
Universidade Estadual de Campinas
Instituto de Computação

INSTITUTO DE
COMPUTAÇÃO

Jonathas Evangelista da Silveira

Exploring Associative Processing
with the RV-Across simulator

Uma exploração de Processamento Associativo
com o simulador RV-Across

CAMPINAS
2021

Jonathas Evangelista da Silveira

Exploring Associative Processing
with the RV-Across simulator

Uma exploração de Processamento Associativo
com o simulador RV-Across

Dissertação apresentada ao Instituto de
Computação da Universidade Estadual de
Campinas como parte dos requisitos para a
obtenção do título de Mestre em Ciência da
Computação.

Dissertation presented to the Institute of
Computing of the University of Campinas in
partial fulfillment of the requirements for the
degree of Master in Computer Science.

Supervisor/Orientador: Prof. Dr. Lucas Francisco Wanner

Este exemplar corresponde à versão final
da Dissertação defendida por Jonathas
Evangelista da Silveira e orientada pelo
Prof. Dr. Lucas Francisco Wanner.

CAMPINAS
2021

Ficha catalográfica
Universidade Estadual de Campinas

Biblioteca do Instituto de Matemática, Estatística e Computação Científica
Ana Regina Machado - CRB 8/5467

 Silveira, Jonathas Evangelista da, 1996-
 Si39e SilExploring associative processing with the RV-Across simulator / Jonathas

Evangelista da Silveira. – Campinas, SP : [s.n.], 2021.

 SilOrientador: Lucas Francisco Wanner.
 SilDissertação (mestrado) – Universidade Estadual de Campinas, Instituto de

Computação.

 Sil1. Sistemas de memória de computadores. 2. Processamento associativo. 3.

Eficiência energética. I. Wanner, Lucas Francisco, 1981-. II. Universidade
Estadual de Campinas. Instituto de Computação. III. Título.

Informações para Biblioteca Digital

Título em outro idioma: Uma exploração de processamento associativo com o simulador
RV-Across
Palavras-chave em inglês:
Computer storage devices
Associative processing
Energy efficiency
Área de concentração: Ciência da Computação
Titulação: Mestre em Ciência da Computação
Banca examinadora:
Lucas Francisco Wanner [Orientador]
Alba Cristina Magalhães Alves de Melo
Rodolfo Jardim de Azevedo
Data de defesa: 12-03-2021
Programa de Pós-Graduação: Ciência da Computação

Identificação e informações acadêmicas do(a) aluno(a)
- ORCID do autor: https://orcid.org/0000-0002-7398-3947
- Currículo Lattes do autor: http://lattes.cnpq.br/2403081259708319

Powered by TCPDF (www.tcpdf.org)

Universidade Estadual de Campinas
Instituto de Computação

INSTITUTO DE
COMPUTAÇÃO

Jonathas Evangelista da Silveira

Exploring Associative Processing
with the RV-Across simulator

Uma exploração de Processamento Associativo
com o simulador RV-Across

Banca Examinadora:

• Prof. Dr. Lucas Francisco Wanner
IC/UNICAMP

• Profa. Dra. Alba Cristina Magalhães Alves de Melo
CIC/Universidade de Brasília

• Prof. Dr. Rodolfo Jardim de Azevedo
IC/UNICAMP

A ata da defesa, assinada pelos membros da Comissão Examinadora, consta no
SIGA/Sistema de Fluxo de Dissertação/Tese e na Secretaria do Programa da Unidade.

Campinas, 12 de março de 2021

Acknowledgements

First, I thank God for providing me all the knowledge I have (Prv 1 : 7) and for the
salvation (Eph 2 : 8) for the grace. As Abraham Kuyper (ex-minister of the Netherlands)
once said, and I agree: "There is not a square inch (including the bits) in the whole
domain of our human existence over which Christ, who is sovereign over all, does not
say: ’Mine!’".

Second, I thank my family for providing me with all the necessary spiritual, emo-
tional and financial support. I am grateful to my wife Camila Silveira who was with
me throughout my master’s degree holding me and acting graciously towards me. I
thank my parents Denilson Silveira and Claudiane Silveira for being models of effort,
work and dedication. Something that science cannot explain. I am also grateful for the
support of my brother Alexander Silveira and his wife Edna, who have always been
around in difficult times. I am grateful for the unconditional support of my father-in-
law João Filho, my mother-in-law Dona Leonice Abreu and my brother-in-law João
Paulo. Finally, I thank two great men, Laysson Luz and Ramon Nepomuceno, who
helped me a lot and that I consider as my family.

Third, I thank my advisor prof. dr. Lucas Wanner for giving me the opportunity to
learn more about computing and for guiding me through these two years of learning. I
also thank my undergraduate advisor prof. dr. Ivan Silva for teaching about computing
and life. I thank my companions Isaías Felzmman and João Filho who helped me in
my work, especially in scientific production. Finally, I thank my colleagues at LSC who
taught me a lot about science and made this period lighter.

Finally, I thank Unicamp for all its support as an institution. This study was financed
in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - Brasil
(CAPES) - Finance Code 001.

Resumo

Múltiplos trabalhos apontam para um gargalo de desempenho entre o processador e
a memória. Esse gargalo se destaca na execução de aplicações, como o Aprendizado
de Máquina, que processam uma grande quantidade de dados. Nessas aplicações,
a movimentação de dados representa uma parcela significativa tanto em termos de
tempo de processamento quanto de consumo de energia. O uso de novas arquiteturas
multi-core, aceleradores e Unidades de Processamento Gráfico (Graphics Processing Unit
— GPU) pode melhorar o desempenho desses aplicativos por meio do processamento
paralelo. No entanto, a utilização dessas arquiteturas não elimina a necessidade de
mover dados, que passam por diferentes níveis de uma hierarquia de memória para
serem processados.

Este trabalho explora o Processamento em Memória (Processing in Memory — PIM),
especificamente o Processamento Associativo, como alternativa para acelerar as aplica-
ções, processando seus dados em paralelo na memória permitindo melhor desempenho
do sistema e economia de energia. O Processamento Associativo fornece computação
paralela de alto desempenho e com baixo consumo de energia usando uma Memória
endereçável por conteúdo (Content-Adressable Memory — CAM). Através do poder de
comparação e escrita em paralelo da CAM, complementado por registradores especiais
de controle e tabelas de consulta (Lookup Tables), é possível realizar operações entre
vetores de dados utilizando um número pequeno e constante de ciclos por operação.

No trabalho, analisamos o potencial do Processamento Associativo em termos de
tempo de execução e consumo de energia em diferentes kernels de aplicações. Para isso,
desenvolvemos o RV-Across, um simulador de Processamento Associativo baseado
em RISC-V para teste, validação e modelagem de operações associativas. O simulador
facilita o projeto de arquiteturas de processamento associativo e próximo à memória,
oferecendo interfaces tanto para a construção de novas operações quanto para expe-
rimentação de alto nível. Criamos um modelo de arquitetura para o simulador com
processamento associativo e o comparamos este modelo com as alternativas basea-
das em CPU e multi-core. Para avaliação de desempenho, construímos um modelo de
latência e energia fundamentado em dados da literatura. Aplicamos o modelo para
comparar diferentes cenários, alterando características das entradas e o tamanho do
Processador Associativo nas aplicações.

Nossos resultados destacam a relação direta entre o tamanho dos dados e a me-
lhoria potencial de desempenho do processamento associativo. Para a convolução 2D,
o modelo de Processamento Associativo obteve um ganho relativo de 2x em latência,
2x em consumo de energia, e 13x no número de operações de load/store. Na multipli-
cação de matrizes, a aceleração aumenta linearmente com a dimensão das matrizes,
atingindo 8x para matrizes de 200x200 bytes e superando a execução paralela em uma
CPU de 8 núcleos. As vantagens do Processamento associativo evidenciadas nos re-
sultados revelam uma alternativa para sistemas que necessitam manter um equilíbrio

entre processamento e gasto energético, como os dispositivos embarcados. Finalmente,
o ambiente de simulação e avaliação que construímos pode habilitar mais exploração
dessa alternativa em diferentes aplicações e cenários de uso.

Abstract

Many works have pointed to a performance bottleneck between Processor and Mem-
ory. This bottleneck stands out when running applications, such as Machine Learning,
which process large quantities of data. For these applications, the movement of data
represents a significant fraction of processing time and energy consumption. The use
of new multi-core architectures, accelerators and Graphic Processing Units (GPU) can
improve the performance of these applications through parallel processing. However,
utilizing these architectures does not eliminate the need to move data, which are trans-
ported through different levels of a memory hierarchy to be processed.

Our work explores Processing in Memory (PIM), and in particular Associative Pro-
cessing, as an alternative to accelerate applications, by processing data in parallel in
memory, thus allowing for better system performance and energy savings. Associative
Processing provides high-performance and energy-efficient parallel computation us-
ing a Content-Addressable Memory (CAM). CAM provides parallel comparison and
writing, and by augmenting a CAM with special control registers and Lookup Tables, it
is possible to perform computation between vectors of data with a small and constant
number of cycles per operation.

In this work, we analyze the potential of Associative Processing in terms of execution
time and energy consumption in different application kernels. To achieve this goal we
developed RV-Across, an Associative Processing Simulator based on RISC-V for testing,
validation, and modeling associative operations. The simulator eases the design of
associative and near-memory processing architectures by offering interfaces to both
building new operations and performing high-level experimentation. We created an
architectural model for the simulator with associative processing and evaluated it
by comparing it with the CPU-only and multi-core models. The simulator includes
latency and energy models based on data from literature to allow for evaluation and
comparison. We apply the models to compare different scenarios, changing the input
and size of the Associative Processor in the applications.

Our results highlight the direct relation between data length and potential perfor-
mance and energy improvement of associative processing. For 2D convolution, the
Associative Processing model obtained a relative gain of 2x in latency, 2x in energy,
and 13x in the number of load/store operations. For matrix multiplication, the speed-
up increases linearly with input dimensions, achieving 8x for 200x200 bytes matrices
and outperforming parallel execution in an 8-core CPU. The advantages of associative
processing shown in the results are indicative of a real alternative for systems that need
to maintain a balance between processing and energy expenditure, such as embedded
devices. Finally, the simulation and evaluation environment we have built can enable
further exploration of this alternative for different usage scenarios and applications.

List of Figures

3.1 Associative Processor overview. 20
3.2 Associative processing diagram. 20
3.3 Associative XOR operation. 23
3.4 LUTs for AND, OR and NOT operations. 23
3.5 Associative ADD operation. 24
3.6 Cycle by cycle simulation on the WebAP. 25

5.2 RV-Across architectural model. 33
5.1 RV-Across design flow. 33
5.3 RoCC instructions library. 34
5.4 Output of RV-Across with the last cycle of the associative addition oper-

ation and the report of that operation. 36
5.5 UML showing the APrv inheriting attributes and methods from APTem-

plate for the RV-Across simulation. 40

6.1 Associative algorithm for matrix multiply using custom instructions for
implementing row parallelism. 41

6.2 Overview of the behavior of matrix multiply in associative processing. . 42
6.3 Matrix extracted from the first element of the image operating with part

of the kernel. 43
6.4 Overview of the behavior of 2D convolution in associative processing. . 44
6.5 Associative algorithm for 2D convolution using custom instructions for

implementing row parallelism. 44
6.6 Associative algorithm for ReLU using special instruction. 45
6.7 Simulation of the ReLU operation within the CAM. 46

7.1 Latency, energy consumption and memory accesses for AP and CPU,
both performing bitcount. 48

7.2 Latency, energy consumption and memory accesses for AP and CPU,
both performing checksum. 48

7.3 Latency, energy consumption and memory accesses for AP and CPU,
both performing 1D convolution. 49

7.4 Latency, energy consumption and memory accesses for AP and CPU,
both performing hamming distance calculation. 49

7.5 Latency, energy consumption and memory accesses for AP and CPU,
both executing Manhattan distance. 50

7.6 Latency, energy consumption and memory accesses for AP and CPU,
both executing ReLU. 50

7.7 Latency, energy consumption and memory accesses for AP and CPU,
both performing matrix multiply. 51

7.8 Latency, energy consumption and memory accesses for AP and CPU.
The CPU performing naive 2D convolution algorithm. 51

7.9 Latency, energy consumption and memory accesses for AP and CPU.
The CPU performing optimized 2D convolution algorithm. 52

7.10 Comparison in number of cycles between the normal and optimized
version of the 2D convolution in the AP, separating the executions in
phases for initialization, data organization and computation in the AP. . 52

7.11 Latency, energy consumption and memory accesses for AP and CPU.
The AP and CPU, both performing optimized 2D convolution algorithm. 53

7.12 Energy consumption for different AP sizes, comparing the normal and
optimized for AP and optimized version for CPU. 53

7.13 Energy consumption for different AP sizes, comparing AP and CPU,
performing matrix multiply. 54

7.14 AP performing matrix multiply with different word sizes. 54
7.15 The relative improvement in terms of latency, energy consumption and

load/stores for all applications evaluated. 55
7.16 Associative Processing matrix multiplication speed-up over a single-

core CPU baseline, compared with speed-up for multi-threading with 2,
4, and 8 cores. 55

Contents

1 Introduction 13

2 Background 15
2.1 RISC-V . 15
2.2 Processing in Memory . 16
2.3 3D Memory . 16
2.4 Alternative Solutions . 17
2.5 Associative Processing . 18

3 Associative Processing 19
3.1 Associative Processor . 19
3.2 Constructing operations . 22
3.3 Logic operations . 22
3.4 Arithmetic operations . 24
3.5 Web AP simulator . 25

4 Related Work 26
4.1 Processing in Memory . 26
4.2 3D Memories . 27
4.3 Associative Processors . 28
4.4 Simulators . 28
4.5 Comparison . 29

5 RV-Across: An Associative Processing Simulator 32
5.1 Overview . 32
5.2 User interface . 34
5.3 Output . 35
5.4 Latency model . 36
5.5 Energy model . 38
5.6 Customizing associative operations . 39

6 Case studies 41
6.1 Matrix Multiplication . 41
6.2 2D Convolution . 43
6.3 ReLU . 45

7 Demonstration and Results 47
7.1 AP vs CPU . 47
7.2 AP vs Multicore . 54

7.3 Simulation performance . 56

8 Conclusion 57

13

Chapter 1

Introduction

Researchers have sought to develop solutions in hardware that achieve high perfor-
mance in terms of execution time, for specific or general purposes, while at the same
time optimizing energy consumption. Many of these solutions are based on Von Neu-
mann architectures, and therefore, rely on processing separated from memory. Since
memory is utilized just for storage, multiprocessors, accelerators, and GPUs need to
transport the data from memory for computation, spending a lot of time and energy in
data movement.

Emerging data-intensive workloads, such as Neural Network, Image Processing, Graphs
and DNA Alignment require fast data transfers for efficient computation. Because data
transfer rates are typically much lower than maximum processing rates, CPUs often
must wait for data, limiting system throughput. This difference in data transfer rates
and processing speeds, known as the Von Neumann bottleneck [35], has been increasing
with subsequent hardware generations, leading to the so-called memory wall [37, 42].
In addition to potentially limiting performance, the movement of data consumes a
significant amount of the overall energy of the system. Data movement between the
core and off-chip memory incurs ~100x higher energy than a floating-point operation
[34, 39]. In Google Docs scrolling, for example, moving data represents more than
30% of energy consumption [6], and memory can account for up to 41% of the energy
consumption of an entire server system [30].

Given this scenario, Processing in Memory (PIM) is an alternative for saving energy
by avoiding data transfers and getting better performance using parallel computation.
With the breakdown of Dennard Scaling and the eminent end of Moore’s Law, academy
and industry have shown increased interest in this alternative [35]. PIM is an approach
that aims to take computing into memory, reducing data movement and overcoming
the Von-Neumann bottleneck. Processing directly in memory reduces memory access
time by mitigating the physical distance and increasing the bandwidth between CPU
and memory. PIM also eliminates load and store cycles, increasing energy efficiency.
In this paradigm, an operation can be executed on all words in memory in parallel,
in a Single Instruction Multiple Data (SIMD) approach. Thus the execution time is fixed
for any data length. PIM has been used to accelerate the processing of DNA, Neural
Networks, and Graphs [12, 18, 29, 36].

