

Remarkably, v](\?) diverges exponentially, v](\?) ~ exp(7/4)/v/2 as[T — oo/(ie., the

observation time 7' tends to infinity). This signifies that momentstef arbitrary order
are not representative of the actual behaviour and knowledgefof the full distribution
pun . .

(M) is crucial.

3.8. Model 111

Lastly, for Model III the first-passage time density is [65]

alM 2

1 1a M.
|-+ =2
2\/ 27T3D0DB 12 <4 4\/ DoDB t)

Differentiating this expression with respeet to,M and integrating over t, we arrive at

H(IH) (t‘M) _

(34)

our result in (17).
For small M, the Gamma fungtionming(l7) tends to a constant (with corrections of

order O(M?)), and hence, one has

aT2(1/4)
vV 87T3D0DB T

In turn, for M — oo, the asymptoticdehaviour of P}HI)(M ) is given by

P (M) = (L+ O (M%) (M —0). (35)

2a 1/2 Ta
VL W M M) (M 36
VboDy, TM) P ( 4/DyDy T ) (M = o0), (36)

i.e., the right tail of the, probability density function of the maximal displacement is

P (M) ~ (

an exponential funetion and hence, is also "heavier" than the Gaussian tail of the
correspondinggprebability distribution of the maximum of standard Brownian motion.
Evidently, exppession (17) also favours higher values of the maximum M than the
probabilitysdensityfunction (2).
The moments of the distribution (17) obey
- (MWT)q
a

(MF) i (37)

where the dimensionless numerical amplitude f, is given by

fq:\/g/owxq FGH':U)

i (38)
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4+

Figure 2. Amplitude f, in (37) from (38) as a funetion of ¢."See discussion in text.

We were unable to perform the integral in the latter equation and, hence, to derive
an explicit expression for f,, except for the particular ease-when ¢ is an even integer,
g = 2n. In this latter case, f, is given by

= (1" < N ) ¥ (39)
2n =\ 2n ENDEL
dz*" \/cosh(z/2) J | _, \2
where A,, are integers forming Slogne’s seéquence A126156 [79]. In particular,
1 7 139
fO ) f2 87 f4 64’ .fﬁ 5192 ( 0)

The numerical factor f, as a funetion of ¢ is depicted in figure 2. We realise that f,
turns out to be a non-monotonic funetion of ¢. Lastly, we estimate numerically the
value of the coefficient of variation of P}HI)(M ) to get

oM~ 1.012, (41)

implying that fluctuations areund the mean value of the maximum exceed the latter
such that the distributionis,effectively broad.

Figure 3 presents the exact probability density functions Pr(M) (solid curves)
and their asymptotic forms (dashed and dash-dotted curves) for the three models,
highlighting thie ranges of.validity of the small-M limit as well as the onset of the large-
M asymptotie/behaviours:” The results are shown on both linear and log-log scales, to
highlight,the asymptotic behaviour as well as the respective crossovers. Note specifically
the divergence of Pr(M) in the limit M — 0 for Model 1.

3.45  Relation between the moments of the maximum and of the random diffusivity

To close this section we present a general relation between the moments of the maximum
and the moments of the random variable Dy fOT V(By)dt,

TMT) — %r (%) <<D0 /0 : V(Bt)dt> q/2> , (42)
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Figure 3. Probability density function Pr(M) of the maximal displacement along
with the small- M and large-M asymptotic behaviours for Model T (a,b), Model 11
(c,d), and Medel IIT (e,f), plotted on linear (a,c,e) and log-log (b,d,f) scale. We set
Do =1,T=1,a=1,and Dg = 1. Compare this behaviour to the Brownian limit in
figure 1.

which holds for arbitrary;q > 0. This relation can be proven directly by using the
definitiondn (2L)wand also a general expression for the first-passage time distribution
presented in our previous work [65]. Below we will merely demonstrate the validity of
(42) by, establishing a relation between the moments of the maximum and the moments
of the range. Using the standard "replica trick" we find the following simple expression
that eennécts the typical behaviour of the maximum and the typical behaviour of the

random variable Dy [ V/(B,)dt,
(M) = (111311 (W . 1) 1 <ln (DO /OT V(Bt)dt)> - % (43)

by =3
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where v is again the Euler-Mascheroni constant. In particular, in the specialmease
V(B;) =1 (i.e., when the process x; in (4) is standard Brownian motion), equagion (43)
reproduces the known result

In (M) = = (In (DeT) 7). (44)

1
2
4. Probability density function of the range

In this section, we first present the arguments underlying the derivation of Pr(R) and
evaluate general expressions which highlight the short-R and large-R behaviour, i.e., the
left and right tails of Pr(R), respectively. We then establish a‘general relation between
the moments of the range and the moments of the randomaariable D, fot V(By) dt, which
also permits us to link the moments of the range and the moments of the maximum in
the random diffusivity processes. Lastly, we will concentrate ow the particular cases and
evaluate the exact forms of Pr(R) for the three modelsmder study.