14

Associative Processing, a PIM approach, performs in-memory parallel, logical, and
arithmetic operations using lookup tables, special registers, and a Content-Addressable
Memory (CAM). Recent advances in Non-Volatile Memories (NVMs) reduced the cost of
implementing associative processing and attracted interest to this research area [20, 26,
51]. However, the lack of a flexible simulation infrastructure for the test and validation
of in-memory operations is still an obstacle to enable its adoption [35].

In this work we show how Associative Processing works and how to build an algo-
rithm in this approach and its performance, assessing speed and energy. To achieve
these contributions, we developed the RV-Across (RISC-V Associative Processing
Simulator). RV-Across is a simulator developed with the aim of providing easy pro-
gramming, test, and evaluation of Associative Processing or near-memory processing
context. Thus, taking its advantages, we implement applications in different scenarios
and compare with a CPU approach to observe the potential of Associative Processing
as well as its trade-off. The main contributions we present in this work are:

• Exploration and detailing of Associative Processing Algorithms for matrix mul-
tiplication, 2D convolution and ReLU function;

• An extensible simulation tool that enhances associative processing evaluation;

• An architectural model to interface PIM operations with an Associative Processor;

• A simple programming model for Associative Processing;

• Case studies using Associative Processing operations in application kernels;

• A performance analysis of applications in the Associative Processing model.

Our experiments highlight the potential of Associative processing and how the
simulator works. In a model using Associative Processing, in most cases, resulted in
fewer accesses to memory and consequently higher performance. For matrix multiply,
associative processing obtained a relative improvement of 6x to latency, 4x to energy
and 28x to load/store operations. For 2D convolution, in the best scenario 2x, 2x and
13x to latency, energy consumption and load/stores respectively. When considering a
multi-core scenario, the associative processing model achieves up to 8x of speed-up
on matrix multiplication, overcoming an 8-core CPU in the 200x200 bytes matrices
computation. We evaluate the Associative Processor in various sizes to balance area
and energy consumption. Processor with 16 KB or 32 KB is ideal, occupying an area
smaller than a RISC-V core, proving to be a viable alternative for embedded systems.

This work is structured in eight chapters from introduction.The Chapter 2 provides
key concepts to understand the work context. The Chapter 3 contains the implemen-
tation and simulation of a logic/arithmetic Associative Processing operation. Chapter
4 describes and classify related works, indicating similarities and differences among
them and our work. Chapter 5 details the RV-Across from overview until the out-
put of simulator. The Chapter 6 presents cases of applications adapted for associative
processing using RV-Across. Chapter 7 shows the evaluation modes and performance
results of Associative Processing in different scenarios. Lastly, Chapter 8 displays our
conclusions and future work.

15

Chapter 2

Background

This Chapter explains in detail the fundamentals to understand our work and its
context. The first section explains what is RISC-V, and its benefits. After, it is described
the concept of Processing in Memory and a summary of the main approaches as well
as works related to each branch. The third section talks about 3D memories and works
that utilize them to get better performance. The fourth section shows works about
PIM which are out of 3D memory and Associative scope. Finally, we explore how an
Associative Processor is designed and how it works.

2.1 RISC-V

RISC-V is an Instruction Set Architecture (ISA) which follows the Reduced Instruction Set
Computing (RISC) pattern and was designed with the didactic and scientific goals. The
name RISC-V was chosen to represent the fifth RISC ISA developed by UC Berkley.
RISC-I, RISC-II, SOAR and SPUR, in sequence, were the other versions [2].

This ISA has been adopted due to its benefits. It is an ISA open-source for industry
and academy. There are free RISC-V cores with Field Programmable Gate Array (FPGA)
support. RISC-V has float-point support and can be 32 or 64 bits. Rocket Chip, a RISC-V
system on chip (SoC), for example, can be easily extended to a multi-core. Also, it is
a platform where it is possible to add modules and instructions, creating variations.
Also, RISC-V has a powerful tool-chain contained simulators, compilers and open
documentation. These resources led to industry to fabricate chips using RISC-V.

The RISC-V obtains an interface for binding accelerator and additional modules. In
the case of Rocket Chip, the custom instructions fulfill this role. The most used RISC-V
models that can be extended are BOOM and Rocket Chip. In view of the present work,
we utilized RISC-V and custom instructions for communication with the Associative
Processing module on RV-Across. Chapter 5 explains in details about that programming
interface and how to use it.

16

2.2 Processing in Memory

Processing In Memory (PIM) is a model that increases hardware performance in terms of
bandwidth (about memory and CPU), latency, and energy consumption. It performs the
computation in memory, where the application data is located. The PIM concept goes
in the opposite direction to processing model adopted currently, the Von Neummann
model. PIM is an approach applied in different ways, all looking for the same goal, of
processing without data movement.

Initially, in the 70’s, STARAM was developed, which is based on PIM model. This
architecture was built by Goodyear and had as the purpose to change the processing
manner. STARAM is constructed for a bunch of Associative Processors (APs). Recently,
researches are joining associative processing with new memory trends as Non Volatile
Memories (NVMs) and approximate computing [51, 54]. ReCAM, for example, is an
implementation of a CAM using resistive memory.

Following the same fashion of associative computing, Content-Addressable Memory
(CAM), other PIM production, is applied in routers, specifically on network layer for
high performance Internet Protocol (IP) comparisons. The CAM indexes its contents
using other content, as in a hash table. Thus, a router, after extracting the packet’s IP
address, inserts this address in the CAM, and it quickly returns (1 cycle) the destination
address.

In addition to AP and CAM, recently academy and industry try to implement Pro-
cessing in Memory in both, DRAM and 3D memories [10]. These components execute
logic and arithmetic operations in their storage without undergoing major architectural
modifications [35]. However, there are barriers that all approaches need to overcome:
Making programming possible and easy for PIM systems, providing data coherency
among PIM module and other system’s modules, and building a simulation infrastruc-
ture for analogical and digital simulation. Our work has as goals to afford knowledge
about associative processing and to provide a tool that is able to give a programming
interface and application for validation of the potential of PIM. The same has been done
in the context of 3D memories. There are many works of simulators and interfaces for
programming and testing the resources provided by 3D logic.

2.3 3D Memory

3D memory is a new technology that stacks vertically the logic layer of the memory
in three dimensions. That new memory makes better use of die space with storage
stacked. Through Silicon Vias (TSV), which are the interconnections within a die stack,
enable high bandwidth, lower latency, and energy savings on communications among
dies. 3D memory is able to access data in parallel due to three-dimensional architecture
and components as TSV.

The 3D memory structure creates a perfect environment for Processing in Memory.
For that reason, some 3D memories already support logical and arithmetic operations
in parallel. An adverse effect of stacking in-memory 3D is increased peak temperature.

17

Also, volatile and non-volatile 3D memories have been produced by industry on large
scale, aiming for high-performance.

Researchers have used the 3D memory capabilities in different scenarios and ap-
plications [16, 24, 27, 44]. For example, the architecture of Ahn et. al [1] and Zhang
et. al. [59] utilized Hybrid Memory Cube (HCM), a 3D memory with PIM support, to
accelerate data-intensive applications. Besides developing architecture, both created an
interface (programming model) and treated coherency problems. Compared to Graph-
ics Processing Unit (GPU), both achieved better performance in execution time and
energy consumption. Dai et. al. [12], Zhang et. al. [60] and Nai et. al. [36] used the
3D memory potential to process graphs in parallel. Similarly, Kim et. al. [29] applied
PIM with 3D memory in the DNA sequence alignment. They developed a simulation
platform for test, validation, and evaluation of systems with 3D memories, providing
a programming interface to the user.

The RV-Across, our simulation platform, has similarities with PIM-gem5, work
produced by Santos et. al. [44], by given a flexible way of simulation. But, instead of
3D memory, our simulator has Associative Processing features. In general, our work,
as 3D memories works, uses PIM concept, but focused in a specific technique.

2.4 Alternative Solutions

Some works used PIM, but do not even fit in 3D memory or Associative Processor.
Chi et al. [8] proposed a PIM architecture, called PRIME, to accelerate Neural Network
(NN) applications in Resistive random-access memory (ReRAM) based main memory. In
PRIME, they insert full functions accelerators into memory that executes NN operations
like search and convolutions. They designed complete software/hardware full functions
for developers.

Gupta et al. [18] created an architecture, NNPIM, with full support, in terms of
operations, to execute the inference phase inside the memory. They design a crossbar
memory architecture that supports fast addition, multiplication, and search operations
inside the memory. For search, they took advantage of the inherent characteristics
of capacitors. Shafiee et al. [46] explored processing in approach, where memristor
crossbar arrays not only store input weights but also perform dot-product operations
in an analog manner.

Imani et al. [19] constructed a PIM accelerator, GenPIM, in an NVM which supports
bitwise operations, search operation, addition, and multiplication. In GenPIM, con-
ventional cores are connected to PIM accelerators. The GenPIM replaces DRAM with
non-volatile memory since NVM can support both memory and processing function-
alities. Seshadri et. al. [45] proposed Ambit, an accelerator in memory for bulk bitwise
operations. Ambit exploits the analog operation of DRAM technology to execute bit-
wise operations inside DRAM, thereby exploiting the full internal DRAM bandwidth.
Ambit consists of two features: simultaneous activation of three DRAM rows that share
the same set of sense amplifiers, enabling the system to perform bitwise AND and OR

18

operations, and the ability to use the inverters present inside the sense amplifier to
perform bit-wise NOT operations.

Our work has the same intention and motivation as those of the aforementioned re-
searches, however, using associative processing to accelerate applications. Associative
processing is a way of doing PIM already applied and implemented, with well-defined
behavior, being utilized in various memory technologies.

2.5 Associative Processing

Associative processing is a way of parallel processing in an associative memory struc-
ture. Utilizing sequences of comparisons and writings based on Lookup Table, which
represents the truth table of the operation, the AP executes arithmetic and logical op-
erations between vectors in parallel spending a constant number of cycles [52, 54].
To enable associative processing, the AP takes advantage of a completely associative
memory, the CAM. By adding a small overhead of special registers, the states of the
implemented operations and the controller containing the algorithms, the AP acquires
the ability to perform operations in parallel. We explained the structure, the algorithm
and their behavior in the Chapter 3.

Nowadays scientists are utilizing associative processing in NVMs, in order to get a
smaller cell area, a lower leakage power, and an increased overall chip area efficiency
[3, 52, 55]. Also, associative processing, in academy, is applyed to accelerate various
applications as DNA alignment, Database operations and CNN [32, 51, 57]. We, in this
work, implemented application kernels and evaluated energy and time, simulating, on
RV-Across, CPU model versus the AP model, in order to get a vision about Associative
Processor potential.

19

Chapter 3

Associative Processing

This Chapter explains the structure used to perform associative processing and how to
build operations on it with or without optimizations. The entire structure is detailed
as well as its function in the execution of a generic operation, which is illustrated both
in the diagram and in pseudo-code. Moreover, it shows step by step how to construct
an operation from scratch. Also, the Chapter illustrates simple simulations of logic and
arithmetic associative operations, containing the Associative Processor state for each
cycle.

3.1 Associative Processor

An Associative Processor (AP) is a CAM that provides additional processing capabilities,
retrieving data from part of the content and operating through logical and arithmetic
operations without moving data to a separate processor [52, 54]. In an AP, the operations
can be made in several words of the memory simultaneously, reading, comparing, and
writing inside the associative module without content transition. This processor needs
the following components to perform computation:

• Controller: Module which is responsible for instruction decoding and configura-
tion of other components for associative operation.

• CAM: Associative Memory in which the data will be stored. A CAM is able to
recover data from its content.

• Lookup Table (LUT): Table containing the values of the bits that will be compared
and written, resulting in the operation.

• Mask: Register designed to select the columns that the processor will compare.

• Key: Register used to represent the bits of the LUT that are used for comparison.

• Tag: A bit that represents the Match state. This state indicates that the LUT com-
parison bits, represented by the Key, are the same as those of the operators. Then,
the bits determined in the LUT in the result are written.

20

Controller

Key

Mask

AP_OP(Left_Collumn, Right_Collumn)

CAM

Left Column Right Column

Lookup Tables

Tags

Figure 3.1: Associative Processor overview.

Figure 3.1 illustrates the Associative Processor overview with its components. As
shown in Figure 3.1, the CAM is divided into data columns where one column can ref-
erence another. The CAM executes a search in one cycle by the capability to manipulate
every bit (comparison and writing) of its storage. The CAM search is powerful, but it
generates high area overhead. The AP takes advantage of CAM functionalities to per-
form operations. It uses those columns as vectors, and through the logic of comparison
and writings based on LUT, which works like a truth table, does parallel operations
between vectors in a constant number of cycles (AP_OP in Figure 3.1).

Set Mask Set Key Compare Write

Match!
YesNo

Any
entries

in Lookup
table?

No

Yes

Begin

Any bits
to analyze?

Yes

End

No

Figure 3.2: Associative processing diagram.

21

Associative processing can be summarized in three phases: selection, comparison,
and writing of bits. First, the Mask register is set to select the columns (operands) to be
compared. Then, the Key is configured, representing the LUT comparison bits. If the
bits of the Key and the bits selected by the Mask are the same, there is a Match, and
therefore, the bit Tag related to the operation becomes 1. Finally, it is verified which
lines had a match looking at the Tag. If the Tag is 1, the corresponding value defined in
the LUT is written in the result. The Mask is set for all bits of the word, depending on
the associative operation, and the Key for all passes of the LUT. Figure 3.2 illustrates a
diagram showing this operation flow.

Algorithm 1 Generic associative processing algorithm (R[] = A[] OP B[])

1: for i = 0, 1, . . .,wordSizeA do
2: for j = 0, 1, . . .,wordSizeB do
3: setMask(R, i, j)
4: for pass = 1, 2, . . . , sizeLUT do
5: setKey(LUT[pass], R, i, j)
6: Compare(Key, Mask, A[i], B[j])
7: Write(LUT[pass], R)
8: end for
9: end for

10: end for

Algorithm 1 is the implementation of a generic associative processing algorithm
performing an operation between two vectors (R[] = A[] OP B[]). Notice that the two
external loops with the mask setting represent the selection phase (line 2). In other
words, the bit selection, of vectors A and B, will be operated. After selection, for each
pass from LUT, in an interval of two cycles, the key is configured, compared to bits
selected, and the writing is triggered if Match happens. So, finalizing the comparison
and writing phase. The algorithm ends when all passes are compared and/or written
on all bits.

The algorithm shown represents a common shape of an associative algorithm. It
is important to emphasize that associative processing does not have a unique algo-
rithm format. The way the associative algorithm is designed changes according to the
operation. Both the mask and the key registers can be configured via the controller,
depending on the associative operation. The AP is flexible for building the LUTs and
modifying the registers, however, there is a rigid data organization format for correct
execution.

This section was based on works produced by Yantir et al. [51]. Our simulator,
RV-Across, implements the associative addition and multiplication described in their
work, as well as the cycle model. We used the same mechanism as Yantir at al. to build
other LUTs, and thus create new operations (subtraction, AND, OR, XOR, and NOT).

22

3.2 Constructing operations

Associative operations are powerful due to the capability of applying the same function
into all data in parallel without data movement, just using comparisons and writings.
For the construction of the operation, the developer needs, initially, to understand the
behavior of its operation to set mask and key registers correctly. Another step is to
define inputs and outputs as a truth table. The truth table will be the LUT. The input
values represent the comparison bits and output values the bits that will be writing.

There are two optimizations for associative operation [52]. The first decrease the
number of passes from LUT. The developer could exclude entries of the LUT by initial-
izing the output vector with zeros or ones, depending on which is the majority among
the outputs. For example, if the output vector starts with zeros, the developer would
exclude the three passes with output ’0’ of AND operation. It is as if the vector already
had the pre-written results. The second optimization saves storage by doing destructive
operations. Instead of, for example, C[] = A[] + B[], the performed operation would be
A[] = A[] + B[]. That technique saves a third of storage space per individual operation.
For example, a non-destructive add operation, with one byte of word size, between two
vectors containing 4 elements each, spends 12 bytes of the AP. Using the optimization,
the operation would spend just 8 bytes.

Applying or not the optimizations, it is important to verify the order of LUT passes,
because it influences directly over the result. One pass can interfere with another pass
by writing at the wrong moment. For a correct associative operation, it is fundamental
to test a bunch of samples, following and verifying cycle by cycle the results. In the next
sections, associative logic and arithmetic operation are detailed through simulations.

3.3 Logic operations

Associative logic operations are simple to design and implement. It is just to use the
standard truth table as LUT, and apply overall bits. Figure 3.3 represents the simulation
of an associative XOR between two vectors: A [1,2,3] XOR B [0,1,2]. See that the LUT
summarizes an XOR truth table. The resulting vector C is initialized as [0,0,0], thus the
entries of A and B that result in 0 are excluded from the LUT. Note that the Mask is the
same for all passes computed for the same bit of the operands.

23

Key

Mask

C[] A[] B[]

000000

000000

000100

011000

101100

Tag

0

0

0

Key

Mask

000100

010101

000100

011000

101100

1

0

1

Key

Mask

000101

011000

101101

0

1

0

Key

Mask

001000

101010

000101

011001

101101

0

1

0

Key

Mask

100000

101010

000101

011011

101101

0

0

0

Key

Mask

000000

000000

000101

011011

101101

0

0

0

010101

010000

Bit: 0 | Pass: 1 Bit: 0 | Pass: 2

Bit: 1 | Pass: 1 Bit: 1 | Pass: 2

Begin

End
A B C

1 0 1

WriteCompare

XOR
Lookup Table

0 1 1

Pass

1

2

Figure 3.3: Associative XOR operation.

Consider the first pass executed on the bit zero of the operands. The Mask selects the
first bit of each operand, and the Key is read from the LUT for the first pass. Comparing
the Key and the values, for the selected bit, two Matches occur (lines 1 and 3), and the Tag
is set accordingly. The respective bits on vector C are written to 1 in the next pass (bit 0,
pass 1), and the process is repeated for each bit and pass. In the end, after comparing all
the passes with all the bits, the vector C will have the resulting associative XOR. Thus,
the operation can be performed in constant time for N elements of a vector without
moving data.

Figure 3.4: LUTs for AND, OR and NOT operations.

Figure 3.4 presents optimized LUT for AND, OR and NOT. With those tables and
adopting the same shape of the mask of the XOR operations simulated, it is possible
to perform each one. For the arithmetic operations, this shape can change depending
on the operation. The next section explains the difference between arithmetic and logic
associative operations.

24

3.4 Arithmetic operations

Unlike logic associative operations, arithmetic operations require more complexity to
be implemented. In addition to considering the operands and results for comparison
and writing, it is necessary to deal with the carry. The carry influences directly on the
optimization that reduces LUT passes, because its columns can not be removed even
with pre-written results. In general, the carry is written in the most significant bit, far
from the main computation that occurs in other bits.

Comparar Escrever

Passo Carry B A Carry B

1

2

3

4

1

0

1

1

0

0

0

1

1

1

0

0

1

A

0

0

1

1

1

1

0

0

Chave

Máscara

Carry B A Tag

0

0

0 000 0

000

000000

000

000

Comparar Escrever

Passo Carry B A Carry B

1

2

3

4

1

0

1

1

0

0

0

1

1

1

0

0

1

A

0

0

1

1

1

1

0

0

Chave

Máscara

Carry B A Tag

0

0

0 000 0

000

000000

000

000

Comparar Escrever

Passo Carry B A Carry B

1

2

3

4

1

0

1

1

0

0

0

1

1

1

0

0

1

A

0

0

1

1

1

1

0

0

Chave

Máscara

Carry B A Tag

0

0

0 000 0

000

000000

000

000

Comparar Escrever

Passo Carry B A Carry B

1

2

3

4

1

0

1

1

0

0

0

1

1

1

0

0

1

A

0

0

1

1

1

1

0

0

Chave

Máscara

Carry B A Tag

0

0

0 000 0

000

000000

000

000

Compare Write

Pass Carry BA Carry C

1

2

3

4

1

0

1

1

0

0

0

1

1

1

0

0

1

0

0

1

1

1

1

0

0

Key
Mask

Carry BA Tag

1

0

0 001 1

001

001001

001

011

Compare Write

1

2

3

4

1

0

1

1

0

0

0

1

1

1

0

0

1

0

0

1

1

1

1

0

0

1

0

1 0

001

001001

000

Compare Write

1

2

3

4

1

0

1

1

0

0

0

1

1

1

0

0

1

0

0

1

1

1

1

0

0

1

1

1 0

000

001001

000

Compare Write

1

2

3

4

1

0

1

1

0

0

0

1

1

1

0

0

1

0

0

1

1

1

1

0

0

1

1

1 0

000

001001

001

Comparar Escrever

Passo Carry B A Carry B

1

2

3

4

1

0

1

1

0

0

0

1

1

1

0

0

1

A

0

0

1

1

1

1

0

0

Chave

Máscara

Carry B A Tag

0

0

0 000 0

000

000000

000

000

Comparar Escrever

Passo Carry B A Carry B

1

2

3

4

1

0

1

1

0

0

0

1

1

1

0

0

1

A

0

0

1

1

1

1

0

0

Chave

Máscara

Carry B A Tag

0

0

0 000 0

000

000000

000

000

Comparar Escrever

Passo Carry B A Carry B

1

2

3

4

1

0

1

1

0

0

0

1

1

1

0

0

1

A

0

0

1

1

1

1

0

0

Chave

Máscara

Carry B A Tag

0

0

0 000 0

000

000000

000

000

Comparar Escrever

Passo Carry B A Carry B

1

2

3

4

1

0

1

1

0

0

0

1

1

1

0

0

1

A

0

0

1

1

1

1

0

0

Chave

Máscara

Carry B A Tag

0

0

0 000 0

000

000000

000

000

1

2

3

4

1

0

1

1

0

0

0

1

1

1

0

0

1

0

0

1

1

1

1

0

0

1 0

010

010010

010

1

2

3

4

1

0

1

1

0

0

0

1

1

1

0

0

1

0

0

1

1

1

1

0

0

1 0

010

010010

000

1

2

3

4

1

0

1

1

0

0

0

1

1

1

0

0

1

0

0

1

1

1

1

0

0

1 0

000

010010

000

1

2

3

4

1

0

1

1

0

0

0

1

1

1

0

0

1

0

0

1

1

1

1

0

0

1 1

000

010010

010

Comparar Escrever

Passo Carry B A Carry B

1

2

3

4

1

0

1

1

0

0

0

1

1

1

0

0

1

A

0

0

1

1

1

1

0

0

Chave

Máscara

Carry B A Tag

0

0

0 000 0

000

000000

000

000

Comparar Escrever

Passo Carry B A Carry B

1

2

3

4

1

0

1

1

0

0

0

1

1

1

0

0

1

A

0

0

1

1

1

1

0

0

Chave

Máscara

Carry B A Tag

0

0

0 000 0

000

000000

000

000

Comparar Escrever

Passo Carry B A Carry B

1

2

3

4

1

0

1

1

0

0

0

1

1

1

0

0

1

A

0

0

1

1

1

1

0

0

Chave

Máscara

Carry B A Tag

0

0

0 000 0

000

000000

000

000

Comparar Escrever

Passo Carry B A Carry B

1

2

3

4

1

0

1

1

0

0

0

1

1

1

0

0

1

A

0

0

1

1

1

1

0

0

Chave

Máscara

Carry B A Tag

0

0

0 000 0

000

000000

000

000

1

2

3

4

1

0

1

1

0

0

0

1

1

1

0

0

1

0

0

1

1

1

1

0

0

1 0

100

100100

100

1

2

3

4

1

0

1

1

0

0

0

1

1

1

0

0

1

0

0

1

1

1

1

0

0

1 0

100

100100

000

1

2

3

4

1

0

1

1

0

0

0

1

1

1

0

0

1

0

0

1

1

1

1

0

0

1 1

000

100100

000

1

2

3

4

1

0

1

1

0

0

0

1

1

1

0

0

1

0

0

1

1

1

1

0

0

0 0

000

100100

100

1 1 1 1

1 1 1 1

0 1 1

0 0 1 1

Compare Write Compare Write Compare Write Compare Write

Compare Write Compare Write Compare Write Compare Write

Match!

Match!

Match! Key
Mask

Carry BA Tag

Key
Mask

Carry BA Tag

Key
Mask

Carry BA Tag

Pass Carry BA Carry

Key
Mask

Carry BA Tag

Pass Carry BA Carry

Key
Mask

Carry BA Tag

Pass Carry BA Carry

Key
Mask

Carry BA Tag

Pass Carry BA Carry

Key
Mask

Carry BA Tag

Pass Carry B Carry

Key
Mask

Carry BA Tag

Pass Carry BA Carry

Key
Mask

Carry BA Tag

Pass Carry BA Carry

Key
Mask

Carry BA Tag

Pass Carry BA Carry

Key
Mask

Carry BA Tag

Pass Carry BA Carry Pass Carry BA Carry

A

0

Pass Carry BA Carry

C

C

C

C

C

C

C

C

C

C

C

C 000

001011

001011

001011

001011

001011

001011

001011

001011

001011

001011

001011

C 000

C 000

C 000

C 000

C 000

C 000

C 000

C 000

C 000

C 000

C 100

1º 2º 3º 4º

5º 6º 7º 8º

Compare9º 10º 11º 12º

2 3 4

5 876

9 10 11 12

1

Figure 3.5: Associative ADD operation.

Figure 3.5 shows a simulation of an associative ADD operation between (C[0] =

A[3] + B[1]). As in the XOR example, the ADD works in parallel. But in this case, to
facilitate the understanding, the simulation was reduced for execution between two
operands. The Figure is divided into 12 subfigures with the state for each pass. In the
subfigure, the LUT, the full adder truth table summarized (operation states), is above
the table of operands. The table of operands contains the state of special registers and the
operands. For each bit, all passes from the LUT are applied for comparisons, therefore,
in the case of addition which has 4 passes, will be 4 × n comparisons to finish the
operation (n number of bits). In this example, the ADD operation has 12 comparisons.

In this operation, the AP selects the bits, through mask register, like XOR operation.
Starting from LSB to MSB, the AP does comparisons and writings based on the LUT.
Notice that the selection of the mask is represented in the table of operands by the bits
highlighted in red. Also, the comparison bits from LUT (green area) are represented for

25

the Key aligned with the Mask bits. When the Key bits aligned with Mask are equals to
operands bits (A, B and Carry), occurs a Match and the Tag is set to 1. Hence, the writing
bits from LUT (pink area) referring to the current pass are written in both carry and C.
We can see a Match in the first subfigure, the Key bits equal to operands bits and the
Tag receiving 1 to signalize the writing in the next cycle. In the next subfigure, observe
that the writing bits for the pass 1, which are 1 to Carry and 0 to C, were applied.

The AP performs massive parallel selections, comparisons, and writings through the
controller and special registers. This means that AP spends a constant latency (oriented
by the word size of the CAM) to execute an operation regardless of the amount of data.
Also, the AP parallelism provides high throughput in addition to saving energy. This
kind of computation into the memory serves to accelerate applications that perform the
same procedure in a set of data several times. In this work, we need to simulate an AP,
with all logic and arithmetic operations, in an architectural model, aiming to compare
with CPU alone and multi CPU approaches. For this purpose, we built the RV-Across
which is the Spike, a standard RISC-V ISA simulator and adding an extension that
contains the AP behavior. In the next Chapter, the RV-Across is explained in detail.

3.5 Web AP simulator

Because of the difficulty of understanding associative algorithms, the WebAP, a web
tool, was developed to easy the study of associative operations (Link). It provides a
cycle-by-cycle simulation of an ADD associative operation, showing the states of all AP
components for each step. The simulator was developed using the Angular framework.
It is an open tool that serves as a support for teaching associative processing.

Figure 3.6: Cycle by cycle simulation on the WebAP.

To start the simulation in the WebAP, the user needs to set the word size of CAM,
the number of values inside CAM, and, therefore, fill with values the CAM. Starting
the simulation, two tables and two buttons appear, as shown in Figure 3.6. The first
table represents the Lookup table and the second the data in the CAM. The buttons
are used to access previous and later cycles of the simulation to analyze the algorithm
step by step. The next chapter will deal with a simulator, the RV-Across, which also
implements these functionalities in more operations.

https://jevsilv.github.io/web-ap/

26

Chapter 4

Related Work

Processing in Memory (PIM) is an approach that increases hardware performance by
putting computations inside the memory. The PIM concept can be implemented in
different ways. One of them is using a 3D memory and its reading and writing capa-
bilities in parallel to perform logical and arithmetic operations. Another one is using
the associative processing, which, through a Content-Addressable Memory (CAM), can
compute employing comparisons and writings. Moreover, other alternatives can add
features or processing units within the memory to do operations.

Research involving Processing in Memory has been increasing in the last years,
mainly because of its efficiency in performing big-data applications. In the literature,
our work has an intersection with PIM architectures, accelerators, programming inter-
faces for PIM, and simulators. They can be associated with 3D memory, Associative
Processor, or other alternatives to do PIM that were developed for a general or specific
purpose, evaluating latency and/or energy. In this Chapter, we start with the alternative
approaches, passing through 3D memory works and finalizing with AP.

4.1 Processing in Memory

Gokhale et al. [17] in the ’90s proposed a PIM model like a Single Instruction Multiple
Data (SIMD) near memory, with an array of PIM chips, each one containing 2 kb
and 64 Arithmetic logic units (ALUs) for computing. Data-Intensive Architecture (DIVA)
was created by Drapper et. al. [14]. It unifies a set PIM chips as co-processors to a
conventional microprocessor, using specific instruction to communicate among them,
just like the Gokhale’s model. DIVA has high bandwidth interconnection to be able to
supply the multimedia applications demands.

Chi et. al. [8] proposed the PRIME architecture to improve the performance of
NN applications utilizing ReRAM. Unlike the previous ones, PRIME has a specific
purpose. The PRIME has full functions accelerators to perform search and convolution
in memory, it achieves an energy relative improvement of 895x compared to other
neural processing units. Shafiee et. al. [46] modified eDRAM, adding accumulation
and multiplication operations within memory, to create the ISAAC accelerator. ISAAC
has the power to perform matrix multiplication, accelerating the performance of NN

27

processing. Seshadri et. al. [45] exploited the analog operation of DRAM technology to
perform bitwise operations (AND, OR, and NOT) without data movement.

The GenPIM architecture model was developed by Imani et. al. [19] to be a PIM
general-purpose solution, providing memory banks capable of performing logical,
searching, adding, and multiplying operations. GenPIM is composed by conventional
cores linked to a main memory containing banks of PIM blocks. The authors of PIM ab-
stracted the technique utilized. The NNPIM architecture supports the same operations
as GenPIM, but explaining the mechanism of computing the operations and focusing
on NN applications. The addition is inspired in Wallace-tree, the multiplication is per-
formed through Bernstein’s Algorithm and the search operation works like a CAM,
using hamming distance.

PIM-Aligner is an accelerator that was made to execute DNA short read alignment.
PIM-Aligner has its sense-amplifiers customized to perform XNOR, for comparison,
and addition, for counting, in parallel [4]. The same group of researchers, using the
same way of PIM, developed AlignS platform to execute DNA alignment in Spin-Orbit
Torque Magnetoresistive Random-Access Memory (SOT-MRAM) [3].

4.2 3D Memories

Among the works featuring 3D memories, TOP-PIM is an architecture that is composed
by 3D stacked DRAM replacing GPU and using the same interface for simulation [59].