The probability density function of the rangé R of.the process (4) can be evaluated
by writing down the corresponding Fokketr-Planck equation for the position probability
density function II(z,¢) (in which the diffusion, coefficient D; is a random function of
time), appropriately rescaling the time variable and’then solving the resulting diffusion
equation subject to adsorbing boundary ¢onditions. The steps involved in this approach
are well described, e.g., in [43-45|. Ta,_this procedure we find that Pr(R) can be
conveniently represented by two alternative’ forms, one of which is suitable for the
analysis of the small-R behavioutiof the probability density function of the range, while
the second one is adapted to the large-R asymptotic behaviour.

In the first case Pr(R) is given by

82

Pr(R) = @(R\I’T(R)), (45)
with
Ur(R) = % Z mT(T; 7 (2m +1)*/R?), (46)

and where Y(T52 )48 the moment-generating function which is defined earlier in (8). We
note that in virtue of (46) the knowledge of an exact form (8) of Y(7’; ) appears to be the
key ingredient for finding exact forms of Pr(R) (see also [62] for the role of this function
for the analysis of the first-passage time densities). In turn, the large-A tail of Y(7; \)
(corzesponding to such realisations of B; when Dy fOT V(By)dt is small) is responsible
for the behaviour of Ur(R) in the limit when R — 0. We proceed to show that such
a_behaviour can be markedly different depending on how fast Y(7'; \) vanishes when
A — 0. In this sense, the three models under study provide representative examples of
different kinds of such a behaviour: in Model I the moment-generating function Y (7; \)
vanishes as a power-law when A — oo and Pr(R) approaches a constant value as R — 0,
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while for both Models II and III T(7; \) ~ exp(—+v/)) in the leading order in theslimit
A — 00, and In Pr(R) exhibits a singular behaviour of the form In Pr(R) ~ —1L/R.

In the second case, the form appropriate for the analysis of the large- R behawiour
can be obtained by the Poisson summation formula

4 - m+1 m2R2 i
Pr( \/w—DomZ:1 <exp< 4D, [TV(B, dt>/ /0 V(Bt)dt>'
(47)

Further on, using the integral identity

exp (—c*/(4b)) /Vb = % /000 exp (—bq?) cos (cq) dg (48)

we cast (47) into the form

— % Z )™ Hm? / cos(mRq)Y(T; ¢*)dg. (49)

In case of standard Brownian motion the latterrexpression reduces to the series in the
first line in (3). One observes that_in theWlimit R — oo the integral in the latter
expression is dominated by the béhaviour of X (T’;¢*) in the vicinity of ¢ = 0, which
corresponds to the small-\ asymptotic behaviour of the moment-generating function in
(8) (and hence, to such realisations of B; for which D fOT V(By)dt is large). However, we
find 1 — (T ¢*) = O(q?) for Models I and IIT (while for Model II there are logarithmic
corrections to the g¢*-dependence), meaning that Pr(R) decays sufficiently fast in all
three models to ensure the_existemee’ of all moments. Hence, the precise form of the
large-R tails of Pr(R) cannot be) in principle, deduced from the small-q expansions of
Y(T;q¢*) and we have to perform the corresponding integrals explicitly. In doing so,
we will demonstrate below that the large-R tails of Pr(R) are markedly different in all
three models.