Ahn et al. [1] proposed a programming model using custom instructions to trigger
PIM in HMC (Hybrid Memory Cube). They show how to program a real application
using their framework and prove low overhead generated .

The XNOR-POP architecture, created by Jiang et. al. [24], has support to PIM in Wide-
IO2 DRAMs (3D memory) to process binary CNN. The Tetris accelerator follows the
same line of the processing inside 3D memory, partitioning all steps of NN processing
to accelerate its execution [16].

GraphP and GraphH are PIM architectures that utilize 3D memory capabilities to
accelerate the processing of graph and both are HMC-based [12, 60]. Both created mech-
anisms in software (barriers) to facilitate the programming of search algorithms. Kim
et al. proposed an algorithm called GRIM-Filter to accelerate read mapping (filtering)
by reducing the number of required alignments using a 3D-stacked memory and its
features [29]. Finally, Santos et al., built a framework which uses new instructions, to
experiment with IoT applications using PIM in 3D memory, varying the architecture
and technology of memory [44].

Several simulators have been developed for experimentation in the context of 3D
memories. Leidel and Chen [31] built HMC-Sim, a cycle-accurate simulator that offers
to the users an infrastructure of experiments with HMC 1.0 and 2.0, implementing
a model to replace traditional thread mutexes with custom HMC mutex commands.
Besides, the extension of HMC-Sim enables the users to craft Custom Memory Cube
(CMC) operations and the evaluation of their efficacy through user applications. The

28

HMC also provides a discrete tracing allowing users to see exactly how and where
memory operations progressed through the device or devices.

Jeon and Chung [23] developed CasHMC which is a C++ simulator that allows
a cycle-by-cycle simulation of every module in an HMC and generates analysis re-
sults including a bandwidth graph and statistical data. This simulator enables parallel
execution of other simulators that generate memory access patterns. For each HMC
transaction, the simulator generates a log like HMCSim.

Clapps is an HMC simulator as well, made by Oliveira et. al. [38] using SystemC.
The Clapps has an interface through specific instructions for the users to perform vector
PIM operations in applications. That simulator is a parallel simulator that implements
all of the HMC instructions.

PIMSim and PIM-gem5 are PIM simulators with HMC that share many character-
istics [44, 50]. Both simulators provide processor simulation with HMC, analyze the
impact of PIM in the memory hierarchy, simulate full-system with cycles and energy
counters, and are configurable. PIMSim integrates DRAMSim2, HMCSim, NVMain,
and Gem5 for simulation at different levels (fast, instrumentation-driven, and full-
system simulation) and provides an interface for the user via directives. Pim-Gem5
implements PIM support in Gem5 and creates a methodology for prototyping PIM
accelerators.

4.3 Associative Processors

Most of the Associative Processor works have been combining NVM due to its low-
overhead of area and energy consumption. Imani et al. and Yantir developed an ap-
proximate Resistive Content Addressable Memory (ReCAM) and evaluated [20, 51]. Imani
et al. designed an accelerator model, the DigitalPIM, using associative processing to
big-data applications [22].

Yantir et al. explored approximate techniques such as bit trimming and power
scaling to save energy. Also, the authors explained how works an associative operation;
however, they did not show how to construct the algorithms in real applications. [52, 53].

PRINS is an architecture based on ReCAM to be a programmable CAM, providing
instructions and algorithms of real applications (Graphs and Machine Learning) [57].
Saikia et al. implemented a CAM with Static Random-Access Memory (SRAM) to accel-
erate the KNN algorithm and achieve 1.2 GHz of frequency spending low energy [43].
Finally, the ReSQM architecture combines arrays linked to ReCAM accelerators to do
database operations [32].

4.4 Simulators

There are also works in the literature involving CAM simulators or associative pro-
cessing. Khoram et. al. [28] developed an analytical model to analyze run-time, energy,
and storage for a set of architectures, including Associative Processor. Specifically, the

29

proposed method asymptotically evaluates the computational metrics in a specific
architecture, ignoring constants and low-level factors.

In NVSIM-CAM, the NV-Sim simulator is adapted as a tool that estimates the
performance, area, and energy of CAM and other types of NVMs [33]. Yantir et. al.
[51] proposed a methodology that combines approximate computing and associative
processing and developed an in-house simulator for associative operations. Yavits
et. al. [54, 55] also developed an associative processor in-house simulator, in which
the associative processor is at the last cache level. It also estimates energy based on
associative processing events.

Finally, Santos et al. [41] designed SIM2PIM, an agnostic PIM simulator, based on the
Gem-5, which implements hardware performance counters and multi-thread support
for PIM devices.

4.5 Comparison

We designed an architecture model that contained a RISC-V core that can send com-
mands to an Associative Processor (AP) module via custom instructions provided by
RISCV instructions set. With the instructions, it is possible to load the AP with a set
of data and trigger logic/arithmetic operations in parallel. This AP is linked to main
memory via Direct Memory Access (DMA) and therefore spending fewer cycles to access
the data. Thus, the way of computing in memory of our work is different from the
first two groups. The custom instructions and the framework that we built are similar
to works as DIVA, PRIME, TOP-PIM, and others. Our model has a general-purpose
like Ambit, GenPIM, TOP-PIM, DigitalPIM, etc. Besides, we provide software support,
explaining how to utilize and apply in real applications.

Some works, such as GenPIM, NNPIM, Tetris, and GraphP, create an architectural
model but do not build a programming model. Others, as the architecture of Gokhale
and DigitalPIM, have no assessment of energy or latency. We created a simple evaluation
model for latency and energy of our architecture and with it, we evaluate a set of
application kernels, even in different AP sizes.

None of the studies cited in this section used RISC-V as the base Instruction Set Ar-
chitecture (ISA). Our work uses custom instructions, which are already geared towards
acceleration, as communication support for the Associative Processor.

Most of the works targeting PIM implement are in-house simulators. This methodol-
ogy might hurt the overall productivity, and it can also preclude replicability [38]. This
is one of the reasons that we built RV-Across. RV-Across is an open simulator, focused
on Associative Processor, which also allows the addition of customized operations such
as HMC-Sim, implemented in C++ as CasHMC, and uses special instructions to in-
memory processing as Clapps. With the events counted by the simulator, the user will be
able to extract energy statistics based on a separate model. RV-Across allows modeling
extended operations and provides an interface for associative processing experiments.
RV-Across uses a similar format of an associative algorithm, allowing operations be-
tween vectors. However, our tool offers the freedom to build and experiment with

30

Table 4.1: Summary of related works, classified by what was produced, the PIM ap-
proach used, the purpose and what was evaluated.

Object Approach Purpose Evaluation
Works Sim Sw Acc Arch 3D AP Alt Gen Spec Lat En

Gokhale [17] - X - X - - X X - - -
DIVA [14] - X - X - - X X - X -
PRIME [8] - X - X - - X - X X X
ISAAC [46] - - X - - - X - X X X
Ambit [45] - - X - - - X X - X X

GenPIM [19] - - - X - - X X - X X
NNPIM [18] - - - X - - X - X X X

PIM-Aligner [4] - - X - - - X - X X X
AlignS [3] - - X - - - X X X X

Top-PIM [59] - X - X X - - X - X X
Ahn [1] - X - X X - - X - X X

XNOR-POP [24] - - - X X - - - X X X
Tetris [16] - - X - X - - - X X X

GraphP [60] - - - X X - - - X X X
Grim-Filter [29] - X - - X - - - X X -

IoT PIM [44] - X - X X - - - X X -
GraphH [12] - - - X X - - - X X X

HMCSim [31] X - - - X - - X - X -
Clapps [38] X - - X - - X - X -

CasHMC [23] X - - - X - - X - X -
PIM-Sim [50] X X - - X - - X - X X

PIM-Gem5 [40] X X - - X - - X - X X
Imani [21] - - - X - X - X - X X

Yantir Approx [51] - - - X - X - X - X X
PrinS [57] - X - X - X - X - X X

KNN Acc [43] - - X - - X - - X X X
DigitalPIM [22] - - X - - X - X - - -

ReSQM [32] - X - X - X - - X X X
Yantir Sim [51] X - - - - X - X - X X
Yavits Sim [56] X - - - - X - X - X X
NV-Sim [33] X - - - - X - X - X X

Khoram Sim [28] X - - - - X - X - X X
Sim2PIM [41] X X - - - X - X - X X

Our work X X - X X X - X X
Sim: Simulator, Sw: Software interface, Acc: Accelerator, Arch: Architecture,
3D: 3D memory AP: Associative Processing, Alt: Alternatives, Gen: General,

Spec: Specific, Lat: Latency En:Energy.

customized operations. Our tool delivers an interface to high-level programming (via
RISC-V custom instruction) and enables experiments to evaluate latency and energy.
In terms of architecture, RV-Across uses a scratch-pad memory and does not con-
sider memory coherence. RV-Across performs associative processing in a low-latency
scratch-pad memory closely tied to the main processor, with direct access to the main
memory, bypassing the cache hierarchy and avoiding memory accesses by favoring
DMA bulk transfers. SIM2PIM is a simulator similar to RV-Across that has the advan-
tage of providing multi-thread support for the PIM device, which RV-Across does not
yet provide. However, RV-Across provides in addition to agnostic support, a cycle-by-
cycle simulation of an AP and a model for evaluating latency and energy that can be
adapted for other architectural models. SIM2PIM is extensible like our simulator, but
by using native instructions from RISC-V, the flexibility to customize in RV-Across be-
comes easier. For better visualization of the related works, two tables were made. Table
4.1 refers to all works related to ours and Table 4.2 to simulators similar to RV-Across.

Our work goes beyond RV-Across. We provide case studies with associative appli-
cation kernels, showing how AP works to perform them and how to implement these

31

Table 4.2: Selection of PIM simulators that have similarities with RV-Across.

Structure Evaluation
Works Approach Interface Architecture Algorithms Extensible Latency Energy

HMC-Sim [31] 3D X - X X X -
CasHMC [23] 3D - X - - - -

Clapps [38] 3D X - - X X -
PIM-sim [50] 3D X X - X X X

PIM-gem5 [40] 3D X X - X X X
Khoram [28] AP - - - - X X
NVSIM [28] AP - - - - X X
Yavits [56] AP - X - - X X
Yantir [51] AP - - X - X X

SIM2PIM [41] AP X - - X X X
Our work AP X X X X X X

kernels (Chapter 6). Furthermore, we simplify the performance evaluation by develop-
ing experimentation models. Using these models, we simulate the kernels to highlight
the potential of the AP model over CPU and multi-CPU models (Chapter 7).

32

Chapter 5

RV-Across: An Associative Processing
Simulator

The current Chapter describes the purpose of the RV-Across simulator, its structure, the
implemented architectural model, the access interface for the simulator, the operations
supported, and the output generated from the simulator. Also, the latency and energy
consumption models developed and the basis in the literature for the construction of
the evaluation models are explained. The models served as a basis for the generation
of results and conclusions of the work, which are in Chapters 7 and 8.

5.1 Overview

RV-Across is a high-level simulator for the design and validation of in-memory oper-
ations, built as an extension of the Spike reference RISC-V ISA Simulator. RV-Across
provides a framework to extend, implement, and test PIM operations based on RISC-V
custom extensions and instructions. Furthermore, RV-Across generates a step-by-step
log of the simulation for enhanced user control. The simulator counts and logs events
of comparison, writing, match, and mismatch in associative processing. These statistics
are offered to the user as a mean to calculate latency and energy. That is, the simulator
is not just an addition of an extension, it is the modification of the Spike to enable the
simulation of the processing in memory behavior.

Figure 5.1 shows an overview of the simulator’s structure with its inputs and out-
puts. As input, the simulator receives the RISC-V binary that can be generated from the
compilation (RISC-V tool-chain) of a C code using the library that we created to perform
the operations. The output is the logs with each cycle of the CAM and the states of the
Mask and Key registers in addition to showing the number of comparisons, writings,
matches, and mismatches that occurred during the processing.

RV-Across is based on an associative processing architectural model to support
PIM. Figure 5.2 shows the overall architecture that our simulator represents. Inside
the Tile, the processing components and instructions and data caches are located, and
off the Tile, the L2 cache and main memory. The main processor is a RISC-V core
connected to the extension module (RoCC Accelerator), that provides control support

33

RISC-V
Processor

RoCC
Acc

Tile

SPM API-Cache D-Cache

Main Memory

Ctrl
Regs

Custom
Instructions

/Status

Load/Store
Status/Op ConfigFetch

DMACache L2

Figure 5.2: RV-Across architectural model.

for associative operations. The main core communicates with the RoCC Accelerator
using custom instructions.

C Code
+

RoCC lib

riscv-gcc

Assembly
Code

PIM
Extension

RV-Across

Associative
Processing

Events

Logs

Spike

Input

Outputs

Figure 5.1: RV-Across design flow.

The RoCC Accelerator, when triggered, sends setup and command information
to the control registers coupled to the Associative Processor, such as the addresses
of the operands and output vectors and which operation will be performed. After
configuring the registers, the operation is executed while the CPU waits for a response
on the status of the operation. The AP receives commands to load data from memory or
trigger logical or arithmetic operations previously implemented. The complete process
for associative processing is using these two steps in sequence: loading the data to
be operated and finally triggering the execution at the determined addresses. The AP
contains the Lookup-Table for the associated operations and the configured algorithms.
For simplification in both hardware and software simulation, the associative operations
and CPU instructions do not run in parallel.

34

The AP works as a Scratch-Pad Memory (SPM). In addition to reading and writing,
this SPM serves as a support for data processing. The AP can access the main memory
using Direct Memory Access (DMA). This reduces data movement since the main core
does not need to act as a bridge to transport data from the main memory to the AP.
To use the AP, the user must configure the data to be processed in the SPM and
activate the associative operations using custom instructions. To gain simplicity in the
implementation, the SPM is small in size, since its cost in the area can be high. For most
scenarios, an AP of size 16 KB was used, because in that size there is a lower cost of
area and power for the CAM. However, the execution of application kernels in different
AP sizes was also evaluated to understand the impact of CAM power on the system
(Chapter 7).

5.2 User interface

RISC-V RoCC instructions are used to communicate with the accelerator module at-
tached to the RISC-V processor. Such instructions are used in the RV-Across for com-
munication with the accelerator module that configures associative operations. Then,
for the use of associative operations, it is necessary to insert the RoCC instructions in
the application. For this purpose, RV-Across includes a library with predefined macros,
at which it is possible to enter the parameters of what instruction to use, the value for
the registers, and the operation code.

1 #define ROCC_INSTRUCTION(x, rd, rs1, rs2, funct) ...
2 #define ADD_RVA(in_a, in_b, out, length, word_size) \
3 ROCC_INSTRUCTION(2, 0, in_a, in_b, 0); \

4 ROCC_INSTRUCTION(2, 0, length, out, (word_size << 3) | 1);

Figure 5.3: RoCC instructions library.

The code in Figure 5.3 shows the shape of the generic macro ROCC_INSTRUCTION,
which represents the default type-R RISC-V instruction used in the RoCC extension.
The first parameter, x, indicates which of the four RoCC custom instructions is used in
the implementation. In RV-Across, a vectorized associative operation is triggered after
two steps: the first configures the position of two input vectors (rs1 and rs2) and the
second configures the length of the vectors (rs1) and the position of the output vector
(rs2). The output register rd, not used in this implementation, is reserved for future use.
The funct field is used to send additional information to the AP control. If the funct is ’0’,
the AP loads the pointers of the input vectors. If it is different from ’0’, the AP control
extracts the operation that will be executed, from the 3 least significant bits and the word
size from the remaining 4 most significant bits. For example, ADD_RVA (addition) is
an associative operation that receives the pointers of the input and output vectors,
the size of the vectors, and the word size in bytes. The operation is implemented
using the RoCC custom-2 instruction, and addition is defined by the operation code
’1’ in the funct field. Thus, using this interface and considering that no other RoCC

35

Table 5.1: Number of comparison passes for associative operations implemented in
RV-Across to a word size of n bits. The variable k means the size of the vector copied.

Associative operations Number of passes
Unsigned multiplication 4 × n2

Addition, Subtraction 4 × n
XOR 2 × n
AND, OR, NOT, Shift Right and Left n
RELU 1
SET 1
COPY k

extension accelerator coexists in the target system, a designer can define up to 32 distinct
associative operations, that load up to two vectors and write to one, of arbitrary length
and word size of up to 15 bytes.

RV-across provides a library implementing associative logical and arithmetic op-
erations using the algorithm explained in Chapter 6. Table 5.1 shows the associative
operations implemented in our simulator and the number of execution passes they
require. The number of passes is defined as the number of comparisons needed in an
Associative Processing operation. Besides comparisons, the operations may execute a
variable number of writes, that depends on the result of the comparisons. The sum of
the number of passes and writes is the number of execution cycles needed to conclude
the operation. Hence, the larger the size of the word operated, the more cycles are spent
because associative processing works on comparing columns.

In addition to standard logic/arithmetic operations, SET and COPY operations were
implemented in the associative processor to assist in the implementation of the algo-
rithms. The SET operation works like the memset, that is, assigning a constant number
to a vector. In the case of the AP, this is done in parallel due to the support offered by
CAM. The same happens with the COPY operation, which is the same as the memcopy
function, which copies multiple elements from one vector to another vector. The SET
operation takes 1 cycle to configure a single write in parallel and COPY uses the number
of elements to be copied. Then, with associative processing, it is possible to create new
procedures that run in parallel.

5.3 Output

RV-Across generates a log for each step of the operation, showing the control registers
and the SPM with the data of the operators. This data is provided for each operation
both for didactic purposes and for the user to control the simulation. Also, writing,
comparison, match, and mismatch events are counted and recorded in a file so that
the user can extract latency and energy metrics using an appropriate model of their
simulation scenario. Figure 5.4 shows the output file ADD_1 generated from the sim-
ulation of the kernel checksum. RV-Across outputs have this format OP_ID, name of
the operation followed by an identifier. The image shows the last cycle executed in

36

1 # -- #
2 Bit: 7 | Pass: 3
3 Word: 2 | Tag: 0
4 --
5 Mask_A: 10000000
6 Mask_B: 10000000
7 Key_A: 00000000
8 Key_B: 00000000
9 --

10 mem[0]: 11010101
11 mem[1]: 11100110
12 mem[2]: 01100101
13 mem[3]: 01100011
14 mem[4]: 01101000
15 mem[5]: 00000000
16 # -- #
17 | ----- Report ----- |
18 - Operations: 3
19 - Cycles: 40
20 - Comparisons: 96
21 - Writings: 8
22 -----------------------------

Figure 5.4: Output of RV-Across with the last cycle of the associative addition operation
and the report of that operation.

the associative addition operation and a report describing the number of operations
already performed, the number of cycles, the number of comparisons for each memory
line, and the number of writes. Note that in order to show the column of the bit which
is being analyzed, it is printed the current bit, the pass, the word operated and the tag.
To facilitate debugging, the masks were separated for each vector, Mask_A for vector
A and Mask_B for vector B. The key register is shown in the same way as the mask
register. In the memory vector, the first half [0,1,2] indicates the elements of vector A
and the other indicates vector B.

In the reports, notice the number of cycles that comprise 4 (passes)×8 (word size) = 32
cycles, as shown in table 5.1. In the results, the numbers reported by RV-Across, as
shown in the figure, were used in the models that will be explained in the next section
to evaluate latency and energy consumption in the execution of several application
kernels in a system that uses associative processing. These results will be compared
with a system that uses only the CPU to analyze the potential of the AP (Chapter 7).

5.4 Latency model

For latency evaluation, we created a formula to calculate the model latency with only
the CPU and another for the model adding the AP, based on the explained architectural
model of the RV-Across. The CPU latency represented by the variable LCPU is the sum
of the number of CPU cycles (CCPU) and the cycles waiting for the data from the cache
(CCache) divided by the adopted frequency (FCPU). This formula is depicted in 5.1.

37

LCPU =
CCPU + CCache

FCPU
(5.1)

The formula for associative processing model is the sum of the latency of the aux-
iliary CPU to the AP and the latency of the AP. This last one is the number of the AP
operation cycles added with the number of waiting cycles for DMA, divided by the
AP operation frequency. Note that CCPU is not CCPUAP , as one belongs to the CPU-only
model and the other to the AP-connected model. The auxiliary CPU cycles correspond
to the initialization cycles, the organization of the data that will be processed, and the
commands sent to the AP. The latency formula for the AP is displayed in 5.2.

LAP =
CCPUAP + CCacheAP

FCPU
+

CAP + CDMA

FAP
(5.2)

Table 5.2 shown below describes all parameters and their respective values. The
Associative Processor has the latencies determined by the operation explained in the
simulator section, so it is all based on the work of Yantir [51] and implemented on RV-
Across (Chapter 5). The frequency used for the AP, 1 GHz, is the same used for the CPU.
It was based on the TCAM [5] we used and on other related works [56]. DMA latency
varies depending on the technology used, so we based it on three articles to set the
parameters described in Table 5.2 [11, 13, 15]. Our environment implements individual
32 KB L1 instruction and data caches and a single 128 KB L2 cache. The caches are only
considered in memory accesses originated on the CPU, bearing in mind that the AP
will be activated when operating loads via DMA and performing operations. Both this
model for latency and energy consumption can admit other models by changing only
the parameters and assigning new values based on the new contexts.

Table 5.2: Latency model parameters.

Parameters Description Values
CCPU

and
CCPUAP

Quantity of cycles
performed in CPU

1 cycle/instruction

CAP
Quantity of cycles
performed in AP

Depends on the operation

Ccache

and
CcacheAP

Total cycles of the CPU idle
waiting for the Cache

L1 = 1 cycle
L2 = 10 cycles

Main memory = 100 cycles

CDMA
Total cycles of the AP idle

waiting for the DMA transfer

11 cycles (communication)
+

1 cycle/data transferred
FCPU and FAP Frequencies to CPU and AP 1 GHz

38

5.5 Energy model

We researched in the literature for power or energy parameters for RISC-V cores and
found the comparison table between them in several parameters [58]. Table 5.3 sum-
marizes the technology parameters, speed in terms of frequency, area, and power for
the cores: Ariane, Rocket, Boom, and Shakti. However, none fit the same technology
that we adopted for CAM [5], which is 32 nm. To solve this problem, we use a formula
to normalize the power of the RISC-V Rocket core, equalizing with CAM technology.

Table 5.3: Different RISCV-cores in different parameters.

RISC-V Cores Comparisons [58]
Ariane Rocket Boom Shakti

Tech (nm) 22 45 45 22
Speed (GHz) 1.7 1.6 1.5 800 MHz
Area (mm²) 0.3 0.5 1.7 0.29

Power (mW) 52 125 300 90

So, the new power given by the variable Pscaled is equal to the multiplication of: the
operating frequency (F), in this case 1.6 Ghz; the division between the new (Tnew) and
the old technology (Told), 32 nm and 45 nm; and the voltage supply that we consider to
continue with 1 (VDDold and VDDnew) [5]. The new power calculated via equation 5.3,
matched to 32nm technology for the Rocket core, is 55.56 mW.

Pscaled = F ×
(Tnew

Told

)
×

(VDDold

VDDnew

)2

(5.3)

For the Associative Processor, we searched for data on the CAM and found an article
describing a TCAM, 32nm with 1GHz, implemented. This article provided a bit rate for
both area, 0.84 Megabit/mm2, and power, 0.58 W/Megabit. From these parameters, we
derive power and area for different types of TCAM. We adopted these parameters as a
reference for the Associative Processor considering that the overhead for implementing
the algorithms and lookup tables is small.

Table 5.4: Power and area parameters derived from TCAM 32nm

TCAM - 32 nm [5]
Size (Kb) 16 32 64 128

Power (mW) 74.24 148.48 296.96 593.92
Area (mm²) 0.152 0.304 0.609 1.219

As we did for latency, we built two equations to calculate the energy consumption of
the model using CPU-only and the model using AP. Equation 5.4 represents the energy
spent in the execution of applications on the CPU (ECPU), which is the multiplication
of the CPU power (PCPU) and the execution time of the application. This last one is

39

Table 5.5: Power parameters derived from the literature

Parameters Description Values
PCPU CPU power based on Rocket core 55.56 mW
PCAM CAM power 74.24 mW for 16 kb
PCPULP Power of low power mode 15.4 mW

represented by the sum of the CPU cycles (CCPU) and the cycles waiting for the cache,
divided by the frequency (FCPU).

ECPU = PCPU ×

(CCPU + CCache

FCPU

)
(5.4)

The equation for the AP requires complexity because when the auxiliary CPU is
running, the AP is turned off, and when the AP executes an instruction, the CPU
remains in low power mode. So, for the equation 5.5 we need to calculate the energy of
the auxiliary CPU separately and consider the low power mode in the energy calculation
for the Associative Processor. Therefore, the AP total energy (EAP) is the power of the
auxiliary CPU (PCPU) times its latency, comprised by the sum of the execution cycles
(CCPUAP) and idle (CCacheAP) over the frequency (FCPU), added to the addition of the power
of the CAM (PCAM) plus the power of the low power mode (PCPULP) times the latency of
the CAM, represented by the sum of the AP (CAP) and DMA (CDMA) processing cycles
divided by the frequency (FAP).

EAP = PCPU ×

(
CCPUAP + CCacheAP

FCPU

)
+

(
PCAM + PCPULP

)
×

(CAP + CDMA

FAP

)
(5.5)

To extract the power parameter for low power mode, we calculated a relative pro-
portion between the active power and the low power found in Kumar et al. [47]. Their
work implements clock gating for a Rocket core and the technique causes the core to
consume 28% of the normal active power. Using the proportion with the equalized
power previously calculated (55.56 mW), the low power mode is 15.4 mW. Table 5.5
summarizes the derived power values that were used for experimentation described
in subsection 7.1.

5.6 Customizing associative operations

RV-Across comes with an extensible structure that allows the user to modify the existing
operations or implement their own within its core. Figure 5.4 shows a simplified Unified
Modeling Language (UML) showing the APrv class used in the simulations, inheriting the
attributes and methods of the model class APTemplate. Note that the APTemplate class
already provides everything needed for associative processing. This class has methods
to configure the key, the mask, and the LUT, as well as performing comparisons and
writing values to the data vector during associative processing.

The user has to create a new class like APrv, inheriting the attributes and methods
of the APTemplate class. Then, to create new operations, the user just needs to describe

40

APTemplate

void compare(...);

void write(...);

struct pass;

key

mask

input_address

output_address

...

APrv

associative_add(T *mem);

associative_sub(T *mem);

associative_mult(T *mem);

associative_xor(T *mem);

...

Figure 5.5: UML showing the APrv inheriting attributes and methods from APTemplate
for the RV-Across simulation.

the associative algorithm in terms of these base structures. To create an associative
operation, the user must follow the steps explained in the previous Chapter. After
creating the operation, the developer must assign it to a specific RoCC instruction. Then,
as shown in subsection 5.2, it must write a macro referencing its operation with two
instructions: to load the elements of the operation vectors and to trigger the operation.
Following these steps when writing the macro in C code, generating the RISC-V binary,
and executing in the RV-Across, the custom operation will be performed correctly.

Besides the customized operations, RV-Across supports a trace function to analyze
pass by pass, producing cycle-accurate information about the execution and aiding in
the development and debugging of new associative algorithms.

41

Chapter 6

Case studies

After explaining what is RV-Across and how it works, this Chapter shows in practice
how to implement specific kernels and their behaviors into the AP. We selected Matrix
multiplication, 2D convolution and ReLu activation function, because they needed a
strategy to extract parallelism from the AP. For each application, the use of the RV-
Across operations and how the data is processed within the CAM is explained.

6.1 Matrix Multiplication

Matrix multiplication is essential for various machine learning and image processing
applications (within computer science) [48]. It is a binary operation, in other words, two
matrices becoming one. In a multiplication between a matrix A and matrix B resulting
in C (C = A × B), C is the accumulation of the multiplication of the rows of matrix A
and the columns of matrix B. There are many ways to parallelize this operation both
in the context of many processing cores and in a SIMD. Our goal is to try to explain in
a simple way how to parallelize the matrix multiplication using our simulator and its
software interface. We also aim to show the working inside the AP.

1 for(i = 0; i < DIMENSION; i++) {
2 row = i * DIMENSION;
3 for(j = 0; j < DIMENSION; j++) {
4 row_B = j * DIMENSION;
5 SET_RVA(buff, DIMENSION , *(A + row + j), 1);
6 MULT_RVA(buff, B + row_B, buff, DIMENSION , 1);

7 ADD_RVA(C + row, buff, C + row, DIMENSION , 1);

8 }

9 }

Figure 6.1: Associative algorithm for matrix multiply using custom instructions for
implementing row parallelism.

Giving an overview, we use row parallelism, in which we select an element of A,
assuming C = A×B, and in parallel, we multiply with the entire row of B and in parallel,
we accumulate the entire result in C. We do this for all elements of A and lines of B

42

following the standard algorithm. To implement this algorithm using RV-Across and
without ever losing sight of associative processing, we need to use three instructions,
SET_RVA, MULT_RVA, and ADD_RVA, within two loops ranging from 0 to the size
of the matrix dimension, as shown in Figure 6.1. Through SET_RVA we fill a buffer,
having the size of the matrix dimension, with each element of the matrix A. Then we
perform a multiplication, by MULT_RVA, in parallel between the buffer and a row of
B and we save the result in the buffer. Finally, we accumulate the buffer values on
the C row using the associative addition in parallel via ADD_RVA. In the traditional
algorithm, without parallelism, three loops are used to iterate between the elements
and computation. Thus, we readily noticed the removal of a loop in the above algorithm
and consequently a loss of complexity. A simple calculation of the AP latency cost of
this algorithm can be done based on the dimensions of the matrix, treating them as
squares. The latency would be the square of DIMENSION times the summation of AP
operations latencies.

A00 A01 A02

A10 A11 A12

A20 A21 A22

A

B

C

C00 C01 C02

C10 C11 C12

C20 C21 C22

B00 B01 B02

B10 B11 B12

B20 B21 B22

Buffer

A00 A00 A00

SET_RVA

Buffer

R0 R1 R2MULT_RVA

ADD_RVA

Figure 6.2: Overview of the behavior of matrix multiply in associative processing.

Looking inside the AP, now let’s analyze how it works, looking at Figure 6.2. The
figure shows the three matrices A, B, C, and the buffer in the process of the first iteration
of the algorithm, all happening inside the AP. First, matrices A and B must be loaded
assuming that the AP space has enough capacity to contain the three matrices and the
buffer. After that, the AP with the base addresses of matrix A and the buffer in its special
registers, performs the copy of the elements with SET_RVA, makes the multiplication
with the first row of B saving in the buffer (a destructive operation), and accumulates
in the reserved space inside the CAM for matrix C. Finally, all results are written to
main memory via DMA.

43

6.2 2D Convolution

The 2D convolution operation is widely applied, as well as the multiplication of matri-
ces, in several areas of knowledge (image processing, digital data processing, machine
learning, etc.) [7]. Matrix convolution is an operation between a kernel and a data ma-
trix (eg. image). The kernel acts as a filter applied to the image. Each element of the
2D convolution output matrix is the result of the sum of the multiplication between
the kernel and the matrix, which is equal in size to the kernel, extracted from each
element of the data matrix. The matrix extracted from each element is composed of all
the elements around it, each element being a central reference for matrix, as illustrated
in Figure 6.3. The figure highlights in green the parts of the kernel and the extracted
matrix that will be multiplied and accumulated for the first index of the output matrix.
Note that other elements of the kernel have been rejected due to the position of the
image element. It is essential to understand how this extraction is done because it is
important for understanding how we implement it in the AP.

K00 K01 K02

K10 K11 K12

K20 K21 K22

Kernel

Image

I00 I01 I02

I10 I11 I12

I20 I21 I22

...

...

...