Relation (49) between Pr(R) and the moment-generating function Y(7;\) of
Dy fo (By)dt_dmpliegga’ simple and quite general relation between the moments of
the range and ghe moments of the latter random variable. Indeed, multiplying both
sides of (47) bywRi{q > 0) we find that whenever the moments of Dy fOT V(By)dt exist,
the follogving relation holds

(RT) = / " R Pr(R)R

_ 4(2:4/%— 4 (q ; 1) Clg—1) <<D0 /OT V(Bt)dt>q/2>, (50)

where ((z) is the Riemann zeta function (note that for ¢ = 0, 1,2, one has to take the
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limit as ¢ approaches one of these integer values). For instance, we find

R = % <<D0 /0 : V(Bt)dt) 1/2> | 1)

(RZ) = (81n2) < (DO /0 : V(Bt)dt) > , (52)

and so on. Next, resorting again to the usual "replica trick" we also deduce from (50) a
linear relation between the averaged logarithm of the range and the ayveraged logarithm
of Dy fOT V(B;)dt, which thus connects the "typical" behaviout of these two random
variables,

nRer] = liy - (7 - 1)

li
q—0
1 T 4
=3 In ( Dy V(By)dt —1—7/2—§1n2+121nA
0
1 T
~~ 5 <1n (DO/ V(Bt)dt)> 4+ 0.7723. (53)
0

In (53) A ~ 1.2824 is Glaisher’s constant= a mathematical constant related to the
asymptotical behaviour of the Barnes G-function (double Gamma-function) [80]. The
latter emerges, e.g., in the normalisation of, the joint distributions of eigenvalues in
Gaussian ensembles of the Random Matrix Theory and, hence, A plays an important
role in the asymptotic analysis of some characteristic properties of such ensembles (see,
e.g., [81]).

We emphasise that (50) andi(53) are general formulae which are valid for any
positive functional V' (B;) of Brownianfimotion B;. In particular, they also hold in the
trivial case when V(B;) = 1, i.e.pwhén Ry = REFBM), the range of standard Brownian

motion. For this latter casesexptession (53) yields the following result for the typical
(BM

typ

— 2 - A12
R = aexp <ln (R /a)) VDT ~2.1647/D,T, (54)

PLE exp(1+/2)

range R ) of standard Bfownidn motion,

where a is an auxiliarylength scale which was introduced in order to get dimensionless
units. While/the scaling of the typical range with \/DyT appears quite intuitive, the
proportionalitynfactor ~ 2.1647 in (54) is rather nontrivial. In particular, its relation
to the Glaisherls constant A is surprising. Note that the expected value of the range in
(51) alsouscales as /DoT, but the proportionality factor 4/y/m ~ 2.2568 is somewhat
largér. As,a consequence, for most of realisations of trajectories of standard Brownian
motion their ranges appear to be smaller than the range averaged over all realisations,
which implies that some less probable, atypical realisations dominate the value of the
range! This, in turn, implies that even in the case of simple standard Brownian motion
the khowledge of the full probability density function of the range is vital.

We now evaluate explicit expressions for Pr(R) for the three models of random
diffusivity presented in section 2 and discuss their asymptotic behaviour.
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4.1. Model I

In Model I we have V(B;) = ©(B;) and, hence, the exponential function,of fOT O(B;)dt
in (46) is simply the moment-generating function of the occupation time ofy\Brownian
motion on a positive half-axis in the time interval (0, 7). Explicitly one ha® (see 53} for
more details)

Y(T; ) = exp (—=ADyT/2) Iy (ADoT/2) , (55)

such that

8 i 72(2m + 1)2D,T y 72 (2m/+ 1)2DoT
S i 2m+ 1) 2R? ’ 2R? '
(56)

The latter expression together with (45) yields our pésult (12):

The small-R behaviour of \Ifgpl )(R) and, hence, of theyprobability density function
Pj(f)(R) can be derived directly from (56) by takingadvantage of the asymptotic
expansion

I2(k+1/2)
exp (—) o) WZ -

(57)

which holds for large values of the argument.«. Inserting this expansion into (56) and
performing the summation overyn we find

y Y S8+ 202+ 1/2 (WJZOT) -

1 S8R«
\Ifgp)( R) ~ w72 DT ; !
By virtue of expressions(45),thedasymptotic small-R expansion for P}I)(R) is obtained
from (58) by merely’ multiplying the latter by R and differentiating the resulting
expression twice with tespect to R. In doing so we arrive at a rather curious conclusion
that, in contrast/to the behaviour of the probability density function of the range of
standard Brownian metion, P}I)(R) does not vanish in the limit ® — 0 but rather
approaches the non-trivial'€onstant value

1C(3)
7T7/2\/ D()T

Therefore,, despite the fact that the process x; in Model I exhibits the "diffusive"

behaviour {z2) = Dyt, its rather intricate character causes significant departures from

PYAR) ~ (R 0). (59)

the behaviour of standard Brownian motion — here, the fact that z; may pause at the
origiifor a random time (having a broad distribution without even the first moment)
once B; goes initially to negative values, entails a finite value of the probability density
at,R = 0. This behaviour is also in line with the divergence of P}I)(M ) in the limit
M — 0. Note that in (59) the amplitude decays as the inverse square root of 7.
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To construct the asymptotic large-R expansion of P}I)(R) we turn tomthe
representation in (49). Using (55) we then have

0o DT 1 m2R? m?R?
_DOTq2/2I 0 2 d = — K
| costmae o(557) o= pre (“smir) o (il o8

and, hence, P}I)(R) is cast into the form in (13). The leading, large/Ribehaviour is

provided by the first term in the series in the latter equation,

Dy S R
PO = e () (R0 (61)

i.e., the right tail of the distribution P}I)(R) vanishes fastemthan a Gaussian function
due to the additional factor 1/R.

4.2. Model I1

In Model II the dimensionless diffusivity is governed bynGeometric Brownian motion:

V(B;) = exp(—DBy/a). In this case, one has (see [82]and also [83,84])

00 2
T(T\) = 2 / exp (—D j;[;z )cosh (%) R (Qa\/)\DO/DB) dz. (62)
0

™

Combining (62), (45) and (46), we thus,arrive at our result (15). The small- R asymptotic
behaviour of \II;H)(R) and, hence, of P%II)(R) (see (15)) can be conveniently accessed
by taking advantage of the Kontorovich-Lébedev-type representation in (62). Using the
large-z expansion

K. (z) = \/gexp(—x) (1 ! ;f ks ;,ZQSJ o <%)) L (63)

we find from (46) that \IngH)(R) (see (15)) admits the following form in the limit R — 0,

(e}

8 20 R 1/2 m2a? 1
oU(R) = = [ —
v B =\ ammr) “P\ip,T Z(2m+1)5/2

m=0
o 27@2m + Da | Dy 1_7'2+87'+47r2 R |Dp
P R Dpg 872 2n(2m+ 1)a \ Dy

2
N 974 8073 419272 + 407272 + 192727 + 167? R /Dg
12874 2r(2m+1)a V' Dy

e )] oo

2m +1)3 a?

We notice next that the leading in the R — 0 behaviour is provided by the term with
m =10:"As a consequence, we arrive at the asymptotic formula

4D3 VA a\5/2 m2a? Dy 27a
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Therefore, in Model II the probability density function vanishes as R — 0, in comtrast
to Model I. Note also that the essential singularity in Model II is somewhaty,weaker,
In PF}H)(R) x 1/R, as compared to the singular behaviour specific to standard Brownian
motion, for which one has In P}BM)(R) o 1/R?, see (3).

The analysis of the large-R asymptotic behaviour of PF}H)(R) hinges on the
expansion (49). Inserting (62) into (49) and evaluating the two-fold integral

2 [ DT OO D
%/0 exp <— 4]22 Zz) cosh (%)/0 cos(mRx)K;, <2a@/D—;x> dx dz

2
= vma exp | — @ arcsinh? Dyt , (66)
V/ (Dpm2R? + 4a2Dy) T DT Dy 2a

we find that expression (49) for Model II admits the explicit form in (16). Inspecting

the latter formula we notice that the dominant large-RR behaviour is provided by the
term with m = 1. As a consequence, we get

a a? Ds R
P(H) ~ . 1 2 B L
T (R) A R G AR N N (F = o0), (67)

whose form is nearly identical (apaftsfrem numerical factors) to the asymptotic result
(30) describing the right tail of the probability density function PF}H)(M ).

4.8. Model IIT

In Model III the random diffusivity i§ given by V(B;) = B?/a* and the moment-
generating function is (see [53, 85386))

T(T;\) = ! ,4c=2y/DpDy/a?, (68)

cosh(ey/\)

Hence, we find that

1

(TT) DS 1
Ve (R 2 (2m + 1)2 (69)

0 cosh'/? <27r(2m +1)

VDoDgT\
aR

The latter expression, together with (45) and (46), result in (18). The small-R

asymptotic behaviour of P}HI)(R) can be obtained directly from (69) by noticing that

the series gonverges very rapidly and the dominant behaviour is provided by the zeroth

term, 1.e.]

V2 7 DgDgT
\IIEFIH)(R) o — 5 eXp (—%) .