...

IN0 IN1 ... INN

I0N

I1N

...

INN

INN

X

Matrix
extracted

Figure 6.3: Matrix extracted from the first element of the image operating with part of
the kernel.

To obtain a better performance of the AP, it is necessary to perform an associative
operation on as much data as possible, and this became a problem at the beginning
of the associative convolution implementations. Implementations of multiplication
parallelism and accumulation of results per kernel did not perform well. For this reason,
it was necessary to organize the image data to be able to increase the parallelism. The
main idea of adapting to the associative algorithm was to transform the image into a new
matrix to use the same flow of associative operations of the matrix multiplication. The
new matrix, which in Figure 6.4 is called "Image data organized" (image-to-column), is
composed of all extracted matrices explained before. All extractions, in the new matrix,
are columns, thus having a dimension of the number of kernel elements as height and
number of image elements as width. Figure 6.4 shows an example of what this new
matrix would look like if the kernel is 3x3 in size. In this case, it would be LxM with L
being the number of elements in the kernel and M being the number of elements in the
image.

44

K00 K01 K02

K10 K11 K12

K20 K21 K22

Kernel

Image data organized

D00 D01 ...

D10 D11 ...

...

K_Buffer

K00 K00 ...

SET_RVA

K_Buffer

R0 R1 ...MULT_RVA

ADD_RVA

D0M

D1M

...

D80 D81 ... D8M

K00

0 M

RM

Out

O00 O01 ...

O10 O11 ...

...

O0N

O1N

...

ON0 ON1 ... ONN

Image = NxN
Out = NxN
Kernel = 3x3
Image data organized = LxM
L = 3*3 (Kernel elements)
M = N*N (Image elements)

Dimensions

Figure 6.4: Overview of the behavior of 2D convolution in associative processing.

With the matrix organized with elements from different matrices extracted on the
same line, it is now possible to parallelize multiplication and accumulation not only
by extracted matrix, but among all of them. Note that in this way, convolution has
the same shape of associative matrix multiplication. And for the implementation of
the convolution, we follow the same steps in a similar algorithm shown in Figure
6.5. First, the buffer (k_buffer) is created, with the same size of the image, to receive a
copy of each kernel element. This procedure is done via SET_RVA. Then, the k_buffer
containing the first element of the kernel is multiplied in parallel, by MULT_RVA, with
all the first elements of all extracted matrices, and saved in k_buffer. Lastly, the k_buffer
is accumulated in the output image. This process is done with all the elements of the
kernel towards all the lines of the organized matrix, reaching high parallelism guided
by the number of elements of the kernel.

1 uint8_t k_buff[len];
2 SET_RVA(out, IMG_SIZE, 0, 1);
3 for(i = 0; i < KERNEL_SIZE; i++) {
4 SET_RVA(k_buff, len, kernel[i], 1);

5 MULT_RVA(k_buff, &image[j], k_buff, IMG_SIZE, 1);

6 ADD_RVA(out, k_buff, out, IMG_SIZE, 1);

7 j += IMG_SIZE;

8 }

Figure 6.5: Associative algorithm for 2D convolution using custom instructions for
implementing row parallelism.

However, this algorithm becomes expensive because the new matrix introduces a
high additional overhead. Besides, the cost to organize is much higher than computing
in the AP. We did experiments, both organizing the data and having it already processed.
With the data already processed it is possible to obtain a performance twice as good as
a CPU and save twice as much energy.

45

6.3 ReLU

The artificial neural networks uses the activation function to characterizes the node
outputs, similar to a button, associated to a circuit, which the mode "on" or "off" is
chosen by the function [9, 49]. The Rectified Linear Units (ReLU) activation function, in
the binary step, selects the output values with the simple criteria. As displayed in the
Equation 6.1, if the values of the equation are greater than or equal to zero, then they
will be 1, otherwise they will be 0. This very important activation procedure can be
optimized by associative processing by performing a simple step.1 if x ≥ 0

0 if x < 0
(6.1)

The associative implementation for ReLU takes advantage of the binary represen-
tation of the number and reduces the problem to a search for positive numbers. In
integers, the signal is represented by the most significant bit, 0 for positive and 1 for
negative. For the initial setup of the algorithm, the vector containing the values to be
analyzed is loaded into the CAM. Then a buffer with the size of the vector is instantiated
and filled with "ones" utilizing SET_RVA, as illustrated in the Figure 6.6.

1 uint32_t B[len];
2 SET_RVA(B, len, 1, 4);
3 RELU_RVA(A, B, len, 4);

Figure 6.6: Associative algorithm for ReLU using special instruction.

The buffer, represented by "B", containing "ones" serves as pre-written ReLU results,
in other words, assuming that all numbers are already positive. After that, the main
step of the algorithm is done by the RELU_RVA instruction. This instruction triggers
an operation in the associative processor that sets its mask and key to check the most
significant bit of the vector of values "A" and record of negative numbers in vector "B",
writing 0 in the respective positions.

See the example represented in the Figure 6.7. Note that vector B contains pre-
written ones and vector A contains [−x, y,−1, z,−k]. Remembering that the CAM is
able to analyze all the bits of a column in a cycle guided by the special registers, mask,
and key. The mask selects the most significant column for A and the least significant
column for B, the key representing the comparison bits of the lookup table. The lookup
table for this operation has as comparison bit 1 for both A and B and write 0 in B if
there is a match, that is, if a negative number is found in A. Then, the CAM does the
comparison in parallel and if it finds a negative number, as in the case of [-x, -1, -k] in
A, the value 0 is written in B, as represented in the lookup table, and therefore selecting
as ReLU.

46

Key

Mask

CAM

A[]B[]

-x

y

11111111111111111111111111111111

z

-k

0000000000000000000000000000000(1->0)

00000000000000000000000000000001

0000000000000000000000000000000(1->0)

00000000000000000000000000000001

0000000000000000000000000000000(1->0)

1001

1001

Compare Write

A B B

1 1 0

Lookup Table

Figure 6.7: Simulation of the ReLU operation within the CAM.

The associative algorithm for ReLU so far has two limitations. The first is that this
RELU_RVA operation only supports integer numbers, but because of the CAM logic,
the comparison can be adapted to floating-point values, being only necessary to adapt
the position of the mask and the key. As future work we intend to make the algorithm
adaptable, encompassing all types. The second limitation is that a buffer of the same
size as the value vector is needed to operate, which can be costly in terms of space
for the CAM. On the other hand, the algorithm spends a cycle for comparison and a
cycle for writing, assuming that the vectors are already organized within the AP and
therefore speeding up the filtering of the values. It is worth using it both to improve
performance and to save energy. The next Chapter shows all the results for matrix
multiplication, 2D convolution and ReLU.

47

Chapter 7

Demonstration and Results

Demonstrated and exemplified all the theory on which we are based, this Chapter
deals with the evaluation of kernels of applications. We evaluate our proposal in two
scenarios. In the first scenario, we compare our AP approach with a conventional
single-core CPU. This demonstrates how our simulator represents associative process-
ing operations, showing different behaviors between the performance of AP and CPU
according to the input size. In this scenario, we evaluate the execution latency, energy
consumption and amount of latency, according to the models that were explained in the
subsections 5.4 and 5.5. Then, in the second scenario, we show a performance compari-
son between the AP and a multi-core CPU, both running a matrix multiplication kernel.
This scenario demonstrates the associative processing efficiency to execute vectorized
operations when compared with the overhead of including additional execution cores
in the target system. The evaluation was made with data reported from the RV-Across
and applied to the models. Finally, we evaluate the simulation performance of the
RV-Across.

7.1 AP vs CPU

A total of eight application kernels were implemented for experimentation: Bitcount,
checksum, 1D convolution, hamming distance, manhattan distance, ReLU, matrix mul-
tiply, and 2D convolution. The applications were evaluated in the context of a model
using only the CPU versus a model with an Associative Processor, applying the latency
and power models explained in Chapter 5. A graph was generated for each applica-
tion with the comparison of latency, energy consumption, and quantity of load/stores
executed in order. These comparisons were made by varying the size of the input of
each algorithm respecting the 16 KB size of the CAM adopted for this evaluation. Each
entry depends on the algorithm, for example, in the case of the matrix multiplication
algorithm, the entry is the dimension, in the case of the checksum algorithm, the en-
try is the quantity and bytes of the array. For some algorithms, it is possible to fill
the entire CAM, for others it is not possible, due to the overhead of space used. The
algorithms were implemented and evaluated for execution with data in bytes. Matrix
multiplication and convolution were also deeply evaluated, varying the size of the

48

0 2000 4000 6000 8000 10000120001400016000
Input size

0.1

0.2

0.3

0.4

0.5

0.6

0.7

ti
m

e
(m

s)
Latency

AP
CPU

0 2000 4000 6000 8000 10000120001400016000
Input size

5

10

15

20

25

30

35

40

en
er

gy
 (

J)

Energy Consumption
AP
CPU

0 2000 4000 6000 8000 10000120001400016000
Input size

0

20000

40000

60000

80000

100000

120000

140000

lo
ad

s/
st

or
es

Loads and Stores
AP
CPU

Figure 7.1: Latency, energy consumption and memory accesses for AP and CPU, both
performing bitcount.

0 2000 4000 6000 8000 10000120001400016000
Input size

0.1

0.2

0.3

0.4

0.5

ti
m

e
(m

s)

Latency
AP
CPU

0 2000 4000 6000 8000 10000120001400016000
Input size

5

10

15

20

25

30

en
er

gy
 (

J)
Energy Consumption

AP
CPU

0 2000 4000 6000 8000 10000120001400016000
Input size

0

20000

40000

60000

80000

100000

lo
ad

s/
st

or
es

Loads and Stores
AP
CPU

Figure 7.2: Latency, energy consumption and memory accesses for AP and CPU, both
performing checksum.

AP and energetically evaluating the impact of a high power context. Also, a graph
was generated to explain the organization overhead used for 2D convolution and the
result of an optimized alternative. Finally, we plotted a graph for an overview of the
relative improvement and its geometric mean. Note that for almost all cases, the gain
is proportional to the size due to the relationship between the number of elements to
be parallelized and the execution overhead of the AP.

Figures 7.1 and 7.2 show the execution latency, energy consumption and the amount
of load and stores for CPU and AP executing bitcount and checksum respectively. The
checksum algorithm generates verification data through the successive sum of several
data. The bitcount returns the number of bits (ones) in a list of bytes. So, both algorithms
need to accumulate data and counts. For this, a similar mechanism for summing the
AP was used for both. To compute the checksum, the data vector is divided into halves,
and each half is summed in parallel, wordwise, repeating the operation in a divide-
and-conquer approach. For bitcount, the number of active bits in all individual words
in the data vector is computed in parallel, and then the result is accumulated using
the checksum algorithm. Both experiments filled the CAM, 16 KB. Among them, the
bitcount obtained a greater relative gain over the CPU. The checksum is an application
already executed quickly by the CPU, for the simplicity of being an accumulation.
Besides, with the AP it is not possible to make a sum between all the data array at
the same time. The maximum that the CAM can achieve is to perform a sum between
halves, treating the halves as vectors, as explained in Chapter 3. In both applications, the
tie point with the CPU was around the size of 200 bytes of input. The bitcount execution
in the AP was 1.4x better in all aspects shown in the graphics and the checksum was 1.1x
better. The relationships were made for the maximum input sizes for each algorithm.

49

0 250 500 750 1000 1250 1500 1750 2000
Input size

0

5

10

15

20

ti
m

e
(m

s)
Latency

AP
CPU

0 250 500 750 1000 1250 1500 1750 2000
Input size

0

200

400

600

800

1000

1200

en
er

gy
 (

J)

Energy Consumption
AP
CPU

0 250 500 750 1000 1250 1500 1750 2000
Input size

0

100000

200000

300000

400000

500000

lo
ad

s/
st

or
es

Loads and Stores
AP
CPU

Figure 7.3: Latency, energy consumption and memory accesses for AP and CPU, both
performing 1D convolution.

0 2000 4000 6000 8000 10000120001400016000
Input size

0

2

4

6

8

10

ti
m

e
(m

s)

Latency
AP
CPU

0 2000 4000 6000 8000 10000120001400016000
Input size

0

100

200

300

400

500

600

en
er

gy
 (

J)
Energy Consumption

AP
CPU

0 2000 4000 6000 8000 10000120001400016000
Input size

0

1000000

2000000

3000000

4000000

lo
ad

s/
st

or
es

Loads and Stores
AP
CPU

Figure 7.4: Latency, energy consumption and memory accesses for AP and CPU, both
performing hamming distance calculation.

In the results for 1D convolution, shown in the Figure 7.3, the behavior of the
load/store metric differed from the previous applications described. 1D convolution is
performed between vectors, with the same principle that a kernel vector operates on all
elements of a vector data set, with each element of the data vector as a reference. The
algorithm for using vectors facilitates adaptation to the associative algorithm. However,
the operations between the kernel and each element of the vector, in this case, require
the CPU to assist the AP with many accesses to memory. Thus, creating a scenario of
great processing potential for the AP model, at the same time that the auxiliary CPU is
greatly required. The results for latency and energy show the gain related to size, as in
other cases. For latency, a gain of 13x and, for energy, of 12x. However, the algorithm
spends a lot on the use of loads and stores tying with the CPU model.

Unlike the 1D convolution, the results of the evaluation for hamming distance,
displayed in the Figure 7.4, were tied for the three metrics. The hamming distance
is a byte comparison algorithm, generally used for strings, that is a vector of bytes.
The main operation is XOR, the standard logical operation for differentiating between
bit-level values. In short, in the AP it was necessary to make only one XOR among
all the elements, while in the CPU an XOR was executed for each byte. However, the
execution speed on the model with the CPU is so high that it is not worth running on
the AP, as the improvement is low. Even filling an entire CAM and running the XOR in
parallel, the relative gain appears in the third decimal place.

When experimenting with the Manhattan distance kernel in the two models, as
shown in figure 7.5, it is noticeable that the application performed well in the AP model.
The distance from Manhattan is the value of calculating the sum of the differences
between coordinates. The application gives the data corresponding to the coordinates

50

0 250 500 750 1000 1250 1500 1750 2000
Input size

0

5

10

15

20

25

30

ti
m

e
(m

s)
Latency

AP
CPU

0 250 500 750 1000 1250 1500 1750 2000
Input size

0

250

500

750

1000

1250

1500

1750

en
er

gy
 (

J)

Energy Consumption
AP
CPU

0 250 500 750 1000 1250 1500 1750 2000
Input size

0
500000

1000000
1500000
2000000
2500000
3000000
3500000
4000000

lo
ad

s/
st

or
es

Loads and Stores
AP
CPU

Figure 7.5: Latency, energy consumption and memory accesses for AP and CPU, both
executing Manhattan distance.

0 1000 2000 3000 4000 5000 6000 7000 8000
Input size

0.1

0.2

0.3

0.4

0.5

0.6

ti
m

e
(m

s)

Latency
AP
CPU

0 1000 2000 3000 4000 5000 6000 7000 8000
Input size

5

10

15

20

25

30

en
er

gy
 (

J)
Energy Consumption

AP
CPU

0 1000 2000 3000 4000 5000 6000 7000 8000
Input size

0

10000

20000

30000

40000

50000

60000

lo
ad

s/
st

or
es

Loads and Stores
AP
CPU

Figure 7.6: Latency, energy consumption and memory accesses for AP and CPU, both
executing ReLU.

well-organized in lists. It favors the associative operation that has the power to perform
additions and subtractions in parallel, while the CPU model needs to perform two
loops to iterate over the coordinates and perform the calculation. The distance from
manhattan running on the AP model achieved a relative gain of 7x for latency, 4x for
energy, and 138x in the quantity of load and stores (the best among applications).