(70)
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Substituting the latter asymptotic form into (45) and differentiating, we arrive at

8v/2Dy DT> < 7v/DoDp T)
aR

PI(R) ~ (R — 0), (71)

a’R?
which shows that P (1) (R) vanishes exponentially fast when R — 0.

The large- R asymptotic behaviour of the probability density funetion ofithe range
in Model IIT can be determined as follows. Using again relation (68) we get

o0 1 1 mR\/|?
Y(T:q¢*)dg = r
/0 cos(mRq)Y (15 q°)dg = > %T‘ ( +1 2CT)

which yields our result (19). Noticing finally that in the limit"R _— oo the dominant
contribution to the expansion in (19) comes from the term mu= 1 we thus arrive at the

: (72)

asymptotic formula

(1) oy 42 a TaR
Pr(R) = \/_(DODBT2)1/4\/7€XP< 1Dl T) = oo) )

Figure 4 illustrates the behaviour of théyprobability density function Pr(R) and its

asymptotic forms for the three models. Tolemphasise the crossover behaviours as well
as the asymptotic forms of the probability density functions we show the results both
on linear and log-log scales. Noté specifically that while Models II and III exhibit a
suppression of the probability density funetions to zero in the limit R — 0, in Model I
a finite value at R = 0 is reached.

In figure 5 we compare the probability density functions Pr(M) and Pr(R) for the
three random diffusivity models. Note the different large-M asymptotic behaviours for
the different models as diseussedmabove. The analytical results are also confronted
with Monte Carlo simulations. | These simulations were obtained with the Euler
integration scheme appliedytoathe Langevin equation (4). For each realisation an
independent Brownian metion run is generated to compute the dimensionless random
diffusivity through®theyspecific functional V(B;). In this way the two noises are
varied simultanegusly and independently. Perfect agreement with analytical formulas is
observed even_for, a moderately large sampling with 10 000 realisations.

4.4. Relation between the moments of the maximum and of the range

We derive a general expression for the moments of the range for the processes in (4).
To this end, we observe that for the three models studied here the probability density
funetion Pp(R) can be formally written as

4§: )" Hm? Pr(M = mR), (74)

where Pr(M) is the corresponding probability density function of the maximum. One
may expect that this relation is valid in general for an arbitrary process defined in (4)

Page 20 of 32


Gianni Pagnini

Gianni Pagnini

Gianni Pagnini


Page 21 of 32

oNOYTULT D WN =

Maximum and range of random diffusivity processes

—~

A

~03r

Pr

~ 03

Pr

0.6
05F ‘\‘ ---small-R -
0.4r
~ I N S
\H/O.S F -
021

011

0.6
0.5

0.4

021

0.1

0.6
05l ----small-R 1

0.4r

0.2

011

—exact

----large-R

0

——exact
----small-R -
---large-R

—exact

----large-R

21

10°
—exact
----small-R
100 E -—--large-Ry
S
< 10"
a
102
10% (b)
107!
- —exact
ol - ---small-R ]
10 ---large-R
S
B~
o2
1074 (d)
107! 102
---------- —exact
ol ---small-R ]
10 --—-large-R
=)
B~
& 102
e (D ‘
107! 10° 10°
R

Figure 4. Prabability density function Pr(R) of the range and its small-R and large-
R asymptotic behaviours, for Model I (a,b), Model 1T (c,d), and Model III (e,f),
plotted on linear (a,c,e) and log-log (b,d,f) scales. We set Dy =1, T =1,a =1, and

Dp = 1. Compare this behaviour to the Brownian limit in figure 1.

but we are not@in the position to prove it here. Then, multiplying both sides of the
latter expression by [R? we obtain, through a simple change of the integration variable,
the followimg intricate relation between the moments of the range and the moments of

the maximum,

(RT) =4(1 —2°77) ((¢ — 1){M7).

In pacticular, we get

\B) = 2(Mx)

(R7) = 4In(2)(M7),

(RE) = = (M),

(75)
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Figure 5. Comparison of the probability density’functions Pr(M) (a) and Pr(R)
(b) for the three random diffusivity models. Solid lines show the analytical formulas
whereas symbols represent the empirically renormalised histograms obtained from
Monte Carlo simulations with 10* runs (timelstep 1052). We set Dy = 1, T = 100,
a=1,and D = 1.

and so on. While the first relation (76) is @bwious, relations (77) and (78) are non-trivial
results. Lastly, comparing (76) and (50), we arrive at (42), which we presented without
a derivation in the previous section,

As a direct consequence of felation (75),we can write down exact closed-form
expressions for the moments of the range‘ef arpitrary (not necessarily integer) order. In
turn, the latter permit us to gvaluate the coefficients of variation of the distributions of
the range. For Model I we find

(I) 3 1I1(2) — 16
UR — - - -
16
which is about 30 per eent smaller than the coefficient of variation (27) of the
corresponding distribution of the maximum. The coefficient of variation of the range

~ (.586, (79)

for Model II is given.explicitly by

2) erf?(\/7/2)/ In(2) — exp(—7)
Voot (V7 /2)

and, hence, ‘grows{as +/In(2)/2exp(7/4) in the limit 7 — oo. This growth is

vg” _ /i) \/1 —2exp (—7/

exp (1/4), (80)

thus somewhat, slower than for the corresponding coefficient of variation (33) of the
distributien of #he maximum due to the additional numerical factor /In(2) ~ 0.833.
Lastly, for Model III the numerical value of the coefficient of variation of P}HI)(R) is

Wi 0.635, (81)

1.e., is'again somewhat smaller than the corresponding value vj(\f[m for the maximum,

equation (41). We thus conclude that distributions of the range in all three models
under study are narrower than the corresponding probability density functions of the
maxima.
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5. Typical behaviour of the probability density function of the maximum

As yet, our discussion of the averaged versus a typical behaviour concérned/only, the
maximum and the range themselves. The results for Pr(M) and Pr(R)pwe have
presented so far correspond to a standard way of performing the averaging(i.e., when the
averaging is first performed with respect to thermal histories at a fixed realisation of the
stochastic diffusivity process B; and then over all possible realisationg’of B;. Cenversely,
realisation-dependent distributions Pr(M) and Pr(R) are evidentlysrandom functions
themselves which fluctuate from one realisation of B; to the next;and"it is, of course,
not clear a priori to which extent their first moments, i.e., precisely Pr(M) and Pr(R),
are representative of the actual behaviour of these properties.aln primCiple, it may well
happen that Pr(M) and Pr(R) are supported by some atigpical, rare realisations of B,
which nonetheless provide a dominant contribution to their‘yalues. If true, in order
to observe our predictions for Pr(M) and Pr(R) one maypneed very large statistical
samples. Note that in figure 5 we presented a convinging évidence for the predicted
functional forms but the number of realisation§ used to perform the averaging was
sufficiently high, 10%. That may not be thé case for experimental studies for which such
a large number is beyond reach.

Following the analysis of a typical kinetic behawiour in the so-called target problem
with respect to fluctuations in thefStarting points of searchers (see Ref. [74] and the
recent Ref. [75]), we concentrate on the'properties defined in (9). Here, one first performs
an averaging over thermal histories at a fixed realisation of B; and then averages the
logarithm of the realisation-dependent probability density over all possible realisations
of B;. Because the logarithm ig"a slowly-varying function of its argument, one expects
that its averaged behaviour is ‘sather insensitive to rare anomalous realisations and is
thus representative of a typical behaviour which should be observed for a majority of
trajectories By, or seen for gmall statistical samples. The resulting expression is then
exponentiated to produlce an‘estimate of typical distributions. We will be concerned here
only with the typical behawviour of the distribution of the maximum-—the analysis of the
typical distribution of the range appears to be somewhat more involved and lengthy,
but we do not expeet, any significant new features, as compared to the behaviour of the
maximum.

Recalling fhat for any given realisation of B;, the probability density function
Pr(M) igsgiven by (2) with DyT replaced by Dy fOT V(By)dt, we then have that

L) 1) = — (10 (m?Ds [ Tv<Bt>dt)> - <D0 IT;(Bt)dt> M)



Gianni Pagnini


oNOYTULT D WN =

Maximum and range of random diffusivity processes 24

and hence,

Py (M) = p/\% exp ( - % <1n <p2D0 /0 ' V(Bt)dt)>

! A (s3)
Do [y V(Bdt] 4 )

Integrating the latter expression over M we find that the normalisation isgiven by

() e vodD

such that, eventually, we have the following estimate of the typical behaviour

1/2
(typ) _L 1 ex ! %2
) () =

Therefore, we arrive at the conclusion that,if the first inverse moment of the random
variable D, fo (By)dt exists, the distribution R yp)(M ) is a Gaussian function, similar

to the case of a standard Brownian motionj,(2), with a variance that is reciprocal to

the negative moment of D fOT V (B;)dt. Both results become identical, of course, when
V(B;) = 1.