Figure 7.6 shows a comparison between the CPU and AP models when performing
the ReLU activation function. ReLU is an activation function that defines the outputs of
the nodes of a neural network. It assigns 1 for numbers that are greater than or equal to
zero and otherwise it assigns 0. Special instruction for the selection of elements within
the AP was implemented in the AP as a ReLU selection. The instruction searches in the
column of data, whose values are negative through the most significant bit, and writes
in parallel to the result vector. The complete explanation can be found in subsection 6.3.
The relative improvement of ReLU running on the AP was 1.5x for latency and energy
and 1.3x for load/store quantity.

The matrix multiplication kernel was also evaluated in terms of latency, energy con-
sumption, and quantity of load/stores in the CPU models and with the AP. The result is
illustrated in 7.7. In adapting to extract parallelism from the context of associative pro-
cessing, we use row parallelism, where we copy each element of a vector and replicate
it in a buffer. Then, in parallel, we perform both multiplication and accumulation in the
output vector. So, we removed a loop from the standard algorithm for performance. In
subsection 6.1, both the algorithm and the behavior within the CAM are explained in
detail. The superiority in performance is clear in the numbers of relative improvement:
6x for latency, 4x for energy consumption, and 28x for load/stores.

51

0 10 20 30 40 50 60 70
Input size

0

1

2

3

4

5

6

ti
m

e
(m

s)
Latency

AP
CPU

0 10 20 30 40 50 60 70
Input size

0

50

100

150

200

250

300

350

en
er

gy
 (

J)

Energy Consumption
AP
CPU

0 10 20 30 40 50 60 70
Input size

0

500000

1000000

1500000

2000000

2500000

lo
ad

s/
st

or
es

Loads and Stores
AP
CPU

Figure 7.7: Latency, energy consumption and memory accesses for AP and CPU, both
performing matrix multiply.

5 10 15 20 25 30 35 40
Input size

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

ti
m

e
(m

s)

Latency
AP
CPU

5 10 15 20 25 30 35 40
Input size

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

22.5

en
er

gy
 (

J)

Energy Consumption
AP
CPU

5 10 15 20 25 30 35 40
Input size

0

5000

10000

15000

20000

25000

30000

35000

40000

lo
ad

s/
st

or
es

Loads and Stores
AP
CPU

Figure 7.8: Latency, energy consumption and memory accesses for AP and CPU. The
CPU performing naive 2D convolution algorithm.

The results for 2D convolution with the same matrix multiplication metrics are
shown in Figure 7.8. This figure shows the comparison between a naive version of the
2D convolution implementation versus the AP implementation. For the 2D convolution
kernel, it was necessary to organize data overhead so that they would have an exact
shape to execute the same parallelism mechanism used in matrix multiplication. The
form of organization is best explained in the subsection 6.2. So, against the naive version
running on the CPU, note that the AP model gains in latency and energy but ties in
load/store because this organization made to extract parallelism from the AP.

However, the comparison of the version of the 2D convolution in the AP versus
the software optimized version performed in the CPU model ties for latency and
energy consumption, as notable in Figure 7.11. Interestingly, in this software-optimized
version, memoization is used to speed up computation and this can be seen in the
graph as the CPU spent a lot of load/store operations. Thus, the AP achieved a relative
improvement of 1.7x.

The alternative found to improve the algorithm was to reimplement the algorithm
assuming that the matrix data is already organized and ready to be operated on the AP.
We did this by keeping the entire array organized in binary files. In this new version
of the associative algorithm, this time optimized, the program loads the data from the
file and already executes it in parallel in the AP. Figure 7.10 depicts the comparison
between the normal and the optimized version, where the graph above represents the
non-optimized algorithm and the one below the optimized. Notice the high expense
required to organize the data. Although the initialization latency is high, it appears
small in the presence of organization cost. Note also the constant computation latency
in the AP that causes a positive impact on performance with increasing data size.

52

5 10 15 20 25 30 35 40
Input size

0.05

0.10

0.15

0.20

0.25

0.30

0.35
ti

m
e

(m
s)

Latency
AP
CPU

5 10 15 20 25 30 35 40
Input size

4

6

8

10

12

14

16

18

en
er

gy
 (

J)

Energy Consumption
AP
CPU

5 10 15 20 25 30 35 40
Input size

0

10000

20000

30000

40000

50000

60000

70000

lo
ad

s/
st

or
es

Loads and Stores
AP
CPU

Figure 7.9: Latency, energy consumption and memory accesses for AP and CPU. The
CPU performing optimized 2D convolution algorithm.

0 20 40 60 80 100
103

104

105

106

cy
cle

s

Conv 2D breakdown - AP vs AP optimized
Initialization
Organization
AP computation

0 20 40 60 80 100
inputs

0
5000

10000
15000
20000
25000
30000
35000
40000

cy
cle

s

Initialization
AP computation

Figure 7.10: Comparison in number of cycles between the normal and optimized version
of the 2D convolution in the AP, separating the executions in phases for initialization,
data organization and computation in the AP.

Finally, in the figure 7.11, we compare the optimized versions for the model in the
AP and the CPU. The execution of the 2D convolution optimized for the AP model
obtained a relative improvement of 2x for latency, 2x for energy consumption, and 13x
in load/store operations.

Figures 7.12 and 7.13 represent an analysis of the energy impact between CPU and
AP models in different AP sizes, from 16 KB to 32 KB, running 2D convolution and ma-
trix multiplication respectively. Each range of the graph corresponds to a different size
of AP, being guided by the supported input. In other words, for matrix multiplication,
the inputs from dimensions 3 to 72 fit into a 16 KB AP, but from 73 to 120, it is necessary
a 32 KB size AP, and so on. See that as the AP grows in size, the energy consumption
increases, which is due to the increase in power. In Figure 7.12, we compare the two
versions of implementations of 2D convolution in the AP with the CPU model. Note
that there is a relative gain of the AP in both versions for the 16 KB and 32 KB APs. But
from 64 KB, the version of the AP without the optimization starts to lose and the opti-
mized version keeps saving energy up to the maximum size of 128KB. This is because
the normal version has a high overhead for organizing the data. The scenario, shown
in the figure, for matrix multiplication is better concerning 2D convolution. For all AP
sizes, multiplication continued to save energy. That is, regardless of the size of the AP,
matrix multiplication in the associative processor is a better option for energy saving
compared to a CPU only model.

53

5 10 15 20 25 30 35 40
Input size

0.05

0.10

0.15

0.20

0.25

0.30

ti
m

e
(m

s)
Latency

AP
CPU

5 10 15 20 25 30 35 40
Input size

4

6

8

10

12

14

16

18

en
er

gy
 (

J)

Energy Consumption
AP
CPU

5 10 15 20 25 30 35 40
Input size

0

10000

20000

30000

40000

50000

60000

70000

lo
ad

s/
st

or
es

Loads and Stores
AP
CPU

Figure 7.11: Latency, energy consumption and memory accesses for AP and CPU. The
AP and CPU, both performing optimized 2D convolution algorithm.

0 20 40 60 80 100
inputs

0

20

40

60

80

100

120

140

160

en
er

gy
 (

µJ
)

Conv 2D energy consumption in different AP sizes
AP
AP opt
CPU
AP 16kb
AP 32kb
AP 64kb
AP 128kb

Figure 7.12: Energy consumption for different AP sizes, comparing the normal and
optimized for AP and optimized version for CPU.

In chapter 3 is shown that the more the word size increases in the execution of an
associative algorithm, the more it is costly to execute. This is because the associative
algorithm will need to analyze more bits and write in more columns. Figure 7.14 shows
the number of cycles, spent only inside AP, performed to multiply matrices in different
word sizes. Note that, as expected, the larger the word size, the more cycles are required
for execution. For a notion of proportion, in the case of the execution of the 100x100
matrix, running with 8 bytes of word, it is spent 36x more than running with 1 byte.

Table 7.1 shows all the relative gains and input ranges for all applications used in the
experiments. In general, the model with the AP proved to be efficient in performance
and energy. However, applications that are already very fast on the CPU or that require a
larger organization overhead did not fit well with the model. Deriving from the results,
for the model with the AP to obtain a good performance, the application must already
provide a data organization or this organization must have a small overhead. The AP
is more energy efficient in smaller sizes like 16KB or 32KB. Besides, a 16KB CAM has
approximately half of an Ariane core area, as shown in the table 5.3, and a 32KB CAM is
similar in size to an Ariane core. So it is worth having an AP that spends the same area
as a core and has a performance of up to 6x of a CPU when a matrix multiplication is
performed. Therefore, the AP becomes a viable alternative for embedded devices that
require energy saving and at the same time processing speed.

54

0 20 40 60 80 100 120 140
inputs

0

500

1000

1500

2000

2500

3000

en
er

gy
 (

µJ
)

Matrix multiply energy consumption in different AP sizes
AP
CPU
AP 16kb
AP 32kb
AP 64kb

Figure 7.13: Energy consumption for different AP sizes, comparing AP and CPU, per-
forming matrix multiply.

0 20 40 60 80 100
inputs

0

1

2

3

4

cy
cl

es

1e7 AP performing matrix multiply in different word sizes
1 byte
2 bytes
3 bytes
4 bytes

Figure 7.14: AP performing matrix multiply with different word sizes.

7.2 AP vs Multicore

In the multi-core scenario, we adapt the bare-metal multi-threaded matrix multiply
reference implementation to use the AP modeling. Then, we compare the performance
of both AP and CPU executing the multiplication kernel in 1, 2, 4 and 8 cores for
matrices dimensions of 50x50, 100x100, 150x150, and 200x200 bytes. In AP, we consider
that our SPM can store the input and output matrices and temporary values, which
represents a size of at most 128 KB in the 200x200 scenario. For the CPU, we disregard
any influence of the memory hierarchy in the performance accountancy, assuming that
all data is previously loaded in the lower latency level for computation, and thus the
number of executed instructions determines the execution time. Thus, this evaluates
the best-case scenario of the multicore execution in the comparison with the AP.

Figure 7.15 shows the speed-ups over of the AP and CPU with 2, 4, and 8 cores,
using the single-core execution as baseline. In small data sizes (50x50), the control
overhead of the AP dominates and affects performance, which makes its speed-up in
the same order of magnitude of a 2-core CPU. Nonetheless, increasing the input size
maximizes the performance gains that AP provides. From a 100x100 matrix, AP achieves
a speed-up of 3.96x against 1.98x, 3.88x, and 7.77x of 2, 4, and 8 cores, respectively. This
trending intensifies at a 200x200 input size, where AP overcome all tested multi-core
configuration, with 8.01x speed-up over 7.72x from the 8 core CPU. Furthermore,
the performance gains of the AP approach scale up linearly with the dimension of

55

bitcount checksum conv 1D hamming distance manhattan relu mm conv 2D conv 2D opt geometric mean

100

101

102

re
la

ti
ve

 im
pr

ov
em

en
t

Latency
Energy Consumption
Loads and Stores

Figure 7.15: The relative improvement in terms of latency, energy consumption and
load/stores for all applications evaluated.

50x50 100x100 150x150 200x200
Dimensions

0

1

2

3

4

5

6

7

8

Sp
ee

du
p

AP
1 core
2 cores
4 cores
8 cores

Figure 7.16: Associative Processing matrix multiplication speed-up over a single-core
CPU baseline, compared with speed-up for multi-threading with 2, 4, and 8 cores.

the matrices, suggesting that a larger SPM can provide higher speed-ups for larger
matrices even in comparison with larger multi-core CPUs. Note that this assessment
has a perspective of speed of execution. In a 128 KB AP, both the area and the energy
consumed must be taken into account. For this reason, several works are migrating
to non-volatile memory technologies that take up less space and spend less energy
[32, 34, 52, 56].

56

Table 7.1: Relative improvements of all tested application kernels in their respective
input sizes.

Relative improvements

Applications Inputs for 16KB AP Latency
Energy

Consumption
load/store
operations

bitcount 1 - 16000 bytes 1.468x 1.438x 1.498x
checksum 1 - 16000 bytes 1.101x 1.078x 1.166x
conv 1D 1 - 4000 bytes 13.77x 12.560x 1x
hamming
distance 1 - 16000 bytes 1.008x 1.007x 1.007x

manhattan
distance

3 - 2000 bytes
per vector 7.590x 4.890x 138.471x

ReLU 1 - 8000 bytes 1.577x 1.577x 1.331x
matrix

multiply
3x3 - 72x72
two matrix 5.950x 4.722x 25.894x

2D Convolution
3x3 filter

3x3 - 40x40 image 0.992x 1.034x 1.751x

2D Convolution
optimized

3x3 filter
3x3 - 40x40 image 2.285x 2.520x 13.39x

geometric mean - 2.485x 2.308x 3.874x

Table 7.2: Simulation time for 100x100 matrix multiply.

Vanilla simulator RV-Across
Simulations 1 core 2 cores 4 cores 8 cores 1 core 2 cores 4 cores 8 cores AP
Avg time (s) 0.009 0.009 0.011 0.013 0.103 0.101 0.105 0.107 29.810

7.3 Simulation performance

Finally, we evaluate the performance of RV-Across itself to run the execution scenarios.
Table 7.2 shows the average simulation time to run the matrix multiply application
into the Vanilla Spike and the simulator modified with the RVA extensions, for a in-
put 100x100 bytes matrices. Although RV-Across introduces significant overhead, the
modified simulator includes routines to generate significantly more data to evaluate
the execution, such as instruction counters and memory accesses traces. Additionally,
in the AP scenario, RV-Across emulates the associative operations step-by-step, gener-
ating statistics from algorithms, such as the number of passes, comparisons, matches,
mismatches, writes, miswrites, and a full trace for the designer to understand the be-
havior of the operation. All these bring a significant impact on execution time, but add
data to get a more accurate simulation of the associative operations.

57

Chapter 8

Conclusion

This work presents an exploration of the potential of associative processing using RV-
Across, which is a simulator for associative operations, in different application kernels
under different scenarios. Applying the models for calculating latency and energy con-
sumption for CPU-only and multi-CPU scenarios versus a model with the Associative
Processor. We found a relative gain of 2x for latency, 2x for energy consumption and
3x for load/store operations against the CPU-only model. And against the multi-CPU
model, running the multiplication in parallel, the model with the AP can be faster. In
addition to the relative gains, the 16 KB Associative Processor CAM would use half the
area of an RISCV Ariane core.

On the other hand, to extract parallelism from the Associative Processor, it is neces-
sary to keep the data properly organized. The organization process, as we saw in the
case of 2D convolution, can be costly to the point of compromising the efficiency of the
system. Another issue is that to obtain good efficiency, it is necessary to work with the
smallest possible word size. This is because the performance of the operation is guided
by the word size. Energy consumption is mainly affected by the increase in word size
for two reasons: increased area and impact of run-time on high power hardware. The
word size issue is linked to floating point operations that are poorly explained in the
literature, which leads to the conclusion that associative processing is more exploited
for integers. There are also gaps in the literature in terms of the AP controller overhead
used to implement the associative algorithm.

There is a difficulty in finding associative processing simulators, such as RV-Across,
which are open and have a defined model for assessing latency and energy consump-
tion (https://github.com/JEvSilv/riscv-isa-sim). Some researchers implement the simulators
and present them in the evaluation description as an in-house simulator, thus hindering
validation and comparison. RV-Across is an open simulator that provides apparatus
for evaluating both the behavior of the associative operation and the performance in
an architectural model. Our simulator can be customized both in terms of parameters
and in the way of processing. RV-Across was described in the article RV-Across: An As-
sociative Processing Simulator [25] published in the 2020 High Performance Computer
Systems Symposium (WSCAD).

As future work we intend to improve our models and make comparisons with GPU,
Tensor Processor Unit (TPU) and other PIM approaches. In the short term we intend

https://github.com/JEvSilv/riscv-isa-sim

58

to improve the performance of RV-Across and provide support for an independent
execution of the Associative Processor. We also want to explore floating point operations
on the Associative Processor and implement an AP in FPGA to obtain more accurate
results.

59

Bibliography

[1] J. Ahn, S. Yoo, O. Mutlu, and K. Choi. Pim-enabled instructions: A low-overhead,
locality-aware processing-in-memory architecture. In 2015 ACM/IEEE 42nd Annual
International Symposium on Computer Architecture (ISCA), pages 336–348, June 2015.