The first inverse momentyof Dy fOT V(By)dt can be calculated straightforwardly by
simply integrating Y (7; \) in (8) @ver A from zero to infinity. In doing so, we realise that
for Model I this negative moment doegmiot exist, because Y(T’; \) decays as 1/4/X in the
limit A — oo (see (55)) and henee, the integral diverges at the upper integration limit.
On the other hand, the average of\1 /(D fo (By;)dt) over any finite statistical sample of
trajectories By is evidently finite.and hence, in virtue of (85) for such samples Py, (vp) (M )
should have a Gaussian'shape. In figure 6 we compare the ensemble-averaged PT (M )
(Eq. (11), solid curve),and P}typ)(M ) (Eq. (85), dashed curve) against an empirical
histogram obtained from Monte Carlo simulations with 100 realisations of trajectories
B; only, i.e. for a statistical sample which is 100 times less than the one used to produce
figure 5. Note that, heren(1 /(D fo (B;)dt)) is evaluated numerically by averaging
over this finite set of realisations. We observe that for sufficiently small values of M,
(i.e. thoge close to the most probable value of M), for such a moderately small sample
the estimate Pj(fyp)(M ) indeed agrees with the numerically evaluated distribution better
than P(I)(M ). For larger values of M, however, the Gaussian tail of P}I)(M ) seems to
be closer to the numerical curve than that of P, (tvp) (M) even for such a small sample.
Upon an increase of the number of realisations of B, we get progressively bigger values
of {1/ (D, fo (B;)dt)) and therefore the variance in the Gaussian function in (85)
vanishes meanlng that P(typ)(M ) converges to the delta-function, while the Gaussian
tail of P} (M) is characterised by a finite variance. This implies that for progressively
larger statistical samples P}typ)(M ) may describe correctly the shape of the numerically
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evaluated distribution only in a close vicinity of M = 0, while for the almostentire
range of variation of M the ensemble-averaged distribution Pj(f)(M ) should previde an
accurate estimate of the actual behaviour (see figure 5).

The first inverse moment of Dy fOT V(By)dt is finite for both Models II andylII. For
Model IT we have

1 DB o Tz DBT 5
= dz coth | — _ 36
<Dof0 V(B dt> 2a2Do/0 Faeeo (2)exp< 4a2 Z) , (86)

where the integral in the right-hand-side is finite for any finite yvalué®ef the parameter

DgT/4a®. The latter integral cannot be performed exactlyabut its behaviour can be
readily understood by noticing that for any z > 0 we have

2 2
—§zcoth<E)§Z—l——. (87)
T 2 T

As a consequence, we find that the first inverse.moment of D fOTV(Bt)dt obeys the
following two-sided inequality

1 DB 1 1 DB T
< < 1+a : (88)
CI,D() T DO fO Bt dt CI,DO 7TT DBT

In the limit 7" — oo these bounds become sharp and hence, define the leading behaviour

of the first inverse moment exactly.
For Model III the first inverse moment of Dy fOT V(B;)dt has the simpler form

1 cra? * zdz

<D0 Jo V(B dt> I R = R =)

Comparison of our‘analytical predictions for the ensemble-averaged and the typical
behaviours for Models IThand IIT against the histograms obtained from Monte Carlo
simulations with just 100, realisations of the stochastic process B; is presented in figure
6. Here, for P}typ)(M ) we used our result in (85) with the respective variance given by
our analyticalsexpressions in (86) (Model II) and (89) (Model III). We observe that for
Model IT for small values of M again P. tyID)(M ) provides a better estimate of the actual
behaviourathan P}H)(M )—the former predicts higher values of the probabilities while
the latter underestimates them: a trend that is confirmed by our numerical observations.
This is,notathé case for larger values of M. Perhaps somewhat surprisingly, the heavy
log-mormalj tail of P}H)(M ) appears in a good agreement with numerics even for such
a moderately small sample size for values of M as large as 103. In turn, for Model III
there is no significant difference between P(typ)(M ) and P}HI)(M ) for small values of
M a circumstance that does not permit to make any conclusive statement. On the
contrary, in the large-M domain, the ensemble-average result P}HI)(M ) seems to be
more accurate.
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Figure 6. Comparison of the probability densifyfunctions Pr(M) (solid curves) and
the estimate P:(pty P) (M) from (85) of the typical behavious/(dashed curves) for the three
random diffusivity models. Symbols represent therempirically renormalised histograms
obtained from Monte Carlo simulations withy10? run$ (the time step of 1072). We set
Dy=1,T=100,a=1,and D = 1.

6. Conclusion

Deviations from standard Brownian“wnotion have been measured in a vast range of
systems, starting with Richardson’s cubie,Jaw for the relative diffusion of tracers in
turbulent media in 1926 [87]. Such "anomalous diffusion" has given rise to a rich variety
of statistical models accounting~fer,various physical aspects effecting deviations from
standard Brownian motion [88-90]. Asa particular case, random diffusivity models were
introduced in the context ofthe modelling of complex measured NMR signals [91]. The
randomness of the diffusivity can be assumed to be due to an inhomogeneous particle
ensemble in a homogéneous environment, or due to identical particles in a heterogeneous
environment. When the'diffusivity distribution is fixed in time the dynamics resulting
from such random diffusivities is captured by the framework of superstatistics [92] or grey
Brownian motion |93|. When particles move in quenched environments with finite patch
sizes and specifie,jumpirules interesting dynamic effects and non-Gaussian phenomena
have recently béen revealed [94,95].

Originallyadevised to reproduce the observed crossover behaviour from non-
Gaussian to Gaussian displacement statistics in systems showing a Brownian scaling of
the meanisquated displacement [96, 97|, diffusive processes with stochastically evolving
diffusivities were devised as an "annealed" approach to the motion of the test particle in a
heteregeneous environment. Such diffusing diffusivity models with stationary diffusivity
dynamics were analysed in terms of the mean squared displacement and the displacement
distribution. Despite the different formulations several core features turn out to be
robust among these models |54, 55,57-59, 98].

Here we studied a stochastic process x; driven by white Gaussian noise, whose
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amplitude is being modulated by a stochastically varying diffusivity D, for three different
choices: (I) cut-off Brownian motion B; with D, ~ ©(B;); (II) Geometric Brownian
Motion, D; ~ exp(—B;); and (III) squared Brownian motion, D; ~ B?.“In contrast to
the above-mentioned diffusing diffusivity models, that are all Brownian, the three.choices
here effect non-stationary diffusivity dynamics, and the resulting diffusion exhibits both
normal and anomalous diffusive scaling.

In the analysis we concentrated on the extremal properties in terms of the maximum
and the range of these three random diffusivity models. We obtain analytical expressions
for the probability density functions of the maximum and the range of the processes for
a given observation time. Our discussion reveals both similarities'and differences of the
extremal properties of these models among each other as wéll"as,compared to standard
Brownian motion. In particular, we unveil that Model £"shows significant differences
from Brownian motion while the small-maximum limitpof Medel II coincides exactly
with the Brownian behaviour. We also show that the.distributions of the maximum are
generically broader than the distributions of the range; @s evidenced by the analysis of
the coefficients of variation of the corresponding distributions. Our discussion finally
unveils the difference between the ensemble,and the typical behaviour of the probability
density functions, an important ingredientifor the analysis of finite-sized data sets.

The analysis of given stochastic time Series representing a set of trajectories of
diffusing test particles has more reéently reeeived considerable attention. A number of
statistical observables has been introdueed and discussed (see, e.g., [89,90,99,100]) to
allow the physical classification of recorded data. For instance, it has been shown how
to use Bayesian maximum likeltheed [101,102] or machine learning [103,104] to classify
a measured system and extractits physical parameters. Specifically, the power spectral
analysis of single, finite-length frajectories was shown to distinguish different forms of
random diffusivity models”[53]. | A more recent twist on data analysis of stochastic
processes uses large-deyviation approaches, for instance, for the time averaged mean
squared displacement| [105, 106].

While it is netgpsurprising that the extreme value behaviour encoded in the
probability density functions of the maximum and the range studied here was shown to
distinguish the threey quite different, random diffusivity models investigated here, we
also demonstrated that“thesrectified Brownian motion of Model I exhibits significant
differences taodstandard Brownian motion. It should therefore be interesting to
investigate whether these two distributions allow one to distinguish between the diffusing
diffusivity models encoding Brownian yet non-Gaussian motion [54,55,57-59|, and how
these"measures change for projections of higher dimensional versions of these models.
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