[2] Krste Asanovi Andrew Waterman and SiFive Inc. The RISC-V Instruction Set
Manual. https://riscv.org/wp-content/uploads/2017/05/riscv-spec-v2.2.pdf, 2011.
Accessed: 2019-07-31.

[3] Shaahin Angizi, Jiao Sun, Wei Zhang, and Deliang Fan. AlignS: A processing-in-
memory accelerator for dna short read alignment leveraging sot-mram. In DAC,
pages 144:1–144:6, 2019.

[4] Shaahin Angizi, Jiao Sun, Wei Zhang, and Deliang Fan. Pim-aligner: A processing-
in-mram platform for biological sequence alignment. 2020 Design, Automation &
Test in Europe Conference & Exhibition (DATE), 2020.

[5] I. Arsovski, T. Hebig, D. Dobson, and R. Wistort. A 32 nm 0.58-fj/bit/search 1-ghz
ternary content addressable memory compiler using silicon-aware early-predict
late-correct sensing with embedded deep-trench capacitor noise mitigation. IEEE
Journal of Solid-State Circuits, 48(4):932–939, 2013.

[6] Amirali Boroumand, Saugata Ghose, Youngsok Kim, Rachata Ausavarungnirun,
Eric Shiu, Rahul Thakur, Daehyun Kim, Aki Kuusela, Allan Knies, Parthasarathy
Ranganathan, and Onur Mutlu. Google workloads for consumer devices: Mitigat-
ing data movement bottlenecks. In Proceedings of the Twenty-Third International Con-
ference on Architectural Support for Programming Languages and Operating Systems,
ASPLOS ’18, page 316–331, New York, NY, USA, 2018. Association for Computing
Machinery.

[7] Chao Cheng and Keshab K Parhi. Fast 2d convolution algorithms for convolu-
tional neural networks. IEEE Transactions on Circuits and Systems I: Regular Papers,
67(5):1678–1691, 2020.

[8] Ping Chi, Shuangchen Li, Cong Xu, Tao Zhang, Jishen Zhao, Yongpan Liu,
Yu Wang, and Yuan Xie. Prime: A novel processing-in-memory architecture for
neural network computation in reram-based main memory. In Proceedings of the
43rd International Symposium on Computer Architecture, ISCA ’16, pages 27–39, Pis-
cataway, NJ, USA, 2016. IEEE Press.

60

[9] ML Glossary Community. Activation functions. https://ml-
cheatsheet.readthedocs.io/en/latest/activation_functions.html#relu, 2018. Ac-
cessed: 2021-01-01.

[10] Hybrid Memory Cube Consortium. Hmc. http://hybridmemorycube.org/, 2018.
Accessed: 2018-10-20.

[11] Triscend Corporation. What is the delay from dma request to dma acknowledge.
prevailing-technology.com, 2002. Accessed: 2018-10-20.

[12] G. Dai, T. Huang, Y. Chi, J. Zhao, G. Sun, Y. Liu, Y. Wang, Y. Xie, and H. Yang.
GraphH: A processing-in-memory architecture for large-scale graph processing.
IEEE TCAD, 38(4):640–653, 2019.

[13] T. Daulby, A. Savanth, G. V. Merrett, and A. S. Weddell. Improving the forward
progress of transient systems. IEEE Transactions on Computer-Aided Design of Inte-
grated Circuits and Systems, pages 1–1, 2020.

[14] Jeff Draper, Jacqueline Chame, Mary Hall, Craig Steele, Tim Barrett, Jeff LaCoss,
John Granacki, Jaewook Shin, Chun Chen, Chang Woo Kang, Ihn Kim, and Gokhan
Daglikoca. The architecture of the diva processing-in-memory chip. In Proceedings
of the 16th International Conference on Supercomputing, ICS ’02, pages 14–25, New
York, NY, USA, 2002. ACM.

[15] Steve Farrer. 80186/80188 dma latency. datasheets.chipdb.org/Intel, 1989. Ac-
cessed: 2018-10-20.

[16] Mingyu Gao, Jing Pu, Xuan Yang, Mark Horowitz, and Christos Kozyrakis. Tetris:
Scalable and efficient neural network acceleration with 3d memory. SIGOPS Oper.
Syst. Rev., 51(2):751–764, April 2017.

[17] M. Gokhale, B. Holmes, and K. Iobst. Processing in memory: the terasys massively
parallel pim array. Computer, 28(4):23–31, April 1995.

[18] Saransh Gupta, Mohsen Imani, Harveen Kaur, and Tajana Simunic Rosing.
NNPIM: A Processing In-Memory Architecture for Neural Network Acceleration.
IEEE TC, 9340(c):1–1, 2019.

[19] M. Imani, S. Gupta, and T. Rosing. Genpim: Generalized processing in-memory
to accelerate data intensive applications. In 2018 Design, Automation Test in Europe
Conference Exhibition (DATE), pages 1155–1158, March 2018.

[20] M. Imani, S. Patil, and T. ŠimuniĆ Rosing. Approximate computing using multiple-
access single-charge associative memory. IEEE TETC, 6(3):305–316, 2018.

[21] M. Imani, A. Rahimi, and T. S. Rosing. Resistive configurable associative memory
for approximate computing. In 2016 Design, Automation Test in Europe Conference
Exhibition (DATE), pages 1327–1332, 2016.

http://www.prevailing-technology.com/publications/supportcenter/What%20Is%20the%20Delay%20from%20DMA%20Request%20to%20DMA%20Acknowledge.htm#:~:text=The%20amount%20of%20delay%20from,activity%20on%20the%20CSI%20bus.&text=The%20minimum%20latency%20from%20DMA%20request%20to%20acknowledge%20is%20four%20clock%20cycles.
http://datasheets.chipdb.org/Intel/x86/8018x/applnots/27052501.PDF

61

[22] Mohsen Imani, Saransh Gupta, Yeseong Kim, Minxuan Zhou, and Tajana Rosing.
Digitalpim: Digital-based processing in-memory for big data acceleration. In Pro-
ceedings of the 2019 on Great Lakes Symposium on VLSI, GLSVLSI ’19, pages 429–434,
New York, NY, USA, 2019. ACM.

[23] D. Jeon and K. Chung. CasHMC: A Cycle-Accurate Simulator for Hybrid Memory
Cube. IEEE CAL, 16(1):10–13, 2017.

[24] L. Jiang, M. Kim, W. Wen, and D. Wang. Xnor-pop: A processing-in-memory
architecture for binary convolutional neural networks in wide-io2 drams. In 2017
IEEE/ACM International Symposium on Low Power Electronics and Design (ISLPED),
pages 1–6, 2017.

[25] João Fabrício Filho Jonathas Silveira, Isaias Felzmann and Lucas Wanner. Rv-
across: An associative processing simulator. RV-Across full paper link, 2020. Ac-
cessed: 2018-10-20.

[26] R. Kaplan, L. Yavits, R. Ginosar, and U. Weiser. A resistive cam processing-in-
storage architecture for dna sequence alignment. IEEE Micro, 37(4):20–28, 2017.

[27] K. Kaur. A survey on internet of things – architecture, applications, and future
trends. In 2018 First International Conference on Secure Cyber Computing and Com-
munication (ICSCCC), pages 581–583, Dec 2018.

[28] S. Khoram, Y. Zha, and J. Li. An alternative analytical approach to associative
processing. IEEE CAL, 17(2):113–116, 2018.

[29] Jeremie S. Kim, Damla Senol Cali, Hongyi Xin, Donghyuk Lee, Saugata Ghose,
Mohammed Alser, Hasan Hassan, Oguz Ergin, Can Alkan, and Onur Mutlu.
GRIM-Filter: Fast seed location filtering in DNA read mapping using processing-
in-memory technologies. BMC Genomics, 19(2):89, 2018.

[30] C. Lefurgy, K. Rajamani, F. Rawson, W. Felter, M. Kistler, and T. W. Keller. Energy
management for commercial servers. IEEE Computer, 36(12):39–48, 2003.

[31] J. D. Leidel and Y. Chen. Hmc-sim-2.0: A simulation platform for exploring custom
memory cube operations. In IPDPSW, pages 621–630, 2016.

[32] H. Li, H. Jin, L. Zheng, and X. Liao. Resqm: Accelerating database operations
using reram-based content addressable memory. IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems, 39(11):4030–4041, 2020.

[33] S. Li, L. Liu, Peng Gu, C. Xu, and Yuan Xie. NVSim-CAM: A circuit-level simulator
for emerging nonvolatile memory based content-addressable memory. In ICCAD,
pages 1–7, 2016.

[34] Sparsh Mittal. A survey of reram-based architectures for processing-in-memory
and neural networks. Machine learning and knowledge extraction, 1(1):75–114, 2019.

http://wscad.sbc.org.br/2020/artigos/trilha-principal/s03p02-209266-1.pdf

62

[35] Onur Mutlu, Saugata Ghose, Juan Gómez-Luna, and Rachata Ausavarungnirun.
Enabling practical processing in and near memory for data-intensive computing.
In Proceedings of the 56th Annual Design Automation Conference 2019, DAC ’19, pages
21:1–21:4, New York, NY, USA, 2019. ACM.

[36] L. Nai, R. Hadidi, J. Sim, H. Kim, P. Kumar, and H. Kim. GraphPIM: Enabling
instruction-level pim offloading in graph computing frameworks. In HPCA, pages
457–468, 2017.

[37] Hoang Anh Du Nguyen, Jintao Yu, Muath Abu Lebdeh, Mottaqiallah Taouil, Said
Hamdioui, and Francky Catthoor. A classification of memory-centric computing.
ACM Journal on Emerging Technologies in Computing Systems (JETC), 16(2):1–26,
2020.

[38] G. F. Oliveira, P. C. Santos, M. A. Z. Alves, and L. Carro. A generic processing
in memory cycle accurate simulator under hybrid memory cube architecture. In
SAMOS, pages 54–61, 2017.

[39] Dhinakaran Pandiyan and Carole-Jean Wu. Quantifying the energy cost of data
movement for emerging smart phone workloads on mobile platforms. In 2014
IEEE International Symposium on Workload Characterization (IISWC), pages 171–180.
IEEE, 2014.

[40] João Paulo and Cardoso De Lima. PIM-gem5 : a system simulator for Processing-
in-Memory design space exploration. Master’s thesis, Universidade Federal do
Rio Grande do Sul, 2019.

[41] Bruno E. Forlin Paulo C. Santos and Luigi Carro. sim2 pim: A fast method for
simulating host independent & pim agnostic designs. In 2021 Design, Automation
Test in Europe Conference Exhibition (DATE), March 2021.

[42] Zaid Qureshi, Vikram Sharma Mailthody, Seung Won Min, I Chung, Jinjun
Xiong, Wen-mei Hwu, et al. Tearing down the memory wall. arXiv preprint
arXiv:2008.10169, 2020.

[43] J. Saikia, S. Yin, Z. Jiang, M. Seok, and J. Seo. K-nearest neighbor hardware
accelerator using in-memory computing sram. In 2019 IEEE/ACM International
Symposium on Low Power Electronics and Design (ISLPED), pages 1–6, 2019.

[44] Paulo Cesar Santos, João Paulo C. de Lima, Rafael F. de Moura, Hameeza Ahmed,
Marco A. Z. Alves, Antonio C. S. Beck, and Luigi Carro. Exploring IoT Platform
with Technologically Agnostic Processing-in-memory Framework. In INTESA,
pages 1–6, 2018.

[45] Vivek Seshadri, Donghyuk Lee, Thomas Mullins, Hasan Hassan, Amirali
Boroumand, Jeremie Kim, Michael A. Kozuch, Onur Mutlu, Phillip B. Gibbons,
and Todd C. Mowry. Ambit: In-memory accelerator for bulk bitwise operations
using commodity dram technology. In Proceedings of the 50th Annual IEEE/ACM

63

International Symposium on Microarchitecture, MICRO-50 ’17, pages 273–287, New
York, NY, USA, 2017. ACM.

[46] Ali Shafiee, Anirban Nag, Naveen Muralimanohar, Rajeev Balasubramonian,
John Paul Strachan, Miao Hu, R. Stanley Williams, and Vivek Srikumar. Isaac: A
convolutional neural network accelerator with in-situ analog arithmetic in cross-
bars. SIGARCH Comput. Archit. News, 44(3):14–26, June 2016.

[47] Gurusiddayya Hiremath Shashi Kumar. Low power implementation of risc-v
processor. IOSR Journal of VLSI and Signal Processing (IOSR-JVSP), 6(3):59, 2016.

[48] Robert A Van De Geijn and Jerrell Watts. Summa: Scalable universal matrix
multiplication algorithm. Concurrency: Practice and Experience, 9(4):255–274, 1997.

[49] Bing Xu, Naiyan Wang, Tianqi Chen, and Mu Li. Empirical evaluation of rectified
activations in convolutional network. arXiv preprint arXiv:1505.00853, 2015.

[50] S. Xu, X. Chen, Y. Wang, Y. Han, X. Qian, and X. Li. PIMSim: A flexible and detailed
processing-in-memory simulator. IEEE CAL, 18(1):6–9, 2019.

[51] H. E. Yantir, A. M. Eltawil, and F. J. Kurdahi. A hybrid approximate computing
approach for associative in-memory processors. IEEE JETCAS, pages 1–1, 2018.

[52] Hasan Erdem Yantir, Ahmed M. Eltawil, and Fadi J. Kurdahi. Approximate mem-
ristive in-memory computing. ACM Trans. Embed. Comput. Syst., 16(5s):129:1–
129:18, September 2017.

[53] Hasan Erdem Yantir, Ahmed M. Eltawil, and Fadi J. Kurdahi. Approximate mem-
ristive in-memory computing. ACM Trans. Embed. Comput. Syst., 16(5s):129:1–
129:18, September 2017.

[54] L. Yavits, S. Kvatinsky, A. Morad, and R. Ginosar. Resistive associative processor.
IEEE CAL, 14(2):148–151, 2015.

[55] L. Yavits, A. Morad, and R. Ginosar. Computer architecture with associative
processor replacing last-level cache and simd accelerator. IEEE Transactions on
Computers, 64(2):368–381, Feb 2015.

[56] L. Yavits, A. Morad, and R. Ginosar. Computer architecture with associative
processor replacing last-level cache and simd accelerator. IEEE TC, 64(2):368–381,
2015.

[57] Leonid Yavits, Roman Kaplan, and Ran Ginosar. PRINS: resistive CAM processing
in storage. CoRR, abs/1805.09612, 2018.

[58] F. Zaruba and L. Benini. The cost of application-class processing: Energy and
performance analysis of a linux-ready 1.7-ghz 64-bit risc-v core in 22-nm fd-
soi technology. IEEE Transactions on Very Large Scale Integration (VLSI) Systems,
27(11):2629–2640, 2019.

64

[59] Dongping Zhang, Nuwan Jayasena, Alexander Lyashevsky, Joseph L. Greathouse,
Lifan Xu, and Michael Ignatowski. TOP-PIM: Throughput-oriented pro-
grammable processing in memory. In HPDC, pages 85–98, 2014.

[60] M. Zhang, Y. Zhuo, C. Wang, M. Gao, Y. Wu, K. Chen, C. Kozyrakis, and X. Qian.
GraphP: Reducing communication for pim-based graph processing with efficient
data partition. In HPCA, pages 544–557, 2018.

	Introduction
	Background
	RISC-V
	Processing in Memory
	3D Memory
	Alternative Solutions
	Associative Processing

	Associative Processing
	Associative Processor
	Constructing operations
	Logic operations
	Arithmetic operations
	Web AP simulator

	Related Work
	Processing in Memory
	3D Memories
	Associative Processors
	Simulators
	Comparison

	RV-Across: An Associative Processing Simulator
	Overview
	User interface
	Output
	Latency model
	Energy model
	Customizing associative operations

	Case studies
	Matrix Multiplication
	2D Convolution
	ReLU

	Demonstration and Results
	AP vs CPU
	AP vs Multicore
	Simulation performance

	Conclusion

